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Some Exact Trace Formulre 

Charles L. Epstein 

§1. Introduction 

In the study of the singularities of the trace of the wave operator 
on Riemannian manifolds there is a dichotomy between the constant 
curvature case and the general case. On an (n+l)-dimensional manifold 
of constant negative curvature, M one studies 

(1.1) (n)2 1 tr(expt(L1 + 2 )2 ). 

In this case the Selberg trace formula provides an exact expression in 
terms of the lengths of the closed geodesics on M. In the general case 
one considers 

(1.2) tr(expt(L1)½). 

As such, flat tori are the only examples where the trace in (1.2) is 
computed explicitly. In fact, these are the only examples where precise 
bounds for the error term in the Guillemin-Duistermaat formula are 
known. In this note we narrow the gap, a bit, by showing that there is 
a general procedure for obtaining an exact formula for 

tr(expt(L + a 2)) 

whenever one has an exact formula for 

tr( exp t(L) ½ ). 

Here L can be taken as a shifted Laplace operator but the idea applies 
with much greater generality. As a special case we obtain the trace in 
(1.2) for the Laplace operator of a compact hyperbolic manifold. Our 
calculations serve, at least in this special case, to clarify the nature of 
the error term in the Guillemin-Duistermaat formula. 
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§2. The solution operator for the shifted wave equation 

Suppose that L is a self adjoint elliptic operator on a Hilbert space, 
H. Further assume that the Cauchy problem 

(2.1) 

Utt = (L + a 2 )u, 

u(O) = f, 
Ut(0) = g, 

has a solution u E C~jlR; H) for data f, g in a dense subspace of H. In 
this section we obtain a formula for the solution of the Cauchy problem 

(2.2) 

Vtt = (L + /32 )v, 

v(O) = f, 
Vt(0) = g, 

in terms of the solution to (2.1). To simplify the calculations we assume 
that g = 0, in (2.1) and f = 0 in (2.2). The general case follows easily 
from this. 

We make the following ansatz: 

(2.3) The function v(t) is given by a Volterra operator applied to u(t), 
that is 

t 

v(t) = J k(t, s)u(s)ds. 

0 

For L a Laplace operator, the finite propagation property of the wave 
equation forces such an ansatz. By applying the operators L + /32 and 
a; to (2.3) and integrating by parts, we obtain that k(t, s) must satisfy: 

(2.4) 
ku = kss - (a2 - /32 )k for Isl< ltl, 

kt(t, t) + ks(t, t) = 0, 

ks(t, 0) = o. 

A solution to this differential equation is easily found by the method 
of descent from the wave equation in JR2 , see [John]. The kernel, k is 
given by 

(2.5) k(t,s;a,/3) = J0 (J(a2 -f32 )(t2 -s2 )). 
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The explicit dependence on a, /3 will sometimes be suppressed. The 
J0-Bessel function is defined as an infinite series by: 

(2.6) 

From (2.6) it is clear that k(t, s) is a smooth function of s, t E JR.2 and 
that the choice of square root is immaterial. Differentiating shows that 
k satisfies the boundary conditions in (2.4). 

Proposition 2. 7. Let u( t) E C1~jlR.; H) satisfy ( 2.1) with g = 
0 and define k(t, s) by (2.5). Then v( t) defined by (2.3) belongs to 
Ct,c (JR; H) and satisfies 

(2.8) Vtt = (L + /3 2 )v; v(O) = 0, Vt(O) = f. 

Proof. The only point requiring comment is the regularity of v(t). 
This follows easily as the kernel is C00 and the domain of integration is 
compact. Thus the standard theory of vector valued integrals allows us 
to differentiate under the integral sign. The conclusion then follows by 
an application of the Cauchy-Schwarz inequality. 

If we define 

t 

(2.9) v'(t) = u(t) + J kt(t, s)u(s)ds 

0 

then v'(t) solves the same Cauchy problem as u with respect to the 
shifted operator: 

(2.10) v;t = (L + /32 )v'; v'(o) = f, v;(o) = 0. 

As a corollary of the Proposition we can express the solution kernel 
for (2.10) in terms of the solution kernel for (2.1). Denote them by 
Rf3(p, q; t) and Ra(p, q; t) respectively, then 

t 

(2.11) Rf3(p, q; t) = Ra(p, q; t) + J kt(t, s; a, /J)Ra(p, q; s) ds. 

