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Introduction 

A fl.at conformal structure on an n-dimensional manifold N is a 
maximal system of local charts taking values on sn, with transition 
functions Moebius transformations. In short it is a geometric structure 
modelled on (M(Sn), sn), where M(Sn) denotes the group ofMoebius 
transformations on sn. Equivalently, it is a conformal equivalence 
class of conformally flat Riemannian metrics on N if n 2".: 3. See 
§1 for Liouville's theorem. By certain abuse we denote a fl.at conformal 
structure by the same letter as the underlying manifold. 

In dimension 2, fl.at conformal structures are usually called projec­
tive structures and have been extensively studied by various authors in 
the field of function theory. Analytic methods such as the theory of 
quasiconformal maps often play crucial roles there. In dimension 2".: 3, 
however, the situation is quite different. Topology, instead of analysis, 
provides major tools of study. 

The concept of fl.at conformal structures was first introduced by 
Kuiper ([35],[36],[37]) around 1950. Thereafter it had been forgotten 
for some time, until it was revived by Kulkarni ([40],[41],[42],[43]), re­
lated with his study of discrete group actions in general. Then came 
an important turning point when Fried ([13]) established a remarkable 
theorem concerning closed similarity manifolds. It solved a fundamental 
and annoying problem which one encounters in the primary stage of the 
theory, thereby making it possible to have a good grip on elementary 
fl.at conformal structures, with Goldman ([15]) and Kamishima ([25]) 
contributing significantly to this direction. 
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At the same time various interesting examples have been piled up by 
many authors including Thurston [56], Bestvina-Cooper [4], Freedman­
Skora [10], Gromov-Lawson-Thurston [19], Kuiper [38] and, quite re­
cently, 
Kapovich-Potyagailo [32], making the field even more active. 

This article has two objectives. One is to provide the basic knowl­
edge of flat conformal structures and to serve as an introductory guide 
of the field. The other is to show some new pieces of knowledge. §1 rv §3 
are devoted to the former purpose, where the reader can find exposition 
of fundamental properties of Moebius transformations and flat confor­
mal structures. No original results are included in these early sections. 
However for the full understanding of later sections, they are helpful, or 
even indispensable. 

§4 and §5 are also mainly expository, though they include some 
slightly improved (new) results. Hereafter let N be a connected closed 
flat conformal manifold of dimension 2: 3. In §4, we prove the following 
version of Fried's theorem. 

Theorem (4.4). If the holonomy group of N has a fixed point 
in sn, then N is either sn, an Euclidean space form or a Hopf 
manifold. 

Unlike the original theorem ([13]), we no longer postulate that the 
developing map misses the fixed point. This yields clearer understand­
ing of the limit set (§5) and a wider range of applications. Using Theo­
rem ( 4.4), various results (mostly known) can be proved by elementary 
and straightforward arguments. Although the proof of Theorem ( 4.4) 
is nothing but a small modification of the argument in [13], it might be 
worth while to record it. The same result was obtained independently 
by R. Miner [58], who mainly worked in the context of spherical CR 
structures. 

In §5, we define the limit set L(N) of a flat conformal manifold N. 
Five different ways are possible and in Theorem (5.18), they are shown 
to coincide eventually. Especially we get that the limit set defined by 
means of the holonomy group is identical to the one obtaind by looking 
at the behaviour of the developing map. (Most of these facts are already 
known to Kulkarni-Pinkall [43].) As immediate corollaries we have the 
followings. 

Corollary (5.23). If the developing map of N is not onto sn, 
then it is a covering map onto its image. 

Corollary (5.24). Suppose the following (1) and (2). 
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(1) sn \ L(N) is connected and the fundamental group 1r1 (Sn \ 
L ( N)) is finitely generated. 

(2) For any point x E L(N), there exists an arbitrarily small 
neighbourhood U of x such that U \ L(N) is connected. 

Then the developing map is a covering map onto sn \ L(N). 

In dimension 2, Corollary (5.23) is well known and easy to show 
using hyperbolic metric. For higher dimension, it was first proved by 
Kamishima. Again our method is short and straightforward. Corol­
lary (5.24) can be found in Kulkarni-Pinkall [45], where condition (2) 
is mistakingly dropped. In §5, we also characterize those flat conformal 
manifolds whose developing maps are covering maps ( onto the images) 
and whose holonomy groups are indiscrete. (Theorem (5.26).) In dimen­
sion 3, this was first obtained by Kamishima ([24]) and independently 

by Gusevskii-Kapovich ([20]) in dimension 3. 
N is called elementary if the limit set is finite. N is called a 

C-structure if it is a connected sum of elementary structures and is not 
itself elementary. In dimension 3, we have the following result. 

Theorem (6.12). Suppose dim(N) = 3. Then N is a C-structure 
if and only if the limit set L(N) is a tame Cantor set. 

Recall that a Cantor set Y in sn is called tame if there exists a 
self homeomorphism of sn which carries Y into S1 . Otherwise it is 
called wild. 

The above theorem is proved along the argument of Kulkarni ([43]), 
in which Stalling's theorem ([54],[55]) concerning ends of groups plays 
a central part. The theory of ends are summarized in the appendix for 
the convenience of the reader. 

After preparing Poincare's polyhedral theorem in §7 (in the frame­
work of flat conformal manifolds), we shall show the following theorem 
in §8. 

Theorem (8.1). There exists a fiat conformal manifold N of 
dimension 3 whose limit set L(N) is a wild Cantor set. 

This theorem is an improvement of the work of Bestvina-Cooper 
([4]) who constructed such examples for open 3-manifolds. Our example 
in Theorem (8.1) is compact. 

Literature concerning flat conformal structures is extensively col­
lected in the reference, though not complete, of course. 
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In this section, we give definitions of a conformal map and a Moebius 
transformation of the n-sphere. After providing fundamental properties, 
we show that a locally defined conformal map is the restriction of a 
Moebius transformation if n 2: 3. (Liouville's theorem.) 

Definition (1.1). A real n x n matrix A is called a conformal 
matrix if A = >..P for >.. > 0 and an orthogonal matrix P. 

Thus A is conformal precisely when A preserves the angle of given 
two vectors. Notice that the products and the inverses of conformal 
matrices are again conformal. 

Let iC = Rn U { oo} be the one point compactification of Rn. 
~n 

Points . in R is indicated by letters a, x and so forth. For x = 
(xi, ... , Xn) E Rn, 

n 

lxl = (Lx~) 112 

i=l 



Flat Conformal Structure 171 

denotes the Euclidean norm of x. To endow iC the structure of an 
oriented manifold, the following local charts (Ui, qi) are commonly used 
(i=l,2). 

q1 =id: U1 -----+ Rn, 

qz: U2-----+ Rn, 

where q2 is defined by 

1 
q2(x1, ... , Xn) = lxl2 (xi, ... , Xn-1, -xn)-

In the above definition and in all that follows, if the image of oo by a 
map is clear by the continuity, we do not explicitly state it. An important 
property of q2 is that the differential matrix Daq2 at any point 
a E Rn\ {O} is a conformal matrix. Verification is left to the reader. 

Let U be a domain (i.e. a connected open subet) of Rn. 

Definition (1.2). A C 1 map f : U-+ Rn is called a conformal 
map if the following condition is satisfied. For any a E U, if a E Ui 
and f (a) E Uj, then the differential D q; (a) ( qj o f o q; 1 ) is a conformal 
matrix. 

Since for any b E Rn \ { 0}, Db ( qz o q11 ) is a conformal matrix, 
Definition (1.2) is invariant under possible changes oflocal charts around 
a and f(a). A conformal map is a submersion and thus has a local 
inverse, which is again a conformal map. Also the composite of two 
conformal maps is conformal. 

Lemma (1.3). Suppose f : U-+ Rn is a C 1 submersion, where 
~n 

U is a domain of R . If Daf is a conformal matrix for any a E 
Un Rn n f- 1 (Rn), then f is a conformal map. 

Proof. This follows at once from the fact that the conformal ma-
trices form a closed subset in the general linear group. Q.E.D. 

Let us give examples of conformal maps. Let O < p < n . By 
~n 

a dimension p sphere in R , we mean either a dimension p metric 
sphere in Rn or a dimension p plane in Rn plus { oo}. A dimension 
p sphere is sometimes called a codimension n - p sphere. 

Definition (1.4). 
~n 

Let a be a codimension one sphere in R . 
The inversion at a 

-.n -n 
Ja : R -----+ R 
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is defined as follows. 

(1) If a is the sphere of radius r centered at a, then for any 
xERn\{a}, 

r2 
J,,(x) = -

1 
-

1 
(x - a)+ a. 

x-a 

(2) If a contains a codimension one plane, J,, is the reflexion at 
that plane. 

See Figure (1.1). The inversion is an orientation reversing involution 
with the fixed point set a. 

J,,x 

ax· aJ,,(x) = r2 

a 

Figure (1.1) 

Definition (1.5). Composite of inversions is called a Moebius 
~n 

transformation. The group of all the Moebius transformations of R 
~n 

is denoted by M (R ) . 

Proposition (1.6). Moebius transformation is a conformal map 
~n 

and carries a sphere in· R to a sphere of the same dimension. 

Proof. Computaion shows that an inversion is a conformal map. 
Also it is well known, very easy to show by Euclidean geometry, that an 
inversion maps a codimension one sphere to a codimension one sphere. 
Therefore a sphere of arbitrary dimension, the intersection of several 
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codimension one spheres, is mapped to a sphere of the same dimension. 
The proposition follows from this. Q.E.D. 

Proposition (1.7). The following maps are Moebius transforma-
tions. 

(a) Translation by a, x 1---+ x + a. 

(b) Magnification by >. > 0, x 1---+ .Xx. 

(c) Orthogonal transformation by PE O(n), x 1---+ Px. 

Proof. Translation is the composite of two inversions at parallel 
planes. This shows (a). Likewise positive magnification is the composite 
of two inversions at concentric spheres and orthogonal transformation is 
the composite of several inversions at planes through 0, showing (b) and 
(c). Q.E.D. 

-n -n 
Lemma (1.8). Let f: R --, R be a Moebius transformation. 

If f(0) = 0, f(oo) = oo, Dof = E, then f = id. 

Proof. Moebius transformations carry circles to circles. Since f 
keeps O and oo fixed, f preserves the (singular) dimension one 
foliation £ formed by the straight lines through 0. Since f is a 
conformal map, f also preserves the codimension one foliation LJ_ of 
spheres centered at 0. See Figure (1.2). Notice also that f keeps the 
leaf of £ invariant, since D 0 f = E. Thus we obtain 

R 
f(x) = -x. 

r 

on the sphere lxl = r. The conformality off implies 

dR R 
dr r 

Therefore we have R = ar. But a = l since D0 f = E. This shows 
Q.E.D. f = id. 

Proposition (1.9). 

(1) f is a Moebius transformation such that f(oo) = oo if and 
only if 

f(x) = Ax+b. 

(2) f is a Moebius transformtion such that f(oo) =/-oo if and only 
if 

f(x) = AJ(x - b) + c. 
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Figure (1.2) 

Here A is a conformal matrix, b and c are points of Rn and J 
is the inversion at the unit sphere { I xi = 1}. 

Proof. It is a direct consequence of Lemma (1.7) that the trans­
formations of the above expressions are Moebius transformations. Con­
versely suppose that f is a Moebius transformation with f ( oo) = oo. 
Let f(O) = b and D 0 f = A. Define g(x) =Ax+ b. Then g- 1 of 
satisfies the hypothesis of Lemma (1.8). Thus g = f. This completes 
the proof of (1). On the other hand, suppose that f is a Moebius 
transformation with f(oo) -:/ oo. Let f(b) = oo. Define h by 
h(x) = J(x - b). Then f o h- 1 is a Moebius transformation which 
keeps oo fixed. By (1), we have 

f o h - l ( x) = Ax + c. 

This completes the proof of (2). Q.E.D. 

We shall finish this section with the following celebrated theorem of 
Liouville. 

~n 
Theorem (1.10). Let n ~ 3. Suppose f : U -+ R is a 

~n 
conformal map, where U is a domain of R . Then f is the 
restriction of a Moebius transformation. 
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As a matter of fact, this theorem does not hold for n = 2. In 
fact the Riemann mapping theorem asserts the abundance of conformal 
maps which are not restrictions of Moebius transformations. 

Theorem (1.10) was first proved by J. Liouville in his 1850 paper 
([46)), under the additional assumption that f be of class ca. Since 
then, it had been an open problem, astonishingly difficult, to weaken 
the differentiability assumption, until at last in 1969, P. Hartman gave 
a complete proof for C 1 maps ((21)). 

Independently, F.W. Gehring, among others, developed the the­
ory of quasiconformal maps in dimension 2: 3. Specifically he defined 
1-quasiconformal maps, which is a genaralization of conformal maps, 
where no differentiability assumption is made. In [14], Gehring showed 
that a locally defined 1-quasiconformal map is the restriction of a Moe­
bius transformation. 

However these results need involvement in deep general treatment 
and cannot be collected here. Instead, we give a simple elementary 
proof essentially due to R. Nevanlinna ((49]) assuming that the given 
conformal map f is ca. (N evanlinna postulated that f is C 4 .) 

Proof of Theorem (1.10). We use the following convention. Xi 
~n 

denotes the i-th coordinate of Rn and for f : U ----t R , fx;, fx.xj 
and so forth denote the first and the second partial derivatives and so 
forth. They are vectors of Rn. In the first place, since f is conformal, 
we have 

(fx;,Jxj) = r28ij, 

where r(x) = IIDxfll is the mapping norm of the Jacobi matrix. Dif­
ferentiating by Xk, we get for i = j, 

and for i =/:-j, 
(fx;xk, fxj) + (ix;, fx;xk) = 0. 

For mutually distinct indices i, j and k, by permuting the indices, we 
have 

UxiXk, fxj) = 0. 

Since j can be any index except i and k and fx 1 , ••• , fxn are mutually 
orthogonal, we have 

where 
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Letting p = 1 / r, we have 

Differentiating by Xj, we obtain 

+Px,xjfxk + P;cjxkfx, = 0. 

By permutation of the indices, we obtain for j -/= k, 

By rotating the coordinates by 45 degrees in the (xj, Xk)-plane, we have 

Now since Pxjxk = 0 for any k-/= j Pxj is constant on the hyperplane 
{xj = c}. Thus it follows that Pxjxj is constant on {xj = c}. That 
is, Px1x1 = • ' • • • = PxnXn is constant in U. 

By composing f with a suitable Moebius transformation if neces­
sary, we may assume that OE U and f(O) = oo. Then the image by 
f of an arbitrarily small ball lxl < c: · contains lxl > K for some large 
K > 0. By the volume formula, this implies that p(am) ---+ 0 for some 
sequence am ---+ 0. On the other hand, since Px,xj = 2o:8ij for some 
o: > 0 , p is a quadratic function on U \ {O}, with the leading term 
o:lxl2. Since p is positive valued on U\ {O} and p(am)---+ 0, we have 

p(x) = o:lxl2. 

Notice that the same value of p is also attained by the inversion g 
which is defined by 

X 

g(x) = o:lxl2· 

Thus by the chain rule, the composite h = go J- 1 : f (U) ---+ Rn satisfies 
IIDphll = 1 for any p E f(U) \ { oo }. That is, h is an isometry with 
respect to the Euclidean metric on Rn. This implies that h(x) = Px+b 
for some orthogonal matrix P and b E Rn. In fact, all that needs 
proof is that h is an affine transformation. But since 
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by differentiating we get 

(hxiXj, hxk) = 0, 

showing that hxixJ = 0. This implies that h is an affine transformation. 
Thus h and hence f are the restrictions of Moebius transformations, 
as is required. Q.E.D. 

§2. More on Moebius transformation 

Denote by M(Rn) the group of Moebius transformations of Rn. 

Lemma (2.1). Let f E M(Rn) and let r, C Rn be a codimen­
sion one sphere. Then, 

Proof. Clearly g = f o Ja o 1- 1 o Jf(a) is an orientation preserving 
Moebius transformation which keeps points in f(r,) fixed. Thus for an 
arbitrary Moebius transformation h such that h(f(r,)) = {xn = 0}, we 
have that k =hog o h- 1 keeps {xn = O} pointwise fixed. Especially 
we obtain that k(O) = 0, k( oo) = oo and Dok = E since k is 
orientation preserving. Therefore by (1.8), we obtain k = id. This 
shows (2.1). Q.E.D. 

~n ~n+l 
Let l: R ---, R be the standard embedding, i.e., 

~n ~n+l 
As usual R is considered to be a subset of R by l. Let r, 

~n 
be an ( n - 1 )-dimensional sphere in R . Then the inversion J a : 
~n ~n ~n+l ~n+l 
R ---, R can be extended to the inversion Jr : R ---, R at 

--n --n 
the n-dimensional sphere T orthogonal to R such that R n T = r,. 
This yields an injection. 

~n ~n+l 
i: M(R ) _, M(R ). 

Again M(Rn) is considered to be a subgroup of M(Rn+l) by i. 

On the other hand let 

sn = {x E Rn+l I lxl = 1}. 
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Let r be an n-dimensional sphere in Rn+l which is perpendicular to 
sn. Since inversions are conformal maps which send spheres to spheres, 
Jr is a transformation which keeps sn invariant. Composites of such 
inversions constitute a Lie group M(Sn) of Moebius transformations 
of sn. Denote the inclusion by 

~n+l 
Define v E M (R ) by v = To J2 o J 1 . where J 1 is the reflexion 

at the plane Xn+l = -1/2, J2 is the inversion at the sphere lxl = 2 
and T is the translation by (0, ... , O, 1). See Figure (2.1). 

Figure (2.1) 

Notice that v(Rn) = sn. Define 

~n+l ~n+l 
cv : M (R ) --+ M (R ) 

by 

cv(ft = v of o v:- 1 . 
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Proposition (2.2). Cv maps the subgroup M(iC) isomorphi­
cally onto the subgroup M ( sn). 

~n 
Proof. v maps an n-sphere T perpendicular to R to the n-

sphere v(r) which is perpendicular to sn. On the other hand it 
follows from (2.1) that cv(Jr) = Jv(r)· This shows (2.2). Q.E.D. 

Let 
vn+l = {x E Rn+l I lxl < 1}, 

Hn+l = {x E Rn+l I Xn+I > O}. 

Proposition (2.3). We have 

M(Rn) = {f E M(Rn+l) I f(Hn+l) = Hn+I}, 

M(Sn) = {f E M(Rn+l) I f(Dn+l) = vn+I}. 

Proof. By virtue of (2.2), it suffices to show the statement only 

for Rn. (Notice that v(Hn+l) = vn+ 1 .) The inclusion C is clear. 
~n+l . 

