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§ 1 Introduction 

This is a continuation of the paper [I], hereafter referred to as Part I. 
As announced therein, we give detailed proofs of (i) the star-triangle rela
tion (STR) for the restricted solid-on-solid (SOS) models [2], and (ii) the 
combinatorial identities used in the evaluation of the local height proba
bilities (LHPs) [l, 3]. We try to keep this paper self-contained so that the 
mathematical content is comprehensible without reading Part I. Below 
we shall outline the setting and the content of each section. 

1.1. The fusion models 

The STR is the following system. of equations for functions 
W(a, b, c, d I u) (a, b, c, d e Z, u e C), to be called Boltzmann weights: 

I: W(a, b, g,fl u) W(f, g, d, el u+v) W(g, b, c, div) 
g 

= I: W(f, a, g, el v) W(a, b, c, gl u+v) W(g, c, d, elu). 
g 

Section 2 deals with the construction of solutions to the STR by the fusion 
procedure. Using the Boltzmann weights of the eight vertex SOS (8VSOS) 
model [4] as an elementary block, we construct "composed blocks" satis
fying the STR. As in the 8VSOS case the resulting weights depend on the 
elliptic "nome" p as well as the parameter u. 

This construction given in section 2.1 is known as the block spin 
transformation in the renormalization group theory. Namely, we sum up 
the freedoms £,i e Z associated with sites i of a given lattice 2\, leaving 
free the ones in 2 N= N 2\. (See Fig. 1. 1.) The £,i is called a height in the 
sequel. In general, the locality of the Hamiltonian is not preserved by this 
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transformation. However, by starting from a specially chosen inhomo
geneous 8VSOS Hamiltonian we can retain the locality. (See Fig. 1.2.) 
Here it is crucial that the 8VSOS weights satisfy the STR. 

d d' b 

u u-1 

b' 

u+l u 

a C 

Fig. 1.1 Fig. 1.2 

Fig. 1.1. The block spin transformation with N=2. The solid circles are 
summed up. 

Fig. 1.2. The locality of the renormalized weight. Upon summing over 
solid circles, the weight is independent of b' and d'. 

In the 8VSOS model the adjacent heights .ei, .e1 are restricted to \.et-.e1 I 
= 1, while the fusion procedure gives rise to the constraint 

(1.1.1) 

A pair of integers (.e,, .e1) satisfying (1.1.1) is called weakly admissible. 
At this stage the models are not quite realistic (any more than the 

8VSOS model is), for the .et ranges over all integers. Following Andrews, 
Baxter and Forrester (ABF) [5], we next pick up (section 2.2) for each 
positive integer L a finite subset of the weights such that the STR is satis
fied among themselves and .ei is restricted to 

.ei=l, ·· ·,L-1. 

In fact, this restriction process fetches us another constraint for adjacent 
heights 

(1.1.2) 

A weakly admissible pair (.ei, .e1) is called admissible if it satisfies (1.1.2). 
Although the block spin transformation alone produces models equivalent 
to the original one, the restricted models labelled by (L, N) are all inequiva
lent because of (1.1.2). 

Section 2.3 is a side remark on the vertex-SOS correspondence first 
established by Baxter [4] for N= I. It is straightforward to generalize it 
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to the correspondence between our restricted SOS models and the fusion 
vertex models [6]. Actually, it was this path that led us to the construc
tion of section 2.1. 

1.2. The corner transfer matrix (CTM) method 

The CTM is a powerful tool in evaluating the local height probability 
P(a) 

(1.2. la) 

(1.2.lb) 

1 
P(a)= - I; IT W(£1, £2, £s, £4), 

Z the central height =a 

Here the product is taken over all faces, £1, £2, £3, £4 are four surrounding 
heights of a face, and the sum extends over all possible two dimensional 
configurations of heights in (1.2.lb) (with the restriction that the central 
height is fixed to a in (1.2.la)). The method has recourse to the existence 
of limiting values of the weights such that the heights along diagonals lying 
northeast and southwest are frozen to be equal (see Fig. 1.3). In fact, such 
a limit is realized at p= ± I. To put it in a different way, the model 
shrinks to a sort of one dimensional system in this limit. The eigenvalues 
of the CTM therein are cast into one dimensional configuration sums. On 
the other hand, the STR implies a simple dependence of these eigenvalues 
with respect to the nome p. Therefore the evaluation of the LHPs for 
general pis reduced to that of the 1D configuration sums. 

~ ~4 ~5 b I C 

~4 ~5 b C 

~5 b C 

b C 

b C ----

1 2 3 4 5 
Fig. 1. 3 The equivalence to a one dimensional system in the 

frozen limit. The integer under £i signifies its multi
plicities in the CTM. 
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Section 3 is devoted to the derivation of the ID configuration sums. 
Since the matrix elements of the CTM are products of face weights, the 
task is to compute the weight W(a, b, c, dJ u) in the above mentioned limit. 
The result is written in terms of a parameter w (related to the parameter u) 
which survives the limit as 

limW(a b C dJu)-o w•H(d,a,b) , , , ac • 

Here - means that some scaling factor has been dropped. The weight 
function H(a, b, c) reads as 

(1.2.2) 

(1.2.3a) 

(l.2.3b) 

Regimes II, III (s= -): 

Regimes I, IV (s= +): 

Ja-cJ H(a, b, c)= ---, 
4 

H(a, b, c) =min (n-b, min (a, c1-b+N) if n?::_b, 

= mm -n- ----~-- 1 n . . (b 1 b-max (a, c)+N) 'f +l<b 
' 2 -

Here n=[L/2]. (If L is even the argument in regimes I, IV is a little bit 
more complicated than this. See section 3.3 for details.) With the defi
nition of H(a, b, c) above, the ID configuration sums assume the form 

(1.2.4a) ~ qif>m(li, "',.im-<-2), 

-€1 =a,em+1 = b ,tm+2 =c 

(1.2.4b) 

The sum in (1.2.4a) extends over .e =(£j);- 1, ... ,m+ 2 such that £1 =a, .em+i =b, 
.em+2=c and that the pair (£1, £1+1) is admissible U= I, · · ·, m+ 1). It is 
intriguing to note that we thus encounter a one dimensional Brownian 
motion in a discrete time m with restrictions (1.1.1-2) and the weight 
(1.2.4b ). Up to a power of •lq, (l .2.4a) defines two kinds of polynomials 
in q depending on the form of H(a, b, c) (1.2.2-3). We denote them by 
Xm(a, b, c) or Ym(a, b, c) accordingly. The Xm(a, b, c) is used in regimes 
II, III, while so is the Ym(a, b, c) in regimes I, IV. The b, c represent the 
boundary heights, to which the precise definition of the LHPs refers (see 
Part I). 

1.3. Linear difference equations 

In section 4, we rewrite the q-polynomial X 11.(a, b, c) or Ym(a, b, c) into 
series involving the Gaussian polynomials. This is done by a systematic 
use of linear difference equations. 
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Let us first consider the case where H(a, b, c) is given by (1.2.2). The 
first step deals with the solution/C:)(b, c) of the linear difference equation 

(1.3.1) JC:)(b, c)= ,I;' JC:}.1(d, b)qmld-cl/4, 
d 

Here the sum I:;~ extends over d such that (d, b) is weakly admissible. We 
fix the initial condition 

ThefC:)(b, c) is called the fundamental solution. In the asymptotic region 
l <f._a, b, c<f._L-1 Xm(a, b, c) coincides withfC:)(b-a, c-a). An explicit 
formula of f;t)(b, c) is given in Theorem 4.1.1. Using this we show that 
JC:)(b, c) also satisfies an equation at equal m. 

(1.3.2) _I; q<a+md)!:f;:.liCa+d, a-b)=(a--a). 
d=b-N,b-N+2, .. •,N-b 

This additional identity characteristicto the fundamental solution plays a 
key role as explained below. The second step is to represent Xrr/a, b, c) 
as a linear superposition of JC:)(b, c) (Theorem 4.4.1). The Xm(a, b, c) is 
characterized by the linear difference equation 

(1.3.3) 
Xm(a, b, c)= .I;" Xm_1(a, d, b)qmld-c114. 

d 

Here the sum I:;',f extends over d such that (d, b) is admissible. The 
equation (1.3.3) can be viewed as (1.3.1) supplemented by the "boundary 
condition" 

Note that the d appearing in I:;~- _I;',f are "close" to the boundaries d= 1 
or d=L-1 in the sense that d+b~N or d+b>2L-N. The extra 
equation (1.3.2) is responsible for this boundary condition. 

The case when H(a, b, c) is given by (1.2.3) follows a similar line 
(section 4.3). We denote the corresponding fundamental solution by 
g C:)(b, c ). The expression for the JC:\b, c) is piecewise analytic in (b, c ), 
which reflects the piecewise analyticity of the function \a-c\f4. If n~b 
or n<f._b, the behavior of H(a, b, c) is essentially the same as (1.2.2). In 
fact, 

H(a, b, c) = _ \a-cl + a+c-2b+2N 
4 4 
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for n')?b, and gC,:l(b, c) is expressed simply in terms of J;.,Nl (b, c) with q 
replaced by q- 1• So is the case n~b. The expression of gC,:l(b, c) is 
obtained throughout the intermediate regions of (b, c) as well by patch
work (see Fig. 4.1). 

Section 4.2 is devoted to deriving several different expressions for 
JC,:l(b, c ). This is necessary in section 5 when we consider the m-HXJ limit 
of Xm(a, b, c) with q replaced by q- 1• (This is the ID configuration sum 
relevant to Regime IL) The various identities proved in this section have 
emerged from computer experiments by using MACSYMA and 
FORTRAN. 

1.4. The 1D configuration sums as modular functions 

With the preliminaries in section 4, we proceed to the proofs of the 
main result of Part I; namely that the ID configuration sums in the m-HXJ 

limit give rise to modular functions. Except for the rather simple case of 
regime I, the modular functions are grasped as the branching coefficients 
appearing in theta function identities. (See also Appendix C.) Since they 
are fully exposed in Part I (Appendices A-B), we merely recall the basic 
definitions necessary in the proofs. 

The result in regime III (resp. IV) is given in Theorem 5.1.i' (resp. 
Theorem 5.1.2). The branching coefficients c1:lM,(1:) (e= ±) used therein 
are defined through the theta function identity 

D<-,•l(z q)D<-,+l(z q)/Q<-,+l(z q)-" c<•l ( )Q<-,•l(z q) 
\7 J1,m1 , Cl J2,m2 , 0 1,2 , - L....J J1J2Js t' O Jams , • 

is 

Here the sum extends over js e Z such that O <js <ms (resp. 0 <js <ms) if 
e= + (resp. e= -). The theta function 8t;,,,•l(z, q) is defined by 

fJt;,,_•l(z, q)= I: enqmT•(z-mT -zmT). 
nEZ,r-n+J/2m 

By residue calculus we obtain an expression of c1~).1a(1:) as a threefold 
sum (see (5.1.1)). It is rather straightforward to identify Xm(a, b, c) (or 
Ym(a, b, c)) with this form of c1~J.,.(1:). 

The difficulty arises when we consider the m- oo limit of 
Xm(a, b, c; q- 1). For simplicity sake we explain it in the case a= (b-mN) 
(see eq. (B.1) for the definition of ( >) and c=b+N. The dominant 
contribution to this quantity comes from the configuration (£J)J-t,···,m+2, 

where &J=(b+(j-m-I)N). Setting k= -[(b-mN-1)/(L-2)] we 
have 

,lm+ 2)= m(m+I)N+k(k-I)(L-2)-2k(l-b+mN). 
4 
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The trouble is that the term proportional to m2 is fractional (note the 
implicit dependence on m through k). This fact suggests the occurrence of 
subtle cancellation in the expression of Xm (a, b, c) as a series of the 
Gaussian polynomials. To overcome this difficulty is the highlight of our 
combinatorial analysis. 

Our goal is Theorem 5.2.1, by which the m-+co limit of 
Xm(a, lm+i, lm+2 ; q- 1) is identified with the branching coefficient e5h). 
The e5lr) are characterized by theta function identities of£ variables (see 
(B.5) of Part I). We refer to Appendix B of Part I as for the Lie algebra 
theoretic interpretation of e~lr). (See also [3] as for c]7),i,(r:).) In [7] it 
was found that the matrix inverse to (e5/r:)) is given simply by theta series 
(A/7:)/r;(r:)) (see (5.2.4)). Upon adjusting the precise power of q, our 
task is reduced to showing 

lim I: qM(m,a,b)Xm(a, b, b+N; q- 1)jJ~::f,b'-h) 
m-= O<a<L 

nNeep mod 2(£-2) 

=r;(r:) if (b')=(b-p), 

=0 otherwise, 

where 

M(m a b)= m(m+l)N - 1 (mN+ !:_-b) 2 

' ' 4 4(L-2) 2 

1 (L ) 2 1 + 4L 2-a +24. 

This is proved in section 5.2 exploiting the expressions of Jr:l(b, c) given 
in section 4.2. 

The text is followed by four Appendices A-D. Appendix A determines 
the lowest order of the branching coefficients c 5~),is(r). Appendix Bis the 
proof of the fact that (£J)=((b+jN)) is a ground state configuration. 
Appendix C expresses c1~},is(r:) with m2 = 3, 4 in terms of theta zero values. 
Appendix D gives the free energy per site for the fusion models. 

1.5. Notations 

In sections 4,5, we retain the following notations in Part I. 

(1.5.1) [ 7] =(q),n/(q)m_/q)j if 0<j~m, 

=0 otherwise, 

where 
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(1.5.4) 
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(1.5.6) 
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(z)m=(l-z)(l-zq)·. -(l-zqm-1). 

00 

E(z, q) = CT (l-zqk-1)(I-z-1qk)(l-qk). 
k=l 

0i(u, p) =2IPl118 sin u n (l-2pk cos 2u+p 2k)(l-pk). 
k=l 

00 

cp(q)= n c1-qk). 
k=l 

r;(r:) = q1/24cp(q ), 

Throughout this paper we shall fix this relation between q and r:. 

(1.5. 7) e}= 1/2 

=1 

if j=O mod£, 

otherwise. 

In sections 2, 3, we use the following notations of [3]. Let H(u) and 
fJ(u) denote the Jacobian elliptic theta functions with the half periods K 
and iK' (see [8]). 

(1.5.8) [u]=0hr:J.u/2K, p)=r.H().u)8(J.u), 

where p= e- •K' fK, r. = F 118cp(p)/cp(p2)2 and ). is a free parameter. (We have 
changed the definition of [u] in [3] by the factor r..) 

(1.5.9) 

(1.5.10) 

[u]m=[u][u-l]· · ,[u-m+l], 

[ U] = [u],n . 
m [m]m 

The symbol (1.5.10) is used only in sections 2, 3 and in Appendix D. It 
is not to be confused with the Gaussian polynomial (1.5.1). 

§ 2. The Fusion Models 

2.1. Fusion of SOS models 

Let 2 be a two dimensional square lattice. An SOS model on 2 
consists of (i) an integer variable £i on each site (=lattice point) i of 2, 
and (ii) a function W(a, b, c, d) of a quadruple of integers (a, b, c, d). We 
call£; a height variable and W(a, b, c, d) a Boltzmann weight (or simply a 
weight). The integers a, b, c, d represent a configuration of heights round 
a face (=an elementary square), ordered anticlockwise from the southwest 
comer. 
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d C 

a b 

Fig. 2. 1 A height configuration round a face. 

Take three systems of Boltzmann weights W, W' and W", all depend· 
ing on a complex variable u. The STR for W, W' and W" is the following 
set ot functional equations. 

I:; W(a, b, g,JJ u) W'(f, g, d, e I u+ v) W"(g, b, c, div) 
g 

(2.1.1) = I:; W"(f, a, g, e I v)W'(a, b, c, g I u+v)W(g, c, d, e I u) 
g 

for any a, b, c, d, e,.f 

e d e d 

'®'-'®' 
a b a b 

Fig. 2. 2 The STR for the system of weights W, W', W". 