0 

This formula or (2.9) can of course be applied with a and /3 inter­
changed. The uniqueness of the solution to the Cauchy problem, (2.1), 
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implies that 

t 

(2.12) u(t) = Ot J k(t,s;/3,a)v'(s)ds. 

0 

The proposition applies if L is taken to be a second order self ad­
joint, elliptic pseudodifferential operator. If L is not a differential oper­
ator then it does have finite propagation speed; however analysis of the 
singular support of the solution operators would indicate that a relation 
like (2.11) should still hold. 

As a second corollary of the proposition we have the following cal­
culus identity 

Corollary 2.13. For a, (3, >. complex numbers the following iden­
tity holds: 

t 

sint✓>.2 - 132 J 
(2.14) ---===- = J0 (✓(a2 -(32)(t2 - s2))coss✓>.2 -a2 ds. 

✓>.2-(32 
0 

Remark. This formula is classical and can be found in [MOS, 
p. 411]. 

Proof. For a, (3, >. E JR, (2.14) follows from the spectral theorem 
and Proposition 2. 7 applied with L = o;. Both sides of the equation 
are entire functions of these parameters and thus the equation holds in 
general. 

§3. The Selberg formula for the shifted wave equation 

In this section we use the method of Lax and Phillips and the results 
of §2 to derive an exact formula for 

trexpt(L + (32 )½, 

for L the Laplacian of a hyperbolic manifold. For simplicity we only con­
sider three dimensional, compact manifolds, though the method applies 
equally well to other dimensions and the finite volume case. 

To begin we recall that the solution to the Cauchy problem: 

(3.1) 

Utt = (L\JHia + l)u, 

u(O) = f, 
Ut(O) = o, 



is given by 

(3.2) 

Some Exact Trace Formul<1; 

u(p,t) = 8t[ 4?rs~nht / f(q)du(q)J, 
d(p,q)=t 
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see [LPl]. Here du(q) is the volume element induced on the sphere of 
radius t. It follows from (2.11) that the solution to 

(3.3) 
Vtt = (.dIH13 + (32)u, 

v(O) = f, 
Vt(O) = o, 

is given by 

t 

(3.4) v(p,t)=ot[jk(t,s;l,(3)8s[ ~ h / f(q)du(q)]ds]. 
4nsm s 

0 d(p,q)=s 

Let r be a co-compact subgroup of Aut(JHI3). If f is automorphic 
with respect to r then the solutions u and v to (3.1) and (3.3) respec­
tively are as well. They can be reexpressed as integrals over a fundamen­
tal domain, Fr, for the action of r. We concentrate on the expression 
for v: 

(3.5) 
t 

v(p, t) = '°' ot[f k(t, s; 1, {3)88 [ ~ h / f(q) du(q)] ds]. ~ 4nsm s 
-yEI' o .Frn{d(-yp,q)=s} 

We let Rf (p, q; t) denote the kernel of the operator appearing on the 
right hand side of (3.5). Let h E C.;'°(JR) be an even function. A simple 
calculation using the functional calculus shows that the kernel of the 
operator 

00 

(3.6) Kh = J h(t) exp t(Llr + (32 ) ½ dt 
-00 

is given by 

00 

(3.7) lih(P, q) = I h(t)Rf (p, q; t) dt. 
-oo 
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The trace formula is obtained by using (3.6) and (3. 7) to compute the 
tr Kh in two different ways. 

First we do the calculation using the spectral representation of L'.lr. 
Since r is co-compact, it follows from the classical theory of self adjoint, 
elliptic operators that the L2-spectrum of L'.lr is a decreasing sequence 
without finite points of accumulation: 

(3.8) a(L'.lr) = {O =-Ao> -A1 2: -A2 2: · · ·}. 