Conversely, suppose that f E M(R ) satisfies that f(Hn+l) = 
Hn+l. First of all, consider the case where f ( oo) = oo . Then by 
(1.9), f(x) = )..Px + b, where ).. > 0, PE O(n + 1) and b E Rn+l. 
Since f(Rn) = Rn, we have that b E Rn. Further since f preserves 
Hn+l, we also obtain that 

~n 
where Q E. O(n). Thus it follows from (1.7) that f E M(R ). The 
remaining case can easily be reduced to this case. Details are left to the 
reader. Q.E.D. 

We need some standard terminologies in geometry. 

Definition (2.4). Two Riemannian metrics g1 and g2 on a 
manifold M are said to be conformally equivalent , if there exists a 
positive valued function µ on M such that 92 = µg1. 

Definition (2.5). A C 1 map f: (M 1 , g1 ) --t (M 2 , g2 ) of Rieman­
nian manifolds is called a Riemannian conformal map if the induced 
metric f* g2 is conformally equivalent to g1. 

Riemannian conformal maps are usually called conformal maps in 
the literature. However in order to avoid confusion with Definition (1.2), 
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we call them Riemannian conformal maps in this article. The following 
three Riemannian metrics are important in what follows. 

Definition (2.6). Denote by gE the Euclidean metric on Rn, 
i.e. gE = I:;~=l dx;, by gs the spherical metric on sn, that is, the 
restriction of the Euclidean metric on Rn+l to the submanifold sn 
and by gH the hyperbolic metric on Dn, i.e., 

4 I:;~=l dx; 
gH = (1 - lxl2)2 . 

It is well known that gs has constant sectional curvature 1 and that 
(Dn, gH) is a complete Riemannian manifold with constant sectional 
curvature -1. 

~n 
Proposition (2.7). Let U be a domain in R . A C 1 map 

f : U---. Rn is a conformal map in the sense of Definition (1.2) if and 
only if v of o v- 1 : v(U) ---. sn is a Riemannian conformal map w.r.t. 
the spherical metric. 

Proof. First notice that for a domain UC Rn, 

is a Riemannian conformal map if and only if Daf is a conformal matrix 
for any a E U. On the other hand, the following two maps 

VO q2: Rn---> sn 

are Riemannian conformal maps from (Rn,gE) to (Sn,gs), where 

q2 is the coordinate chart of Rn defined in §1. (2.7) follows from 
this. Q.E.D. 

Thus Liouville's theorem can be rephrased as follows. 

Let U C sn (n 2: 3) be a domain. Then a Riemannian conformal 
map f : U---. sn w.r.t. the spherical metric is the restriction of a 
transformation in M ( sn). 

Hereafter we focus our attention to the action of M ( sn) on sn 
and Dn+l. Thus Moebius transformations are considered primarily as 
acting on sn. However there are some occasions where the coordinates 

~n 
of R is more convenient. In what follows, frequent use will be made 
of the following lemma, which is a special case of (2.1). As before J E 

~n+l · 
M (R ) denotes the inversion at sn. 
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Lemma (2.8). For f E M(Sn), we have Jo f = f o J. 

To study the action of M ( sn), the transformations are classified 
according to whether they preserve oo or not. In the first place, we 
have the following proposition. 

Proposition (2.9). For f E M(Sn) , the following statements 
are equivalent. 

(1) f(oo) = oo. 
(2) f(O) = 0. 
(3) f inducesanisometryof (Sn,gs). 
(4) J(x) = Px for some PE O(n + 1). 

Proof. By virtue of (2.8), We have (1) ~ (2). (1)::::} (4) follows 
from the expression of (1.9), (4) ::::} (1) and (4) ::::} (3) is clear and (3) 
::::} (4) follows from the next lemma. Q.E.D. 

Lemma (2.10). Suppose that a Lie group G acts on a connected 
n-dimensional Riemannian manifold N transitively and isometrically. 
Suppose also that the first derivative gives an isomorphism Gx ~ O(n), 
where G x is the isotropy subgoup at some x E N. Then G is 
precisely the group of all the isometries of N. 

Proof. For any isometry f, there exists a unique element g E G 
such that g- 1 o f(x) = x and Dx(g- 1 of)= E. Then g- 1 of keeps 
any point on any geodesic ray at x fixed. That is, g- 1 of= id. 

Q.E.D. 

Next for f with f(oo) =/:-oo, we define the isometric sphere and 
use it to describe a geometric decomposition of f. For an n x n matrix 
A, IIAII denotes the mapping norm. In particular if A is a conformal 
matrix, then we have IIAII = (detA) 1/n. 

-n+l 
Definition (2.11). For a transformation f E M(R ) with 

f ( oo) =/:-oo, the isometric sphere I(!) of f is defined by 

I(f) = {x E Rn+l I IIDxfll = 1}. 

The isometric sphere cannot be defined for transformations which 
keep oo fixed. Recall that by (1.9), f can be expressed as 

f(x) = >.PJ(x - b) + c, 
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where >. > 0, PE O(n + 1) and b, c E Rn+l. Note that f(b) = oo 
and f(oo) = c. For x E Rn+l , we have 

>. 
IIDxf II = Ix _ bl2 • 

Thus the isometric sphere I(!) is the codimension one sphere of radius 
>.112 , centered at J- 1(00). We summarize fundamental properties of 
isometric sphere in the following proposition. The proof is left to the 
reader. 

~n+l 
Proposition (2.12). For f E M(R ) such that f(oo)-/- oo, 

we have the following. 

( 1) The center of the isometric sphere I (f) is the point 1- 1 ( oo). 
(2) f carries I(f) to J(f- 1 ) and induces an isometry there. In 

particular, I(f) and J(f- 1 ) have the same radius. 

(3) f carries the interior of I(f) to the exterior of J(f- 1 ). 

(4) The interior of the isometric sphere I(f) consists precisely of 
those points x for which IIDxf II > 1 holds. 

Proposition (2.13). For f E M(Sn) such that f(oo) -/-oo, the 
isometric sphere I(f) is perpendicular to sn. 

Proof. Since the action of f on sn is not an isometry, there 
are points in sn where the norms of the derivatives of f are less 
than or greater than 1. This implies that I(f) intersects sn in an 
(n -1) sphere. f induces an isometry from I(f) to J(f- 1 ) which 
sends the sphere I(f) n sn to the sphere J(f- 1 ) n sn . Thus for 
x E I(f), the spherical distance in I(!) between x and I(f) n sn 
coincides with the spherical distance in J u-1) between f ( X) and 
J(f- 1) n sn. That is, for x E I(f), we have lxl = lf(x)I and 
consequently IIDxJII = IIDJ(x)JII-See Figure (2.2). Differentiating 
the equation J o f = f o J, we obtain that IIDxf II = 1 implies 
JIDJ{x)fll = 1. That is, J(I(f)) = I(f). This shows (2.13). Q.E.D. 

Proposition (2.14). A transformation f E M(Sn) such that 
f ( oo) -/-oo can be decomposed as 

f = J1r(f) o h(f) o P(f), 

where P(f) is a transformation in O(n+l) which preserves I(f) and 
rr(f) is the bisector of the centers of I(!) and J(f- 1 ) if I(f) -/-J(f- 1 ) 
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J(f-1) 

Figure (2.2) 

and an arbitrary hyperplane which passes through the center of I(!) and 
0 if I(!)= I(J- 1 ). See Figure (2.3). 

Proof The transformation g = J,rr(f)oh(f) clearly carries I(!) to 
I (J- 1 ) and there the norm of the differential is 1. That is, I (g) = I(!) 
and J(g- 1 ) = J(J- 1 ). It follows that g- 1 of preserves the sphere 
J(J) and is an isometry there. Notice also that g- 1 of preserves the 
interior of I(!). Applying (2.9) to a transformation of I(!) , it follows 
that g- 1 of = P(f) keeps oo fixed. Since P(J) preserves sn, P(J) 
is a transformation in O(n + 1). Q.E.D. 

It is a well known fact that M(Sn) is a Lie group of dimension 
½(n + l)(n + 2) with two connected components. 

Definition (2.15). Let {Jdk=l, 2 , ... be a sequence of elements of 
M(Sn). We say fk -+ oo if and only if for any compact subset C of 
M ( sn), there exists ko > 0 such that fk (/. C for k 2: k0 . 

Thus f k -+ oo if and only if fk has no subsequence which converges 
to an element of M ( sn). 

For f E M(Sn), we define 

IIDJllsn = sup{IIDxfll IX E sn}. 
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Figure (2.3) 

Proposition (2.16). For a sequence {fk} in M(Sn), the fol-
lowing conditions are equivalent. 

(1) !k --+ 00. 

(2) IIDfkllsn --+ 00. 

(3) Except for finite k, fk(oo) # oo and radiusJ(fk)-'-+ 0. 

Proof. First we shall show the equivalence of (2) and (3). Assume 
for simplicity that f k ( oo) #-oo for any k. Let 

fk(x) = r~PkJ(x - bk)+ ck. 

We have 
r2 

IIDxfkll = Ix -tl 2 , 

where rk = radiusJ(fk)- Since I(fk) is perpendicular to sn, we 
obtain 

IIDfkllsn = r~ = (v"f+rI + l) 2 

(y"l+r~-1) 2 r~ 

See Figure (2.4). From this follows the equivalence of (2) and (3). 
Next, (2) ~ (1) is obvious. To show the converse, we assume that 

(2) , hence (3), does not hold and will show that (1) fails, that is, fk has 
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\ J1 +r~ -1 

Figure (2.4) 

a subsequence which converges in M(Sn). Thus in the course of the 
proof, we are free to pass to a subsequence, if necessary. If fk ( oo) = oo 
for infinitely many k, then such fk belongs to a compact subgroup 
O(n+ 1) of M(Sn), showing that (1) does not hold. Therefore we may 
assume (passing to a subsequence) that fk ( oo) =/-oo for any k ~ 1 
and Tk-+ p for some O < p ~ oo. 

Assume for a while that O < p < oo. Then in the decomposition 
of (2.14), the sphere I(fk) may be assumed to converge. That is, the 
inversion JI(fk) converges in M(Sn). Likewise we may assume that 
J1r(fk) and P(Jk) also converge in M(Sn). This shows that (1) does 
not hold. 

Next consider the case where p = oo. Notice that p = oo if and 
only if f"i:1 (oo) -+ oo, since the sphere I(Jk) centered at J;;1 (oo) 
is always perpendicular to the fixed sphere sn. Take an arbitrary 
transformation g of M(Sn) such that g(b) = oo for some b =/-oo 
and consider the sequence fk o g. Then g- 1 o J;;1( oo) -+ b. That is, 
radiusJ(Jk o g)-+ r (0 < r < oo). Therefore this case can be reduced 
to the former case, Q.E.D. 

Next we shall show that a Moebius transformation in M(Sn) in­
duces an isometry of (Dn+l, gH ). The key step is the following lemma. 
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Lemma (2.17). Let f E M(Sn) and let x E Rn+l \ sn. Then 

JIDxfll = l - \f(x)l2 
1- lx\2 

Proof. Both hand sides decompose as products when f decom­
poses as a composite. Thus it is sufficient to show (2.17) only for the 
inversion J 7 at an n-dimensional sphere T = {Ix - al = r} which is 
perpendicular to sn. We have 

· 2 (x - a) 
Jr(x)=r I 12+a x-a 

and 

Since the sphere T is perpendicular to sn, we have 

lal2 = 1 + r2. 

Then it is easy to show by calculation that 

2 

JJr(x)l2 -1 = I r 12 (lxJ2 -1). 
x-a 

This shows (2.17). Q.E.D. 

Corollary (2.18). An element f E M(Sn) induces an isometry 
of (Dn+l, gH ). 

The converse can also be shown using (2.10), once we establish the 
following lemma. 

Lemma (2.19). For any point a E nn+l, there exists a trans­
formation f E M(Sn) such that f(0) = a. 

Proof. Let l be the radius through a. For any x El , let ax 
be the codimension one sphere perpendicular to l at x and orthogonal 
to sn. Then Ja., E M(Sn) sends 0 to some point in l. Clearly we 
have 

lim Ja., (0) = 0, lim Ja., (0) = b, 
x-+O x-+b 

where b is the end point of l. By the continuity of Ja., (0), we obtain 
a point x in l such that Ja., (0) = a. Q.E,D. 
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Theorem (2.20). M(Sn) is precisely the group of isometries of 
(Dn+l,gH ). 

Theorem (2.21). In (Dn+l,gH), the geodesics are the circles 
that are orthogonal to sn. Denoting the distance in ( vn+i' gH) by 
dH, we also have for a E Dn+l 

1 + lal 
dH(O, a) = log -

1
-

1
. 

1- a 

Proof First let us find the shortest path combining O and a ( a -=l-
0). Let ,'(t) be an arbitrary smooth arc such that ,'(0) = 0 and 
1'(1) = a. Schwartz's inequality yields 

11,,(t)l'I:::: l'Y'(t)I-

Thus we have 

1 h( ) 11 21,,'(t)ldt 11 2ll'Y(t)l'ldt engt 1' = ---,- > 
o 1 - l'Y(t)l2 - o 1 - b(t)l 2 

> rial 2ds 2 = log 1 + lal. 
- } 0 1 - s 1 - lal 

This shows the last part of (2.21) and that the geodesic through O and 
a are the radius. 

Now consider the general case. Let a, b E Dn+l. By (2.19), there 
exists f E M(Sn) such that f(O) = a. Since 1- 1 is an isometry, 1- 1 

maps the geodesics to the geodesics. Further since 1- 1 is a Moebius 
transformation, 1- 1 maps the diameter through f(b) to the circle 
through a and b which is orthogonal to sn. Q.E.D. 

Finally we shall classify transformations in M ( sn) according to 
its dynamics on Cl(Dn+l ). By (2.3), they keep Cl(Dn+l) invariant, 
where Cl denotes the closure. 

Proposition (2.22). Let f E M(Sn). For the induced transfor­
mation 

f : Cl(Dn+l) -----+ Cl(Dn+l ), 

we have the followings. 

(1) f has at least one fixed point in Cl(Dn+ 1 ). 

(2) If f has three or more fixed points in sn, then f has a fixed 
point in vn+l. 
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Proof. (1) follows from Brouwer's fixed point theorem. To show 
~n 

(2), coordinates of R and Hn+l are more convenient. By conjugating 

g = c:;;1(!) E M(IC) 
~n 

by a suitable element of M(R ), we may assume that g keeps fixed 0, 
oo and another point a. By (1.9), we have for x E Rn, g(x) = >..Px, 
where >.. > 0 and 

where Q E O(n). 
Thus for example, 
the proof of (2). 

P=(~ ~), 
Since g also keeps a fixed, it follows that >.. = 1. 
(0, y) E Hn+l (y > 0) is fixed by g. This completes 

Q.E.D. 
~n 

Definition (2.23). f E M(Sn) (resp. M(R )) is called elliptic 
if f has fixed points in Dn+l (resp. Hn+l ), loxodromic if f is 

~n 
not elliptic and has exactly two fixed points in sn (resp. R ) and 
parabolic otherwise. 

Notice that by (2.22), a parabolic transformation has precisely one 

fixed point in sn (resp. iin). 
Next we shall describe the standard forms of conjugacy classes of 

these three types of transformations. For elliptic transformations, it is 
convenient to work with the coordinates of sn and to conjugate so that 

~n 
0 is the fixed point. However for the other types, the coordinates of R 
is preferable. Notice that parabolic (resp. loxodromic) transformations 
can be conjugated so that they keep oo (resp. oo and 0 ) fixed. 

Proposition (2.24). 

(1) Let f E M(Sn) be an elliptic transformation such that f(0) = 
0. Then we have f(x) = Px for some PE O(n + 1). 

~n 
(2) Let f E M(R ) be a loxodromic transformation such that 

f(oo) = oo and f(0) = 0. Then we have f(x) = >..Px for 
some >.. -=I-1, > 0 and PE O(n). 

(3) Let f E M(Rn) be a parabolic transformation such that f(oo) 
= oo. Then by conjugating with a translation of Rn, we have 
f(x) = Px + b for some PE O(n) and b E Rn\ {0} such 
that Pb= b. 

Proof. To show (2), notice that >.. -=I-1 since otherwise f would 
fix points of the straight line perpendicular to Rn which passes through 
0, contrary to the hypothesis that f is loxodromic. 



Flat Conformal Structure 189 

To prove (3), let f(x) = >..Px+b'. Since f cannot have a fixed point 
in Rn, we have >.. = 1 and b' (/. Image(P-J). But b' = (P-I)a+b, 
for some a E Rn and b ..l Image(P - I). It is a standard exercise in 
linear algebra to show Pb = b. Conjugating f by the translation by 
a, we obtain the transformation x ~ Px + b, as is required. Q.E.D. 

Definition (2.25). For a loxodromic transformation f E M(Sn), 
the geodesic which combines the two fixed points of f is called an axis 
of f. 

Definition (2.26). A codimension one sphere in Cl(Dn+l) which 
is tangent to sn at a E sn is called a horosphere at a. 

Proposition (2.27). A loxodromic transformation of M(Sn) 
preserves its axis. A parabolic transformation preserves the horospheres 
at the fixed point. 

Proof. To prove the first part, notice that the standard form (2) 
of (2.24) preserves the Xn+1-axis in Hn+ 1 • The transformation v E 

M(iC+l) (defined just before (2.2)) maps Xn+1-axis to a diameter in 
vn+i. Any transformation of M ( sn) maps a diameter to a geodesic of 
nn+l. Therefore by conjugating the standard form, we get the desired 
result. The latter part can be shown likewise. Notice that the standard 
form (3) of (2.24) preserves the plane {xn+l = c} (c > 0), which is 
mapped by v to a horosphere. Q.E.D. 

§3. Flat conformal structure 

In this section we define a flat conformal structure, its developing 
map and holonomy homomorphism. We study their fundamental prop­
erties. 

In the first place, we define a ( G, X)-structure in general circum­
stances. Let X be a real analytic manifold and let G be a Lie group 
acting real analytically, transitively and effectively on X. In this study, 
all the group actions are to be on the left, unless otherwise specified. Let 
N be a connected topological manifold of the same dimension as X. 

Definition (3.1). A collection U = {(Ua, qa)}aEA is called a 
(G,X)-atlas if 

(1) {Ua} is an open covering of N. 
(2) qa : Ua -. X is an embedding. 
(3) For each component V of Ua n U13, there exists g E G such 

that q13(x) = gqa(x), x EV. 
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An element (Ua, qa) is called a U-chart. 