As for the significance of the STR in the theory of solvable lattice models, 
see [8]. Our aim here is to construct a class of solutions to the STR on 
the basis of a known one by the fusion procedure. 

As a seed solution, we take the 8·vertex SOS model of Baxter [4]. By 
definition, its Boltzmann weight W11(a, b, c, dJ u) is set to O unless 

(2.1.2) \a-bj=\b-c\=\c-d\=ld-aJ= 1. 

The nonzero weights are parametrized in terms of the elliptic theta function 
(1.5.4) 

(2.1.3) 

as follows. 

(2.1.4a) 

(2.1.4b) 

[u]={}hJ.u/2K, p) 

[u+l] W11(£±l, £±2, £±1, £Ju)=[l], 

W (.e-+I .e .e+I £Ju)= [~+.e±I][u] 
11 ' ' - ' [~+£][1] ' 
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(2.l.4c) 
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[!;+£+u] W11U+I, £, £+1, £!u)=----, 
- - [!;+£] 

Here J. and I; are free parameters. 

Remark. For convenience we have modified the weights W(a, bid, c) 
of [5], eq. (1.2.12b) (with p' = 1/[1]) as ,v[t;+a]M+c]W 11(a, b, c, di u)= 
,vC1 c- a W(a, b Id, c ). The 1.h.s. will be the symmetrized weight 
S11 (a, b, c, di u) defined below (2.1.24). Our variables are related to those 
in [5] through 

(2.1.5) u=(v-r;)/2r;, A=2r;, l;=w 0/2r;. 

We shall often write the weights (2.1.4) graphically as 

d C 8 = W11(a, b, c, di u). 
a b 

Besides the STR (2.1.1) (with W= W'= W"= W11), they satisfy the sym
metry 

(2.1.6) 

For u=O and u= -1 they simplify to: 

(2.1. 7) di u=O I c =0ac, 
a b 

where (2.1.2) is implied, 

d C 

(2.1. 8a) B =0 
a b 

if lb-d\=2, 

DI u=-110±1 = - DI u=-1 (±I ( 
D±I D D+l D 

(2.l.8b) 

These properties will play a role in the following construction. 
An elementary step of the fusion procedure is provided by 

Lemma 2.1.1. (i) Put 
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(2.1.9) W~i(a, b, c, di u)= 1: W11(a, a', c', di u+ I)W11(a', b, c, c' I u). 
a' 

Then the r.h.s. is independent of the choice of c' provided that \c-c'\= 
\c'-d\=1. 

(ii) For all a, b, c, d we have W~1(a, b, c, di -1)=0 . 

. d c' C 

u + 1 u 

a a' b 

Fig. 2. 3 An elementary fusion step. The sum is taken over a' 
(solid circle), keeping the· rest (open circles) fixed. 
It is independent of c'. 

Proof To see (i), it suffices to check the case c=d (otherwise the 
possible choice of c' is unique). We are to show 

(2.1.10) ( c c-1 c-1 c cal u+l lac,+1 ca+'Qu bC)·. • 0=; B 8 u 
a a' a' b 

Let c" = c + I ( or c - I), and multiply each summand of (2.1.10) by 
C Ctt I u=-1 I =t=O. Thanks to (2.1.8b) the result can be put into the form 

C-1 C 

(2.1.ll) •'~± 1 Wu(a, a', c', c \ u+ 1) W11(a', b, c, c' I u) W11(c', c, c", c I -1) 

= 1: W11(a', b, c', al -l)W 11(a, c', c", c\u)W 11(c', b, c, c"lu+l). 
c'=c±l 

Fig. 2. 4 The STR used in the proof of the c'-independence. 

To get the second line we have used the STR (2.1.1) with u- -1 and 
v-u+l. If\a-b\=2, then W11(a', b, c', al -1)=0 by (2.1.8a). If a=b, 
then take the sum over a' in (2.1.11). Owing to (2.1.8b), the summands 
contribute with opposite signs for each fixed c'. This proves {2.1.10). 
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To show (ii), choose c'=b±2 in (2.1.9) and use (2.1.8a). This choice 
is not allowed if c=b+ 1 and d=b± 1, in which case apply (2.1.7) or 
(2.1.8b). D 

Now let Mand N be positive integers. Define 

(2.1.12) 

W~N(a, b, C, di U) 

=I: n W11(aiJ,ai+!J,ai+IJ+l'aiJ+llu-i-j+M-l), 
O,;;i,;;M -1 
O,;;j,;;N-1 

IXoo=a, aMo=h, aMN=c, aoN=d, 

where the sum is taken over all allowed configurations {aiJ} (i.e. the neigh
boring pairs must differ by 1), keeping fixed the corner heights a, b, c, d 
and the right/top boundary heights 

(2.1.13) 

U-N+M 

U-l+M 

Fig. 2. 5 Fused weight. The sum is taken over solid circles. 

Repeated use of Lemma 2.1.1 shows that the result is independent of the 
choice of (2.1.13) on the condition that laiN-ai+iN\=1 (0<i<M-1) 
and \aM1 -aMJ+r\= 1 (O:s;::j <N-1). Moreover, because of Lemma 2.1.1 
(ii) the weights W~N have zeros independent of a, b, c, d. Factoring them 
out we define the (M, N)-weight by (see (l.5.9)) 

W MAa, b, c, d\ u) 
N 

(2. l.14) = w~N(a, b, c, d\ u)[I]MN/([N]N n [u+M-j]_w-1), (N<M), 
J-1 

M 

= W'nfN(a, b, c, dlu)[I]MN/([M]M n [u+M-j]N-1), (M<N). 
J-1 

By the construction it is obvious that WM A a, b, c, di u) vanishes unless 
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a-b, c-d= -M, -M +2, · · ·, M, 

a-d, b-c= -N, -N + 2, · · ·, N. 

They also inherit the symmetry (2.1.6) for W11 in the form 

(2.1.16) WMN(a, b, c, dJ u)= WNM(a, d, c, b I u+M-N). 

29 

Theorem 2.1.2 (Theorem 1 of [2]). For a triple of positive integers M, 
N, P, we have the following STR 

I: WMN(a, b, g,JJ u)WMP(f, g, d, eJ u+v)WNP(g, b, c, dJ v) 
(2.1.17) g 

= I: WNP(f, a, g, eJ v)WMP(a, b, c, gJ u+v)WMN(g, c, d, eJ u). 
g 

Proof It is sufficient to prove the STR for the W'.wN, since the 
normalization factors in (2.1.14) cancel out. We will show the STR for 
the case M = 2, N = P = I. The general cases are proved similarly. From 
the definition of W~1 (2.1.9), the l.h.s. of (2.1.17) becomes 

(2.1.18) 

I: I: (W 11(a, a',f"JI u+ 1) W11(a', b, g,f" I u)) 
g a',f' 

X (W 11(f,f', e', e I u+v+ l)W11U', g, d, e' I u +v)) 

X W11(g, b, c, dJ v). 

),):+/<>d 
f' 

f f'' g V C 

~u+:"\.U~ b 

a a' 

Fig. 2. 6 Proof of the STR of type (2, 1, 1). 

Here f" and e' are arbitrary provided that \e-e'\=\e'- d\=\f-f"\= 
\ f" - g I= 1. Performing first the summation over a' and using Lemma 
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2.1.1 we can set/"=/' in (2.1.18). Then by applying twice the STR for 
the weight Wu, (2.1.18) is transformed into 

I; I; W11(f, a,f', ej v)(W11(a, a', g,f' I u+v+ l)W11(a', b, c, g I u+v)) 
f' a',g 

X (W11U', g, e',e I u+ 1) W11(g, c, d, e' I u)). 

Again by Lemma 2.1.1 · and the definition of W~1 (2.1.9), this is the r.h.s. 
of (2.1.17). O 

We shall refer to (2.1.17) as the STR of type (M, N, P). 
Below we list explicit formulas of the W MN· In the course of the 

derivation we will use the identity 

(2.1.19) [x+z][x-z][y+w][y-w]-[x+w][x-w][y+z][y-z] 

=[x+ y][x-y][z+w][z-w]. 

First consider the case N = l. 

Lemma 2.1.3 (eq. (5) of [2]). The (M, 1)-weight is given by 

(2.l.20a) 
WM1ce+1, .e'+l, £', £ju) 

=[e+ t+t;-M][u+ t'-~+M]/[l][e+t], 

(2.l.20b) 
WM1(t+l, e:-1, .e', flu) 

= [e-u+ t+e;-M] [ .e'-~+M]/[l][e+tJ, 

WM1(.e-l, .e'+l, .e', flu) 
(2.l.20c) 

=[e+u+ e+e;+M][ t-e;+M]/Pne+eJ, 

WMi(t-l, .e'-1, £', flu) 
(2.l.20d) 

=[e+ e+e;+M][u+ t-e;+M]/[lne+eJ. 

Proof To derive (2.l.20a), we choose the sequence {a,1} (2.1.13) in 
the definition of W~n (2.1.12) as 

a,1 =£-i if O~i~M- .e'-~+M, 

=£'-M+i if M- t'-t+M ,,,-i<M. 
2 ::::. -
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For such a choice of {at1}, the sequence {ato} in (2.1.13) is uniquely deter
mined to be at0=at 1+I. Then (2.l.20a) follows immediately. We show 
the formula (2.l.20b) by an induction on M. Assume that it is true for 
M. By the definition and the induction hypothesis we have 

WM+ii£+l, £'-1, £', flu) 

=(WMi(£+l, £'-2, £'-1, c1u+l)W11(£'-2, £'-1, £', £'-1 lu) 

+ WMi(£+l, £', £'-1, c1u+l)W11(£', £'-1, £', £'-1 lu))[l]/[u+l] 

=([g-u-I + £+£'~1-M][ £'-1~£+M]/PJ[g+£] 

X [g+£'][u] +[~+ £+£'-1-M][u+I + £'-I-£+M] 
[1][~+£'-1] 2 2 

/ [l][g+£]X [g+£'-l-u])[l]/[u+l]. 
[g+£'-1] 

Using the identity (2.1.19) with 

2x= ~+ £+£'-3-M' 
2 

2 3£'-£-l+M 
Y=~+ 2 ' 

2z=g-2u- l + £+£'-l-M, 
2 

2w=g+ £+£'+1-M, 
2 

we obtain (2.1.20b) for M+l. The equalities (2.1.20c) and (2.1.20d) are 
shown similarly. D 

Now we turn to the general (M, N)-weights. The definition (2.1.12) 
can be viewed as defining the W~N in terms of the W~ 1: 

N 

(2.1.21) W~N(a, b, c, di u)= I: fl W~1(at-1, bt-1, bt, at I u-i+ 1), 
i=l 

a0 =a, aN=d, b0 =b, bN=c. 

Here the sum extends over a1, ···,aN-i such that lat-at+ 1 \=l for 
0::;;: i <N-1. Using (2.1.21) we show the 

Lemma 2.1.4 (Appendix of [2]). Assuming N < M, we have (see 
(1.5.10)) 

WMN(£+2j-N, £+2i-M+N, £+2i-M, £\u) 

(2.l.22a) = [~=;][g+£+ij j-M-I][i; u][g+~~~ +u] 

/[gt~~j][g+c+;-N-l], 
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WMN(t+2j~N, t+2i-M---N, t+2i-M, tlu) 

(2.1.22b) = [ J ][e+e +i+ j;M- I-u][ M; ~1 u][e "t~: i] 

/[e"t~~j] [e+e+j-N-I]. 

Proof These can be checked by an induction on N. The case j=O 
or N is straightforward, since in (2.1.21) the choice of {at} is unique. The 
induction proceeds in a similar way as in the derivation of (2.1.20b). D 

Choosing the sequence in {aMJ} (2.1.13) suitably, the general (M, N)-weight 
is expressed as a sum of products of weights of type (2.1.22). In fact, we 
get 

min (i,j) 

(2.l.23a) I: WM;(l+2k-i, t'+i, t', e1u-N+i) 
k=max (0,i+J•·· 

X WM,N-it+2j-N, t'+2i-N, t'+i, t+2k-ilu), 

(2.l.23b) 
min (N-i,j) 

I: WM,N-;(t+2k-N+i, t'-N+i, t', e1u-i) 
k=max (0,j-i) 

X WMM+2j-N, l'+2i-N, t'-N+i, t+2k-N+ilu). 

Let us modify the weight WMN as 

(2.l.24a) S ( b di ) ( (a, b)M(d, a)N )11zw ( b di ) MN a, ,c, u = ----- MN a, ,c, u, 
(d, c)M(c, b)N 

(2.1.24b) 

where we set 

(2.1.24c) [A, B]=[A][A+l]·. -[B], [A, A-1]=1. 

(We have changed the definition of (t, t')M from that of ref. 2 by the com
mon factor [M]M). The STR remains valid for S MN• because the factor in 
front of the r.h.s. of (2.l.24a) cancels out in the STR. 

As a result of this modification S MN aquires the following symmetry. 
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Theorem 2.1.5 (Theorem 2 of [2]). 

SMAa, b, c, d[u)=SNM(a, d, c, b[M-N+u) 

=SNM(c, b, a, d[M-N+u) 

=SMN(c, d, a, b [ u) 

33 

(2.1.25a) 

(2.1.25b) 

(2.1.25c) 

(2.1.25d) =(gagJgbgd)SMN(b, a, d, c[ -M+N-1-u), 

where ge=ee-V[e+.e], Sc=± 1 and C£C£+1 =(-Y. 

For the proof we prepare 

Lemma 2.1.6. 

Proof Direct calculations using explicit formulas (2.1.22) give 

(2.1.27) 
WMAa, b, c, d[ u) 

= (d, c)M gage WMN(d, c, b, a[ -M+N-1-u) 
(a, b)M gbgd 

for the case \b-c\=N. Next using (2.1.23a) and the definition (2.1.24) 
of SMN, we have 

SMN(.e+2j-N, .e'+2i-N, £', £\u)[ ~] 

= ( (£+2j-N, .e' +2i-N)M(.e, .e+2j-N)N) 112 

(.e, .e')M(.e', .e' +2i-N)N 
min(i,j) 

X I: WM;(.e+2k-i, .e'+i, £', £\u-N+i) 
k=max(O,i+j-N) 

X WM,N-;(£+2j-N, £'+2i-N, .e'+i, .e+2k-i\u). 

By applying the equality (2.1.27) for the extreme case (\ b - c \ = N), the 
r.h.s. becomes 

min(i,j) 

X l:: WM,N-l£+2k-i, .e'+i, .e'+2i-N, .e+2j-N[ 
lc=max(O,i+j-N) 

-M+N-i-1-u) 

X WMi(.e, £', .e'+i, .e+2k-i[-M+N-1-u). 

This is just [ ~] times the r.h.s. of (2.1.26). D 
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Proof of Theorem 2.1.5. We know already (2.l.25a) by (2.1.16). 
Using this and Lemma 2.1.6 alternately, we have 

SMN(a, b, c, dju)=SNM(a, d, c, bjM-N+u) 

= gage SNM(b, c, d, al -u-1) 
gbgd 

= gage SMN(b,a,d,cl-M+N-1-u) 
gogd 

=SMN(c, d, a, bju), 

which proves (2.l.25c-d). Eq. (2.l.25b) follows from (2.l.25a, c). D 

2.2. Restricted SOS models 

Hereafter we consider exclusively the SOS models with M=N. We 
shall also specialize the parameters in (2.1.3-4) to 

(2.2.la) 

(2.2.lb) 

J..=2K/L, 

.;=0, 

where L is a positive integer satisfying 

(2.2.2) 

The condition (2.2.la) gives rise to the symmetry 

(2.2.3) [L-u]=[u]. 