Let { <Pn; n = 0, I, ... } be the corresponding eigenfunctions. 
Since h is even and smooth of compact support it follows that the 

spectral representation of Kh is given by 

00 

(3.9) Kh = Lh( JAn - /J2)¢n(P)<Pn(q). 
n=O 

As h is even so is h, its Fourier transform, and thus the choice of square 
root in (3.9) is immaterial. The representation in (3.9) affords our first 
computation of tr Kh: 

00 

(3.10) tr Kh = Lh( JAn - /32). 
n=O 

The second computation follows from (3.7) and the classical fact 
that 

(3.11) tr Kh = J Kh(P,P) dVol. 

r\JHI3 

As a preliminary step we define a Bessel transform of h by 

00 

(3.12) h(s) = - J h'(t)k(t,s;I,/3)dt. 

As is apparent from (3.12), the map h ----> h carries even functions to 
even functions and smooth functions to smooth functions. If supp(h) is 
the convex hull of the support of h then 

(3.13) supp(h) = supp(h). 

We considered more detailed properties of this transform in the next 
section. 
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After an integration by parts and an interchange of the t and s 
integrals in (3.5) and (3.7) we obtain 

00 

Khf(p) = 2 L J h(s)8s 
7Er o 

[ 41rs~hs I f(q) du(q)l 
.Frn{d('Yp,q)=t} 

ds. 

Integrating by parts ins and observing that it is simply a radial variable, 
we obtain: 

Khf(p) = _ _!__ '"°"' J ~s(d('rp, q)) f(q) dVol. 
21r ~ smh(d('rp, q)) 

7Er.Fr 

As a kernel defined on Fr x Fr, Kh is given by 

(3.14) Kh(P q) = _ _!__ '"°"' hs(d('rp, q)) dVol. 
' 21r ~r sinh( d( 'YP, q)) 

'°YE 

From this point the derivation of the trace proceeds exactly as in the 
treatment given in [LP2]. The result of these calculations is summarized 
in the following theorem: 

Theorem 3.15. Let h E C~(JR) be an even function with com­
pact support and let I' C Aut(JHI3 ) be torsion free and co-compact. Let 
the spectrum of the Laplace operator induced by the constant curvature 
metric on f\lHI3 be denoted by O = Ao < >.1 ::; >.2 ::; · · · and { 'Y }p denote 
a list of primitive, nontrivial conjugacy classes in f. For each complex 
number, /3, the following identity holds: 

00 

(3.16) 
n=O 

= _!_ Vol(f\JHI3 )h (0) ! ~ '"°"' l'°Yh(kLy) 
2 ss + 4 ~ ~ I . h ~(l + ·.-1-. )1 2 . 

7r k=l {7}p Sill 2 '°Y Z'f''°Y 

Here l7 + i</>7 is the complex translation length of 'Y· The function h(s) 
is defined by (3.12). 

Proof. The proof of this theorem follows from (3.14) and (3.10) by 
well known computations, see [LP2]. We only note that for each /3 there 
is a different 'optimal' family of test functions. The choice is primarily 
dictated by the necessity of evaluating the Fourier transform of h at 
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points off of the real line. If follows from the Paley-Wiener theorem and 
(3.13) that both sides of (3.16) are absolutely convergent for any value 
of (3 provided h E C~(JR). 

§4. The Bessel transform and the Guillemin-Duistermaat for­
mula 

In this section we consider the continuity properties of the trace 
functional as the parameter (3 is varied. The functional 

00 

(4.1) f - J J(t)et cos(et) dt, 
-oo 

is continuous on Schwarz class functions, S. This is clear because the 
weight factor is the derivative of sin(et). This example exhibits the phe­
nomenon of exponential cancellation in S'. As we shall see the 'right 
hand sides' of the trace formulre (3.16), exhibit such cancellation for val­
ues of (3 E [O, 1). Thus the classical Selberg formula is the only case for 
which both sides of the trace formula are absolutely convergent for an 
'optimal' family of test functions. We place optimal in quotes as the 
properties of the Fourier transform on spaces of functions with finite 
rates of decay make it difficult to fix an 'optimal' space precisely. Typ­
ically one gets the correct exponential order of decay but must give up 
powers in a polynomial correction factor. 

For µ E N and v E lR+ U {0}, the two families of function spaces, 
Sµ,v, 7µ,v, are defined by 

Sµ,v = {f : f is holomorphic in l':szl < v, continuous in l':szl :S: v 

and satisfies sup (1 + lzlt+1 lf(z)I < oo} 
l'Zl'zl:<;v 

and 
7µ,v = {h: h hasµ+ 1 derivatives in L1 (JR; evlxl dx)}. 