Definition (3.2). A maximal (G, X)-atlas is called a (G,X)­
structure on N or a geometric structure vaguely. A manifold equipped 
with a ( G, X)-structure is called a ( G, X)-manifold. 

Let p : M -+ N be a covering map. 

Definition (3.3). Let {(Ua,qa)}aEA be a (G,X)-atlas on N 
for a (G, X)-structure U such that Ua is homeomorphic to an n-ball. 
Let V~ be a connected component of p- 1(Ua)- Then {(V~, qaop)} is a 
(G, X)-atlas on M. The (G, X)-structure which contains {(V~, qaop)} 
is called the lift of U by p and is denoted by p*U. Especially when 
p is a homeomorphism, p*U and U are called isomorphic. 

Given a ( G, X)-structure U on N, the associated developing map 
and holonomy homomorphism are defined as follows. 

Let p : N -+ N be the universal covering space with the base 

point xo EN. Let 1r 1 (N) be the fundamental group at the base point 
p(x 0 ). As usual, 1r 1 (N) is identified via x 0 , with the group of deck 

transformations of N. Denote by U the lift of U by p. Fix once 

and for all a U-chart (U0 , q0 ) around x 0 . 

Definition (3.4). A sequence ((Ui,qi),gi), (1 Si Sr) is called 
a chart chain from (U0 , q0 ) if for 1 Si Sr, we have 

(a) (Ui, qi) EU, gi E G, 
(b) ui-1 n ui is nonempty and connected, 
(c) qi-1(x) = giqi(x), XE ui-1 n Ui. 

Given a chart chain as above, it is possible to extend the base map 
qo to a continuous map D : Uo U U1 -+ X by 

D(x) = g1q1(x), x E U1. 

Successively D can be extended to U0 U U1 U U2 by 

D(x) = g1g2q2(x), x E U2. 

See Figure (3.1). This motivates the following definition. 

Definition (3.5). 

(1) The developing map D: N-+ X w.r.t. the base chart (U0 , q0 ) 

is defined by 

D(x) = g1g2 ···gr· qr(x), XE N, 
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D(Uo) 

~ 
cp(() D(Vs) 

Figure (3.1) 

where ((Ui,qi),gi), (1:::; i:::; r) is a chart chain from (Uo,qo) 
such that x E Ur. 

(2) The holonomy homomoryhism cp: n1(N)--+ G w.r.t. the base 
chart (U0 , q0 ) is defined by 

where ((V;j,PJ), h1), 1:::; j:::; s is a chart chain from (Uo, qo) 
such that 

D and ¢ are well defined since N is simply connected. The proof 
is routine and is omitted. Also it is clear that D is a submersion ( or 
immersion). 

Definition (3.6). A pair (D, cp) is called a DH pair if the 
following is satisfied. 

(1) D : N --+ X is a submersion. 
(2) cp: n1(N)--+ G is a homomorphism. 

(3) D(lx) = cp(l)D(x), l E n1(N), x EN. 
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Proposition (3.7). Let D and r_p be the developing map and 
the holonomy homomorphism for a base chart (Uo, Qo)- Then (D, cp) 
is a DH pair. 

Proof. To show 

D(~x) = r_p(~)D(x), ~ E 1r1(N), x EN, 

let 
O' = {((Ui,Qi),gi)}i::,;i::,;r 

be a chart chain from (Uo, qo) such that x E Ur and let 

be a chart chain from (Uo, q0 ) such that 

Let 
~tt(j = { ((~Ui, Qi o C 1 ), gi)}. 

~HO' is a chart chain from (~U0 , q0 o ~-l) = (Vs, Ps)- Thus T followed 
by ~HO' is a chart chain from (U0 , q0 ) to the point ~x. That is, we 
have 

Finally let us show that cp is a homomorphism. We have 

It follows that cp(~1~2 ) = cp(6)cp(~2 ), since the action of G on X 1s 
effective and real analytic. (Note that Image(D) is a domain since D 
is a submersion.) Likewise we have cp(l) = l. Q.E.D. 

Definition (3.8). Two DH pair (D, r_p) and (D', cp') are said to 
be equivalent if there exists g E G such that D'(x) = gD(x) and cp'(~) 

= gr_p(~)g-1 for x E N and ~ E 7r1 (N). 

Proposition (3.9). The correspondence of (3. 7) gives a bijection 
between the set of ( G, X)-structures on N and the set of the equivalence 
classes of DH pairs. 

Proof. Let (D, r_p) (resp. (D', cp')) be the DH pair associated to 
the base chart (U0 , q0 ) (resp. (U~, qb) )of a given ( G, X)-structure. 
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Consider a chart chain 

((Ui,qi),gi), 1 :Si :Sr 

from (U~, qb) such that (Ur, qr) = (Uo, qo)- Let g = g1g2 · · · 9r· Then 
it is easy to show that 

D'(x) = gD(x), cp'(t) = gcp(t)g- 1 . 

Conversely given an equivalence class of DH pairs, one can get a 
(G, X)-structure on N by restricting the developing map to small 

domains of N and projecting down by p: N-+ N. Q.E.D. 

By certain abuse, ( G, X)-structures are sometimes. denoted by their 
DH pairs as [D, cp]. 

Definition (3.10). For a (G, X)-structure [D, cp] on N, 

H = Image(cp) c G 

is called the holonomy group of [D, cp]. 

By (3.9), the holonomy group of a (G, X)-structure is unique up to 
conjugations in G. 

Let r be a discrete group which acts on N. 

Definition (3.11). r is said to act discontinuously on N, if for 
any x EN, there exists a neighbourhood U of x such that 

Card{')' E f i 'YUnU -/-¢} < oo. 

The proof of the following proposition is left to the reader. 

Proposition (3.12). r acts freely and discontinuously on N if 
and only if for any x E N, there exists a neighbourhood U such that 
if 'Y -/-1, then 'Yun U = ¢. 

Suppose N -+ P be a regular covering with the group of deck 
trasformations r. Then the action of r on N is free and discontinuous. 
Conversely, if r acts freely and discontinuously on a manifold N, then 
the canonical projection 71" : N -+ · N ff is a regular covering with the 
group of deck transformations r. 
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Proposition (3.13). Suppose that r acts on N freely and dis­
continuously. Then 

f = fi: iv-+ iv I ::Y is a lift of "f, "( E r} 

acts on N freely and discontinuously. f is the group of deck trans­
formations of the following universal covering. 

1r op: iv-+ N-+ N/I'. 

We have the following exact sequence; 

1-+ 1r1(N)-+ f-+ r-+ 1. 

Proof. We only show that the action of r is free and discontinuous. 

The rest is left to the reader. Let x EN. Take a small neighbourhood 

U of x such that 

(1) U = p(U) is evenly covered by p and 
(2) 'Yun u = cf> if 'Y # 1, 'Y Er. 

Suppose ::Y(U)nfJ # cf> for ::YE f. Then we have 'Y(U)nU # cf>, where 
::Y is a lift of 'Y· This shows that 'Y = 1 by (2). Thus -:Y is a deck 
transformation of p. But by (1), we have ::Y = 1. Q.E.D. 

Let U be a ( G, X)-structure on N. 

Definition (3.14). An action of r on N is called a U-action 
if and only if for any 'YE r, we have 'Y*U = U. 

Suppose that an action of r on N is a free and discontinuous 
U-action. As before, 1r : N -+ N /I' is the canonical projection. 

Definition (3.15). A (G, X)-strucure 1r*U, called the projection 
of U, is defined as follows. Let (D, r.p) be the DH pair associated to 

a base chart (U0 , q0 ). Since the action of the lift f is a U-action, 

we have that (::YU0 , q0 o ;;;- 1) is a U-chart for any ::YE f. Thus as in 
Definition (3.5) (2), we can define a homomorphism 

'l/J:f-.G 

by using a chart chain to (::YU0 , q0 o ;;;- 1 ). Then (D, 'ljJ) is a DH pair 
for N /I'. 1r *U is defined to be the ( G, X)-structure corresponding to 
this DH pair. 

Clearly 'ljJ : r -+ G is an extension of the holonomy homomorphism 
r.p: 1r1(N)-+ G. 



Flat Conformal Structure 195 

As is shown later, there are many examples of pair ( G, X) such 
that the isotropy subgroup 

Gx = {g E GI gx = x} 

is compact for any x E X. Then the corresponding ( G, X)-structures 
have the following striking feature. 

Proposition (3.16). Let N be a closed (G,X)-manifold. Sup­
pose the isotropy subgroup Gx is compact for x E X. Then the 

developing map D : N -+ X is a covering map onto X. In particular, 
if X is simply connected, then D is a homeomorphism. 

Proof. Since Gx is compact, there exists a Ox-invariant, positive 
definite, symmetric, bilinear form on the tangent space TxX; Dis­
tributing it by the action of G, we obtain a G-invariant Riemannian 
metric g of X. Since g = D*g is rr1 (N)-invariant, it projects down 
to a Riemannian metric on N. Therefore g is complete. 

For small c > 0, we have that D maps any 2c-ball in N 
isometrically onto a 2c:-ball in X. Then clearly any c-ball in X is 
evenly covered by D. Q.E.D. 

We shall raise some examples of ( G, X)-structures. 

Example (3.17). Denote by lsom(Sn), lsom(Rn) or lsom(Dn) 
the group of isometries of the Riemannian manifold ( sn, gs), (Rn, 9E) 
or (Dn,9H). The corresponding (G,X)- structure (resp. manifold) is 
called spherical, Euclidean or hyperbolic structure (resp. manifold). 
Specifically, closed spherical or Euclidean manifold is called spherical 
or Euclidean space form. 

Notice that Isom(Sn) = O(n+ 1) and lsom(Dn) = M(sn- 1 ). 

Isom(Rn) consists of transformations, called Euclidean motions, 

x 1-t Px + b, (PE O(n), b E Rn). 

All the three satisfy the hypothesis of (3.16). Therefore if the mani­
folds are compact, their universal covering spaces can be identified with 
sn (if n > l), Rn or Dn+l. A spherical space form is isomorphic to 
sn fr if n > l, where r is a finite group of SO(n + 1). The following 
theorem is due to Bieberbach ([5]). A neat proof, quite short, is found 
in P. Buser ([6]). 

Theorem (3.18). An Euclidean space form has n-torus as a finite 
covering. 

The main object of our study is the following (G,X)-structure. 
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Definition (3.19). A (M(Sn), sn)-structure (resp. manifold) is 
called a flat comformal structure (resp. manifola). A group action 
preserving a flat conformal structure is called a conformal action. 

There is another way to get to the same concept. 

Definition (3.20). A Riemannian manifold (N, g) of dimension 
n is called conformally flat if for any point x E N, there exist a 
neighbourhood U and an embedding f: U--+ Rn such that J*gE is 
conformally equivalent to glu-

N otice that the above definition does not change if we use as a model 
space ( sn, gs) instead of (Rn, g E). In fact, they are conformally 
equivalent as we saw in §2. 

Now let U be a flat conformal structure on N. For each U­
chart (Um qa), there is the induced Riemannian metric q~gs on Ua. 
In a component V of Ua n Uf3, we have qf3 = go qa for some 
g E M(Sn). Since g is a conformal map w.r.t. gs, q~gs and q;gs 
are conformally equivalent on V. Take a locally finite partition of unity 
{ta} associated with the covering {Ua} of U-charts. The Riemannian 
metric · 

g = l)aq:gs 
a 

is a conformally flat metric. 
Conversely suppose n 2: 3. Let g be a conformally flat metric 

on an n-dimensional manifold N. Then we have a family {(Ua, fa)} 
such that {Ua} is an open coverin,g of N, that fa is an embedding 
of Ua into sn and that J;gs is conformally equivalent to g. Thus 
for any component V of Ua n Uf3, 

is a Riemannian conformal map in (Sn,g 8 ). Thus by Liouville's theo­
rem, we have that 

We obtain a flat conformal structure. In summary, we have; 

Proposition (3.21). Flat conformal structure on a manifold N 
yields a conformally equivalence class of conformally flat metrics. Fur­
ther if n 2: 3, this correspondence is bijective. 

For n = 2, the above two concepts are in fact different. In this 
dimension, flat conformal structure is often called ( complex) projective 
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structure since 

(M(S 2 ), S2 ) = (PGL(2: C), CP 1 ), 

while conformally fl.at Riemannian metric corresponds to complex struc­
tures. 

If (G', X') c (G, X), that is, G' CG, X' C X and the G'-action 
on X' is the restriction of the G-action on X, then, as a matter of fact, 
a (G', X')-structure is naturally considered as a (G, X)-structure. Thus 
spherical manifolds, Euclidean manifolds and hyperbolic manifolds are 
considered to be flat conformal manifolds. In fact we have the following 
inclusions of (G,X)-pairs. 

(Isom(Sn), sn) c (M(Sn), sn). 

(Isom(Rn), Rn) C (M(Rn), Rn) ~ (M(Sn), sn). 
~ 

A significant feature of these examples is that the developing maps are 
homeomorphisms onto their images ( except the case of (Isom( S 1), S 1) 

) . However for a point a E sn, the isotropy group M ( sn )a is 
not compact. (Compare that M(Sn)a is compact for a E vn+l .) 
Therefore flat conformal manifolds in general do not enjoy this kind of 
good properties. In fact there are many such examples as we shall show 
in what follows. We make the following definition. 

Definition (3.22). Let U = [D, cp] be a flat conformal structure 
and let H = Image( cp) be the holonomy group. U is said to be of 
type l if D is a covering map onto its image and H is discrete, of 
type 2 if D is a covering map but H is indiscrete, of type 3 if H is 
discrete but D is not a covering map and type 4 otherwise. 

Before starting the study of type 1 flat conformal structures, we 
need some preparations. Let r be a subgroup of M(Sn). 

Definition (3.23). A subset A C sn is called f-invariant if 
-y(A) = A for any -y Er. 

Definition (3.24). Let Or be the set of points x E sn such 
that there exists a neighbourhood U of x such that -yU n U = ¢ but 
for finitely many -y E r. Or is called the domain of discontinuity of 
r. 

Or is the maximal f-invariant open subset of sn on which r 
acts discontinuously. 
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Definition (3.25). r is called a Kleinian group if Dr # ¢. 

Clearly we have: 

Proposition (3.26). A Kleinian group is discrete in M(Sn). 

It is known that the converse does not hold. However we have: 

Proposition (3.27). If r is discrete, then r acts on vn+i 
discontinuously. 

Proof. Assume r is infinite and let r = hn}- Since f is 
discrete, "In -+ oo, that is, "In (/_ O(n + 1) for but finitely many n 
and radius Ibn) -+ 0. It follows that any compact subset of vn+l is 
outside I('Yn) except finite n. (Recall I('Yn)nsn # ¢.) (3.27) follows 
from (2.12)(3). Q.E.D. 

The following fact is helpful in our study of flat conformal structures 
of type 1. The proof is more or less the same as (3.27). The reader will 
find it in §5, after the definition of limit set is made. 

Corollary (5.16). Suppose a discrete group r admits an invari­
ant open set n such that sn \ n is neither empty nor a singleton. 
Then r acts on n discontinuously. 

Flat conformal structure of type 1 is constructed as follows. Let r 
be a Kleinian group in M(Sn) which acts freely and discontinuously 
on a f-invariant domain n. The action is of course a conformal action 
on a flat conformal manifold n. Hence the quotient manifold !1/f 
admits a flat conformal structure U. The developing map D is the 
universal covering followed by the inclusion; 

D : 0 _::__, n C sn 

and the holonomy group is r. Concrete examples of this construction 
will be given in later sections. 

Definition (3.28). The flat conformal structure (manifold) con­
structed as above is called a Kleinian structure ( manifold). 

Definition (3.29). Two flat conformal manifolds are called com­
mensurable if they have isomorphic finite coverings. 

Proposition (3.30). Any type 1 fiat conformal compact manifold 
N is commensurable to a Kleinian manifold. 

The proof needs the following theorem due to Selberg. See e.g. 
([53]). 
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Theorem (3.31). Any finitely generated subgroup of GL(n, R) 
has a torsion free subgroup of finite index. 

As is well known, M(Sn) is isomorphic to the projectivised Lorentz 
group PO(n+l, 1). Thus (3.31) is applicable to a subgroup of M(Sn). 

Proof of (3.30). If the developing map D is onto sn, then D 
is a homeomorphism and N is isomorphic to a spherical space form. 
Likewise if D misses only one point, then N is isomorphic to an 
Euclidean space form. Otherwise, by (5.16), the holonomy group H 
acts on n = Image(D) discontinuously. Let r be a torsion free finite 
index subgroup of H. r acts on n freely. We have the following two 
covering maps. 

P: N /ip-1 (r) - N, 

D: N /<p-1 (r) - n;r. 
p is a finite covering since <p-1 (r) is a finite index subgroup of 1r1 (N). 
Therefore N /ip-1 (r) is compact and D is also a finite covering. 

Q.E.D. 

One can show by examples that Proposition (3.30) cannot be sharp­
ened in general. 

Next an example of type 2 flat conformal structure is in order. 

Example (3.32). Let P(x) = >..Rox be a conformal linear trans­
formation on R2 (>.. > 0, R0 ; the rotation by 0). For t ER, let 

Let Q be another conformal transformation which keeps O fixed such 
that Q -/-pt for any t E R. 

~2 
Let R 2 /Z 2 = T 2 • Define <p: Z2 -+ M(R) by ip(l,m) = P 1Qm 

~2 
and D: R 2 -+ R by D(x, y) = pxQYa for some a ER\ {0}. Since 
PQ = QP, we have (D, <p) is a DH pair. D is clearly a covering map 
onto R 2 \ {O}. But often H = Image(<p) is not discrete, for example 
when >.. = 1 and 0 1 Q. 

See Figure (3.2). This example cannot be generalized to higher 
dimensions, since Rn\ {O} is simply connected if n 2 3. However, 
in §5, we give examples of type 2 flat conformal compact manifolds of 
dimension 2 3 and give a characterization of such manifolds. 

The following is an example of type 3 flat conformal structure. 
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Figure (3.2) 

Example (3.33). Let I; be a closed Riemann surface of genus 
2". 2, that is, a hyperbolic manifold of dimension 2. The developing map 
D is a homeomorphism onto a disk in S2 . We shall alter D without 
changing the holonomy homomorphism r.p. Let a be a simple closed 
geodesic in I; and let V be the c-neighbouhood of a for small c > 0. 

Then a lift V of V in the universal covering ~ ~ D 2 is the mutually 
disjoint c-neighbourhood of a lift of a. See Figure (3.3). D is altered 

inside V to a new map D' in such a way that it coincides with D 

near the boundary of V and it goes extra once around S2 • Clearly 
D' can be constructed so that (D', r.p) is a DH pair. See Figure (3.4). 
It is easy to show that D' is onto sn. Thus it is not a covering map. 
For more detail, see Goldman ([16]). The same construction is possible 
for higher dimension if we start with a compact hyperbolic manifold 
which admits a totally geodesic closed submanifold of codimension 1. 
See Kourouniotis ([33]). 