Let££, ti be adjacent heights. In addition to the restriction (2.1.15) (with 
M=N) 

(2.2.4) 

we impose further the constraint 

(2.2.5) 

These two conditions imply in particular that each height variable can 
assume at most L- l states 

(2.2.6) ti= 1, 2, .. ·, L-1. 

We remark that if N = I, then conversely (2.2.5) follows from (2.2.4) 
and (2.2.6). 
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The condition (2.2.5) naturally enters for the following reason. As 
an illustration, take the following (2, 2)-weight 

s (£ f f flu)= [f-l-u][f+u] + [f-l][f+2] [u][l+u]. 
22 ' ' ' [f-l][f] [f][f+l) [1][2] 

Because of the specialization (2.2.1 ), this now has poles at f = 1 or L- I. 
We forbid such configurations to occur by requiring (2.2.5). 

In Part I, we called a pair of heights (a, b) admissible if it satisfies 
(2.2.4-5). By abuse of language, we call a weight SNN(a, b, c, di u) admis
sible if the pairs (a, b), (b, c ), (c, d) and (d, a) are all admissible. 

In this paragraph we shall show that admissible weights are well 
defined (Theorem 2.2.1 ), and that they satisfy the STR among themselves 
(Theorem 2.2.4). (The latter statement does not follow directly from the 
STR (2.1.17) for the unspecialized weights, since non-admissible configu
rations can occur in the summand even if a, b, · · ·,fare all admissible.) 
Following ABF [5], we call the resulting models restricted SOS models. 

In order to prove their existence we make use of the explicit formulas 
in the previous paragraph for the symmetrized weights SNN(a, b, c, di u). 
We shall frequently use the parametrization 

(2.2.7) a=f+N-2r, h=f+2(N-k), c=f+N-2s, d=f. 

Thanks to the 180° rotational symmetry (2.1.24c), we can assume without 
loss of generality 

(2.2.8a) 0<k<N. 

Then the weight SNN(f+N-2r, f+2(N-k), f+N-2s, flu) is admissi
ble if and only if 

(2.2.8b) max(0, f+2N-L-k+ l)<r, s:::;:min(e-1, k). 

In terms of (2.2.7) the formulas (2.1.22-24) read as follows. 

(2.2.9a) 

(2.2.9b) 

where 

SNN(f+N-2r, f+2(N-k), f+N-2s, flu) 

= ,VS min~r,s) U(i) 
i=max(O, s-r) 

_ min(k-r,s) 

= ./ S ~ D(i), 
i=max(k-N,s-r) 

(2.2.10) s-( (f, f+N-2r)N(f+N-2r, £+2(N-k))N )/[ N ]2 
(f, f+N-2s)N(£+N-2s, f+2(N-k)h k-s 
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1 

U(i)= WN,N-k+.(t+N-k-s+2i, t+2N-k-s, 
t+N-2s, tlu-k+s) 

X WN,k-s(t+N-2r, £+2(N-k), £+2N-k-s, 
(2.2.11) t+N-k-s+2il u) 

(2.2.12) 

Ls.][ N-i .][t+N-k-s+:i-l][t+2N-k-_s+i] 
_ -1 k-r-1 N-k+z r-s+z 
-[t+N-~+i][t+N-2r-: l][t+N-k-s1:2i-1] 

s-1 k-r-1 N-k+z 

X [t+N-r-~+;1- 1 

r-s+z 

X [t+N-~ + u][t+N-r-s--:-1-u][N-k+~][ i+u .], 
s-1 k-r-1 N-k+z r-s+z 

D(i)= WN,k_,(t+k-2r+s-2i, t+N-k-s, t+N-2s, t 
lu-N+k-s) 

X WN,N-k+s(t+N-2r, t+2(N-k), t+N-k-s, 
t+k-2r+s-2ilu) 

[k-r+~-i][ N-s .][t+N-k-~-l][t+N-_s] 
s-1 k-r-1 N-k+z r-s+z 

--------------------
[t+N-2r ":s-i] [t+k-2r+s~2i-1] [t+N -2r~ \] 

s-1 k-r-1 N-k+z , 

x [t+k-r-:-i]- 1 

r-s+z 

X [g +N-r-: i +u] [g + N -r-i-: 1-u] 
S-l k-r-l 

X [N-k+r-s+ i +u][-N +k+ u]. 
N-k+i r-s+i 

11.-
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Theorem 2.2.1. An admissible weight is well defined. 

Proof Let A be a real number and B a non-negative integer. Call 

a term [ ~] of type I if B<A <L, of type II if B<L. We can easily 

check the following: 

o<[~]<oo 
[~]<oo 

if [ ~ ] is of type I, 

if [ ~ ] is of type II. 

Now consider the expressions (2.2.9). Using (2.2.7-8) and max(k-N, 
s-r)<i<min(k-r, s), we can verify that (i) all the factors appearing in 
(2.2.10) and in the denominator of (2.2.11-12) are of type I, and that (ii) 
those in the numerator of (2.2.11-12) are of type II. The theorem follows 
from these facts. O 

In what follows a weight SNAa, b, c, di u) is always understood to be 
admissible. 

Lemma 2.2.2. 

(2.2.13) SNAL-a, L-b, L-c, L-dl u)=SNN(a, b, c, di u). 

Proof We consider first the specialization (2.2.la), regarding ~ as 
yet arbitrary. From (2.1.4) and (2.2.3), we see that each unsymmetrized 
(1, 1)-weight W11(a, b, c, di u) is invariant under the transformation 

(2.2.14) ~~-~, a~L-a, b~L-b, c~L-c, d~L-d. 

Therefore the unsymmetrized (N, N)-weights have the same nature by the 
definition. Moreover we can see from (2.1.23b) that the symmetrizing 
factor (a, b)N(d, a)N/(d, c)N(c, b)N is also invariant under (2.2.14). Letting 
~ tend to O we get (2.2.13). O 

Lemma 2.2.3. Put 

(2.2.15) 

If N> N, then we have 

SNNU+N-2r, e+2(N-k), e+N-2s, £ju) 

c2.2.16) [Z =; l _ _ _ _ _ _ _ _ 
= [;] SnN(£+N-2r, £+2(N-k), £+N-2s, £ju). 
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Proof First we show thatD(i+ l)/D(i) is invariant under the change 

(2.2.17) 

A direct calculation by using (2.2.12) shows that 

D(i + l)/D(i)=D 1(i)Dz(i) 

where 

[t+N-2r+s-i][t+N-r-i][t+k:.-2r+s-2i-2] 
D (i)= ,[t+k-r-i][s-i] 

1 [t+k-2r+s-2i][t+k-2r-i- l][N-k+r-s+i+ 1] 
· [N-k+i+ l][r-s+i+ 1] 

X [N-k+r-s+i+l+u][-N +k-r+s-i+u] 
[t+N-r-i-l-u][t+N-r-i+u] ' 

Dz(i)= [t-r-i-l][k-r-i] 
[t-r+s-i-l][k-r+s-i] 

Note that t+N=l+N, t+k=l+k, N-k=N-k. Therefore under 
(2.2.17) all factors in D 1(i) are invariant, while in Dz(i) the two factors get 
interchanged both in the numerator and in the denominator. 

Because of the symmetry (2.1.25b), we may assume r<s. Since 
Dz(t-r-1)=0, it suffices to consider D(i) with i<l-r-1. We thus have 

s-r<i<min(t-r-l, k-r, s). 

The transformation (2.2.17) does not change both ends of this interval. 
Therefore we get 

(2.2.18) SNAt+N-2r, t+2(N-k), t+N-2s, tju) 
SNN(l+N-2r, l+2(N-k), l+N-2s, lju) 

(
~) 1121!_(s-r) 
S D(s-r) 

where S, I5 are obtained from S, D by applying (2.2.17). Using (2.2.10, 12) 
we find 

~ =( [t-r, k-r][N-s+l, N-r] )2. 
S [N+l, N][N-s+l, N-r] · 

D(s-r) _ [N-s+l, N-r][t+N-k-u N-u] 
I5(s-r) - [t-r, k-r][N-s+l, N-r] 

where [A, B] is defined in (2.1.24c). So 
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[ N-u] 
[N +1-u, N-u] N-N 

the r.h.s. of (2.2.18)= [N+l, N] - [;] • 

This completes the proof of (2.2.16). D 

Now let us proceed to the proof of the STR. We prepare several 
lemmas. We call (a, b) lower (resp. upper) non-admissible if a+b<N 
(resp. a+b?:::.2L-N). A weakly admissible pair (a, b) cannot be both 
lower and upper non-admissible. 

Lemma 2.2.4. Assume that the pairs (d, c) and (c, b) are admissible 
and that (d, a), (a, b) are weakly admissible but not both admissible. The 
symmetrized weight SNN(a, b, c, dlu) is then.finite-valued. It is vanishing if 
one of the following occurs: 

(i) a=O, 
(ii) either (d, a) or (a, b) is admissible, 
(iii) (d, a) is lower non-admissible and (a, b) is upper non-admissible, 
(iv) (d, a) is upper non-admissible and (a, b) is lower non-admissible. 

Proof By virtue of the symmetry (2.1.25a), we can assume without 
loss of generality that 

(2.2.19) b>d. 

We consider the following three cases for (d, a) 
(1) N+2~d+a<2L-N-2, 
(2) d+a~N, 
(3) d+a>2L-N, 

and for (a, b) 
{l') N+2<a+b<2L-N-2, 
(2') a+b<N, 
(3') a+b>2L-N. 

The case (1)-(1') is excluded by the assumption of the lemma. The cases 
(1)-(2'), (3)-(1 ') and (3)-(2') do not occur because, under the assumption 
(2.2.19), (2') implies (2) and rn implies {3'). 

The symmetries (2.l.25a) and (2.2.13) allows us to reduce (3)-(3') to 
(2)-(2') and (1)-(3') to (2)-(1'). So we have only three cases to check: 

Case 1: (2)-(1'). Case 2: (2)-(2'). Case 3: (2)-(3'). 

Let us use the parametrization (2.2.7). From the assumptions we 
have 
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(2.2.20a) 0<r<k,S,N, 

(2.2.20b) max (0, £ +2N-L-k+ 1)--S,s,S,min (£-1, k). 

The condition {2) is nothing but 

(2.2.21) £-r:::;;o, 

while (1'), (2'), (3') can be written respectively as follows: 

(2.2.22a) 

(2.2.22b) 

(2.2.22c) 

1,S,£+N-k-r,S,L-N-1, 

£+N-k-r,S,0, 

£+N-k-r?::_L-N. 

Use the formula (2.2.9a) for SN A a, b, c, di u), in which i is restricted to 

(2.2.23) max (0, s-r)<i <min (k-r, s). 

From (2.2.20-21) and (2.2.23) we can write 

(2.2.24) ./S U(i) = ./AB[aT X (a non-zero finite-valued factor), 
C 

where 

A=[£-r, £+N-r], B=[£+N-k-r, £+2N-k-r], 

C=[£+N-k-r+i, £+N-r-s+i]. 

For A=[l, J] let Aini and A Jin signify respectively I and J. We write 
A cB if Aini ?::_Bini and A Jin-s,B Jin· We find from (2.2.20-21,23) that 

(2.2.25a) CcB, 

(2.2.25b) [0] cA, 

(2.2.25c) Cfin <L. 

In Case 1 and Case 3, Cini>0 follows respectively from (2.2.22a) and 
(2.2.22c). Therefore (2.2.24) is equal to 0 from (2.2.25b-c). In Case 2 the 
finiteness is a direct consequence of (2.2.24--25) because -L<Cini' 

Finally we note that SNN(0, b, c, di u)=0 follows immediately from 
(2.2.24). D 

Lemma 2.2.5. Assume that the pairs (a, d) and (d, c) are admissible 
and that (a, b) and (b, c) are weakly admissible, then SNN(a, b, c, di u) is 
finite-valued. 



Exactly Solvable SOS Models 41 

Proof From Theorem 2.1.5, we have 

SNAa, b, c, di u)= gage SN Ab, c, d, a I -1-u). 
gbgd, 

Here SNN(b, c, d, al -1-u) is finite-valued from Lemma 2.2.4. We have 
ga =,t:O because of the admissibility of the pair (a, d). As for gb the factor 
,v[b] in the numerator of (2.2.24) cancels it out. This proves the lemma. D 

Lemma 2.2.6. Consider Case 2 in the proof of Lemma 2.2.4. We 
assume (2.2.19) and that [a]=,t:O. Setting 

(2.2.26) 

we have 

(2.2.27a) 

where 

(2.2.27b) 

F=f+N-r 

[ N 1-1 

JswNN(a, b, c, dlu)= c-~+N ~ JSU(i), 

max(O, s-r, s-r)::s;;i<min (k-r, k-r. s) 

Each summand is then non-vanishing. 

Proof From (2.2.24-25), we find.that 

JSU(i)=,t:O 

=0 

The first condition is rewritten as 

if cini::,;;o::,;;c,tn• 
otherwise. 

The lemma follows immediately from this. D 

Lemma 2.2.7. Let (d, c), (c, b) be admissible. Furthermore we suppose 
that a=,t:O and the pairs (d, a), (a, b), (d, -a) ( -a, b) are all weakly admis
sible; Then 

(2.2.28a) 

(2.2.28b) 

(2.2.28c) 

(2.2.28d) 

WNN(a, b, c, di u)/WNN(-a, b, c, di u)= - I. 

WNN(d, a, b, c I u)/WNN(d, -a, b, c I u)= 1, 

WNN(c, d, a, b I u)/WNN(c, d, -a, b I u)= 1, 

WNAb, c, d, a I u)f WNN(c, b, d, -a I u)= 1. 
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Proof First we show (2.2.28a). Note that the weak admissibility of 
(d, -a), (-a, b) implies that (d, a), (a, b) are lower non-admissible. We 
may assume (2.2.19). Retaining the parametrization (2.2.7), we have -a 
=£+N-2r where r is given by (2.2.26). In Lemma 2.2.6, the range of 
i (2.2.27b) is invariant under the change r-r. So it is sufficient to show 
that 

U(i)/V(i)= -1 

for all i satisfying (2.2.27b), where V(i) is given by (2.2.11) with r in place 
of r. For the calculation we note the simple facts: 

(2.2.29) [A1, B1][A2, B2]/[A 1, B2][A2, B,]= 1 

if max (A,, A2):::;:min (B1, B2)+ 1. 

(2.2.30) [A, B]=(-)B-A[-B, -A] if A, Be Zand A<0<B, 

=(-)B-A+ 1[-B, -A] otherwise. 

Writing down the ratio we have 

[N-k+r+l, t+2N-k-s+i]i[N-k+r+l, N-iJi 
U(i) _ ·[-k+r+i, r-r-lh 
V(i) - [-k+r+i, r-r-1Mr-r+1, r-s+i] 2 

·[N-k+r+l, t+2N-k-s+i], 

[r-r+ 1, r-s+iMt+N-k-s+i -u, r-s-1-u];i 
X ·[-r+s+l+u, i+u] 4 

[N-k+r+l, N-i]i[t+N-k-s+i-u, r-s-1-uh 
· [-r+s+ 1 +u, i+u] 4 

X [l, k-r-i],[1, r-s+i] 2 • 

[1, k-r-iMl, r-s+i], 

We grouped together the members to which we apply (2.2.29) by putting 
the suffix j= 1, 2, 3, 4. For those with barred suffix, we apply also 
(2.2.30). We thus find 

U(i)/V(i)=(-r-•-i)+(k-r-ii+c,-r)-1= _ 1 

as desired. This completes the proof of (2.2.28a). 
Next we proceed to (2.2.28b). The rest are shown similarly. First 

note the following formula: 

(2.2.31) 
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This is a direct consequence of (2.l.24b). From (2.l.24a), Theorem 2.1.5, 
(2.2.31) and (2.2.30a), we have 

WNAa, b, c, di u) _ ../(c, b)N(a, -b)N SNN(a, b, c, di u) 
WNN(a, -b, c, di u) - ../(a, b)N(c, -b)N SNN(a, -b, c, di u) 

../(c, b)N(a, -b)N g -b SNN(b, c, d, a I -1- u) 

../(a, b)N(c, -b)N ~ SNA-b, c, d, al -1- u) 

= (c,b)N g_b (-)=1. 0 
(c, -b)N gb 

So much for the preparation. Now it is rather straightforward to 
show 

Theorem 2.2.8 (Theorem 3 of [2]). The set of the admissible weights 
SNN(a, b, c, di u) satisfy the STR among themselves. 