The Banach norms are defined by 

IIJllµ,v = sup (1 + lzlt+1 IJ(z)I 
l'Zl'zl:<;µ 
µ+l oo 

llhllµ,v = L J IBih(x)I evlxl dx. 
j=0-00 

Both families are easily seen to be complete in their respective norms. 
The 7µ,v_spaces are the closure of C~(JR) in their respective norms. 
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Proposition 4.2. The Fourier transform defines a continuous 
map: 

(4.3) 

Proof. 

(4.4) 

F: 7µ,v ------, Sµ,v· 

Let h E C,;'°(lR); integrating by parts we obtain that 

00 

F(h)(z) = J 8f:_+1h(x) e-izx dx, 
(zz)µ+l 

-00 

for z E (('. \ 0. This formula implies that there exists a constant C such 
that 

( 4.5) 

Since C,;'° (JR) is dense in yµ,v, the proposition follows from ( 4.5). 

The map ( 4.3) is not surjective. 
As an immediate consequence of (4.2) we conclude that the adjoint 

of the Fourier transform defines a continuous map 

(4.6) 
F': (Sµ,v)'------, (Tµ,v)', 

(F'(l),g) = (l,F(g)). 

Returning to the study of trace formulre we restrict our considera­
tions to the closed subspaces of even functions, si,v, Tf,v. Recall that 
the counting function, 

Nr(A) = #{n: An :S ,\}, 

satisfies 

(4.7) 

see, [H]. Thus, for (3 E [O, 1], the linear functionals 

00 

(4.8) lr,(f) = L !( J,x.n - /32 ) E (si,r,)', providedµ> 3. 
n=O 
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As a consequence of (4.7) and (4.8) we obtain that F'(lf3) E (Tf',f3)'. For 
even functions h E C.;'°(lR), (3.16) implies that 

(4.9) 

1 -
F'(lf3)(h) = - Vol(f\]H[3 )hss(O) 

27!" 

~ f L L/i(kLy) 
+ 4 k=l {-y}p I sinh ~(Ly+ i¢,,)1 2 ' 

where his given by (3.12). 

As C.;'°(JR) is dense in yµ,f3, (4.9) is valid for all h E Tf',v, at least in the 
sense that if hn E C.;'°(JR) converges to h in the Tµ,v_topology then 

(4.10) 

The counting function for the lengths of the prime geodesics, 7rr ( x) 
has the asymptotic form 

( 4.11) 
Ce2x 

7rr(x) ~ --, 
X 

see [S]. From (4.11) and consideration of the coefficients appearing on 
the right hand side of (3.16), it is clear that for the sum on the right 
side of ( 4.10) to converge absolutely, it is necessary that 

( 4.12) 

Here m( s) is a function tending to zero sufficiently rapidly to make 

m(s )s-1 integrable. This, in general, is not the case, as h(s) has essen­
tially the same exponential rate of decay as h(x). To show this we need 
to further analyze the Bessel transforms defined by (3.12). 

To that end we compute the Fourier transform of 

CX) 

h(s; ry) = - J h'(t)J0 (ryJt 2 - s 2 ) dt, ry ER 

s 

Since h is an even function of s, 

(4.13) 

CX) 

(hr((; ry) = J e-is(h(s; ry) ds 

-CX) 

CX) 

= 2 J cos(s0h(s) ds. 

0 
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Changing the order of the integrations in ( 4.13) we recognize the s­
integral as an instance of (2.1): 

(4.14) 

00 t 

(h)~(~; 71) = -2 j h'(t) j cos(s~)J0 (71✓t2 - s2) ds dt 

0 0 
00 

= - 2 J h' ( t) sin t J e + 712 dt. 
✓e + 712 

0 

Integrating by parts, and once again taking advantage of the fact that 
h(t) is even we obtain 

(4.15) 

Using (4.15) we can investigate the analyticity properties of 

(hr(~; 71) and thereby the exponential rate of decay ofh(s; 71). A straight­
forward calculation establishes 

Lemma 4.16. If h E L1 (JR; e-v/xl dx) then h(~) has an analytic 
extension to 

Vv={~: [8'~[ <v} 

and is continuous in Vv. 