Finally an example of type 4. 

Example (3.34). Prepare two copies of type 2 flat conformal man-· 
ifolds N1 and N 2 constructed in Example (3.34). Inside an atlas 
(Ui, qi) of Ni, take a small disk ¼ which is mapped by qi to a 
metric disk in S2 . There exists an element g E M(S 2 ) such that g 
maps V1 to the exterior of Vi . Consider the connected sum 



Flat Conformal Structure 201 

-p 

Ci 

V E 

i; 

Figure (3.3) 

v 

Figure (3.4) 

If we chose the above identification appropriately, we obtain a continuous 
map 

Using this we get in an obvious way a flat conformal structure on. N 1UN2 • 

It is not difficult to show that the developing map of this structure is 
onto S2 and therefore is not a covering map. The holonomy group is 
indiscrete since we started with type 2 examples. 

The above operation, called connected sum of the structure, will 
be described in more detail in §6. 
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§4. Closed similarity manifolds 

~n 
In this section we assume n 2: 3 and mainly work with R , instead 

~n 
of sn. As before M(R ) denotes the group of Moebius transforma-

-n -n 
tions of R . As shown in §1, the isotropy subgroup M(R )= at oo 
consists of transformations 

f(x)=APx+b, A>O, PEO(n), bERn. 

A (resp. P) is called the norm (resp. orthogonal part) of f and is 
~n 

denoted by 11111 (resp. P(f)). Clearly a transformation f E M(R )= 
induces a transformation of Rn. When viewed as a transformation of 
Rn, f is called an Euclidean similarity. The group of Euclidean 
similarities is denoted by ES(Rn). We have an isomorphism 

Definition (4.1). An (ES(Rn), Rn)-structure (manifold) is called 
a similarity structure {manifold}. 

Euclidean space forms are examples of similarity manifolds. Other 
examples are Hopf manifolds to be defined below. 

Definition (4.2). A closed similarity manifold N is called a Hopf 
manifold if the developing map D is a hoineomorphism onto Rn \ { 0}. 

Then the holonomy group H is discrete and is contained in the 
isotropy subgroup ES(Rn) 0 . By taking norm and orthogonal part, we 
obtain the isomorphism 

ES(Rn)o f::! R+ x O(n). 

IIHII = {IIJII I f E H} is nontrivial since N is closed, and is discrete 
since O(n) is compact. Therefore it is infinite cyclic. Let 11h11 (h E H) 
be a generator. Since the kernel {11h11 = 1} is finite, (h2 ) is a finite 
index subgroup of H. Clearly (Rn\ {O})/(h 2 ) is homeomorphic to 
sn-l X S1. Thus we have; 

Proposition (4.3). Hopf manifold has a finite covering which is 
homeomorphic to sn-l X S1 . 

In [13], Fried has shown that these two examples of similarity mani­
folds are the only examples. That is, an arbitrary similarity manifold is 
isomorphic to either an Euclidean space form or a Hopf manifold. See 
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also Kuiper ([36]). The purpose of this section is to give an improved 
version of Fried's theorem. Instead of confining ourselves to similarity 
manifolds, we consider flat conformal manifolds in general. 

Theorem (4.4). Let N be a closed fiat conformal manifold of 
dimension 2". 3 such that the holonomy group H is contained in the 

-n -n 
isotropy subgroup M(R )00 • Then N is isomorphic to either R , 
a Hopf manifold or an Euclidean space form. 

One can state the original Fried's theorem as a corollary. 

Corollary ( 4.5). Closed similarity manifold of dimension 2". 3 is 
isomorphic to a Hopf manifold or an Euclidean space form. 

What is new in Theorem (4.4) is that the developing map is allowed 
to cover the point oo, while in the original Fried's theorem (Corollary 
(4.5)) it is postulated to miss oo. Although the difference is apparently 
not significant and the proof is in fact almost the same, Theorem (4.4) 
brings forth a far wider range of applications in practice ( as far as flat 
conformal structures are concerned). To the best knowledge of the au­
thor, (4.4) cannot be found in the literature. Therefore it is obviously 
worth while to give a complete proof of (4.4). 

The rest of this section is devoted to the proof of ( 4.4). In way of 
contradiction, we assume that N is isomorphic to neither of the three 
structures in ( 4.4). Denote by D the developing map , by '-P the 
holonomy homomorphism and by H the holonomy group. The proof 
consists of three steps. 

Step 1. Clearly v- 1 ( oo) is discrete and invariant by the deck 
transformation. Thus N(oo) = 1r(D- 1(00)) is a finite set. Then 
N* = N \ N(oo) is a similarity manifold. 

Definition (4.6). A domain U* C N* = 1r-1 (N*) is called a 
copy of UC Rn if Dlu• : U* _____, U is a homeomorphism. 

Points in N* are denoted by a*, x* and so forth and their images 
by D by a, x and so forth. Thus , B* (a*, r) denotes a copy containing 

a* EN* of B(a, r), the open ball of radius r centered at a. We call 
a* and r the center and radius of B*(a*,r). 

Definition ( 4. 7). A closed subset l* C N* is called a complete 

half line if for any copy of ball B* C N*, B* n l* is mapped by D 
to B n k, where k is a complete half line in Rn. 
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D 

LO 02:{:F_QQ?) 

Figure (4.1) 

See Figure (4.1). 
By certain abuse, the parametrization of a complete half line l* is 

denoted by the same letter, as 

l*: [O, oo) ____, l*. 

Notice that given any point x* E N* and a tangent vector v at x*, 
there exists a unique complete half line l* such that l*(O) = x* and 
tangent to v. Clearly deck transformation carries a complete half line 
to a complete half line. 

Definition (4.8). A complete half line l* is called short if D(l*) 
is not a complete half line in Rn. 

Claim ( 4.9). Given a short complete half line l*, there exists a 
neighbourhood U of N(oo) such that 1r(l*) n U = ¢. 

Proof. For any point Ci E N(oo) , choose a compact neighbour-
hood ui such that 

(a) 1r(l*(O)) (/. ui, 
(b) Ui is evenly covered by 1r, 
(c) For any component E* of 1r-1 (Ui), there exist a E Rn and 

R > 0 such that the following map is a homeomorphism. 

DIE•: E* ____, E = E(a,R) = {Ix - al?: R} U {oo} 
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Notice that in ( c), if one component of 1r- 1ui is mapped to E(a, R), 
then all the other is also mapped to some E( a', R'). Thus ( c) is attained 
if one chooses Ui small and appropriate. 

Let us show that l* n E* is empty. If not, the image l n E is a 
half line starting at &E. ( l = D(l*).) Since l* is short, l is not a 
complete half line of Rn. Then one can choose a ball B C E \ { oo} 
centered at the point limt-+oo l ( t). Then B has a copy B* in E*. 
But B n l is not the intersection of B with a complete half line in Rn. 
See Figure (4.2). This contradicts the hypothesis that l* is complete. 
Let U = UPi- We have 1r(l*) n U = ¢. Q.E.D. 

D~------

Figure (4.2) 

For any x* E N*, let r(x*) be the maximal radius of a copy of 
ball centered at x*. See Figure (4.3). 

Claim (4.10). r(x*) < oo. 

Proof. If not, x* is contained in a copy of Rn, say P. If 
P = N, then N would be an Euclidean space form, contradicting 

the hypothesis. Suppose P =I-N. Take a point y* E Fr(P) and a 
sequence {y~} C P such that y~ --+ y*. Clearly we have D(y~) --+ oo. 
It follows from the continuity of D that D(y*) = oo. Therefore there is 
a neighbourhood Q of y* which is mapped by D homeomorphically 

~n 
onto E(O, R) for some large R > 0. Then D : PU Q --+ R is a 
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• x* 

~i__C9_r(x*) _ID R" 

Figure (4.3) 

homeomorphism. We have 

Again a contradiction. Q.E.D. 

Definition ( 4.11). The Fried metric is a continuous Riemannian 

metric on N* defined by 

on Tx•N*. 

Let ~ be a deck transformation of N and x* E N*. We have 

~(B*(x*,r)) = B*(~x*, ll'P(~)llr). 

This shows r(~x*) = ll'P(~) llr(x*). That is, the deck transformation ~ is 
an isometry for the Fried metric gp. Thus gp induces a Riemannian 
metric of N*, which is also called the Fried metric. The distance 

functions of Fried metrics both on N* and on N* are denoted by 
dp. 

The following is the aim of Step 1. 

Claim (4.12). Let B* = B*(a*,r(a*)) be the maximal copy of 

ball centered at a* E N*. Then there exists a copy of half space H* 
such that B*(a*,r(a*)) CH*. 

Proof For simplicity let us assume r(a*) = l and D(a*) =en= 
(0,···,0,1). By D, we identify B* with B={lx-enl<l}. Bythis 
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identifidation, we consider the function r or the Fried metric gp to 
be defined on B. By the maximality of B*, there exists a radius l* 
which is a complete half line. Assume 

l = D(l*) = {x1 = 0, · · ·,Xn-l = 0,0 < Xn S 1}. 

See Figure (4.4). 

Figure ( 4.4) 

Let us study for a while the Fried metric on B. First of all for any 
x 0 E B, we have r( x0 ) :S: lxo I- In fact if not, the origin O is contained 
Ill 

A= BU {Ix - xol < r(xo)}. 
A has a copy containing a*. This contradicts the completeness of l*. 
Thus we have gp ~ gc on B, where 

9E 
9G = lx12· 

-----+ 
For any x E B, let 0 = 0 ( x) be the angle of the vector Ox and l. 
We have 

Subclaim (4.12.1). dp(x, l) ~ dc(x, l) = 0. 

Proof. Let 1'(t) be a smooth path in B combining x and a 
point in l. Denote by lengthc('Y) the length of 1' w.r.t. de. Let 

1'(t) = h(t)lp(t). 
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We have 
l,1'(t)l :2'. h(t)IIP'(t)I. 

In fact, since lp(t)I = 1, we have (p(t),p'(t)) = 0 and 

,1'(t) = h(t)l'p(t) + l,1(t)lp'(t). 

Therefore we obtain the following equality. 

lengthc('Y) = fo1 
1
1
~g}i' dt :2: fo1 

IP'(t)ldt :2: 0. 

On the other hand it is easy to show that for a suitable choice of 'Y, one 
has lengthc,1 = 0. Q.E.D. 

Now by Claim (4.9), There exist a compact submanifold Ne = 
N - IntU which contains 1r(l*) and a sequence ti j oo such that for 
some c E Ne, 

dp(1r(l*(ti)), c) ! 0. 

Also assume that dp(1r(l*(t 1 )), c) is sufficiently small. Then by (4.12.1), 
there exists a point b* E B* such that c = 1r(b*) and 

dp(l*(ti), b*) = dp(1r(l*(ti)), c). 

Now there exists a sequence {(i} of deck transformations such that 

dp(l*(ti), (ib*) ! 0. 

See Figure (4.5). 
Thus passing to the model B C Rn, we may assume the following. 

Let Ji = cp((i) E ES(Rn) and b = D(b*) E B. 

(1) fi(b) EB. 
(2) 0(fi(b)) __, 0. 
(3) fi(b) __, 0. 
(4) P(fi) __, Po E O(n). 
(5) llfill ----,0. 

Notice that (5) follows from (3) since 

See Figure (4.6). 

llf ·II = r(fi(b)) < lfi(b)I __, 0 
' r(b) - r(b) · 

Now for i » 1, taking j » i, we may assume 

(6) P(fdj-l) is very near E , 

(7) llfdj- 1 11 isverylarge. 
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Figure (4.6) 
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Xn = 0 

-Next by (2), Ofi(b) is almost parallel to ~ and is almost perpen-
dicular to &B. Applying fdj-l, we still have that 

(8) fdj~ 1 (0)fi(b) is almost parallel to ~' 

(9) fdj- 1 (0)fi(b) is almost perpendicular to fdj- 1 (&B). 

In fact (8) follows from (6) and (9) from the fact that fdj-l is an 
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f;(b) 

Figure ( 4. 7) 

f;(b) 

Figure (4.8) 

Euclidean similarity. See Figure ( 4. 7). 
On the other hand, notice that ~i~;1 B* n B* is nonempty and 

~if; 1 B* U B* is a copy of fdj-l BUB. Therefore by the completeness 
of l* , we have that 

(10) Jdt(o) .f_ B, 

(11) 0 ./-fdi- 1 (B). 

Let 
fdj-l (0) = ( a1, · · ·, an) 

and for M » 1 and O < E: « 1, let 

D = {lxi - ail :SM (1 :Si :Sn -1), lxn - anl :Sc}. 

Then by (5), (8) and (9), (taking j » i » 1 even greater) we have 

8(fdi-i B) n 8D = 8(fdi-i B) n 8vD, 

where 8v denotes the vertical boundary. See Figure ( 4.8). 
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We have by (11) that an > -€ and by (10) that an < €. It also 
follows that Jd; 1 (0) is very near 0. 

This shows that any x in the half space {xn > O} is in fdj-l B 

for some j » i » 1. Since fdj-l BUB has a copy containing a*, the 
proof of (4.12) is now complete. Q.E.D. 

Step 2. In Step 1, for any point a* E N*, we have found a 
copy of half space containing B*(a*, r(a*)). We have; 

Claim (4.13). A copy of half space H* containing B*(a*, r(a*)) 
is unique. 

Proof. Clearly H is tangent to B(a,r(a*)) and the radius to the 
point of tangency is the developing image of a short complete line. In 
other words, there exists a unique short complete line in N* which is 
contained in B*(a*,r(a*)). Thisshowstheuniquenessof H*. Q.E.D. 

Definition (4.14). H* of (4.13) is denoted by H*(a*) and its im­
age by D by H(a*). The point of tangency of H(a*) and B(a, r(a*)) 
is denoted by p(a*). 

Notice that maximal copy of half space containing a* may not be 
unique. Since D is a submersion, 

DI CIH*(a*): ClH*(a*)--+ Rn 

is injective and D(FrH*(a*)) is an open subset of 8H(a*). 

Definition (4.15). For a* EN*, denote 

L(a*) = 8H(a*) \ D(FrH*(a*)) c Rn. 

In other words, x E L(a*) if and only if x = limt_, 00 l(t) for some 
short complete line l* such that l*(O) = a*. See Figure (4.9). 

For b E ClH(a*) \ L(a*) C Rn, we denote by b* the unique point 

in ClH*(a*) C N* such that D(b*) = b. 

Claim (4.16). For b E ClH(a*)\L(a*), 8H(b*) passes through 
p(a*). 

Proof. Suppose not. We have a (/. H(b*) since H(a*) U H(b*) 
has a copy in N*. Consider the transformation 
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Figure (4.9) 

of Step 1. Recall that llfifi- 111 is very small, P(fifi- 1 ) is very near 
E and fifi-l has a fixed point near p(a*) . Thus fifi- 1 (8H(b*)) is 
almost parallel to 8H(b*) and much near p(a*). Clearly 

has a copy in N*. This contradicts that p(b*) E L(b*). See Figure 
(4.10). Q.E.D. 

a 

H(a*) 

p(a*) 

Figure (4.10) 
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Claim (4.17). L(a*) is an affine subspace of Rn. 

Proof. Let x, y E L(a*). Clearly x = p(c*) for some c* E H(a*). 
Likewise for y. If a point b on the line passing x and y does not 
belong to L(a*), apply (4.16) to b. Then 8H(b*) passes through x 
and y, that is, through b. A contradiction. Q.E.D. 

Claim (4.18). The correspondence a* f--+ L(a*) is locally con­
stant. 

Proof. Take b* E H*(a*). Then 8H(b*) passes through p(a*) 
by (4.16) and p(a*) E L(b*). Since L(b*) n H(a*) = ¢, we have 
L(b*) c 8H(a*) n 8H(b*). Likewise, L(a*) c 8H(a*) n 8H(b*). It 
follows easily that L(a*) = L(b*). Q.E.D. 

Since N* is connected, L(a*) is independent of the choice of 

a* EN*. Denote L = L(a*). 

Claim (4.19). The developing map D is a covering map onto a 
component of Rn \ L. 

Proof. Clearly no points of N* are mapped by D into L. Also 
we have that points in Rn\ L are evenly covered by D. Let us consider 
the point oo. For dimL ~ 1, oo E ClL cannot be in Image(D). For 
dim(L) = 0 (say L = {O} ), if oo E Image(D), then one can show 
that 

is a homeomorphism. But H C ES(Rn) has oo 
contradiction. 

Step 3. 

as a fixed point. A 
Q.E.D. 

Lemma (4.20). Let r = (J,g) C ES(Rn), where 

(1) llfll-/-1, f(a) = a (a E Rn), 
(2) g(a) -/-a. 

Then r is indiscrete. 

Proof. Assume llf 11 < 1. Let h =go f o g- 1 . Then 11h11 = llf 11 
and h(g(a)) = g(a). Let hn = r oho 1-n. We have llhnll = 11h11 = 
11111, the fixed point of hn is r(g(a)) and r(g(a))-. a (n-. oo). 
That is, hn-. f. This shows (4.20). Q.E.D. 
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Now we shall complete the proof of Theorem (4.4). First of all if 

L = {O}, then by Step 2, D : N-+ Rn\ {O} is a homeomorphism. 
That is, N is a Hopf manifold. This contradicts our hypothesis. 

Consider the case dim£ =I-n - 2. Suppose for simplicity that 
L = Rq. By (4.19), D is a homeomorphism onto a component V of 
Rn\ Rq. Thus the holonomy group H must be discrete. By Step 1, 
there exists f E H such that IIJII =I-l. Clearly J(L) = L. Assume 
f(O) = 0. By (4.20), we have g(O) = 0 for any g E H. Therefore 
g(Rn-q) = Rn-q, where Rn-q is the orthogonal complement of Rq. 
When identified by D , Fried metric is given by 

9E 
9F = lx212' 

where x = (x1, x2) (x1 E Rq, x2 E Rn-q). Since N = N* is compact, 
dp is totally bounded. That is, there exists K > 0 such that for any 
x,y EV, dp(x,gy) < K for some g EH. But this is impossible ifwe 
choose y E Rn-q n V and x 1 as large as desired. 

Finally suppose L = Rn- 2 . This case needs extra care. Since 
Rn\ Rn- 2 is not simply connected, D is not a homeomorphism and 
H may not be discrete. Denote by R0 E ES(Rn) the rotation by 
angle 0 around Rn- 2 . Let 

Notice that R0 commutes with an element of Stab(Rn- 2). Let 

Hn-l = {xn-1 > O,xn = O}. 