Proof The symmetrized weights for the unrestricted models satisfy 
the STR. We are to show that if the exterior pairs (a, b), (b, c), (c, d), 
(d, e), (e,f), (f, a) are all admissible, the terms with non-admissible inner 
heights cancel out among themselves in each side of the STR. 

Let us consider the 1.h.s. of Fig. 2.2. Set 

If admissible pairs and non-admissible pairs coexist among the inner 
pairs (g, b), (g, d) and (g, f), then R(g) vanishes because of Lemma 2.2.4. 
The same is true if lower and upper non-admissible pairs coexist. 

From Lemma 2.2.2, it is enough to consider the case that the inner 
pairs are lower non-admissible. 

If a pair (a, b) is admissible, it is clear from (2.l.24b) that the fact
or (a, b)N is strictly positive. So Lemma 2.2.4-5 and Theorem 2.1.5 allow 
us to prove the cancellation of the unsymmetrized weights 

R'(g)= WNN(a, b, g,flu)WNAf, g, d, el u+v)WvAg, b, c, div) 

instead of the symmetrized ones. 
Under the condition that a>O, if the pair (a, g) is weakly admissible 

and lower non-admissible then so is (a, -g). Therefore we have 

the summation of the lower non-admissible terms 

=R'(O)+ l:: (R'(g)+R'(-g)), 
g>O 

where 
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R'(g)= WNN(a, b,g,fju)WNN(f, g, d, eJu+v)W(g, b, c, div). 

R'(O) vanishes from Lemma 2.2.4 while R'(g)+R'( -g)=O follows from 
Lemma 2.2.7. We have now proved that non-admissible terms in the l.h.s. 
cancel out. 

The proof is the same for the r.h.s. D 

2.3. Vertex-SOS correspondence 

In [4] through an attempt to obtain the eigenvectors of its row-to-row 
transfer matrix, Baxter found an equivalence of the eight vertex model to 
an SOS model. We shall extend this equivalence to the fusion models. 
The result of this paragraph is not used in the rest of this paper. 

First we recall the fusion of the eight vertex model [6]. We denote 
by R;f the Boltzmann weight of the eight vertex model associated with a 
vertex as indicated in Fig. 2.7. 

a 

'Y 
Fig. 2. 7 A vertex configuration. 

We use the following parametrization ().=t=O): 

(2.3.l) 

R::(u) = p/9().)(9().u)H().(u + 1)), 

R:i(u) = p08().)H().u)e().(u + 1)), 

R';!(u)= p0H().)8().u)(9().(u+ 1)), 

R';'p(u)= p0H().)H().u)H().(u+ 1)), 

po= 1/8(0)H().)8().). 

Here a, [3= ±1 and a=t=[3. 
Let V=Cv+E9Cv_'.'.::'.C2• We define Eafl e End(V) (a, [3= ±1) by 

EapVr=Va0pr, and set R(u)= L, R;f(u)Era®Eap E End (V®V). Let V1, • • ·, 

VM be copies of V. Given Te End(V®V) we define TJk e End(V 1®· .. 
®VM) by TJk=t 1kTr.:1k, where t1k is the natural injection t1k: V1®Vk-
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VI@- · -0 VM and 11:Jk is the natural projection 11:Jk: VI@- . -@VM-4-V;@ Vk. 
In this notation the Yang-Baxter equation reads as 

(2.3.2) 

We denote by I e End (V@V) the identity, and by Ce End (V@V) the 
transposition: CvI@v2 =v 2@vI. We set P=(C+I)/2. We have 

(2.3.3a) 

(2.3.3b) 

R(O)=C, 

R(-l)=C-1. 

Set U= -I in (2.3.1) and multiply it by P I2. Then, because of (2.3.3b) 
and P(C-1)=0, the l.h.s. is zero. Therefore we have 

(2.3.4) 

Now we denote by P1 ••• M the projection on the space of the symmetric 
tensors in VI@- · -@VM: 

p I ... ,w= ~! (C1M+···+CM-IM+I)···(C12+l). 

We call P, ... M a symmetrizer for short. We prepare further copies Vi, ... , 
V.N of V and use TJT< in the sense similar to TJk with Vk replaced by Vi,. 
We define an operator Ri ... M;(u) e End(V 1@· · -@VM@Vi@· · ·@V.N) by 

Rf ... M;(u)=P I ... MR11(u+M-1)· · -RMJ(u). 

Lemma 2.3.1. 

(ii) Ri---M/u)=O 

(2.3.5b) foru=-1, · · ·, -M+I, -I+iK'/2, · · ·, 

-M+I+iK'/2. 

Proof (i) This follows immediately from (2.3.4). 
(ii) For U= -1, . · ·, -M + I Ri ... M;(u)=O because of (2.3.3) and 

thewidentityJp12c 12(C2J-I)=O. The latter half is proved similarly. D •. .. 
This lemma tells that 

R1 ••• M;(u)=Ri ... M;(u)[IJM-l/[u+M-l]M-1 

is holomorphic. For M> N we define the (M, N)-weight 
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RM Au) e End (V® · · · ® V(8) V® · · -(8) V) 
M N 

by 

For M <N we define it through the following commutative diagram. 

CMN 
V(8)- · ·@V(8)V(8)- · -@V~V@·. -(8)V(8)V(8)-. -(8)V 

M N N M 

RMN(u)l lRNM(u+M-N) 

V(8)- · -(8)V(8)V(8)- · -@V~V@· · -(8)V(8)V(8)-. -(8)V 
M N CMN N M 

The C MN is the transposition of V(8) . . · ® V and V(8)- . -(8) V. As (2.3.5a) 
M N 

we have from (2.3.4) 

(2.3.6) 

Theorem 2.3.2 ([6]). Fix a triple of integers (M, N, P), and set 
V1= V(8) · · -@V, Vi= V(8)- · -(8)V and V3 = V®· · -(8)V. We define RlftN, 

M N P 

R1;,p, R2JP e End (V1(8)Vz(8)V3) as in (2.3.1). Then they satisfy the Yang
Baxter equation: 

(2.3.7) 

Proof If we discard all the symmetrizers appearing in (2.3. 7), the 
equality follows by a repeated use of (2.3.1). Multiplying this identity by 
the symmetrizers from the left and using (2.3.6) we obtain (2.3.7). O 

Now we establish an equivalence between RMN and WMN· Choose 
arbitrary constants s + and r, and fix ~ in (2.1.4) by 

We set 

<faalu)= (H().(s' +a-eu))) 
6l(J(s'+a-eu)) 

=0 

if e=h-a= ± l, 

otherwise. 

We define a vector <faM,aiu) in V® · · · ® V by 
M 
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</>M,aiu)=P1 ... 1,h/>aoa,(u+ M - I)®· · · ©</>ax_,a/u)) 

(a0=a, ay=b). 
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The ai are integers satisfying lat-ai+il= I, The definition (2.3.8) is inde
pendent of the choice of these integers. We note that WMN(a, b, c, di u) 
are invariant under the change of (a, b, c, d, g, s+, r) to (-a, -b, -c, 
-d, -g, -r +2K/)., -s+ + 2K/).). This is useful when we check the 
following identity due to Baxter [4] (see Fig. (2.8)): 

(2.3.9) R(u-v)(<j>d.(u)©</>civ))= I; Wu(a, b, c, di u-v)<f>aiu)©<j>da(v). 
a 

Fig. 2. 8 The vertex-SOS correspondence. 

By a similar argument as in Theorem 2.3.2 the identity (2.3.9) is generalized 
to 

Theorem 2.3.3 ([2]). 

RMN(u-v)(</>M,dc(u)©</>N,civ))= I; WyAa, b, c, di u-v)</>M,aiu)©</>N,da(v). 
a 

We omit the proof, which is similar to that of Theorem 2.3.2. A 
simple case is schematically shown in Fig. 2.9. 

u+l u u+l 
0 • 0 • 0 o--:+-,.o 

~ t=~ltEI 
--.0---0 u 

=lEI El 
~ 0-0--0 u 

Fig. 2. 9 The proof of the vertex-SOS correspondence for 
fused weights. 
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Remark. The first formula in section 4 of [2] should be coorrected as 

§ 3. One Dimensional Configuration Sums 

In this section we transform the LHPs into ID configuration sums by 
means of the CTM method. As in the case N = I [5], we consider the 
following four regimes. 

Regime I: -I<p<O, O<u<L/2-I, 

Regime II: O<p<I, O<u<L/2-I, 

Regime III: O<p<I, -I<u<O, 

Regime IV: -I<p<O, -I<u<O. 

3.1. Boltzmann weights in the conjugate modulus 

In order to evaluate the LHPs we appeal to Baxter's corner transfer 
matrix (CTM) trick [8]. The method is summarized in Appendix A of [5] 
for N = I. Apart from the change of notation (2.1.5), the reasoning therein 
applies equally well for general N. As a result, the LHP P(a) is given in 
terms of a ID configuration sum (in an appropriate limit m-+oo) 

(3.1.1) 
X'"'(a, b, c)= ~ qfmit,,···,tm+•l, 

£,=a, £m+i=b, £m+z=C, 

where the sum is taken over sequences £2, ••• , .em which are admissible in 
the sense that (£1, £1+ 1) satisfies (2.2.4-5) for I<j<m+I. (For the defi
nition of q, see Table 1 in Part n. The goal of section 3 is to determine 
the function ef>m(£1, • • ·, .em+z), The precise definition of the LHPs and the 
expressions in terms of the ID configuration sums are given in section 2 of 
Part I. 

The working depends on the sign of the "nome" p: p > 0 (regime II, 
III), or P<O (regime I, IV). As in Part I, let \p\=e-• 1L and define the 
variable x by 

in regime II, III, 

in regime I, IV. 

We shall consider the modified weight 
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.!/'N(a, b, c, d)=SNN(a, b, c, d)Ga,Ge p-N, 
GbGd 
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where Ga and Fwill be specified below (3.1.6). The LHPs are unaffected 
by such a modification. 

The line of argument to obtain <f>m(ti, • • ·, .e,,.+2) goes as follows [5, 8]. 
Let A(u) denote the CTM corresponding to the southeast quadrant of the 
lattice. It is an operator acting on the subspace .Y/'6 , 0 of cL- 1(8) •• · ®CL- 1 
(m+2 fold tensor product) spanned by the vectors eti®, · · ®e,m+o such 
that .em+i=b, £,,.+2=C and {£1}j,;l is admissible. Here e1 signifies the 
standard basis of cL- 1, and (b, c) is a fixed admissible pair. Define the 
face operators t///1 (2<i <m+ 1) by ([5], eq. (A2)) 

(3.1.3) t//11,e,,® . .. ®e,m+o 

=I: .!/'N(£;, £;+1, ti, £;-1)e,1®· · ·®e,;®· · ·®e,.,+o. ,, 
(For i=m+l the sum is confined to only one tetm £~=£1 =b.) The 
CTM is defined to be A(u)=!F 2.fF3 • • • !F m+1' fF 1=tl/lm+1tl/lm · · · t//11 ([5], eq. 
(A14)). Then, in the large lattice limit, (i) Pa=µa/I:a' µa' with µa= 
g~ trace,,=a (A(-t)), where t=2 or 2-L and ga is given in Theorem 2.1.5 
(cf. [5], eqs (A26, 28)); (ii) the eigenvalues of A(u) have the form xntu with 
2n1, e Z (up to a common factor). Finally (iii) the n;'s are calculated by 
considering the limit 

(3.1.4) X~O, u~O, W=X" fixed. 

In this limit the face operators t///1, and hence A(u) also, become diagonal. 
(For even L the last step requires a slight modification. See the discussion 
at the end of section 3.3.) In what follows we mean by lim the limit (3.1.4). 

To study the limit of (3.1.2) in this sense, we exploit the conjugate 
modulus transformation p---+x: 

(3.1.5) 

The quantities ,c, µ, (u), Ga=GL-a and Fare given as follows. 

Regime II, III Regime I, IV 

ic ../2rcL/e xL/B ../ rcL/e xLtts 

µ u(u-L)/2L u(2u-L)/2L 

(3.1.6) (u) E(x", xL) E(xu, -xL/2) 

Ga Wa,(a-L)/<L Wa,(a-L)/2L 

F Xu(u+l)/2L Xu(2u+2-L)/2L 
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The symmetries (2.l.25a-d) (with M=N) and (2.2.13) remain valid for 
(3.1.2). As in section 2 we find it convenient to use the graphical notation 

d N C D =!7 Aa, b, c, d). 
a b 

Unless otherwise stated, we shall always assume a~c, dsb and use the 
parametrization (2.2. 7) 

(3.1.7) a=£+N-2r, b=£+2(N-k), c=£+N-2s, d=C, 

O<ksN, max(O, £+2N-L-k+l)<s<r<min(£-l, k). 

Rewriting (2.2.11) we get the expression for the modified weight 

(3.1.8) 

where 

(3.l.9a) 

(3.l.9b) 

!ON J!+N-2s =min~·s=,Ok-r) 
~ waxfi(il'f"(i), 

.Q+N-2r l!+2(N-k) 

r-s-N+k a=-----
2 

=r 

in regime II, III, 

in regime I, IV, 

j3(i)= i(i+ 1) +i(r-s+N-k) + (r-s)(N-k+ 1) . 
2 2 

The 'f"(i) has the same form as .Js U(i) (2.2.9-11) with the symbol [£) 
therein replaced by(£) (3.1.6). We shall show that 

(3.1.10) 

where in regimes II and III 

(3.1.11) H(a, b, c)=\a-c\/4, 

and in regimes I, IV 

(3.1.12) 

if b-:;;,_n, 

= min ( b- n - l, b - max~ a, c) + N ) if b ::2'. n + l, 

n=[L/2]. 
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Note that H(a, b, c) (3.1.12) has the symmetry: 

(3.1.13) H(2n+ 1-a, 2n+ 1-b, 2n+ 1-c)=H(a, b, c). 

3.2. Regime II, m 
In this case we have by the definition (3.1.6) 

(3.2.1) (£±u)=l+O(x) if O<£<L. 

Theorem 3.2.1 

(3.2.2) 

d N c 

lim D =Oacw-lb-<1114, 

a b 

Proof From the representation (3.1.8), (2.2.9-11) together with 
(3.2.1) it follows that "Y(i) = 0(1) for all i in the sum. The power f3(i) 
(3.l.9b) is non-negative, and vanishes if and only if i=O and r=s. In this 
case one can check that lim "Y(0)= 1, so the r.h.s. of (3.1.8) tends to 
w-<N-tJ/ 2=w-lb-al/4, This completes the proof. D 

From Theorem 3.2.1 follows the expression (3.1.10-11) of <f>m(£1,., ·, 

£,,.+2)-

3.3. Regime I, IV 

In this case, the factor (£)=E(x 8, -xL/2) shows a behavior different 
from that of regime II, III: 

(3.3.la) 

(3.3.lb) 

(£)= 1 + o( .Jx) 
=2(1+O(x)) 

if 1<£<£/2, 

if £ = L/2 for L even, 

Note that if £>£/2, then(£) gives rise to an extra power L/2-£. To 
avoid technical complexity we assume throughout regimes I, IV that 

(3.3.2) 

This implies 

(3.3.3) (£), (£±u)=1+0(-v'x) provided 1<£<N. 