On the other hand, using the inverse Fourier transform, one easily 
establishes the existence of functions in L 1 (JR; e-v/x/ dx) whose Fourier 
transforms have 8Vv as a natural boundary. In fact such functions are 
dense in yµ,v, 'v µ,v · 

Suppose h(~) is the Fourier transform of an even function in 

L 1 (JR; e-vlx/ dx) with natural boundary 8Vv. For real 71, h( J712 + e) 
is also analytic in Vv. As the Fourier transform is also even, the square 
root does not introduce a singularity. Examination of the conformal map 

✓e + 712 __.~shows that the domain of analyticity ofh( J712 + e) in­
creases with 71. However it never includes a strip Vv, for a v' > v. 
From Lemma 4.16 we conclude that, for such a function, the trans­

forms, h(s; 71), 71 E JR, cannot have larger exponential rates of decay than 
v. Thus the distribution on the right hand side of (3.16) displays an 
exponential cancellation similar to that in ( 4.1). 

Of particular interest is (3 = 0, in this case, formula (3.16) is an 
exact version of the Guillemin-Duistermaat formula. We have, in effect, 
summed the error terms. Instead of getting a tractable right hand side, 
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we have a tempered distribution similar to (4.1). For a manifold of neg­
ative curvature, there is an formula, due to Margulis, for the asymptotic 
distribution of the lengths of closed geodesics: 

( 4.17) 
cehx 

n(x) ~ -. 
X 

Here h is the topological entropy of the geodesic flow and c is a constant, 
see [M]. The discussion above and ( 4.17) suggest that one might have 
better luck trying to derive an 'exact' trace formula, in this context, for 
tr etv' LHh2

• For this distribution there is a possibility that the error term 
in the Guillemin-Duistermaat formula might indeed be of 'lower order.' 

As a final result we construct the inverse to (3.12) on functions of 
compact support. 

Proposition 4.18. If h E C~(JR) is even and h(s) is defined by 
(3.12) then 

00 

(4.19) h(t) = -Ot J Io(J(a2 -(32)(t2 - s2 ))hs(s)ds. 

t 

Here a,(3 are any complex numbers and I0 (z) = J0 (iz). 

Proof. This is a simple consequence of (2.12). Set 

1 
u(x, t) = 2(f(x + t) + f(x - t)). 

Then u(x, t) is the solution of the Cauchy problem: 

(4.20) u(x, 0) = f(x), 

Ut(X, 0) = 0. 

Suppose further that f(x) is compactly supported so that u(x, •) is as 
well for every value of x. 

As u solves the Cauchy problem, (4.20), we conclude from Proposi­
tion 2.7 and (2.12) that for even h E C~(JR) and every x E JR, 

00 J h(t)u(x, t) dt 

(4.21) 
0 

00 t S 

= J h(t)ot[j k(t,s;a,(3)&s[j k(s,r;(3,a)u(x,r)dr]ds]dt. 

0 0 0 
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As h E C~(JR) we are free to integrate by parts and interchange the 
orders of the integrations. Integrating by parts in both t and s and 
reversing the order of the integrations in (4.21), leads to the identity 

00 J h(t)u(x, t) dt 
0 

00 00 00 

( 4.22) = J u(x,r) J k(s,r;/3,a)&s[j k(t,s;a,(3)h'(t),dt]dsdr 
0 r s 

00 00 

= - J u(x,r)[j k(s,r;(3,a)h8 (s)ds] dr. 
0 r 

For x = 0 ( 4.22) states: 

00 I h(t)~(f(t) + J(-t)) dt 

( 4.23) 
0 

00 00 

= - J ~(f(r) + f(-r)) [j k(s, r; (3, a)h8 (s) ds] dr. 
0 r 

Since h(t) is an even function the proposition follows from ( 4.23) and 
the arbitrary nature off (t). 

The inversion formula holds more generally than for h E C~(JR). 
However if a 2 - (32 E lR+ then the kernel in ( 4.19) grows exponentially 
and thus some restrictions are required for this integral to make sense. 

The formula for h(s) makes it clear that in the absence of exponential 
decay it is unlikely that this transform has a reasonable inverse. 
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