Define a homeomorphism 

by h(x, t) = R21rtX. The universal covering of Rn\ Rn- 2 is identified 
with Hn-l x R. Then as is easily shown, the lift of Stab(Rn- 2 ) 

is identified with ES(Rn- 2) x R. That is, we have the following 
equivariant mapping of (G,X)-pairs 

The DH-pair 
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clearly lifts to a DH-pair 

(D', cp'): (N, 1r1(N))-+ (Hn-l X R, ES(Rn- 2 ) X R). 

Since D' is a homeomorphism, the image ii = cp' ( 1r1 ( N)) is discrete. 

As before, H contains 

(f, t) E ES(Rn- 2 ) x R 

such that llfll -=/-1. Let f(O) = 0. Since ES(Rn- 2) and R 
commute, the argument of (4.20) is also valid and we have g(O) = 0 for 

any (g, s) E ii. The rest of the proof is similar. 

§5. Limit set 

The purpose of this section is to define limit set for flat conformal 
manifolds of an arbitrary type. In this section flat conformal manifolds 
are to be connected and compact, unless otherwise specified. 

First of all consider an arbitrary subgroup r of M(Sn). (r may 
not be discrete. It may not be even finitely generated.) Let us begin by 
defining the limit set for the group r by looking at its action on sn. 
There are four different ways and all of them are natural and useful. 

Definition (5.1). Let LF = LF(f) be the closure of the set of 
the fixed points of loxodromic or parabolic elements of r. 

Definition (5.2). Let LJ = LJ(f) be the set of points x E sn 
such that for any neighbourhood U of x, the family {flu ha is not 
equicontinuous. 

Definition (5.3). Let Lp = Lp(f) be the set of points x E sn 
such that for any neighbourhood U of x, the set {f E r I JU n U -=/-¢} 
is not precompact in M ( sn). 

By definition LF, LJ and Lp are closed f-invariant subsets of 
sn. Of course L J is an analogy of Julia set in one dimensional complex 
dynamical system. Notice that if r is discrete, then sn \ Lp coincides 
with the domain of discontinuity Or defined in (3.24). 

Definition (5.4). Let Lw = Lw(f) be the set of accumulation 
points in Sn of the orbit fa of a certain point a E nn+l. 

This definition is independent of the choice of a E nn+l. In fact, for 
another point b E nn+l and for "/k Er, we have dH("/k(a),"!k(b)) = 
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dH(a, b), where dH denotes the hyperbolic distance. By the difference 
between the hyperbolic distance and the Euclidean distance, we have 

lim 1'k(a) = x ~ lim 1'k(b) = x. 
k--+oo k--+oo 

Also note that Lw is closed and r-invariant. In fact if limk--+oo 1'k (a) 
= x, then we have limk--+oo 1'1'k(a) = 1'(x) for 1' Er . Below we shall 
prove the minimality of Lw. 

Definition (5.5). Let A be a r-invariant closed subset of sn 
such that Card(A) 2: 2. The convex hull of A, denoted by C(A), 
is defined to be the convex hull in (Dn+l, 9H) of all the geodesics 
combining two points of A. 

Clearly C(A) is a closed I'-invariant subset of nn+l. See Figure 
(5.1). 

A 

A 

A 

Figure (5.1) 

Lemma (5.6). Let A be an arbitrary I'-invariant closed set 
such that Card(A) 2: 2. Then we have Lw(I') C A. 

Proof. Take the point a E nn+l of (5.4) inside C(A). Then the 
orbit of a cannot evade C(A). This shows (5.6). Q.E.D. 
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Corollary (5.7). If r has no fixed point in sn, then Lw(f) 
is the unique minimal set, i.e., it is contained in any nonempty closed 
r -invariant subset of sn. 

For 'Y E M(Sn), denote by CI('Y) the convex hull in Rn+l of 
the isometric sphere I ('Y). 

Lemma (5.8). For {'Yk} Cr C M(Sn) such that 'Yk---+ =, we 
have d(CI('Yk), Lw(f))---+ 0. 

Proof For the properties of isometric spheres, see (2.ll)rv(2.16). 
We shall prove (5.8) by establishing d(CI('Y 1;1), Lw)---+ 0. Recall that 

'Yk ---+ = if and only if radius I('Y,; 1 ) = radiusl('Yk) ---+ 0 and that 
I('Yk) is always orthogonal to sn. Therefore given a point a E vn+i, 
we have a 'f-CI('Yk) for large k. That is, 'Yka E CI('Y,; 1 ). See Figure 

(5.2). Since d('Yka, Lw)---+ 0, it follows that d(CI('Y,; 1), Lw)---+ 0. 
Q.E.D. 

Figure (5.2) 

Definition (5.9). Two points x, y E Lw are called dual in case 
there exists 'Yk E f such that 'Yk(a) ---+ x and 'Yi:1 (a)---+ y (a E Dn+l ). 

This is also independent of the choice of a. For x E Lw, let Dx 
be the set of points in Lw which are dual to x. Diagonal argument 
shows that Dx is a closed subset. Also if "(ka ---+ x and 'Yi:1a ---+ y, 
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then for 'Y E r, 'Yk'Y-1a --+ x and 11,; 1a --+ 'YY· That is, Dx is 
r-invariant. 

Lemma (5.10). If r has no fixed point in sn, then any two 
points of Lw are dual. 

Proof. For Lw =/-<p, the condition assures that Card(Dx) 2: 2. 
Since D., is closed and r-invariant, we have by (5.6) that Dx ::) Lw. 

Q.E.D. 

Proposition (5.11). If r has no fixed point in sn, then for 
any pair of distinct points x, y E Lw (r), there exists a loxodromic 
transformation whose two fixed points are arbitrarily near x and y. 

Proof. By (5.10), we have that x and y are dual. Let 'Yk(a)--+ x 
and 1,; 1(a)--+y ('YkEr, aEDn+ 1). Wehaveclearly "fk--+oo. By 
applying the argument of (5.8), we obtain that CI('Y,; 1) is sufficiently 
near x and CI ('Yk) is sufficiently near y. Since x =/-y, we may 
assume that CI('Y,; 1) n CI('Yk) = <p. It is easy to show that 'Yk is 
a loxodromic transformation with one fixed point in CI ( 'Y,; 1) and the 
other in CI('Yk)- This shows (5.11). Q.E.D. 

Lemma (5.12). Lw(r) = ¢ if and only if r is precompact. 

Proof. This follows at once from the fact that for any a E vn+l, 
the isotropy subgroup of M(Sn) at a is isomorphic to a compact 
group O(n + 1). Q.E.D. 

Proposition (5.13). A subgroup r of M(Sn) is precompact if 
and only if it has a common fixed point in nn+l. In particular, maximal 
compact subgroups of M(Sn) are conjugate to O(n + 1). 

Proof. The if part is trivial. Let us show that a compact subgroup 
r has a fixed point in nn+i. (Pass to Clr if r is noncompact.) 
Choose an arbitrary point a E vn+l. Let d = diamH(ra) and let 
dH(a, ga) = d (g E r). Let a 1 be the middle point of a and ga . 
For any h E r, consider the hyperbolic tetrahedron with vertices a, 
ga, ha and hga. All the edges have length ::; d. Easy hyperbolic 
trigonometry shows d(a 1 , ha 1) ::; cd for some (computable) c E (0, 1). 
That is, diamH(ra1) ::; ed. Likewise construct a 2 , a3 etc. Let 
a= = limk~= aic. We have diamH(ra 00 ) = 0. That is, a= is a fixed 
point of r. Q.E.D. 
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Corollary (5.14). Unless r has a fixed point in nn+i u sn, r 
contains a loxodromic transformation. 

Proof. The condition implies that CardLw 2:: 2. Therefore (5.14) 
follows from (5.11). Q.E.D. 

Theorem (5.15). For an arbitrary subgroup r C M(Sn), we 
have 

Lp(f) c LJ(f) = Lp(f) = Lw(f). 

Moreover unless Lp(f) = </> and Lw (f) is a singleton, we have 
Lp(r) = Lw(f). 

Proof. Lp C LJ n Lp: This follows at once from the local models 
of loxodromic and parabolic transformations. 

LJ U Lp C Lw: Suppose x (/. Lw. Then by (5.8), for small c: > 0 
and for a small neighbourhood U of x, we have that Cl("Y)nU = </> if 
radius!("'!)< c: and "YE r. But the set of "Y such that radius I("'!) 2:: c: 
is precompact by (2.16). It follows from (2.12) that x (/. LJ U Lp. 

We shall divide the proof of the remaining part into four cases. 

Case l. r has no fixed point in nn+i u sn. 

By (5.14) we have Lp -=/=-<f>. Therefore it follows from (5.7) that 
Lw C Lp. Together with the inclusion we have already established, we 
obtain that Lp = LJ = Lp = Lw. 

Case 2. r has a fixed point in nn+i. 

By (5.12) and (5.13), this is equivalent to Lw = <f>. We have 
Lp = LJ = Lp = Lw = </>. 

Case 3. r has a fixed point y E sn and that Lw \ {y} -=/=-<f>. 

Let x E Lw \ {y }. Notice that parabolic and elliptic transformations 
of the isotropy group r y keep horospheres at y invariant. Therefore 
there must exist loxodromic transformations "'In E r such that "'Ina -, 

x (a E Dn+l ). Then "'!;;1a -, y. That is, we have y E Lw and 
Lw C Lp, showing that Lp = LJ = Lp = Lw, 

Case 4. Lw = {y }. 

This is the only case where we cannot prove Lw C L F. In order to 
complete the proof of (5.15), it suffices to show that y E Lp nLp. Since 
Lw -=/=-</>, there exists a sequence bd C r such that "Yk _, oo. Since 
"'fkY = y and "'fk are not loxodromic, we have y E CI("Yk) U CI("'/i: 1 ) 
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and CI(,k) n CJ(,-;; 1 ) =I-¢. Hence for any neighbourhood U of y, 
CI(,k) c U for sufficiently large k > 0. But by (2.12) and (2.16), we 
have that {,k\u} is not equicontinuous. That is, y E LJ. Clearly we 
have 'Yk(U) n U =I-¢. Therefore y E Lp. Q.E.D. 

The following corollary was already used in §3. 

Corollary (5.16). Suppose a discrete group r admits an invari­
ant open set n such that. sn \ n is neither empty nor a singleton. 
Then r acts on O discontinuously. 

Proof. Since r is discrete, sn \ Lp coincides with the domain of 
discontinuity. By (5.6), we have sn \ 0 ::> Lw = Lp. '.Therefore O is 
contained in the domain of discontinuity. Q.E.D. 

We will give an example of r for which Lp(I') = <p and Lw(I') 
is a singleton. The same example can be found in Kulkarni ([44]). 

~4 
Example (5.17). Let us work with M(R ). We shall construct 

a subgroup r such that L F (r) = ¢ and that Lw (r) = { oo}. Equiva­
lently, the group r consists purely of elliptic elements, keeps oo fixed 
and does not have a fixed point in H 5 • By (1.9) and (2.24), any element 
f E r has the form 

f(x) = Px + b (PE 0(4), b E R4 ). 

Notice that f is elliptic if and only if f has a fixed point a E R4 . In 
fact, then, the point (a,x) E H 5 (x > 0) is kept fixed by the extended 
action of f. Likewise the group r has a fixed point in H 5 if and 
only if it has a fixed point in R4 . Therefore our purpose is to construct 
a group r consisting of transformations f of ( *) such that 

f Er has a fixed point in R4 . 

r does not have a fixed point in R 4 • 

First of all let us show that there exist P, Q E S0(4) such that 
for any nontrivial reduced word w(P, Q), we have \w(P, Q) - E\ =I-0. 
Notice that for a (possibly real) algebraic group G, if G contains 
a free group of two generators, then for any nontrivial reduced word 
w(x, y), the equation w(x, y) = id defines a proper subvariety (that is, 
a subvariety of positive codimension) of G x G. The converse also holds 
since the complements of subvarieties of positive codimension are open 
dense subsets and their countable intersection is nonempty. Therefore 
a real algebraic group contains a free subgroup of two generators if and 
only if its complexification does. Now it is well known that S0(2, 1) 
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has a free subgroup of two generators. Clearly S0(2, l)c = S0(3)c. 
Therefore by the above consideration, S0(3), hence its universal cov­
ering SU(2), has a free group of two generators also. Considering the 
inclusion of SU(2) into S0(4), we obtain the desired P and Q. 

Let 
f : x f----+ Px and g : x f----+ Qx + b (b-/- 0). 

Now r = (f, g) consists purely of elliptic transformations, since any 
element of r has the linear part without eigenvalue 1 and hence has a 
fixed point in R 4 • However f and g have no common fixed points 
in R 4 . 

As a matter of fact, (5.17) implies that Lp = Lw does not hold in 
higher dimension. However in low dimension, we have; 

Theorem (5.18). For r c M(fC) (n :<:::; 3), we have 

Proof. All that need proof is that if Lw = { oo }, then Lp = { oo }. 
Equivalently, if r keeps oo fixed and if r does not have a fixed point 
in Rn, then r contains nonelliptic transformations. 

First of all for n = 1, there exist no elliptic transformations that 
keep oo fixed and there is nothing to prove. 

~2 
For n = 2, assume that f,g E M(R )00 have no common fixed 

points in R 3 . Computation shows that [f,g] = fgf- 1g- 1 is parabolic, 
since the linear parts commute. 

Finally let n = 3. It clearly suffices to verify for a group r con­
sisting of orientation preserving transformations. Orientation preserving 

~3 
elliptic transformations in M(R )00 are rotations around their axes. 
Let us show first that if two rotations f, g have disjoint axes, then the 
group (!, g) they generate contains a parabolic transformations. In 
fact, if the axes are parallel, then [f, g] is parabolic. Suppose they are 
not parallel and assume for contradiction that f g- 1 has a fixed point 
x E Rn. Then we have f(x) = g(x) = y. By Euclidean geometry, we 
have that the bisector of x and y contains the axes of f and g. (See 
Figure (5.3).) A contradiction. 

~3 
Therefore if r C M(R )00 is purely elliptic and have no common 

fixed points, then all the axes of transformarions of r must lie in a 
plane and all their rotation angles must be 1r. Therefore there exists 
an index two subgroup of r consisting of parabolic transformations. 
This contradiction shows (5.18). Q.E.D. 
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Figure (5.3) 

Now let N be a connected closed flat conformal manifold modeled 
on (M(Sn), sn). As before denote by D the developing map, by c.p the 
holonomy homomorphism and by H the holonomy group. Hereafter by 
certain abuse, we consider a flat conformal manifold N to be equipped 
with a particular choice of developing map, holonomy homomorphism 
and holonomy groups. Our purpose is to define the limit set of N. So 
far, we already had four kinds of limit set in terms of the holonomy group 
H. For a flat conformal manifold, they are denoted by Lp(N) = Lp(H) 
and so forth. We need one more definition, which is obtained by looking 
at the developing map. 

Definition (5.19). Let Lo = L 0 (N) be the set of points x 

such that for any compact neighbourhood U of x, the inverse image 
D- 1 (U) has a nonempty and noncompact component. 

As is shown easily, Lo is precisely the set of points which are not 
evenly covered by D. 

For general closed ( G, X)-manifolds, Kulkarni-Pinka11([45]) defined 
LJ and Lp and showed LJ::) Lp and LJ::) Lo . They also showed 
that LJ = Lp for closed flat conformal manifolds. The following is an 
elaboration of their rerult. 
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Theorem (5.20). For a connected compact fiat conformal mani­
fold N, we have 

LF(N) = Lw(N) = LJ(N) = Lp(N) = Lo(N). 

Proof. LF = Lw: If not, we have LF = </>, Lw = {a} and H has 
a fixed point a E sn. But then by ( 4.4), N is isomorphic to either 
sn, a Hopf manifold or a Euclidean space form. In any case we have 
LF = Lw, 

Lw C Lo: If CardLo :2:: 2, then this follows at once from (5.6). If 
Lo= {a}, then a is a fixed point of H and again by (4.4), we have 
Lw = L0 . If Lo = ¢>, then D is a covering map onto sn . That is, 
N is a spherical space form and we have Lw = ¢>. 

Lo C LJ: Denote by B(x, r) the closed disk centered at x E sn of 
radius r > 0 w.r.t. the spherical metric. The proof is by contradiction. 
Suppose b E Lo\ LJ. That is, we assume 

(1) For some rk l 0, n- 1 B(b, rk) has a noncompact component 
Ek, 

(2) {flB(b,ri)}JEH is equicontinuous. 

Choose ak E Ek. (Note that D(ak) -----+ b.) Then since N is 
compact, there exists ,k E 1r 1 (N) such that ,kak is in some compact 

region of N. Assume ,kak -----+ c. Choose a compact neighbourhood 
V of c such that 

Div: V-----+ B(D(c), 2E) 

is a homeomorphism for some E > 0. Assume also D(,kak) E 

B(D(c),e) for any k > 0. Choose 8 > 0 so 

x, y E B(b, r 1 ), d(x, y) < 28 ~ d(f(x), f(y)) < E for any f EH. 

For rk < 8, we have 

Therefore 

B(b, rk) c B(D(ak), 28), 

cp(,k)(B(D(ak), 28)) C B(D(,kak), e), 

B(D(,kak), e) C B(D(c), 2e). 

cp(,k)(B(b, rk)) C B(D(c), 2e), 

Now ,kEk is the component containing ,kak of v- 1 (cp(,k)(B(b, rk)) 
and is contained in V. Therefore ,kEk, hence Ek, is compact. A 
contradiction. Q.E.D. 
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Definition (5.21). The set in (5.20) is called the limit set of N 
and is denoted by L = L(N). 

We summarize fundamental properties of L in the following propo­
sition. 

Proposition (5.22). L(N) is a closed H-invariant subset of sn. 
Further if N is not isomorphic to a Hopf manifold, then L(N) is 
the unique minimal set. In particular, if L(N) =I-sn, then we have 
IntL(N) = ¢. 

Below we shall give applications of (5.20). The first one (5.23) is 
originally due to Kamishima([25]). See also Gusevskii-Kapovich([20]). 

Corollary (5.23). If the developing map D of a connected com­
pact fiat conformal manifold is not onto sn, then D is a covering 
map onto its image. 

Proof. We need only consider the case where N is not a Hopf 
manifold. Then by (5.22), we have L = Lo is contained in the com­
plement of lmage(D). That is, Image(D) is evenly covered by D. 

Q.E.D. 