We shall carry out the computation by following the four steps. 
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d N c d+l N-1 c 

(3.3.4) Step I: lim D = lim D if d<b. 
a b a b-1 

b N c 

Step 2: lim D =0 unless a=c, (3.3.5) 

(3.3.6) 

where 

(3.3.7) 

(3.3.8) 

a b 

Step 3: lim 

"#"(j)= 1 

=l+w 
2 

or a+c=L with Leven. 

a-1 
CT "#"(j) X 

j=(a+b-N)/2 

if0<j<L/2, 

ifj=L/2, 

(a+b+N)/2 

CT "#"(L-j), 
J=a+l 

=W if L/2<j<L. 

bNL-a bNa 

Step 4: lim D =(-l)N+b+t-L;z 1-w lim D 
a b l+w a b 

if 2a=t=-L and L even. 

For N = 1 these assertions (3.3.4-8) can be verified directly by using the 
representation (3.1.7-9) of the modified weight and the fact that 

(3.3.9) lim (.e-u) =if"(.e) 
(.e) ' 

lim (.e+u) =w- 1"/r(L-.e). 
(.e) 

(The weight .'/o(a, b, c, d) in (3.3.4) is understood as 1 if a=b=c=d, 0 
otherwise.) In what follows we assume (3.3.4-8) to be true for N -1 in 
place of N. 

Step 1. 

First note that in the representations (3.1.8-9) of.'/ N(a, b, c, d) and 
.'/ N-iCa, b- 1, c, d+ 1) in (3.3.4) the suffix i ranges over the common 
interval O<i <min (s, k-r). Let d(i)=wrxP<ilf(i), d'(i)=wrxP'<ilf'(i) 
stand for the corresponding summands. In the following Lemmas 3.3.1-2 
we show that for all i either lim d(i)/ d'(i) = 1 or else lim d(i) = lim d'(i) 
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=0 holds, thereby proving (3.3.4). Without loss of generality we shall 
assume .e < L/2. 

Lemma 3.3.1. We have 

(3.3.10) xP<i)-P'Cil"f'"(i)/"f'"'(i)= 0(1) for all 0<i <min(s, k-r). 

Moreover thel.h.s. tends to I if 2N+£-k-r>L/2, or i=0 and r=s. 

Proof. Dropping the factors of the form (3.3.3) we find that the 
l.h.s. of (3.3.10) behaves like A(l + 0( ,vx)) with 

A=xi+<r-,i,2( (t-r)(t-s) ) 112 (.e+2N-s-k+i). 
(t+2N-k-r)(£+2N-k-s) (.e-s+i) 

By taking into account the contributions from the factors (.e) (cf. (3.3.1)) it 
can be shown that A=O(x•), where 0<))-:;;,i+(r-s)/2, and that A=l+ 
O(,vx) if2N+£-k-r>L/2 (see Fig. 3.1). 

i+(r-s)/2· 
I (r-s)/2 __ ; ___ 

1 

I I 
• I I 
I --T-- T --

1 I 

l-r 0,s 

L/2 

l-s+i 0+2N-k-r \ l+2N-k-s+i 

l+2N-k-s 

Fig. 3. 1 Power estimate of the l.h.s. of (3. 3. 9). 

Finally when i=0 and r=s the l.h.s. of(3.3.10) becomes (N-k+u)/(N-k), 
which tends to 1 in the limit by (3.3.3). This completes the proof of 
Lemma 3.3.1. D 

Lemma 3.3.2. Assume L/2>.e, 2N+.e-k-r+l. Then we have 

lim xPCi>r(i)=0 

except when i=0 and r=s. 

Proof. Proceeding in the same way as in Lemma 3.3.1, we have 
"f'"(i)=BX 0(1) where 

B= ( (2N + .e -k-r+ 1, 2N + .e -k-s)(N + .e -2s) ) 112 

(N+t-r+l, N+.e-s) 

X(2N+£-k-s+1, 2N+.e-k-s+i). 
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Here we have set (a, b)=(a)(a+l)·. -(b) for a<b and (a, a-1)=1. 

-1 ~ 

., L-, 
L/2 11 

-1/2 ~ 

Ll:~N+sk-"1 
l ;.l+1l2 

+1/2 V,· 1 © -1 /2 

Fig. 3. 2 Power estimate of 'i"(i). The order relation is de
picted for the factors appearing in B. 

@= 2N+.H-s+i, 

© = 2N+.0.-k-s+l, @= 2N+.0.-k-s, 

@=2N+.D.-k-r+l, @=N+.0.-s, 

® = N+.0.-r+l and © = N+.0.~2s. 

Counting the total power of x (see Fig. 3.2), we obtain the estimate xfi<i> B 
= O(x7<il) with 

r(i)=i(N-k+ l)+_!_(r-s)(N+s+ 1-k-r+N-k+2) 
4 

if N+s+l~k+r, 

=i(N-k+ l)+_!_min (r-s, s+N-k+ 1) otherwise. 
2 

Under the assumption of the lemma, r(i)>O in either case as desired. D 

Step 2. 

Here we make use of the STR of type (N, l, N) as in Fig. 3.3: The 
variables are so chosen that one of the summands in the r.h.s. vanishes. 
This provides us with the relation 
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Q ..----..:Q+N-2s 

u Q+N-2s-1 

u+s = 
u-----'IQ+N 

-2s-1 u+s· 4+1 
Q+N,.,._ __ _ 

-2r -s Q+N-2r 
u 

Q+N-2r-1 Q+1 Q+N-2r-1 Q+1 

Fig. 3.3 The STR of type (N, 1, N) used in deriving (3.3.10). In 
the r.h.s. the term with the center spin C-1 vanishes. 

(3.3.11) 

(3.3.12) 

R+lo~+N-2s-l 

D+N-2r-I R+l 

Ci=((£ +N- 2r -1)(£ +N-2s-1)) 1' 2 

( .e + N - 2r )( .e + N - 2s) 

X (.e+N-r-s)(.e+I+u) , 
(£ +N-r-s-I-u)(.e+ 1) 

C2 /Ci= ( (£ - r )( .e -s )(£ + N - r + I)(£+ N -s + I) ) 112 

(N-r)(N-s)(r+ l)(s+ 1) 

X (N-r-s- I)(u) 
(£+N-r-s)(£+ 1 +u) 

Eq. (3.3.5) is an immediate consequence of the following lemma. 

Lemma 3.3.3. Assuming r>s, we have 

(3.3.13) R[JhN-Zs = O(xmln(r-s, IHN-r-s-L/21)/2), 

D+N-2r R 
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Proof Using (3.3.2) and the symmetry (2.2.13) we may assume 
further .e+N<L, so that o:;;;;s<r<min(£-1, N). We prove (3.3.13) by 
an induction on s. 

Suppose s=O. Then there is only one term in the sum (3.1.8), and 
we have 
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xfi<0l~(O)=xr/2 ,v(£+N)(£+N-2r) X 0(1), 
(C+N-r) 

from which follows (3.3.13) in this case. 
To the next step of the induction we use the following estimates for 

the quantities in (3.3.11-12): 

(3.3.14) 

(3.3.15) 

(3.3.16) 

C1 =0(,Jx) 

= O(,J~-') 

=0(1) 

if £+N-r-s<L/2<£+N-2s, 

if £+N-2r~L/2<£+N-r-s, 

otherwise. 

= O(xmin (r- s, !e+N-r-s-L/21)/2). 

In (3.3.16) we used (3.3.4) and the induction hypothesis. The assertion 
(3.3.13) follows from (3.3.14-16) by virtue of (3.3.11). D 

Step 3. 

To prove (3.3.6) we may assume that b<L/2, for it is invariant under 
the change a-+L-a, b-+L-b. 

In the case a=b+N (i.e. r=O), we have 

so (3.3.6) is obvious from (3.3.9). 
Next suppose that (3.3.6) is true for r. Setting r=s in (3.3.12) and 

noting £ + 1 <L/2, we have 

lim wC1 =iY(L-£- I)/iY(£ +N-2r-l), 

limxr+ 1C2=e7-,'.i l-w limxr+i (£+N-r+l)(N-2r-I). 
iY(£+N-2r-l) (£+N-2r) 

Substitute these equations into (3.3.11), apply (3.3.4) and use the induction 
hypothesis for 



Exactly Solvable SOS Models 

.Q N .Q+N-2r D, J!+l N-1 J+N-2r 

D 
.Q+N-2r .Q hN-2r J!+l 

Upon simplifying the result, we are left with the proof of 

Lemma 3.3.4. Assuming O < r :=;: N -1 and £ + 1 < L/2 we have 

"lf/'(L-N-£+2r) 

="IY(L-£-l)+1oL 12 (l-w)limxr+ 1 (£+N-r+ 1) (N-2r-1) 
e+i (£+N-2r) ' 

where tof/2 is defined by (1.5.7). 

The proof can be done by case checking. 

Step 4. 

Here we utilize another STR of type (N, 1, N) as shown below . 

.O.+N-2s 

t+N-2s+1 
u 

-s+N = 

t+N-2r s-N 

t+N-2r-1 J!+N-2r-1 4+1 

Fig. 3. 4 The STR of type (N, 1, N) used in deriving (3. 3. 17). 

Explicitly we have 

(3.3.17) 

(3.3.18) 

.Q+l N hN-2s 

x(r-s)/2 D 
R+N-2r .Q+l 

= C
3 

J[J.Q+N-2s 

R+N-2r .Q+2 

.Q-1 N R+N-2s+l 

+ C4 D 
hN-2r-l .Q+I 

Ca=( (s+l)(N-s)(£-r)(£+N-r+l) ) 112 (r-s+l)(£-u), 
(r+ l)(N-r)(£-s)(£ +N-s+ 1) (£-r+s)(l +u) 
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C4 = . ·(.e+N-r) ( 
(.e +N-2r)(.e +N-2s)(s)(N-s+ 1)(.e-r-1) ) 112 

(.e +N-2r'- 1)(.e +N-2s+ l)(r+ lXN-r)(.e-s) 
-(.e+N-s+l) 

X (.e+ l)(r-s+ 1 +u) . 
(.e-r+s)(l +u) 

Because of (3.3.4), we can apply (3.3.8) to the weights in the r.h.s. of 
(3.3.17). Doing this and proceeding in the same way as in step 3, we find 
that the proof is reduced to the following. 

Lemma 3.3.5. Let C~ = lim x<•-r)J 2C., v = 3, 4. Assumings <r we have 

(3.3.19) if"'(.e-r)= q-q if"(.e-r)ir(L-.e-N +2r) 
if"'(.e+N -2r-l)ir(L-.e-N +r) 

This can also be verified by case checking, so we omit the proof. 

Summarizing (3.3.4-8) we obtain the following result. 

Theorem 3.3.6. If L is odd, then 

(3.3.20) 

where H(a, b, c) is defined in (3.1.12). If Lis even, then (3.3.20) holds except 
when the triple (d, a, b) and (d, L-a, b) are both admissible (with 2a=t=L). 
In these cases we have instead 

lim -o wla-nJ-1 l+w 
- ac 2 

(3.3.21) 

-O (-l)b-n+Nwia-nJ-1 1-W 
a,L-c 2 • 

Remark. The discrepancy of the signs ( of H in the exponent of w) 
in regime II, III (3.1.11), (3.2.2) and in tegime I, IV (3.3.20) is due to the 
difference of the values of a in Table 1 of Part I. 

We thus find that (3.1.10, 12) is true for odd L. For even L the face 
operator %'1 (3.1.3) in the limit is non-diagonal and contains 2 by 2 blocks 
of the form 
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:o: 
doL-a 

lim a b 
d[Ja d N L-a 

L-Db. L-a b 
Lemma 3.3.7. The face operators ~1 are mutually commutative. 

Proof It is sufficient to prove ~~0/11 + 1 = 0//1 + 1 ~1. This amounts to 
showing that 

d N Ii 

·=Iim D 
a ti 

for all a, b, c, d, a', b'. 

We may assume that (a, b) and (a, L-b) are both admissible, for otherwise 
we must have a=a', b=b'. Suppose for instance a'=L-a=f=a and b;= 
L-b=/=b. From (3.3.21), both sides are then equal to 

wla.-nl+lb-nl-2((1-w)/2)2. 

The remaining cases can be verified similarly. D 

Thus the face operators can be diagonalized simultaneously. For an ad
missible sequence ( e 1), define the vectors I £1, · · ·., em+i) inductively by 

I £1, £2);,, e,,®e,., 

!£1, • • ·, ek+2>=l£1, • • ·, ek+t)®e,H.+sl ti,••·, L-tk+1)®e,.H 

if (ek, ek+I• ek+2), (tk, L-tk+I> ek+2) are admissible, 

=I e,, ... ' ek+t)®e,H. otherwise. 

Heres= ±(-1)'•-n+N' or O according as£,. <n, >nor =n. Then we have 

(3.3.22) 

for 2<i<m, whete lf(a, b, c) is given by the same equation (3.1.12). In 
general, the vectors jt 1, ... , em+z) may not belong to the space £\ .• (see 
3.1) where the boundary heights em+1=b, em+z=C are specified. Suppose 
further that they satisfy the additional conditions 

(3.3.23) (b+c-N)/2<n-N or (b+c-N)/2:2::n+l. 
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Then (b, c) and (L-b, c) cannot both be admissible. This guarantees that 
\£1, • • ·, .&m+z) E Yfb,c, and (3.3.22) is true for i=m+ 1 as well. Thus the 
CTM can be diagonalized without violating the boundary conditions. In 
the cases other than (3.3.23) the meaning of the configuration sum (3.1.1), 
(3.1.10, 12) for even Lis obscure. 

Remark. Eq. (3.3.23) coincides with the condition for the sequence 
... b c b c . . . to be a ground state configuration in regime IV, with the 
exception (b+c-N)/2=n-N. See eq. (2.9b) of Part I. 

§ 4. Combinatorial Identities 

This section is devoted to the study of the linear difference equations 
that appeared in the combinatorial analysis of the 1D configuration sums 
in Part I. We derive explicit expressions for the fundamental solutions and 
rewrite them in several forms. The result contains a series of new combi
natorial identities. 

As in sections 2-3, we call a pair of integers (a, b) weakly admissible 
if the following relation holds 

(4.0.1) a-b=-N, -N+2, ·. ·, N. 

A weakly admissible pair (a, b) is called admissible if it further satisfies 

(4.0.2) a+b=N+2, N+4, .. ·, 2L-N-2. 

4.1. Fundamental solution for the linear difference equation 

For a weakly admissible pair (b, c) and integers m, N2_0, let/;tl(b, c) 
denote the solution to the following linear difference equation. 

(4.1.la) 

(4.1.lb) 

Here the sum I;' is taken over d such that the pair (d, b) is weakly admis
sible. We setJJNl(b, c)=0 if (b, c) is not weakly admissible. 

One may consider m and b as discrete time and space variables, 
respectively. There are N + I possible values of c for a given b. In this 
sense the equation ( 4.1.1) is a system of N + 1 simultaneous equations in 
1 + 1 dimensions. It is of order 1 with respect to m. 

Remark. By the definition JJNl (b, c) enjoys the following. 
Reflection symmetry: 
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(4.1.2) f~Nl(b, c)=f~Nl(-b, -c), for m>O. 

Support property: 

(4.1.3) f~N'(b, c)=O unless \b\<mN, \c\~(m+ I)N 

and b=mNmod2. 

In particular, for N==O, (4.1.3) asserts that 

(4.1.4) 

We seek for the solution to (4.1.1) in the form of a double sum 

I: A(m,j, k)qB(m,j,k)N+jb+kc. 
j,k 
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The coefficients A and B are polynomials in m, j, k. The sum extends 
over different regions of (j, k) according as the regions of (b, c) specified 
below. 