The next application is found in Kulkarni-Pinkall ([45]), in which 
condition(2) below is mistakingly dropped. 

Corollary (5.24). Let N be a connected compact fiat conformal 
manifold and let n = sn \ L(N). Suppose 

(1) n is connected and its fundamental group 1r1 (r2) is finitely 
. generated. 

(2) For any point x E sn, there exists an arbitrarily small neigh­
bourhood U such that U \ L is connected. 

Then the developing map D is a covering map onto its image. 

Proof. First of all let us prove that D- 1 (r2) is connected. In fact 

given any two points a, b E D- 1 (n), choose a path p in N joining 
a and b. The path p is covered by a finite union of small open 
set V;. We may assume by (2) that ½ \ D- 1 (L) ~ D(¼) \ L is 
connected. Then we can make a small change of p within LJi ½ fixing 
the boundary points so that p is contained in D- 1(r2). Therefore 
D- 1 (n) is connected. 

Now by (4.4), we need only consider the case where H has no 

fixed points in sn. We need only show that D(N) n L = ¢. Suppose 
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the contrary. Choose a small compact ball V such that D is a 
homeomorphism on V, that IntD(V)nL-/- ¢ and that ExtD(V)nL-/­
¢. Since 1r1 (0) is finitely generated, it is supported on some compact 
subset K of 0. By (5.11), there exists a loxodromic transformation 
f E H with an attracting fixed point in IntD(V) and with a repelling 
fixed point outside D(V). We have r(K) c D(V) for some n > 
0. Therefore 1r1 (0) is supported on D(V) n 0. Now D gives 
a homeomorphism from V n v- 1 (0) onto D(V) n 0. This shows 
D* : 1r1 (D- 1(0))--+ 1r1(0) is an epimorphism. Since points in O are 
evenly covered by D, D gives a homeomorphism from v- 1 (0) onto 
0. However v- 1 (D(V)) has a noncompact component, which is of 
course disjoint from V. A contradiction. Q.E.D. 

The condition (2) of (5.24) is in fact necessary. For, let :E be a 
closed flat conformal 2-manifold corresponding to a B-group r ([3]). 
That is, 0 = sn \ L is connected and simply connected and :E is 
isomorphic to O/r. Apply the construction of (3.37) to :E. We obtain 
a flat conformal structure with the same holonomy group and surjective 
developing map. All this is of course well known. For more general 
treatment, see e.g. Goldman ([16]). 

We shall finish this section by studying type 2 flat conformal struc­
tures, i.e., with the developing maps covering maps and with indis­
crete holonomy groups. First we give examples in dimension 2:: 3. (2-
dimensional examples were already given in (3.32).) For our purpose the 

~n 
coordinates of R is convenient . 

.-n-2 --n --n 
Consider R C R . As before, denote by Re E M (R ) the 

~n-2 
rotation by angle 0 around R . Let 

Hn-l = {xn-l > 0, Xn = O}. 

Define 
.-n --n-2 

h : Hn-l X R --+ R \ R 

by h(x, t) = R21rtX. h is a universal covering. By (2.3), we have 

~n-2 ~n 
M(R ) = {g E M(R ) I g(Hn-l) = Hn-l }. 

Let us define 

.-n-2 .-n --n-2 -n-2 
S(R ) = {f E M(R ) I f (R ) = R }. 
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-n-2 
An element f E S(R ) carries Hn-l to a half plane bounded by 
~n-2 
R . Clearly f is determined by f(Hn- 1 ) and flan-2. This shows 

that f commutes with R0 . Therefore we have the epimorphism 

-n-2 -n-2 
'ljJ : M(R ) x R ----+ S(R ) 

defined by 'ljJ(g, t) = R21rtg. 
~n-2 

Consider the diagonal action of M(R ) x R on Hn-l x R. 
Then 

~n-2 ~n-2 ~n ~n-2 
('ljJ, h) : (M(R ) x R, Hn-l x R) ----t (S(R ), R \ R ) 

is an equivariant mapping of ( G, X)-pairs. 

~n-2 
Example (5.25). Let r C M(R ) be a discrete subgroup 

which acts freely on Hn-l _ Suppose M = Hn-l /r is compact. For 
any 0 E R \ { 0} and any homomorphism µ : r -+ R, define 

~n-2 
<15 : r x z - M (R ) x R 

by <15(,, m) = (,, µ(,) + m0). Using a triangulation of Hn-l /r, one 
can construct a continuous map u : Hn-l -+ R such that u(,x) = 
µ(,) + u(x) for 1' Er and x E Hn-l. Define a homeomorphism 

D : M X R-+ Hn-l X R 

by D(x, t) = (x, u(x) + 0t), where we identify the universal covering 

M with Hn-l . Let <p = 'ljJ o <j5 and D = ho D. Then (D, <p) is 
clearly a DH pair for M x 8 1 . Therefore it defines a flat conformal 
structure on M x 8 1 . Since D is a homeomorphism, D is a covering 

~n ~n-2 
map onto R \ R and the holonomy group H is indiscrete e.g., 
if we choose 0 E R \ Q. (Moreover for a suitable choice of µ, the 
"rotation part" of H is not even infinite cyclic.) Thus this is a type 2 
flat conformal structure. 

Conversely we have the following theorem which was first obtained 
by Gusevskii-Kapovich ([20]) in dimension 3. 

Theorem (5.26). Suppose N is a type 2 connected closed fiat 
-n -n 

conformal manifold modeled on (M(R ),R ), where n ~ 3. Then 
by changing the DH pair within the equivalence class, we have L(N) = 
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~n-2 
R Moreover N is a hyperbolic manifold bundle over the circle 
whose holonomy map is an isometry. 

~n-2 
Proof. Step 1. L(N) = R . 
Let ClHo be the identity component of the closure ClH of H. 

Since H is indiscrete, we have ClH 0 -1-{1 }. 

Case 1. ClH 0 is noncompact. In this case L = Lw(ClH0 ) is 
nonempty. Notice that ClH 0 is a normal subgroup of ClH. This 
implies that L is invariant by the action of ClH and hence by H. 
Therefore by (5.22), we have L(N) C L. On the other hand, it is easy 
to show that 

L = Lw(ClHo) c Lw(ClH) = Lw(H) = L(N). 

Therefore we have L = L(N). 
Also by (4.4), we obtain that Card£ ~ 3. In fact, if for example 

Card£= 2, then (4.4) implies that N or its double covering is a Hopf 
manifold, contrary to our hypothesis. 

Let us show next that there is no fixed point of ClH 0 in L. Suppose 
on the contrary that there exists one, say x. Then for any h E H, 
hx is also a fixed point of ClH 0 , since ClH 0 is a normal subgroup of 
ClH. On the other hand, the orbit Hx is dense in L and therefore 
has cardinality ~ 3. That is, there exist at least three fixed points of 
ClH 0 in L. This implies by the argument of (2.22) that ClH 0 has 
a fixed point in Dn+1, contradicting the assumption that ClH 0 is 
noncom pact. 

By (5.6) this implies that any ClH 0-orbit K in L is dense in 
~n 

L. Notice that K is an injectively immersed submanifold in R . 
By (5.11), there exists a loxodromic transformation f E H. We may 
assume for simplicity that f(x) = >..Px, (>.. > 1, PE O(n)) and that 
0 EK. Clearly K is kept invariant by f. Now the smoothness of K 

~k 
at O implies that K = R for some 1 ::; k::; n. (K = Rk implies that 
oo is a fixed point of ClH 0 , contradicting the above observation.) This 

~k 
shows L = R . Since the developing map D is a covering map onto 
its image, we have D(N) n L(N) = ¢. In particular we obtain k -1-n. 
Finally we have k = n - 2, since otherwise D is a homeomorphism 

~n ~k 
onto a connected component of R \ R and H must be discrete. 

Case 2. ClHo is compact. Here the coordinates of sn is conve­
nient. First of all by (5.13), we may assume ClH 0 C O(n + 1). If 0 
is the unique fixed point of ClH 0 , then O is also a fixed point of H. 
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That is, H c O(n + 1). A contradiction. Therefore the fixed point set 
of ClH 0 in sn is Sk (0::::; k::::; n). Since ClHo is nontrivial, we 
have k -/- n. Likewise we obtain k -/- n - 1. In fact since ClHo is 
connected, we have ClH 0 C SO(n + 1). Therefore if k = n - 1, then 
ClH 0 is trivial. 

Notice that Sk is H-invariant and therefore L(N) C Sk. Let us 
show L(N) = Sk_ Since k::::; n - 2, we obtain as in the proof of (5.24) 

that N \ v- 1 (Sk) is connected. In way of contradiction take a point 
X E sk \ L(N). Consider an E'-neighbourhood V of X in sn such 
that V n L(N) = ¢. 

Then we have as well that v- 1 (V \ Sk) is connected. That is, 
v- 1 (V) is connected. This shows that D is a homeomorphism, con­
trary to our hypothesis. Therefore we have L(N) = Sk. As before we 
obtain k = n - 2. 

~n-2 
Step 2. We shall show the last part of (5.26). Since L(N) = R , 

the DH pair (D, cp) lifts to (D, cp), where 

D : N -, Hn-l X R, 
~n-2 

"ip: 1r1(N) _, M(R ) x R. 

Denote by Pi the canonical projection to the i-th factor. Consider 
a small perturbation "ip1 of "ip such that p 1 o cp' = Pl o "ip and 
pz o y5'(1r1 (N)) C Q. Let cp' = 1/; o cp'. Then there exists a submersion 

~n 
D' : N -, R such that (D', cp') is a DH pair. (See Thurston [56] 
Chapt. 5 or Canary-Epstein-Green [9] Chapt. 1.) The limit set of the 

~n-2 
new DH pair (D', cp') is also R , since we have altered "ip only 
in the R-direction. Therefore by (5.24), D' is a covering map onto 
-n -n-2 
R \ R . That is, D' lifts to a homeomorphism 

D 1 : N -, Hn-l X R. 

Since pz o cp'(1r1(N)) C Q, we have that pz o cp'(n1(N)) is infinite 
cyclic with a generator 0. Let r = Ker(p 2 o cp'). We have an exact 
sequence 

1 _, r _, 1r1 (N) _, 0Z _, 1. 

Correspondingly we have a bundle structure of N with fiber 
Hn-l / Pl "ip1 (f) over R/ 0Z ~ S1 . Clearly the monodromy map is 
an isometry of a hyperbolic manifold. Q.E.D. 
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§6. Elementary structure and C-structure 

Also in this section flat conformal manifolds are to be connected and 
compact unless otherwise specified. The dimension is always ~ 3. 

Definition (6.1). A flat conformal manifold N is called elemen­
tary if and only if CardL(N) ~ 2. 

As applications of (5.20), we have the following characterizations of 
elementary flat conformal manifolds. 

Proposition (6.2). The following conditions are equivalent. 

(1) L(N) = <p. 
(2) The holonomy group H consists purely of elliptic transforma­

tions. 
(3) N is a spherical space form. 

Proposition (6.3). The following conditions are equivalent. 

(1) L(N) is a singleton. 
(2) H contains parabolic transformations and no loxodromic trans­

formations. 
(3) N is an Euclidean space form. 

Proof. All that need proof is (2) =} (1). (2) implies L(N) -I-<p. 
By (5.14), we have H c M(Sn)a, a E sn. This shows (1). Q.E.D. 

Proposition (6.4). CardL(N) = 2 if and only if N or its double 
covering is a Hopf manifold. 

Proposition (6.5). If CardL(N) ~ 3, then L(N) is a perfect 
set. 

Proof. The assumption implies by (5.14) the existence of a loxo­
dromic elememt f EH. Then at least one point of L = L(N) is not 
fixed by f. Since L is invariant by f, we obtain that L is an infinite 
set. Therefore the derived set L' is nonempty. By the minimality of 
L ((5.22)), we have L' = L. That is, L is perfect. Q.E.D. 

Theorem (6.6). If the holonomy group H of a connected com­
pact fiat conformal manifold N does not contain a free group of two 
generators, then N is elementary. 

Proof. Suppose on the contrary that N is nonelementary. 
Then CardL(N) = oo and therefore by (5.11), there exist two loxo­
dromic transformations f, g E H with disjoint fixed points. Now it 
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is a well known fact that fn and gn generate a free group for large 
n. Q.E.D. 

(6.6) was first proved under the hypothesis that H is virtually 
nilpotent by Goldman([15]) and then by Kamishima ([25]) when H 
is virtually solvable. It is well known that for matrix group virtual 
solvability is equivalent to the condition of (6.6). See Tits ([57]). 

Corollary (6.7). If 1r 1 (M) does not contain a free group of two 
generators and if a compact connected manifold M does not have as a 
finite covering 5n' 5n-l X 8 1 or rn' then M does not admit a fiat 
conformal structure. 

(6.7) forbids many manifolds to admit flat conformal structures, e.g., 
3-manifolds with Nil or Solv geometry. 

Given two flat conformal manifolds N 1 and N 2 , a new flat con­
formal manifold, called connected sum, is obtained in the following way. 
This operation was first introduced by Kulkarni ([42]). 

Inside a conformal atlas (Ui, qi) of Ni, choose a closed ball Bi. 
Assume that there exists f E M ( 5n) such that f (Intq1 (Bi)) = 8 1 \ 
q2 (B 2 ). See Figure (6.1). (This is always possible e.g., if we choose Bi 
so that qi(Bi) is a metric ball.) Define a homeomorphism h : 8B 1 __, 

8B2 so that q2 oh= f o q1. Then 

is a well defined embedding. Using (f o q1 ) U q2 and other small charts 
in Ni, we can define a flat conformal structure on the connected sum 

Definition (6.8). The flat conformal structure constructed in this 
way is called a connected sum of N1 and N 2 and is denoted by N 1 ~N2. 

Notice that N 1~N2 is not uniquely determined. For example if we 
fix B2 C N2 and make B1 C N1 much smaller, then the resultant 
connected sum would be different as a flat conformal structure. 

One can also define the operation of connected sum of more than 
two structures. 

Definition (6.9). A flat conformal structure (manifold) is called 
a C-structure (C-manifold) if it is a connected sum of finitely many 
elementary structures and is not itself elementary. 
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Figure (6.1) 

It is easy to show that as a flat conformal manifold, Nrtsn is 
isomorphic to N. This is called a trivial connected sum. There is only 
one case where a nontrivial connected sum of elementary flat conformal 
manifolds becomes again elementary, that is, when N 1 = N 2 = RPn, 
the real projective space. In this case 7r1 (N 1~N2 ) is isomorphic to the 
infinite dihedral group Z2 * Z2 . One can show directly that N 1~N2 

has a Hopf manifold sn-l x S 1 as a double covering. In all the other 
cases the fundamental group of a connected sum contains a free group 
of two generators and therefore it cannot be elementary. 

Definition (6.10). A Cantor set Y C sn is called tame if 
and only if there exists a homeomorphism h : sn --+ sn such that 
h(Y) c S 1 . Otherwise Y is called wild. 

Proposition (6.11). A C-structure N is of type 1. The limit set 
L(N) is a tame Cantor set. 

Proof. For the first part of (6.11), it suffices to show the following; 
If the developing maps of the flat conformal structure N 1 and N 2 

are injective, then the developing map of their connected sum is also 
injective. Let SC N 1rtN2 be the (n-1)-sphere on which the connected 
sum is made. S splits N1 rtN2 into two parts Mi such that Mi C Ni. 
Take a base point in IntM 1 . We have 

The element of 7r1(N1rtN2) is represented uniquely as a reduced word 
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of elements of n1 ( N1) and n1 ( N2). Consider the universal covering 

Choose one component of n- 1(M 1) and denote it by M 1. Choose one 

boundary component of M 1 and denote it by S. The component of 

n- 1(M 2) which has S as a boundary component is denoted by M2. 

The boundary of M 1 consists precisely of those components of n- 1(S) 

which are of the form ~S (~ E n 1(M 1)). ~M2 is adjacent to M1 if 
and only if ~ E n 1(M 1). Now by the assumption the developing map 

D is injective on M 1 and on ~M 2. D(M 1) and D(~M 2) are in the 

opposit sides of the sphere D(S). This shows that D is injective on 

M1 LJ (u(En1(M1)~M2)-

Boundary component of ~M2 except ~S are of the form ~ryS (TJ E 

n 1(M 2) \ {1}). Again D(~M 2) and D(~ryM1) are in the opposite 

sides of the sphere D(~ryS). Therefore D is injective on the union of 

M 1, ~M2 and ~ryM1 ( ~ E n 1(M 1), 'T/ E n 1(M 2) \ {1}). An induction 
on the length of the word of n1 (N1~N2) yields that the developing 
map D of a C-structure N is injective. We also have that Image(D) 
is contained in the complement of the limit set L = L(N) and the 
holonomy homomorphism is an isomorphism onto a discrete group H. 

Next we shall show that L is totally disconnected. Once this is 
established, we have by (6.5) that L is a Cantor set. For simplicity, we 
prove this only for the connected sum N of two elementary structures 
N 1 and N 2. We use the same notations as before. Choose a base point 

Xo E D(IntM1) and consider the family of disjoint topological spheres 

S = {cp(()D(S) I ( E n1(N)}. 

A point x E sn \ lmage(D) is called accessible if there exists a path 
p in sn combining x0 and x such that p intersects finitely many 
spheres in S. Accessible points consists precisely of the H-orbits of the 
points in L(Ni) U L(N 2). See Figure (6.2). (We made the convension 
that DIM, coincides with the restriction of the developing map of Ni. 

This is always possible if we change the DH pairs of N2 within the 
equivalence classes.) 

Therefore accessible points are at most countable in number. Let 
x E sn \ Image(D) be a nonaccessible point. Then there are infinitely 

many nested spheres cp((i)D(S) (i 2: 1) which separates x from x 0 . 
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Figure (6.2) 

Since (i is distinct and H is discrete, we have cp((i) -too. Therefore 
by (5.8), we have 

diamcp((i)D(S) -t 0 

since D(S) n L = ¢. This shows that the component of 3n \ lmage(D) 
at a nonaccessible point x is a singleton. Since accessible points are at 
most countable, this shows that sn \ Image(D), hence L, is totally 
disconnected. 

At this point we have obtained that L = 3n \ Image(D), since 
3n \ lmage(D), having no interior, is not evenly covered by D. 

Finally to show the tameness of L, we have to define a homeomor­
phism h: 3n -t 3n such that h(L) c 8 1 . First of all, define h on 

ClD(M 1 ) so that h carries all the boundary components to spheres in­

tersecting 8 1 and that h carries all the accessible points in ClD(M 1 ) 

into 8 1 . Next extend h to the adjacent components. Proceeding like 
this we can define the homomorphism h on the whole of 3n. Details 
are left to the reader. Q.E.D. 

In dimension 3, we have the converse of (6.11). 

Theorem (6.12). Let N be a connected compact fiat conformal 
manifold of dimension 3 such that the limit set L(N) is a tame Cantor 
set. Then N is a C-manifold. 

Proof. We employ a method of Kulkarni ([43]) based upcin the 
study of ends of a group. The necessary parts of the theory of ends are 
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summarized in Appendix. 
First of all notice that a tame Cantor set L(N) satisfies the con­

ditions of (5.24). Especially O = 3n \ L(N) is simply connected. 

Therefore the developing map D : N -+ 0 is a homeomorphism and 
the holonomy group H acts on D freely and discontinuously. That 
is, we have an isomorphism N ~ D/ H of flat conformal structures. By 
Selberg's theorem (3.31), H has a torsion free subgroup H' of finite 
index. N' = D/ H' is a finitely sheeted covering of N and therefore 
a compact manifold. Clearly we have L(N') = L(N). By (A.4) of 
Appendix, we have 

CardE(H') = CardE(O) = oo. 

Therefore by Stalling's theorem (A.9), we obtain that H' is a non­
trivial free product. Consequently N' decomposes as a nontrivial con­
nected sum (as a manifold). See e.g. Hempel ([22]). Thus we have that 
1r2(N) = 1r2(N') ~ 1. By sphere theorem, this implies that N is re­
ducible. It follows from (6.6) that N is not homeomorphic to 8 2 x 8 1 , 

since N is not an elementary structure. Therefore N is nonprime, 
that is, decomposes as a nontrivial connected sum N = N 1ijN2 as a 
manifold. 

Let 8 C N be the two sphere on which the connected sum is made. 
Let N = M 1 Us M2 and Ni= Mi Us Bi, where Bi is homeomorphic 
to the closed 3-ball. Let 7r : N-+ N be the universal covering and let - - -8 be a lift of 8 to N. Denote by Mi the connected component of 

1r- 1 (Mi) which has S as a boundary component. All the boundary 

components of Mi is of the form ~s (~ E 7r1 (Ni)). Since DIM; is a 

homeomorphism, it extends in an equivariant way to Ni= Mi U~8 ~B1 . 

From this we obtain a flat conformal structure on Ni, showing that 
the given structure on N is a connected sum of these two structures. 
Clearly we have L(Ni) C L(N). Therefore either CardL(Ni) ::S; 2 or 
L(Ni) is again a tame Cantor set. In the latter case, apply the whole 
argument once again to Ni. It is well known in 3-manifold theory that 
this process terminates. We obtain that N is a C-structure. Q.E.D. 

It is unknown whether (6.12) holds in dimensin 2: 4. In §8, we shall 
give an example of flat conformal 3-manifold whose limit set is a wild 
Cantor set. By (6.11), this is not a C-manifold. 

§7. Poincare polyhedron theorem 

This section is devoted to the exposition of a fundamental theorem 
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of Poincare. It will be given in its simplest form, which is sufficient for 
our purpose of the next section. More general treatment is found e.g. in 
Maskit [47] in the framework of hyperbolic geometry. 

Let Ti, T[ ( 1 ::; i ::; m) be metric ( n - 1 )-spheres in sn. Assume 
that any pair of them either intersect in an ( n - 2)-sphere or are disjoint 
and that any triple do not intersect at all. Let E = { ej} be the family 
of (n - 2)-spheres of the intersections. Let P be a component of the 
complement of the union of all Ti and T[. Assume that any element 
of E is contained in /JP. See Figure (7.1). 

Figure (7.1) 

Let Si= Tin /JP and s: = T[ n /JP. They are puctured (n - 1)­
spheres. Let S = { Si, SI}. An element of S or E is called respectively 
a side or an edge of P. Our first hypothesis is this. 

(H.1). For each i, there exists Ji E M(Sn) such that Ji(Si) = 
s: and Ji(P) n P = cp. 

Fix Ji once and for all and let F = {Ji, Ji-l }. An element of F 
is called a side pairing transJ ormation. A side pairing transformation, 
say Ji, sends an edge e in 8Si to an edge e' in 8Sf. We call e 
and e' are related. This relation generates an equivalence relation in 
E. E is partitioned into equivalence classes, called cycles. Each cycle 
C can be cyclically ordered as 
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in such a way that for each 1 ::; v ::; p, there exists fv E F such that 
fv(ev_i) = ev. Let 

fc=fp 0 ····· 0 fi. 

Clearly fc(e 0 ) = e0 . For each cycle C, Jc is well defined up to inverse 
and conjugation. See Figure (7.2). 

le 

e3 = eo 

Figure (7.2) 

For each edge e E £, the angle of P at e is denoted by 0(e). 
For a cycle C as above, define 

0c = L 0(ev)-
1::;v::;p 

Our second hypothesis is; 

(H.2). For each cycle C, we have 0c = 2n/q and JJ = id for 
some q 2: l. 

The relation JJ = id is called a cycle relation. Denote by r the 
subgroup of M ( sn) generated by :F and let f* be the abstract group 
with generators the side pairing transformations and with relations the 
cycle relations. Clearly we have an epimorphism 'ljJ : f* ------, r. 
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Definition (7.1). For a subgroup G C M(Sn), an open subset 
R C sn is called a fundamental domain of G if and only if the 
following two conditions are satisfied. ( Oc denotes the domain of 
discontinuity of G. ) 

(FD.I) 

(FD.I) 

Oc = LJ g(ClR). 
gEG 

g(R) n R = cp for any g E G \ {1}. 

Theorem (7.2). Assume (H.1) and (H.2). Then 'I/;: f* -+ r is 
an isomorphism, r is a discrete subgroup of M ( sn) and P is a 
fundamental domain of r. 

Proof. Think of the family {'yP}-yEr of domains. By a side pairing 
transformation f, f P is attached to P along a side of P. Next 
fgP (g E F, g-/= 1- 1 ) is attached to JP. If this process is continued, 
then around an edge ea E E which belongs to a cycle 

C = { e1 , ... , ep-1, ep = ea} 

such that fv(ev-d = ev, there is a sequence of domains 

P, fpP, fpfp-1P, 

, (fp · · · fi)fpP, 

...... ' 

...... ' 
fp···fiP, ... 

(JP·· · fi)q-l fp · · · hP. 

They surround the edge ea. By virture of (H.2), the sum of their angles 
at ea is just 271" and the last domain 

(fp · · · h)q-l fp · · · hP 

is attached to P by f 1 . The essential part of the proof is to show that 
in this way the family { ,' P} forms a "tesselation" of sn. However 
in order to be precise, we must argue in a formal way as follows. Start 
with abstract copies of P and attach them one by one by side pairing 
transformations, thus constructing a replica of the domain of disconti­
nuity of r. Next we show the existence of an embedding of the replica 
into sn. The abstract group f* is convenient for this development. 
Let us embark upon the proof. 

Define an equivalence relation ,.__, in f* x ClP generated by the 
following. 

(1', x) ,.__, (1'', x') if ')'1 = ')' f, x = f ( x') for some f E F. 



238 S. Matsumoto 

Let 
fl* =r* x ClP/ rv. 

The action of r* on fl* is defined by 

1''(1', x) = (1''1', x). 

Claim 1. fl* is a fiat conformal manifold on which r* acts 
conformally. 

Choose (1', x) E r* x ClP. Suppose first of all that x E P. Then 
by (H.1), there is no point x' E ClP such that x = f(x') (f E :F). 
That is, ( 1', x) is equivalent to no other point and therefore it certainly 
has a neighbourhood homeomorphic to an n-ball. Suppose next that 
x E IntS, where S is a side of P, with a side pairing map f: S - S'. 
Then as is shown easily, the only point in r* x ClP which is equivalent 
to (.X,x) is (.Xf-1,f(x)). Clearly one can construct a neighbourhood 
of the identified point [(.X, x )], homeomorphic to an n-ball, in 

{.X} x ClP U {.xf- 1 } x ClP/ rv . 

Finally consider the case where x E e0 ( e0 E E). Let 

C = { e1 , ... , ep-1, ep = ea} 

be a cycle such that fv(ev-i) = ev. Then we have 

(.X,x) rv (AJ;;\fpx) rv • • • • • 

rv (.Xf.;l ... fp-l(f;-l ... f;;l)q-1, (fp ... fi)q-1 fp ... hx). 

By the definition of the cycle, these are shown to be all the points that 
are equivalent to (.X, x). By (H.2), we can construct a desired neigh­
bourhood of [ ( .X, x)]. This shows that fl* is a manifold. Since the side 
pairing transformations are Moebius transformations, it is easy to endow 
fl* a flat conformal structure. Also one can show without difficulty that 
the action of r* is conformal. 

Next consider the conformal mapping 

E: fl* - sn 

defined by E(.X, x) = 'l/J(.X)x where 'ljJ : r* - r is the canonical 
projection. E is well defined and 'lj;-equivariant, that is, 

E(.X'(.X,x)) = 'l/J(.X')E(.X,x). 
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Claim 2. E is an embedding onto a connected open subet O c 

For the proof we need hyperbolic geometry of Dn+l. Let us extend 
first of all ( n - 1 )-spheres Ti and T!, used to define P to half n-

- -/ 
spheres Ti, Ti C Dn+l orthogonal to sn. These are totally geodesic 

hyperplanes in (Dn+l' 9H ). Using 1\ and r: we can extend the 
domain P to a domain P C Dn+l. Define as before 

o* = r* x P / "", 

E: fi*-+ Dn+i_ 

The argument of Claim 1 shows that fi* is a hyperbolic manifold and 
that E is an isometric immersion. Furthermore one can show that 
there exists E > 0 such that any point in fi* has a neighbourhood 

isometric to hyperbolic E-ball. Therefore fi* is complete and thus E 
is a covering map. That is, E is a bijective isometry. Since 

Eu E : O* u fi* -+ sn u Dn+i 

is continuous, we obtain Claim 2. 

Claim 2 implies that 'I/; : f* -+ r is an isomorphism and that 
r is a discrete subgroup of M(Sn) which acts discontinuously on 
0 = E(O*). What is left is to show that P is a fundamental domain. 
This is equivalent to the following. 

Claim 3. 0 is precisely the domain of discontinuity Or of r. 

We already had O c Or. To show the converse, it suffices by (5.15) 
to show that sn \ 0 C Lw(r). Take a point XE sn \ 0. Then for any 
small neighbourhood u of X in sn u Dn+l' we have "/kp n u =I-</> 
for infinitely many "/k E r. By (5.8), we have CI(ryk) n P =</>for large 
k, since ClP n Lw(f) = ¢>. This implies 

diamrykP :=; diamCI('Y,; 1)-+ 0. 

That is, U contains infinitely many "/kP, showing that x E Lw(f). 
Q.E.D. 

§8. Wild Cantor set as limit set 

In this section we shall construct an example of type 1 compact 
flat conformal 3-manifold whose limit set is a wild Cantor set. Such 
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an example was first obtained by Bestvina-Cooper [4] for an open 3-
manifold. Our example is a variant of what they constructed. We shall 
follow [4] rather closely. 

~3 
For a while we adopt the coordinates of R instead of S3 . First 

of all let K be a graph embedded in R 3 , depicted in Figure ( 8.1). 

z 

xy-plane 

g 

h f 

Figure (8.1) 

The segment ab, cd, ef, gh and ij are straight lines and the 
other parts are circular arcs of the same radius. Choose a family of 
2-spheres 

as in Figure (8.2). 

A1,---,An, A~, ... ,A~ B1,--·,Bn 

B~, ... ,B~ C, C' D, D', E, E', 

We assume the followings. 

(P.l) All the spheres have the same radius and have centers in K. 
(P.2) The union of balls they bound covers K. 
(P.3) The centers of C, E', D', C', E, D are in the x-axis. 

An, C, A~ and A1, E, A~ have centeres in straight lines 
parallel to z-axis. B1, E', Bi and· En, D, B~ have centers 
in straight lines parallel to y-axis. 
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Figure (8.2) 

(P.4) Adjacent two spheres intersect at angle 21r /28. 

~3 
Let P be the cornplernent in R of the union of all the balls. 

Next we shall define side pairing transformations for P. 

(S.1) 

(S.2) 
(S.3) 

(S.4) 
(S.5) 

G.j = Ixy o IAj, where Ixy is the reflexion at the xy-plane and 
IAj is the inversion at the sphere Aj. 
/3j = Ixz O IBj. 

'Y = Rf o I1r(C,C') o Ic, where Rf is the rotation by +90 de­
grees around the oriented line through the center of C' parallel 
to the positive direction of y-axis and 1r( C, C') is the bisector 
of the centers of C and C'. 

D' 8 = Rz O I1r(D,D') 0 Iv. 
E' 

E = Rx o I1r(E,E') o IE. 

Denote the side of P by A;= Ai n ClP, BJ= Bin ClP and so 
forth. They satisfy the condition (H.1) of §7. That is, 

(H.1) ai(A;) = A/, /3i(BJ) = B~*, 1(C*) = c'*, 8(D*) = D'*, 
E(E*) = E 1* and f(P) n P = <p (f = a 1, ... , E). 

Next we shall verify the condition (H.2) of §7 by listing up the cycles. 
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First of all for any 1 :S j :Sn - l, we have the following cycle. 

-1 

A A °'i A' A' °'i+l A A (C.l) in Hl --+ i n Hl --+ in Hl 

a;i1 CXj keeps points in Aj n Aj+l fixed. By (P.4), it is a rotation 
by 2n/14 around Aj n AHl· Therefore (H.2) is satisfied for q = 14. 
Likewise the following cycle satisfies (H.2). 

(C.2) 

There are two more cycles. The first one is; 

(C.3) A1 n E ~ A~ n E ~ B~ n E' ~ B1 n E' ~ A1 n E 

Computation shows that c 1,B11m 1 keeps A 1 nE pointwise fixed. It 
is a rotation by 2n /7 around A1 n E and thus (H.2) is satisfied for 
q = 7. Now the last cycle. 

(C.4) EnC' ~E'nD' ~B~nD ~ BnnD ~ C'nD' 

-1 -1 

2-...,, A~ n C ~ An n C -2.+ E n C' 

By studying Figure (8.2), we obtain that 7a;;,17- 18,B;;18- 1 1: yields the 
translation by 7r /2 on the circle E n C'. We also obtain (H.2) for 
q= 4. 

Thus by (7.2), the group r generated by the side pairing transfor­
mations is discrete, with the domain of discontinuity n and P is the 
fundamental domain for r. That is, we have the followings. 

(FD.1) 

(FD.2) 

n = LJ 7(ClP). 
7Er 

7(P)nP=¢ forany 7Er\{1}. 

Let r O be a torsion free subgroup of r of finite index. Then the 
quotient space N = n/r 0 is a compact flat conformal manifold and we 
have 

~3 
L = L(N) = Lp(ro) = Lp(r) = R \ n. 

The rest of this section is devoted to the proof of the following theorem. 
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Theorem (8.1). The limit set L is a wild Cantor set. 

The proof consists of a series of lemmas. The main part is to show 
that L is a Cantor set. First of all notice the following feature of our 
construction. See Figure (8.3). For any side T* of P, let T be the 
2-sphere which contains T* and let e C 8T* be an edge. Since all the 
translates of P which gather at e have angle 21r /28 there, the part 
of T which is opposite to T* w.r.t. e and near e is also a side of a 
translate of P. That is, the side "prolongs" in the tesselation. 

So far in the construction of r, we have used the coordinates of 
~3 ~3 
R . However in the rest, we change the coordinates from R to S3 • 

Thus, distance, radius, etc. are measured in the Euclidean metric of R4 

which contains S3 as a unit sphere {lxl = 1}. 
Let { 'Yk} C r be an infinite sequence. Since r is discrete, we have 

'Yk ---t 00. 

p 

Figure (8.3) 

Lemma (8.2). For any edge e of P, we have radius,k(e) --. 0. 

Proof This follows at once from (5.8), since we have en L = ¢. 

Let 

:E={,(T) l,Ef, T=A1, ... ,E'}, 

A= {,(e) I, Er, e; an edge of P}. 

Q.E.D. 
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Notice that A consists of disjoint circles, while spheres in E may in­
tersect. Furthermore at this point we do not know, for example, whether 
or not it so happens that two spheres in E are tangent. We have a 
control of A since any of its circle is contained in . 0. However this is 
not the case with E. We only have a rather weak grip on E. 

For SEE, let 

As = { l E A I l C S}. 

Take a base point x 0 E S such that x 0 lies in a translate of the interior 
of a side of P. 

Lemma (8.3). For x E S, x lies in O if and only if there exists 
only finitely many circles in As which separate x from x 0 • 

Proof. Notice first of all that circles in As are mutually disjoint. 
To show the if part, let p be a path in S from x 0 to x which meets 
circles in As at finitely many points. An induction on the number of 
points shows that p is contained in the union of translates of sides of 
P. In particular, we have x E n. 

For the converse, suppose that for a fixed edge e of P, 1'k(e) 
(1 ::S; k < oo) separates x from x 0 . By (8.2), we have that 

radius 1'k ( e) ----. 0. 

Notice that (FD.1) and (FD.2) implies that 1'k(e) is disjoint from 
a small neighbourhood of x 0 . Since ik(e) are mutually disjoint, 
we obtain that 1'k(e) ----. x. Therefore the family {1'_;1 } cannot be 
equicontinuous on any neighbourhood of x. That is, x E LJ(r) = L. 
(See (5.15).) Q.E.D. 

Corollary (8.4). A connected component of LnS is a singleton. 
In particular On S is open and dense in S. 

Proof. This follows from the fact that 1'k(e) c n. Q.E.D. 

A word of caution. In the above corollary, we do not assert that the 
component of L at a point of S is a singleton. 

In spirit we are going to show the total disconnectedness of L in 
a way similar to (8.4) using spheres in E instead of circles in As. 
However as we remarked earlier, we do not have yet a good grip on how 
E looks like. The main difficulty comes from the fact that S n L =/:-¢ 
for SEE. In what follows we shall carry out study of E step by step. 
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Corollary (8.5). We have Sn 'Y(P) = <(> for any 'Y E r and 
S E E. (Recall that P is an open set.) 

Proof. For contradiction, take a point x E Sn 'Y(P). By (FD.l), 
we have x E 0. Therefore by (8.3), there exist finitely many circles in 
As separating x from x0 . Now the argument of the first part of 
(8.3) can be applied to show that x is contained in the union of sides 
of translates of P. That is, x (/_ 'Y(P). A contradiction. Q.E.D. 

Lemma (8.6). Let S, S' E E. If l = Sn S' is a circle, then 
l EA. In particular, we have l c 0. 