Given an integer µ set 

(4.1.5) Rµ={b e Zf(µ-I)N<b<(µ+I)N}, 

where the left (resp. right) equality sign is taken if µ-1 <O (resp.µ+ I >O). 
We also set Rµ,.=RµXR •. For a weakly admissible pair (b, c) and integer 
m( >I), let µ, ,.., ( = µ ± I) be integers such that 

(4.l.6a) 

(4.l.6b) 

(b, C) E Rµ,., 

µc=.m+l, v=m+2 mod 2. 

Equation (4.1.6) uniquely determinesµ and II except when b=O (µ= ± 1) 
of c=O (v= ± 1). In these cases either choice is allowed. 

Theorem 4.1.1 ((3.4) of Part I). For all weakly admissible pairs 
(b, c) e RP,• and integers m, N> 1, 

(q)m_J~Nl(b, c) 
(4.1.7a) 

=( I; _ I; )(- l)J-kqQ};':/ib,cJ[m~l][m], 
k ,;;(m+µ-1)/2 j,;;(m+•)/2-1 J . k 
j2,(m+•)/2 k2,(m+µ+l)/2 

QJ"j(b, c) = ~ (j-k)(j-k+l)-(j- m;-l )( k- ;)N 
(4.1.7b) 

b(. m-1) c(k m) +2 J--2- +2 -2. 
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Proof. First we check the properties (4.1.2) and (4.1.3) for f~N>(b, c) 
given by (4.1.7). The former immediately follows from Q)':'·l(-b, -,-c)= 
Q<;:}_1_ 1,m_,.(b, c). To show the latter suppose for instance b>mN. Then 
we have µ>m+I and v>m, so that j>m or k>m+I. Therefore the 
product of the Gaussian polynomials identically vanishes. The other cases 
are similar. 

Form= I (4.1.7) can be directly verified by using (4.1.1). In the fol
lowing we assume m > 2. In view of ( 4.1.2-3) we may assume 

(4.1.Sa) 

(4.1.Sb) 

I<µ<m-I 

O<µ<m-I 

if mis even (m>2), 

if mis odd (m>3). 

There are two cases to consider: (i) 11=µ+1, (ii) 11=µ-I. Here we 
prove the case (i), The case (ii) can be verified similarly. Since we have 
c>(v-l)N=µN, the r;h.s. of (4.1.la) reads as 

K, = E f~N_\(d, b)qm<c-d)/4, 
(4.1.9) d=b-N,b-N+2,•••,µN 

I(.- ,._-, J,<N>(d b)qm(c-d)/4 2- 4-J m-1 , , 
d=µN+2,µN+4,•••,c 

Ka= E f~N_\(d, b)qm(d-c)f'. 
d=c+2,c+4,••,,b+N 

In K1, Kt and Ka the pair (d, b) belongs to R,,_1,,,, R,,+1,,, and R,,+1,,,, respec
tively. We substitute the expression (4.1.7) into K1 -Ka and perform the 
d-summati0ns. By using the identities 

(4.1.l0a) [m-2] 1 
j l -qm-J-1 

[ m-1] 1 
j 1-qm-l ' 

(4.1.I0b) [m-2] 1 [m-1] 1 
j 1-qJ+I = ·j+I 1-qm-1, 

we obtain the following: 

i=l, 2, 3, 

K1±) = ±( E E )(- l)i·l<qQ}':',.-1>,o,b)+Qi±lw 

(4.1.11) 
j;;,(m+µ-1)/2 jS:,(m+µ-3)/2 

kS:,(m+µ-B)/2+ei k,;:(m+µ-1)/2+•i 

[ m - I ] [m - 1] 1 
X j+l-eH k (q)m-1' 

where 



(4.l.12a) 

(4.l.12b) 

(4.l.12c) 

(4.1.12d) 

(4.l.12e) 
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e,=[i/2], 

Qf+l(j)= Qi-l(j) = '!!!:_(c-2µN)+ 1-µN(j+ 1), 
4 2 

Qi-l(j) = '!!!:_(c-2b+2N+4) +-!._(b-N-2)(j+l), 
4 2 

Qi+l(j)= - m C + ~(j+ 1), 
4 2 

Q?l(j)= - '!!!:_c + l..(c+2)U+ 1), 
4 2 

QJ-l(j)= - m c+l..(b+N+2)(j+l). 
4 2 
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First consider Ktl (resp. KJ~l). Under the replacement (j, k)-(k, j) 
(resp. (j,k)-(k-1,j+l)) in (4.1.11), the sums (1:-I;) exchange the 
sign while the summands are invariant due to the property 

Q,l:':';1i(o, b)+Qi-l(k)=QJ".'k-1i(o, b)+Qtl(j), 

Qi':!:.i,V+iCO, b)+QJ-l(k-l)=Qtk-ll(O, b)+Qtl(j). 

Thus we have Ktl=Ktl=O. Next we observe from (4.1.12a) that 

Ki+i+Kti 

(4.1.13) 

_ ._.... ( l)J-k Q<.m-1lco,bi+Q<+lui [m -I][m -1] 1 - - L.J - q J,k 1 --

k=(j~~-1)/2 j k (q)m-l 

(-l)k-l (q<s-µ-mJ/2) [m-1] 
( ) m-1 k 
q m-1 

X q_m•/B-{((µ-l)N-c +2)/4)m+ (µ•+ (2b-4)µ+3)/B, 

Here we have used the formula ([9], Theorem 3.3) 

(4.1.14) I: (-z)iqt<t-1i12[ ~] =(z)M. 
iEZ l 

In general the product (qP)m-t vanishes for p=O, -1, · · ·, -(m-2). In 
view of this and (4.1.8, 13) it turns out that Ki+i+KJ-l=O. Finally we 
combine K~ + i and K? i. Simplifying the sum of Gaussian polynomials by 
the formula 



64 E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado 

we have 

K~+l+Kf+l 

( 4.1.16) =( I: I: )(-l)i-kqQY:tl)(O,b)+Ql+>(J) 
j:?;(m+µ-l)/2 j<;,(m+µ-3)/2 
k<;,(m+µ-1)/2 k:?;(m+µ+l)/2 

x[m-1][ m] 1 . 
k j+ 1 (q)m-1 

Replace (j, k) in (4.1.16) by (k-1, j) and recall the assumption 1,1= µ+ I. 
Then the resulting expression coincides with J;;,_Nl(b, c) (4.1.7) because of 
the identity 

QJ,''.'.;j(0, b)+Q~+)(k-l)=Q}~(b, c). D 

We call J;;,_N)(b-a, c-a) the fundamental solution of the equation 
(4.1.1). It follows from (4.1.1) (though not obvious in (4.1.7)) that the 
function J;;,_N)(b, c) or .jqf;;,_N)(b, c) is a polynomial in q with positive coef
ficients. 

The fundamental solution satisfies an extra set of linear difference 
equations at equal m (Lemma 4.1.2 below). This is crucial when we 
consider the linear difference equation in the bounded domain of (b, c) 
with the restriction (4.0.2) (see section 4.4.) 

Lemma 4.1.2 ((3.6) of Part I). For 1 <b<N and m> 1, 

(4.1.17) I: q<a+md)l4j;;,_t:_li(a+d, a-b)=(a---+-a). 
d=b-N,b-N+2,·••,N-b 

Proof There are two cases to consider: 

(4.l.18a) (i) (a+b-N, a-b+N)cRP (p=m mod 2), 

(4.l.18b) (ii) (a+b-N, a-b+N)cRp-t U Rµ+i (p± 1 =m mod 2). 

We prove here the case (i). The case (ii) is similar. From (4.l.18a) we 
see (a+d, a- b) E Rp,p-t, (a+d, a+ b) E Rp,p+i· Substitute (4.1.7) into 
(4.1.17). After performing the d-summations therein the formula (4.1.10) 
leads us to the following expressions. 

(4.1.19) the l.h.s. of (4.l.17)=(A( +, +)+A(+, -))/(q),,._ 1, 

the r.h.s. of (4.l.17)=(A(-, + )+A(-, -))/(q),n_ 1, 
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where A(e1, e2) is given by (e1, e2 = ± 1) 

(4.1.20) 

I:: ) 
k;e:(m+p)/2 

J:,;;(m+p-3-11)/2 

X [m-1][ m-1 ]( l)i-k 
k j+(l+e 1)/2 

(m-1) X q<1 j,k (a, a- •1b) +sia/4+ •1•,(b-N-1+ •o)(J+1+ (<1-l)m/2)/Z
0 
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It turns out that A(±, - ) = 0. This can be seen from the invariance of 
the summand in ( 4.1.20) under the transformation (j, k)-+ (k -(1 ± 1 )/2, 
j+(l + 1)/2). Now we calculate the difference of the remaining terms in 
(4.1.19). 

A(+, +)-A(-,+) 

=-( I:: _ I:: )(-l)i-k[m~l][m-1] 
J:e:(m+p)/2 j,;;(m+p-2)/2 J k 

k:S:(m+p-2)/2 k;e:(m+p)/2 

X (q<1)1'!::i..1l<a, a-b) +a/H{l/Z){b-N)J +q<1;".r1> (a, a+b)-a/4.-(1/Z){N-b)(m-j-1)). 

Again, this vanishes identically thanks to the invariance of the summand 
under the change (j, k)-+(k, j). D 

4.2. Various representations for f~N>(b, b+N) 

Here we establish various representations for the function 

(4.2.la) 

(4.2.lb) mN-b 
V=---

2 

other than the one obtained directly from ( 4.1. 7). They are utilized in 
section 5 in order to examine the m-+oo behavior of the 1D configuration 
sum for regime II (see section 3.4 of Part I). Note from (4.1.3) that 
j~Nl(v)=0 unless 0<v<mN. 

First we rewrite the double sum ( 4.1. 7) into a single sum. 

Theorem 4.2.1 ((3.27) of Part I). Form> 1, N> 1 and 0<v<mN, 

j~N>(v)= I:: (- l)i[v+m-(N + l)j- 1] [m ~ 1 ]q" 
JEZ m-1 j 

(4,2.2a) + I:; (- l)f[v+m-(N+ l)j-1] [m. -1 ]q"-(N+Z)J+v+m, 
JEZ m-1 J-1 

(4.2.2b) fJJJ=j(j-1)/2+.i(mN-v+ 1). 
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Proof Set [v/N]= . .t We have 

(4.2.3a) O<l:s;;m, 

(4.2.3b) (b, b+N)=(mN-2v, (m+ l)N-2v) e R"'"' 

µ=m-21-1, IJ=m-21. 

Thus the formula (4.1.7) with (j, k, q) replaced by (k-1, m-j, q- 1) yields 

(4.2.4) 

X q (j- k)(j-k + 1)/2- (j- m/2)(k- (m +l)/2)N + ((b +N)/2)(j- m/2)- (b/2)(k- (m+l)/2). 

We rewrite the sum 

( :I: 
j:2'.;l+l 

k;?::m-A+l 

- :I: ) 
j:'{.l 

k::;;m-A 

in ( 4.2.4) as 

( :I: 
jEZ 

k~m-A+l 

- :I:). 
j:'{,l 
kEZ 

Applying ( 4.1.14) for the sum over j e Z or k e Z, we get 

(4.2.5) 

(4.2.6) 

f :t>(v)= :I: (- l)l<q(k/2)(k-l)+(k-l)v - m 
A [m l](ql-v-(N+l)k+(m+l)N) 

kzm-Hl k -1 (q)m-1 

+ :I; (- })Jq(J/2)(j-l)+j(mN-v) . ,n-1 [m] (ql+v-<N+l)J) 

j:5,l ] (q)m-1 

=_:I; (- 1)1qW2)(J-1)+J(mN-v) 71:- q m-1 [ 
1] ( l+v-(N+l)J) 

jsl J-1 (q)m-1 

X (1-qv+m-(N+l)J)+ :I; (- })JqU/2)(}-l)+j(mN-v) 

j:5,l 

x(qJ[m-:-1]+[71:-l])(ql+v-(N+l)J)m-1 • 

J J - I (q),n-1 

We replaced k by m+ 1-j in (4.2.5) and used the relation 

Notice that among the four terms in (4.2.6) the first and the last cancel 
each other. By virtue of (4.2.3) we can extend the sum :I:Jsi to :I: 1ez in 
the remaining terms and rewrite 
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(ql+v-(N+l)i)m-l 

(q)m-1 

Thus we arrive at ( 4.2.2). 

[ v+m-(N+l)j-1] as . 
m-1 

Theorem 4.2.2. For m>O and N?,0, 

(4.2.7) 

67 

0 

Proof Since the case mN = 0 is trivial we assume mN> 1. Consider 
the first term in (4.2.2a) 

(4.2.8) I; (- l)fq(j/2)(}-l)+J(mN-v+I) ~ q m-1. [ m 1] ( l+v-(N+l)J) 

jEZ ] (q)m-1 

Expand the product (q1+v-<N+lli)m_1 by (4.1.14) and then take thej-sum by 
the same formula. The expression (4.2.8) is cast into the form with v 
replaced by mN -v. The second term can be handled similarly. O 

The following is a slight modification of ( 4.2.2). 

Lemma 4.2.3. Form> 1 and N> 1, 
]Jtl(v)= I; (- l)i[v+m-(N+ l!j] [~]q"' 

jEZ v-(N+l)J J 

_ I; (- l)i[v+m-(N+ l_)j-1] [~]q"'+m-J, 
iEZ v-(N+l)J-1 J 

(4.2.9) 

where f!lJ has been defined in ( 4.2.2b ). 

Proof We write down (4.2.2a) slightly modifying the second term 

]JNl(v)= I; (- IY[v+m-(N + 1)!-1] [m ~ l]q"' 
JEZ v-(N+l)J J 

(4.2.10) 
+ I; (- I)i[v+m-(N+ 1)!-1] [~ - I]q"'+m-J 

JEZ v-(N+I)J 1-l 

_ I; (- l)i[v+m-(N + 1)~ -1] [~ - l]q"'+m-J 
JEZ v-(N+ I)J J-1 

X (1-qv-(N+l)j). 

In (4.2.10) simplify the first two terms via the identity 

(4.2.11) 
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and rewrite the last term using 

(4.2.12) 

[

V. +m-(N+l)~-1][~-1](1-qv-CN+llJ) 
v-(N+l)J J-1 

= [v+m-(N+~)j-1] [~](I-qi). 
v-(N+l)J-1 J 

We have thus 

_ I; (- l)i[v+m-(N + ~)j-1] [~](q'+m-J _ q'+m). 
1ez v-(N+l)J-1 J 

Applying the formula (4.2.11) (with (m,j) replaced by (v+m-(N+l)j, 
v-(N + l)j)) for the first and the third terms in (4.2.13) we obtain (4.2.9). 

D 

The JJN>(v) is also characterized by a recurrence relation as given 
below. It is necessary to change both m and N therein. 