Proof. By (8.4), there exists a point x E l \ L. By (8.5), we have 
that x (/_ 'Y(P) for any 'Y E r. Likewise we obtain that x does not 
lie in a translate of the interior of a side of P, since otherwise either 
S or S' would intersect some 'Y(P). Therefore we have x E l' for 
some l' E A. Should l' not coincide with l, there would be another 
sphere S" E E such that S, S' and S" meet in general position at 
x E 'Y(P). Again one of the three spheres would intersect some 'Y(P). 
A contradiction. Q.E.D. 

Lemma (8.7). Let SEE. Suppose that for some 'Yk Er, 'Yk(S) 
are distinct spheres. Then we have radius'Yk(S)---+ 0. 

Proof. Suppose the contrary. We may assume further that 'Yk(S) 
converges to a 2-sphere S0 . Let us show first that Son L =J <(>. Take a 
point a ES and assume that 'Yk(a)---+ b E S0 . For any neighbourhood 
U of b, we have 'Yi'Yi-l (U) n U =J <(> for arbitrary j » i » 1. That 
is, b E Lp(f) = L. (See (5.15).) On the other hand, we have So (/._ L. 
In fact, So c L would imply that O is not connected. However this is 
impossible since the fundamental domain P is connected. (Notice that 
by the minimality (5.6) of L, we have Int£=¢. Compare (5.22).) 

Consider a path in S0 which combines a point of O n S0 to a 
point of L n S0 . As in the proof of (8.3), one finds a sphere S' E E 
which separates these two points. Clearly S' n So = l is a circle. 
Since 'Yk(S) ---+ S0 , we have that 'Yk(S) n S' ---+ l. By (8.6), we 
have 'Yk(S) n S' E A. Since 'Yk(S) are all distinct, we may assume 
(passing to a subsequence if necessary) that 'Yk n S' are all distinct. 
This contradicts (8.2). Q.E.D. 

Lemma (8.8). Fix once and for all x 0 E P. A point x E S 3 

belongs to O if and only if there exist only finitely many spheres in E 
which separate x from xo. 
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Proof. Suppose there exist infinitely many Sk EE. Then by (8.7), 
diamSk ---+ 0. As in the proof of (8.3), we have x E L. (In fact this 
part will not be used in the sequel.) 

Let us embark upon the proof of the converse. Define a closed subset 
Yj C S3 inductively as follows. 

Yo= ClP. 

Yj = LJ ,ClP, where ,ClP n lj_ 1 =I= ¢, for j > 0. 
'Y 

Define an open subset Xj by 

The set theoretic frontier 8Xj is an angular surface (possibly with 
singularities) composed of the translates of sides of P, which we call 
sides of Xj. We have a filtration 

See Figure (8.4). 

Figure (8.4) 
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Since P is the fundamental domain for r, we have 

For S E E, the connected component of S3 \ S opposite to the base 
point xo is called the inside of S and is denoted by Inside(S). It 
is an open subset by definition. Let 

Ej ={SEE IS contains a side of Xj}, 

Once we establish the following sublemma, a point x E L can be 
shown to be inside infinitely many spheres in E, completing the proof 
of (8.8). Q.E.D. 

Sublemma (8.8.1). 

(1) For any SE Ej, we have SC ClXj. 
(2) We have 

Xj = LJ Inside(S). 
SEE; 

Proof. The following properties of P, very easy to check, play a 
crucial part in th proof. Denote by T; a side of P, by Ta the sphere 
containing T; and by ev an edge of P. 

(a) If T; n TJ =</>,then we have Tan T13 = </>. 

(b) Suppose T; n ev = </> and let S E E be an arbitrary sphere 
which passes through ev. If Sn Ta -/- </>, then S contains a 
side S* of P such that S* n T; -/- </> and ev c 8S*. 

( c) If Ta n T13 -/- </>, T13 n T, -/- </> and T, n Ta -/- </>, then two of 
the three spheres Ta, T13 and T, must coincide. 

The proof of (8.8.1) is by induction on j. For j = 0, this is clear 
by the construction of P. Let j > 0. Assume (8.8.1) for j - l. 

Proof of (1). For a given S E Ej, let S* C S be a side of Xj. 
Choose a point x in the interior of S*. By the filtration ( *), we have 
x E Xj-l· The induction hypothesis implies that x E Inside(T) for 
some TE Ej-l· Since S* C 8Xj, there exists a translate --yClP having 
S* as a side such that --yClP n Xj = </>. That is, --yClP C Yj. By the 
definition of Yj, we have --yClP n 8Xj-l -/- </>. Since x E Inside(T), 
--yClP must lie in TU Inside(T). Therefore we have 

--yClP n T n {)Xj-1 -/- </>. 
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Clearly 'YClP n T n 8Xj-1 is either a side or an edge of 'YClP. Since 
S* c Xj-l, we have S* n ('YClP n T n 8Xj-1) = ¢. 

If 'YC1PnTn8Xj-l is a side, then it follows from (a) that SnT =f. ¢. 
That is, 

SC Inside(T) C Xj-1· 

Clearly this implies that SC ClXj, 
Suppose on the contrary that 'YClP n T n 8Xj-l is an edge, that 

is a circle l E A. By (b), we obtain the same conclusion except in the 
case where T contains a side T* of 'YClP such that T* n S* =f. ¢ 
and T* ::) l. See Figure (8.5). In this case choose a point y E S* n T*. 
As before we obtain that y E Inside(T') for some T' E I:j-l and that 

l C T'. . If S n T' =f. ¢, then T' contains a side T 1 * of 'YClP such 
that T 1 * n S* =I-<p and T 1 * ::) l. This contradicts ( C). Therefore we 
have S n T' = ¢. As before we obtain S C ClXj. 

Figure (8.5) 

Proof of (2). By the construction 1'j is connected. Therefore for 
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SE :Ej, SC ClXj implies that Inside(S) C Xj- This shows 

LJ Inside(S) C Xj. 
SEE; 

249 

For the converse, consider a path p combining the base point x 0 

to a given point XE xj. Any such p must intersect axj and hence 
nsEE S. Choose p so that 

J 

(i) p does not pass through the intersection of two distinct spheres 
of :Ej, 

(ii) the sum 

~ Card(p n S) 
SEE; 

is the minimal. 

Then for each SE :Ej, we have Card(p n S) :=; 1. In fact, if not, 
one can find a subarc q of p such that 8q CS and q\8q C Inside(S). 
One can push q out of Inside(S) in such a way that the numbers of 
intersections of p with the other spheres do not change. This contradicts 
the minimality (ii). 

We obtain that Card(p n S) = 1 for some S E :Ej. That is, 
x E Inside(S), as is required. 

Q.E.D. 

At this point we need a concrete picture how ClX 1 and ClX2 look 
like. The picture of ClX 1 near Aj n Aj+l, A1 n E and Ann C are 
shown in Figures (8.6)"-'(8.8). 

The point is that Figure (8.8) shows that there occurs a separation of 
components of ClX 1 near Anne. As a matter of fact, the same thing 
happens near any edge in the cycle of An n C. Furthermore we find 
a lot of separation of components of ClX 2. In particular in c 1 (ClP) 
which is inside E, we observe that a component of ClX 2 n c 1 (ClP) 
which intersets c 1 B 1 do not intersect c 1 B~. See Figure (8.9). 

The same thing happens inside E'. In summary we have the fol-
lowing. 

Let T, T' be any adjacent pair of 2-spheres chosen from A 1 , ... , E'. 
Then a component of ClX2 \ (Inside(T) U Inside(T')) which inter­
sects T does not intersect T'. 

As a matter of fact, much more can be said concerning the smallness 
of components of ClX2. However this is all that we need. 
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A;+1 p A; 

Figure (8.6) 

Figure (8.7) 

Lemma (8.9). For arbitrary spheres S, S' E I: such that l = 
S n S' is a circle, let D ( resp. D') be one of the disks in S ( resp. 
S') which is bounded by l. Suppose that the angle of D and D' at 
l is 21r /28. Let Q be the closure of the component of S 3 \ (SUS') 
bounded by D and D'. Then a component of L n Q which intersects 
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Figure (8.8) 

Figure (8.9) 
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D does not intersect D'. 

Proof. Since we have l EA by (8.6), the proof reduces to the case 
where l is an edge of P and D and D' contains adjacent sides 
of P. Since LC ClX 2 , (8.9) follows from the above observation. See 
Figure (8.10). Q.E.D. 

p 

'Y 

Figure (8.10) 

Another way to put (8.9) is the following. 

• • 

Corollary (8.10). For arbitrary spheres S, S' E :E such that 
l = S n S' is a circle, the component of L at a point x E S' \ S does 
not intersect S. 

Proof. Let D. be the component of S' \ S at x and let S be 
the closure of either of the components of S 3 \(SUS') which contains 
D. in its boundary. Then by (8.9), we obtain that for any y E D. n L, 
the component of Sn£ at y does not intersect S. See Figure (8.11). 
It is easy to show that (8.10) follows from this. Q.E.D. 

Lemma (8.11). Let S be an arbitrary sphere in :E. For any 
x E S n £, the component of L at x is { x} itself. 



s 
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Proof. By (8.8), there exists an infinite sequence {Sk} C ~ such 
that sk separates X from the base point Xo En. Note that sk - x. 
For large k, Sk intersects S at a circle. Therefore by (8.10), the 
component of L at x does not intersect Sk. This completes the 
proof. Q.E.D. 

Corollary (8.12). For any S E ~, the component of L at a 
point x E L \ S does not intersect S. 

Corollary (8.13). L is totally disconnected. 

Proof. Let x E L. If x E S for some S E ~, then we have 
already shown (See (8.11).) that the conponent of L at xis a singleton. 
So consider the other case. By (8.8), there exist infinitely many spheres 
Sk E ~ which separate x from a base point x 0 E P. By (8.7), we 
have Sk ---+ x. Therefore (8.12) implies (8.13). Q.E.D. 

By (6.5), this implies that L is a Cantor set. Thus we have finished 
the proof of the first part of Theorem ( 8.1). Let us show in the remainder 
that L is wild. First of all we have the following well known fact, which 
is easy to show. 

Proposition (8.14). If Y C sn is a tame Cantor set, then S 3 \ Y 
is simply connected. 
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Thus once we establish that the inclusion i : P -+ n induces an 
injection on the fundamental groups, then the proof of Theorem (8.1) 
will be complete. 

Some readers may have a feeling that this can be solved by looking 
at the homomorphism 

The computation of 1r 1 (D/r), the fundamental group of an orbifold, is 
in fact easy. However in order to show the nontriviality of the homomor­
phism p* oi*, one is lead to the word problem of 1r1 (D/r), in which an 
approach geometric in nature is obviously indispensable. Instead of go­
ing to this direction, we employ the following argument which is totally 
geometric and is applicable also to the word problem of 1r 1 (D/r). 

The key fact is the following lemma. 

Lemma (8.15). Let T* be a side of ClP, then the inclusion 
T* -+ ClP induces an injection on 1r1 . 

Proof. By sliding handles of 8.3 \ P, one obtains that ClP is 
a handle body of genus 2. Therefore 1r1 ( ClP) is a free group freely 

generated by a and (3. If T* -/-E* or E 1 *, then the lemma follows 
easily. For T* = E*, the image of 1r 1 ( E*) is generated by a and 
a(3a- 113-1 . It is well known, easy to show using the once puctured 
torus model, that they generate free subgroups. Q.E.D. 

Now let us embark upon the proof. Let a: 8 1 -+ P be a loop such 
that a i'- 1 in P. Suppose on the contrary that a -::::c 1 in n. Let 
(3: D 2 -+ n be the extension of a. By a small perturbation, one may 
assume that (3 is smooth and transverse to any circle in A and to any 
sphere in 1:. Their inverse images form a graph G in D 2 • (G may 
contain smooth circles as connected components.) As a matter of fact, 
we have G-/- </> and G n 8 1 = ¢. See Figure (8.12). 

Let us choose (3 so 

(M.l) the number of vertices of G is the minimal, 
(M.2) the number of edges of G is the minimal among those which 

satisfy (M. l). 

Let ~ be a connected component of D 2 \G which is homeomorphic 
to an open disk. Then /3(~) C ,P for some I E r. Since (3 is 
transverse to 18P, we have that a~ is a simple closed curve. 

Claim (8.16). The number of vertices of a~ is 2: 3. 
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Figure (8.12) 

Proof. If not, /3(86.) is contained in the union T of adjacent two 
sides of "(OP for some 'Y E r. Clearly T is homotopic in ,,ClP to a 
single side. See Figure (8.2). Since /3(86.) is null homotopic in "(ClP, 
we obtain by (8.15) that /3(86.) is null homotopic in T. But then we 
can alter the map /3 so that /3(6.) C T and eventually push /3 out of 
"(ClP. This contradicts the minimality assumption (M.1) if 86. has a 
vertex and (M.2) otherwise. Q.E.D. 

Now consider the family of smooth circle components of G. Let l 
be the innermost one and let V be the open ball bounded by l. In 
case there is no smooth circles, let V = IntD 2 . By (8.16), there must 
exist components of G in V. Consider G' = G n V. G' has no 
longer a smooth circle component. Let G~, ... , G~ be the connected 
component of G'. Let EI be the component of V\ G~ which contains 
&V and let 

H(G~) = V \ Er 

Notice that &H(GD is a simple closed curve since it is the inverse image 
by /3 of a surface "(OP for some 'YE r. Therefore H(GD is a closed 
disk. Define a partial order -< in the set { G~, ... , G~} by 

GJ-< G~ ~ H(GJ) c H(G~)-
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Let Gj be the minimal element. Then any component of H ( Gj) \ Gj is 
an open disk. That is, Gj gives a polyhedral decomposition of H ( Gj). 
Let f, e and v be the number of faces, edges and vertices of the 
decomposition. By virtue of (8.16), we have 

3f::; 2e. 

Notice that by (P.4), exactly 28 edges gather at each vertex of Gj. 
Therefore we have 

14v = e. 

The computation of Euler number yields; 

2 e 
1 = f - e + v < -e - e + - < 0. 

- 3 14 

This contradiction shows that i*: 1r1 (P)-+ 1r 1 (0) is an injection, as is 
requied. 

Appendix End 

The concept of end of a topological space and of a discrete group was 
first introduced in 1931 by Freudenthal ([11]) and was studied, among 
others, by Hopf ([23]). See also Freudenthal [12] and Epstein [8]. After 
almost 40 years, Stalling ([54],[55]) established a celebrated theorem 
concerning finitely generated groups with infinite ends. See Dunwoody 
[7] for related topics and a geometric proof of Stalling's theorem for 
finitely presented groups. All this has a wide range of applications. For 
the convenience of the reader, we collect here some parts of the theory, 
mostly without proof. 

First of all we define the ends of a connected locally finite simplicial 
complex U. 

Definition (A.1). A sequence {Mk} of subsets of U is called 
discrete if for any compact subset C of U, we have Mk n C = cp for 
but finitely many k. 

Definition (A.2). A point sequence {xk} CU is called admis­
sible if for any k > 0, there exists a path Pk C U combining Xk and 
Xk+i such that the family { Pk} is discrete. 

Definition (A.3). Two admissible sequence {xk} and {xU are 
said to be equivalent, (denoted by {xk} ,..__, {xU ) if and only ifthere 
exists a path A (k > 0) combining Xk and x~ such that the family 
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{Pk} is discrete. An equivalence class of admissible sequences are called 
an end of U. The set of the ends of U is denoted by £(U). 

It is easy to show that the relation in (A.3) is in fact an equivalence 
relation. Notice that a subsequence of an admissible sequence is again 
admissible and in the same equivalence class. 

For applications to flat conformal structures, we need the following. 

Proposition (A.4). For an open domain U of sn (n 2: 2}, 
the set of ends £(U) is in one to one correspondence with the set of 
connected components of Y = sn \ U. 

Proof. First of all let us define a correspondence of an end to a 
connected component. Let {xk} be an admissible sequence of U. 
Then we have d(xk, Y) --, 0. Let us show furthermore that there exists 
a unique connected component Y11 of Y such that d(xk, Y11 ) --, 

0. Suppose the contrary. Then there exist subsequences {yk} and 
{zk} of {xk} such that d(yk, Y11 ) --, 0 and d(zk, Yµ) --, 0 for 
disjoint components Y11 and Yµ of Y. Then there exists a compact 
neighbourhood B of Y11 in sn such that B n Yµ = cp and 8B c U. 
Then any path Pk in U combining Yk and Zk must intersect the 
compact set 8B. This contradicts the fact that {yk} ,....., {zk}- The 
same argument shows that the component thus chosen is independent of 
the particular choice of an admissible sequence in the equivalence class. 
Thus an end corresponds to a connected component. 

The converse correspondence is defined as follows. For any con­
nected component Y11 of Y, we can find a sequence {Bk} of compact 
connected neighbourhoods of Y11 in sn such that {)Bk CU and that 
nk Bk= Y11 • Furthermore one may assume that {)Bk is a finite union of 
codimension one connected submanifold. Notice that any codimension 
one connected submanifold splits sn (n 2: 2) into two parts. Since U 
is connected, this shows that lntBk \ Y is arcwise connected. Choose 
an arbitrary point Xk E lntBk. Combine xk and Xk+l by a path Pk 
in IntBk \ Y. This shows that {xk} is an admissible sequence. Q.E.D. 

The ends of a group is defined by virtue of the following theorem. 

Theorem (A.5). Let r be a finitely generated group which acts 
on a connected locally finite simplicial complex U freely and discontin­
uously such that the quotient U fr is compact. Then the set of ends 
£(U) is determined (up to a bijection) only by the group r. It does 
not depends upon the particular choice of the space U. 

Definition (A.6). The set of ends in (A.5} is called the end set 
of the group r and is denoted by £(f). 
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Theorem (A.7). The end set £(I') of a finitely generated group 
r is infinite (in fact uncountably infinite) if Card£(t) ~ 3. 

We have the following characterization of the group according to its 
end set. 

Theorem (A.8). Let r be a finitely generated group. 

(1) £(I')= <p if and only if r is a finite group. 
(2) £(I') consists of two points if and only if r has the infinite 

cyclic group Z as a finite index subgroup. 

For a group with infinitely many ends, Stalling obtained a complete 
characterization. However for the sake of simplicity we only state the 
following partial result. 

Theorem (A.9). A finitely generated torsion free group I' has 
infinite ends if and only if r has a nontrivial decomposition as a free 
product I'= r1 * r2, 

As an application, if a torsion free group r in (A.9) acts on a 
domain U C sn freely and discontinuously and if the complement 
sn \ U has more than two components, then r is a nontrivial free 
product. 
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