Lemma 4.2.4. For m>O and N>l, 

(4.2.14) JJNl(v)= I; [~]qt<t+CN-1Jm-•lj,,;.1!_;1l(v-Ni). 
0:S:i:S:m l 

Proof We show that each term in (4.2.9) satisfies the equation 
(4.2.14). Explicitly, we are to show 

I: (- I)J[v+m-(N + l?j-- o] [~]qU/2)(j-1)+j(mN-v+1)+6m 
1ez v-(N+l)J-o 1 

= I: (- l?[":][v+m-i_-(i+k)N-o]·[m-i] 
o:s:i:s:m z v-(z+k)N-o k 

keZ 

(4.2.15) 

X q (k/2)(k-1) +(i +k)(m(N-l)+i-v) +k +6(m-i-k), 

where o = 0 or 1 corresponding to the first and the second term in ( 4.2.9), 
respectively. In fact, eachj-summand in the l.h.s. is equal to the sum in 
the r.h.s. with the restriction i+k=j: 

(4.2.16) 

[v+m-(N + l)j] [m] 
v-(N+l)j j 

= I; (_.it[":] [v+m-!-jN][~-!]q<tt2)(t-1)-Jm. 
0:S:i.:S:j l V-JN J-1 

keZ 
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Let us prove (4.2.16). Noting the identity [7][1_.:::-/] = [j] [{], we 

cancel the factor [j]. Replacing v by v+(N+l)j, we get (m>O, v>O, 

j?_O) 

(4.2.17) [v+m] = I; ( - lY[ ~] [v+m+~-i]q<ifZJ(i-lJ-jm. 
m o,;,i,;,j 1 m-1 

Multiply (4.2.17) by zm and sum it over m>O. On account of the for
mula (4.1.14) and 

(4.2.18) 1 I:[M+n-l]n 
(z)M = n;?;O n z , 

([9], Theorem 3.3) ( 4.2.17) is equivalent to the obvious identity 

(4.2.19) 1 
(z)v+l 

0 

The recurrence relation leads us to an expression of j,JNl(v) in terms 

of the q-multinomial coefficient [ m ]· It is defined by [9] 
Xo,. • ·, XN 

L0, • ~' xJ=(q)m/Jl (q)xJ 

if x 0+ · · · +xN=m and x 1>0 for allj, 

= 0 otherwise. 

Theorem 4.2.5 ((3.29) of Part I). For m>O and N> 1, 

(4.2.20) f~(N)( )- "' [ m ] I; (k-j-1):CJ:Ck 
m V - L.., q J<Tc , 

Xo, • • •, XN 

where the outer sum is taken over all non-negative integers x0, • • ·, xN such 
that 

(4.2.2la) 

(4.2.2lb) 

Proof Repeated use of Lemma 4.2.4 yields 
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(4.2.22a) 

N 

(4.2.22b) m= m- I; xj, 
j-2 

where the sum in (4.2.22a) extends over non-negative integers x1, ... , xN 
satisfying x1 + · · · + x N < m. Because of ( 4.1.4) the sum can be restricted 
to (4.2.21b). Eliminating min (4.2.22c) by introducing an extra variable 
x0 as in (4.2.21a), we have &t=l:;J<k(k-j-l)x 1xk. The product of 
the Gaussian polynomials in (4.2.22a) is nothing but the q-multinomial 

coefficient [ m ] . D 
Xo,. • ·, XN 

Remark. For N= I, Theorem 4.2.5 together with (4.1.3) and (4.2.1) 
provides us with a simple expression (cf. (2.3.6) of [5]) 

(4.2.23) /"(ll(b c· q)=qbc/4[ Tn ] 
Jm ' ' (m+b)/2 

(c=b± 1). 

Although the multinomial expression (4.2.20) looks neat, it is not 
quite adequate for examining the large m behavior of H<,:l(/3) defined in 
section 5 (see (5.2.6)). The rest of this section is devoted to introducing 
h<,:l(w) and its limit h~l(w)=limm_ 00 h<,:l(w) and deriving various repre
sentations for them (see (4.2.28) and (4.2.41)). 

Lemma 4.2.6. Form> I and N> I, 

(4.2.24b) 

(4.2.24c) 
N 

S1= l:;jyJ 
j-0 
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(4.2.24d) 

The sum in (4.2.24a) extends over all non-negative integers Yo, · · ·, YN· 

Proof Using (4.2.11) we rewrite the r.h.s. of (4.2.24a) as 

71 

I: ( I: ( - w·[ v+m-2so-S1 + YN-1] q!l+YN 
so;,,0 Yo+···+YN=So V-Si-Yo (q)yo" • ·(q)YN 

(4.2.25) _ I; (-l)Y•[v+m-2s 0 -s1+YN-l~1 
Yo+···+YN=8o V-Si-Yo-1 

We compare the first and the second terms in the sum with those in (4.2.2) 
through the identification of s0 withj. A little calculation shows that it is 
sufficient to show 

(4.2.26a) 

(4.2.26b) 

I; ( _ l)Y,+···+YN[ v+m-2so-S1 + YN-1] 
vo+··· +YK=•o V-Si-Yo 

q; 
X----

(q)v. • • • (q)YN 

[ v+m-(N+l)s 0 -l ] 
= v-(N+l)s 0,m-s 0 -l,s 0 ' 

- IN 2 ( l)N £2=-I; Yi+ I; (j-k + l)YiA+ v+- I; Y1 2 j=l l,:; j<k,:;N 2 j=l 

-so(tl u+ l)y;). 

Here we have eliminated Yo by (4.2.24b) and written the product of Gaus
sian polynomials in (4.2.2a) as the q-trinomial coefficient. We are going 
to show (4.2.26) by an induction with respect to v and m(> 1). Let us 
denote the identity (4.2.26) (to be proved) by [v, m, s0]. Clearly [O, 1, s0] 

holds as an equality Ooso=oo,.; so is [v, m, So] for v<0 as 0=0. Assume 
[v, m, So] for -oo <v:::;;v, l<n1:::;;m, v+m<v+m, -oo <so<oo. We 
split the both sides of [v, m, s0] into three terms using the standard formulas 
for the q-multinomial: 
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(4.2.27a) 
+ [ C - 1 ] c, + C2 

C1, C2, C3 - 1 q ' 

[ D ]=[D- l]+[D-l]qD-Di-YN 
D1 D1 D1-I 

-[ D-1 ]qD-D,- YN(l -qYN) 
D 1 -l 

(4.2.27b) 

where C=v+m-(N+l)s 0 -l, C1 =v-(N+l)s 0, C2 =m-s 0 -l, C3 =S 0, 

D=v+m-2s 0 -s 1+yN-l and D1=v-s 1-y 0• The contributions to 
(4.2.26a) from the first, the second and the third terms in (4.2.27a) are 
respectively equal to those from (4.2.27b) due to [v, m-1, s0], [v-1, m, s0] 

and[v-N-l,m-l,s 0 -l]. Thuswehaveproved[v,m,s 0]. D 

Theorem 4.2.7. Form> 1 and N> 1, 

(4.2.28a) 

(4.2.28b) 

(4.2.28c) 

/)tl(v)= I; (- I)wq-w<w-1)i2+wm[Nm-2w]h;;!)(w), 
wEZ V-W 

N-1 

N-1 

So= I; Y;, 
J=l 

(4.2.28d) ?l=- I;jy}-2 I; kY;Yk+O+mN-2(w-s 1))s0 
J=l I5.J<k5.N-I 

+(w-m-(s 1 + 1)/2)s1, 

if N= 1, 

(4.2.28e) =qw(w-l)I;(-l)NJ~---- ---~--, 
q N2j2/2-(N+l)wJ ( qNJ/2 q-Nj/2+w) 

j (q)w-NJ (q)j (q)J-1 

otherwise. 

Here the sum I;' in (4.2.28b) is taken over non-negative integers Yi, ... , 
YN-i under the restriction O<s 1<w. The j-sum in (4.2.28e) extends over 
O<j<[w/N] or l<j<[w/N]for the.first or second term, respectively. 

Proof. The case N = I is clear from ( 4.2.1) and ( 4.2.23) (See also 
(4.2.33) below.) For N>2 we reduce (4.2.28) to (4.2.24). Expanding 

[Nm-lw] using the formula (4.1.14), we get 
v-w 
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[Nm-2w] =( Nm-v-w+l) /( ) q v-w q v-w 
v-w 

(4.2.29) 
= .Z:: (- l)Y•qYo(Yo-1)/2+(Nm-v-w+l)Yo 1 

y,;;,o (q)y.(q)v-w-yo 

Combine the factor l/(q)v-w-vo in (4.2.29) with l/(q)w-si-NJ coming from 
h;!l(w-s 1) as 

(4.2.30) 1 _ 1 [ v--si-Y 0 -Nj] 
(q)v-w-yo(q)w-si-Nj - (q)v-s 1 -Yo-NJ W-Si-Nj . 

After replacing w by w + s1 + Nj, we perform the w-summation by applying 
(4.1.14). Then we have 

jJNl(v)= .z:: (- l)Yo q"'' 
(4.2.31a) (q)y.(q)v, · · ·(q)yN_,(q)v-si-vo-NJ 

(( m-2so-vo-i) ( m-2so-Yo-j+l) ) X q v-si-Yo-NJ _ q v-si-vo-NJ • 
(q)j (q)j-1 

(4.2.31b) ~'=~\w=o+YoCYo- l)/2+(Nm-v+ l)y 0 

+si(s 1/2+m-2s 0 -y 0 + 1/2)- Nj(j-m+2s 0 + y 0). 

Here the sum I:: in (4.2.31a) extends over all non-negative integers j, Yo, 
Yi, ... , YN-t· Setting 

(4.2.32) 

we obtain the expression identical with (4.2.24). D 

Remark. From (4.2.28b-e) the following formula holds: 

(4.2.33) h;:l(O)=l. 

The h:fl(w) is characterized by the following recurrence relation along 
with the initial condition h~l(w)=owo· 

Lemma 4.2.8. For N> 2, 

(4.2.32) 
h;!l(w)= I:: (-lYk q-(N'/2-2N+l)k2+((N-3)w-N/2+1)k 

k;;eO (q)k 

X h;!-n(w-(N- I)k). 

Proof Substitute (4.2.28e) into the r.h.s. of (4.2.34). After replacing 
j by j- k, we combine the products as 
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(4.2.35) 1 1 [j-o] 
(qMq)1-k-6 = (q) 1_a k ' 

where o=O or I corresponding to the first and the second terms in 
(4.2.28e). Performing the k-summations in the resulting expression by 
applying the formula (4.1.14), we get 

(the r.h.s. fo (4.2.34)) 
q (N- l)•J•/2-Nw j 

=qw<w-1) I; {- l)CN-l)J ____ _ 

j";?.0 (q)w-(N-l)j 

(4.236) 
X ( (q<N-l)J-w +l)j q<N-l)J/2 (q<N-l)J-w +1)1 _ 1 q-<N-l)J/2+w) 

(q), (q)j-1 
q NljS/2-(N+l)wj 

=qw(w-1) I; ( _ J)NJ---C-___ _ 
j";?.O (q)w-NJ 

( 
(I-qw-NJ)qNJ/2 q-(3N/2-l)J+2w ) 

X -'---"-----'---=-----+--"------ . 
(q}t<I-qw-(N-l)J) (q) 1 _1(I-qw-(N-l)J) 

where we used the formulas such as 

(q)w-(N-l)J=(q)w-NiI -qw-.VJ+I) • • • (I -c-qw-(N-1)1), 

(q<N-l)j-w +1)1=(- I)iq(N-1/2)J•-(w-1/2)J(qw-NJ)1, etc. 

The first and the secorid terms in ( 4.2.36) decompose into. two terms 

(4.2.37a) (1-qw-NJ)qNJ/2=(1-qw-(iv-1)1)qNJ/2_(1-q1)q-NJ/2+w, 

(4.2.37b) q-(3N/2-l)J+2w= -(l -qw-(N-1)1)q-NJ/2+w +q-NJ/2+w, 

where the first terms give rise to h~>(w) while the second terms cancel each 
other. D 

Similarly as Lemma 4.2.4 leads to Theorem 4.2.5, Lemma 4.2.8 leads ' 
to the following. 

Lemma 4.2.9. For N> I, 

(4.2.38a) 
E qTN(W) 

h~)(W)= I;' (- l)W+l:,;;j:,;;N-1 XJ_----'~---

(q),,1 • • • (q),,N-1 

(4.2.38b) 

!T N(w)= - I; (j-.!.)x;-2 I; jx 1xk 
1:S:J:S:N-1 2 1:S:J<k!:.N-1 

1 1 +- I; x1 +-w(w-I), 
2 1:S:j:S:N-1 2 
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where the sum I:' in (4.2.38a) is taken over non-negative integers x1, ••• , 

xN-i under the restriction 

(4.2.38c) 

Proof The case N= I is clearly true. (See (4.2.28e).) For N>2, 
we are going to show that the r.h.s. of (4.2.38a) satisfies the recurrence 
relation (4.2.34). Let us denote xN-t by i. Direct calculation shows that 

(4.2.39a) 

(4.2.39b) 

.:T N(w)=.:T N-iCw-(N- I)i)-(N 2/2-2N+ l)i 2 

+((N-3)w-N/2+ l)i, 

Thus the r.h.s. of (4.2.38a) can be written as 

(4.2.40a) 

I: (- I)Ni q-(N2/2-2N+l)i2+((N-3)w-N/2+1)i 

i;?:0 (q)i 
I; X q9'N-1(W-(N-l)i) XI:" (- l)w-(N-l)i+15i5N-2 1 _____ ~ 

(q)x1 · · ·(q)xN-2 

Here the sum I:" is taken over non-negative integers x1, • • ·, xN-z such 
that 

(4.2.40b) I: jX1=W-(N-I)i. 
l:,j:,N-2 

This is nothing but the r.h.s. of (4.2.38a) with N and w replaced by N- I 
and w-(N- I)i, respectively. Thus we conclude that the r.h.s. of (4.2.38a) 
satisfies (4.2.34). D 

Lemma 4.2.9 gives another expression for h;;[l(w) as given below. It 
is remarkable that as a consequence we have so many different expressions 
for one and the same quantity jJNl(v). 

Theorem 4.2.10. For N> I, 

(4.2.41a) X [ m ] [2m-2xN-i] ... 
XN-1 XN-2 
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Here .r N(w) is given by (4.2.38b). The sum I:' is taken over non-negative 
integers x 1, • • ·, xN_, subject to 

(4.2.4lb) I: jXJ=W. 
1,;.J,;.N-l 

Proof Expand all the Gaussian polynomials m a way like (see 
(4.1.14)) 

(4.2.42) 
qYN-1(YN-1-l)/2+YN-l(m- XN-1 +I) 

= I: (- l)YN-1 . , etc. 
YN-1 (q)YN-l(q)xN_,-YN-l 

Then the r.h.s. of (4.2.41a) is cast into the form 

(4.2.43) 

!: YJ((YJ+l)/2+m(N-j)) I: I:' q1,;.J,;.N-l 
O,;.s,,;.w (q)Yl .• ·(q)YN-l 

X ...._-,,, ( l)w+ . !: (XJ-YJ) L..i - 1,;.J,;.N-1 

9"N(W)-l,;.j,rN-l XJYr\,;.J<t,;.N-1 (k-j)XkYJ 
x~q~-----------

(qL,-y,' • ·(q)xN_,-YN-l 

where the sum I:' (resp. I:") is taken over non-negative integers Yi, · · ·, 
YN-i (resp. x,, · · ·, xN_1) satisfying I:i,;.J,;.N-ijJJ=s, (resp. I:i,;.J,;.N-1 jxJ 
=w). Ifwe replace xJ by xJ+YJ, the condition I:i,;.JsN-ijXJ=w changes 
to 

(4.2.44) 

After a little calculation (4.2.43) turns out to be written as follows 

(4.2.45) 
_ ;E X q.rN(W-81) XI:"' (-l)w-s,+1,;.j,;N-l J _____ _ 

(q),,, · • •(q)xN-l 

Here the sum I:' is taken in the same manner as ( 4.2.43) and the sum I:" 
extends over all non-negative integers x,, ... , x N _, with the condition 
(4.2.44). The power f!ll is given by (4.2.28c-d). Now we apply Lemma 
4.2.9 to identify the sum I:"' in (4.2.45) with h;!>(w-s 1). Comparing the 
resulting expression with (4.2.28b-d) we arrive at (4.2.41). D 

Remark. For N=2, (4.2.41) yields the simple formula 
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(4.2.46) h~'(w)= [:J 
4.3. Fundamental solution for the modified linear difference equation 

In this paragraph we assume that L>2N+3. Let H(n, a, b, c) denote 
the function H(a, b, c) (3.1.12) with n regarded as an integer parameter 
(not necessarily [L/2]). Note that H(n, a, b, c) now acquires the trans
lational invariance 

(4.3.1) H(n, a, b, c)=H(n+ 1, a+ 1, b+ 1, c+ I). 

In this paragraph we study the function g~>(n; b, c) ((b, c): weakly ad
missible, m>O, N~ 1) characterized by the following linear difference 
equation. 

(4.3.2a) 

(4.3.2b) 

g~>(n; b, c)= E' g;._N_li(n; d, b)qmH(n,a,b,c>, 
a 

Here the sum E' is taken over d such that the pair (d, b) is weakly admis
sible. We set g~'(n; b, c)=O if (b, c) is not weakly admissible. 

We recall that the H(a, b, c) is akin to the negative of la-cl/4 em
ployed in the linear difference equation ( 4.1.1 ). The effect of this modifica
tion is fully absorbed by patchwork construction of g(n; b, c) (see (4.3.12)). 
By the definition (4.3.2) together with the symmetries of H(n, a, b, c) 
(3.1.13), (4.3.1) the following formulas are valid. 

(4.3.3) 

(4.3.4) 

g~>(n; b, c)= g~'(-n-1; -b, -c) for m>O, 

g~>(n; b, c)=O unless lbi<mN, lcl~(m+ l)N, 

and b=.mNmod 2. 

In order to describe g~>(n; b, c) we prepare some notations. For a 
weakly admissible pair of integers (b, c) define the four regions S1(n), · · ·, 
Sin) as follows. 

(4.3.5) 

We set 

S1(n)={(b, c) I b+c<2n+ 1-N}, 

Sln)={(b, c)lb+c>2n+l-N, b<n+l/2}, 

Sa(n)={(b, c)lb+c<2n+l+N, b>n+l/2}, 

Sln)={(b, c)lb+c>2n+l+N}. 
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(4.3.6) K=[(2n+ 1)/2N], 

and further subdivide the regions S2 , 3(n). 

(4.3.7) 

S~±l(n)={(b, c) I (b, c) e Sln), be R<±i}, if m+K is even, 

={(b, c) I (b, c) e Sin), b~2n+ 1-(K+l)N}, otherwise. 

S?l(n)={(b, c) I (b, c) e Ss(n), b~2n+ 1-KN}, if m+K is even, 

={(b, c) I (b, c) E Ss(n), b E R01 ., 1}. otherwise. 

These regions are schematically shown in Fig. 4.1. 

Fig. 4. 1 a Regions of (b, c) when m+.t is even. S1(n) and S3(n) are the in
finite domains bounded by the bold lines. 

-1 

Fig. 4. 1 b The case m+.t is odd. 

The following relations are readily derivable from (4.3.5-7) 

(4.3.8a) 

(4.3.8b) 

(b, c) e S1(n)+----),(-b, -c) e Sl-n-1), 

(b, c) e S~±l(n)+----),(-b, -c) e S~±l(-n-1). 
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For a weakly admissible pair (b, c) e R,.,. with µ, ,.,, satisfying (4.1.6) we 
define a functionf}!'(b, c; µ,,.,,)by 

(q)m_iJ~N>(b, c; µ, ,.,,) 
(4.3.9a) ( I; _ I; )(- I)i+kqPJ';'i<b, e>[~-1] [m], 

j;;:l+(m+,)/2 js;(m+•)/2 J -1 k 
k;;:(m-µ+l)/2 ks;(m-µ-1)/2 

Ptl(b, c)= -Lb+.!!...c+(!!!..j+ m+l k-jk)N 
' 2 2 2 2 

(4.3.9b) 
+_!_(j-k)(j-k-1), if m> 1, 

2 

(4.3.9c) 

The J ~N> satisfies the following linear difference equation. 

Lemma4.3.1. Form>l, 

(4.3.10) J;:'(b, c; µ,,.,,)=I;' J;:l 1(d, b: A, µ)qm(min(d,e)-b+N)/2, 
d 

where the sum I;' is taken over d such that the pair (d, b) is weakly admis
sible and A is specified by de R,, l=m mod 2 (see (4. 1.5-8)). 

Proof Comparing (4.1.7) and (4.3.9) it is straightforward to see 
(m>O) 

(4.3.11) J;:l(b, c; µ, l,l)=f;:l(b, c; q-1)qNm2/4-(m/4)(b-e-N)-b/4_ 

We substitute this into (4.3.10). The resulting equation for f~N'(b, c; q- 1) 

turns out to be equal to (4.1.la) with q replaced by q- 1 (note that 
min(d, c)=(d+c-\d-cl)/2). Thus we have (4.3.10) by Theorem 4.1.l. 

D 

Now we construct g;:'(n; b, c) fromJ;:> by patchwork. 

Theorem 4.3.2 ((3.14) of Part I). For all weakly admissible pairs (b, c) 
e Rµ,, and integers m, N> 1, 

(4.3.12a) 

(4.3.12b) 

(4.3.12c) 

-(N)(b ) =f m 'c;µ,,.,,, 

=f;:'(-b, -c; -µ, -,.,,), if (b, C) E S.(n) n Rµ,,, 

=f;:'(b, 2n-b-N; K±(l-p), K+p), if(b, c) e S~±>(n), 



80 

(4.3.12d) 

E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado 

=J;;[>(-b, -2n-2+b-N; -ii:-l±p, -ii:-l+(p-1)), 

if (b, c) e S~±>(n), 

where p=O or 1 according as m+ii: is even or odd, respectively. 

Proof The properties (4.3.3) and (4.3.4) can be directly checked by 
using (4.1.3) and (4.3.8, 11, 12). In view of (4.3.3, 8) we restrict ourselves 
to the case (b, c) e S1(n) or S?>(n). If (b, c) e Si(n) and b<n-N+l/2, 
then for any d such that (d, b) is weakly admissible, 

H(n, d, b, c)=(min (d, c)-b+N)/2 and {d, b) e Si(n). 

By virtue of (4.3.12a) equation (4.3.2a) in this case reduces to (4.3.10), 
which has been already proved. We list up the non-trivial cases (see Fig. 
4.1). 

If m+ii: is odd: 

(4.3.13a) 

(4.3.13b) 

If m+ii: is even: 

(4.3.13c) 

(4.3.13d) 

(4.3.12e) 

(b, c) e Si(n) n R,,a1, 

e S~±>(n). 

(b, c) e S1(n) n R,-1,,-1±1, 

E S1(n) n RH!,., 

e Si±>(n). 

We prove here the case (4.3.13a). The other cases are similar. Let us 
write down the r.h.s. of (4.3.2a) taking (4.3.12) and (4.3.13a) into account. 

(4.3.14) 

I;' J;,,_N2i(d, b; ii:-1, ii:)qm((mln(d.,e)-b+N)/2) 
b-NSd.$,N 

+ I;' J;/[2i(d, b; ii:+ 1, ii:)qm((mln(d., c)-b+ZV)/2) 
,NSd.<2n+l-N-b 

+ I;' J;;[2i(d, 2n-d-N; ii:+ 1, ii:)qm((c-b+N)/2) 
2n+l-N-b<d<n+l/2 

+ I;' J;;[2i(-d, -2n-2+d-N; -ii:-1, -ii:-2) 
n+lf2<dSb+N 

X qm((c-b +N)/2). 

Here din the sums I;' runs over the series d=b-N, b-N+2, · · ·, b+N 
divided into the four regions as above. The term d=ii:N is contained in 
the first (resp. second) sum if (d, b) e R,_1,. (resp. R-+1,,). On the other 
hand by using Lemma 4.3.1 the l.h.s. of (4.3.2a) is expressed as 



(4.3.15) 
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~I J',;!]i(d, b; IC-1, 1C)qm((min (d,c)-b+N)/2) 
b-Nsds,N 

+ ~I J',;!]i(d, b; IC+l, IC)qm((min(d,c)-b+N)/2) 
cNsd<2n+l-N-b 

+ ~I J',;!2i(d, b; IC+ 1, IC)qm((c-b+N)Z), 
2n+l-N-b<dsb +N 
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where the d-sum is taken in the same manner as (4.3.14). Comparing 
(4.3.14) with (4.3.15) we are led to the following equality to show 

(4.3.16) T1=T 2 +Ta, 

(4.3.17a) T1= ~' J',;!2i(d,b;1C+l,1C), 
2n+2-N-bsdsb+N 

(4.3.17b) T2 = ~' J',;!2i(d, 2n-d-N; IC+ 1, IC), 
2n+2-N-bsdsn 

(4.3.17c) T3 = ~, J',;!2i(-d, -2n-2+d-N; -1C-l, -IC-2), 
il+2sd:O:b+N 

with dtaking the values in {b-N, b-N +2, .. ·, b+N} and ii=n or n-1 
according as b+N=-n or n-1 mod 2. Substituting (4.3.9) into (4.3.17) 
and performing the d-summations, we get 

(4.3.18) 

(4.3.19a) 

(4.3.19b) 

(4.3.19c) 

T?J=±( ~ 
j";;,:(m+•+l)/2 
k";;,:(m-,-1)/2 

i= 1, 2, 3, 

~ )(-1)1+k 
j;S;(m+•-1)/2 
k:O:(m-,-3)/2 

X [m -2][m-1] qP;(±: , 
at - 1 /3; 1 - q ' 

(a1, ll'.z, aa)=(j,j, k) (/31, /32, /3s)=(k, k,j), 

(r1, r2, ra)=(j,j+k,j+k), 

Pi(+ )=PY1-l)(b+N, b), 

Pi(- )=Pz(- )=PY,,:k-1'(2n-N-b, b), 

Pz( + )=PY,:k-1l(fi, 2n-ii-N), 

Pa(+ )=P;c":j- 1l(-ii-2, ii-2n-N), 

Pa(-)=Pk''.'T 1l(-b-N-2, b-2n). 

First consider n+J and rewrite the factor l . [~ - 1] therein by the 
1-qJ ;-1 

formula (4.1.l0b). Under the replacement (j, k) by (m-1-k, m-1-j) 
the summand in (4.3.19a) for n+) is invariant because of 
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while the sum (I;- I;) changes the sign. Hence we have Tt>=0. Next 
we combine T~+> and T~+>. Using the formula 

(4.3.20) 

we have 

(4.3.21) 

1 +k([":-2][m-l]+[m-2][m---:-l]qJ) 
1-qj J-1 k k-l . J 

= (j++k)= 1 [m---:-1] [m-1 ], 
l-qm-1 J k 

T~+>+ n+>=( I; I; ) (-l)J+.1: 
J~(m+•+l)/2 JS(m+•-1)/2 
lc~(m-,-1)/2 lcS(m-,-3)/2 

X [m-l][m-1] qP 

j k 1-qm-1' 

where P=PY":1c-1>(n, n-N) or Pt 1- 1>(-n-l, -n-1-N) according as 
fi=n or n-1. The same argument exploiting the transformation (j, k)-. 
(m-1-k,m-1-j) leads us to T~+>+n+>=0. Finally we verify the 
equality that holds among the remaining terms in (4.3.16): 

(4.3.22) 

Using the identity 

( l~qJ l-~J+1c)[7_=-{][m;l]= 1-~J+k[m;l][;~{]q', 
the l.h.s. of (4.3.22) becomes 

-( I: I: ) (-l)J+k 

(4,3.23) 
j~(m+•+l)/2 j:,,(m+,-1)/2 
I,;~ (m-,-1)/2 le:,, (m-,-3)/2 

This is identical with T~-l since we have 

(m-1) 
qPJ,lc (2n-2N-b,b) 

1-qJ+k 

PY"J-1>(2n-2-N-b, b)=Pf": 1- 1>(-b-N-2, b-2n). 

This establishes (4.3.16). D 

4.4. lD configuration sums as superpositions of the fundamental solutions 

Here we prove that the 1D configuration sums defined in section 3 
(see (3.1.1), (3.1.10-12)) are expressed as linear superpositions of the 
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fundamental solutions discussed in section 4.1-3. We begin by redefining 
them in terms of linear difference equations and initial conditions. 

Regime III 

(4.4.la) 

(4.4.lb) 

Regime I (L>2N+3) 

(4.4.2a) 

(4.4.2b) 

Y (a b c)- "" y (a d b)qmH(d,b,cJ m , , - .L.J m-1 , , , 
d 

Here the sum I:" is taken over d such that the pair (d, b) is admissible 
and the function H(a, b, c) has been given in (3.1.12). Note that we 
retain the original definition of n: n=[L/2]. We set Xm(a, b, c)= Ym(a, b, c) 
=0 unless (b, c) is admissible and O<a<L. 

Remark. By the definition (4.4.1, 2) the ID configuration sums have 
the following properties. 

(4.4.3a) Xm(a, b, c)=O if a$.b+mN mod 2, 

(4.4.3b) Xm(a, b, c)=Xm(L-a, L-b, L-c), 

(4.4.4a) 

(4.4.4b) 

if a$.b+mN mod 2, 

Ym(a, b, c)= Ym(L-a, L-b, L-c) if Lis odd. 

Theorem 4.4.1 ((3.5) of Part I). For m>O, 

(4.4.5a) Xm(a, b, c)=q-a 14(Fm(a, b, c)-Fm(-a, b, c)), 

(4.4.5b) Fm(a, b, c)= I: q-L,•+<Lf2-aJHaf4J;;:l(b-a-2LJ.., c-a-2LJ..). 
lEZ 

Proof The property (4.4.3a) is clear from (4.4.5) and (4.1.3). So is 
(4.4.3b) by the invariance of the summand in q-af 4Fm(±a, b, c) under the 
change 

( 1+1) (a, b, c, J..)~ L-a, L-b, L-c, -J..+- 2- . 

Since the function X"'(a, b, c) in (4.4.5) is a linear superposition of 
J:,;:l(b, c), it also satisfies the same equation (4.1.1). In order to prove 
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(4.4.la) it is enough to show the cancellation of non-admissible summands 
corresponding to the following values of d (see (4.0.1, 2)). 

d=b-N b-N+2 · · · N-b 
(4.4.6) ' ' ' ' 

d=2L-N-b, 2L-N-b+2, · · ·, b+N, 

if b<N, 

if L-b<N. 

The latter case can be reduced to the former thanks to the symmetry 
(4.4.3b). Thus we are to show that the following is equal to zero for 
l~b<N. 

I: I: 
d=b-N,b-N+2,···,N-b ,ez 

X (q-W+(L/2-a)l+a/4f':21(d-a-2L)., b-a-2L).) 

(4.4.7) 
-q-W+(L/2+a)l-af4f;;!2i(d+a-2L)., b+a-2L).))qmlc-dl/4 

= I: q-L,2-aHmc/4 I: 
iez a 

X(q<a+m-ma)f4f;;!.}_1(d-a-2L)., b-a-2L).) 

-q<-a-m-ma)f 4f;;/2i(d+a+2L)., b+a+2D)). 

Here we have used the fact c>N-b>d (see (4.0.2)) in reducing le-di. 
The vanishing of ( 4.4. 7) follows directly from Lemma 4.1.2. O 

Theorem 4.4.2 ((3.15 of Part I). For m>0, 

(4.4.8a) 

(4.4.8b) 
Gm(a, b, c)= I: q2£l2+(2a-L)l-a/2 

,ez 

Xg;;!l(n-a-2L).; b-a-2L)., c-a-2D). 

Proof We assume that 

(4.4.9) (b, c) e Si(n) or S~±l(n). 

The other cases are similar. As in the proof of Theorem 4.4.1, we show 
the cancellation of the non-admissible summands. From (4.4.9) together 
with n=[L/2] and L~2N+3 we have 

(4.4.I0a) 

(4.4.lOb) 

L-b>N, 

d-b+N (d, b) e S1(n), H(n, d, b, c)= 2 , 

if b~N and de {b-N, b-N+2, · · ·, N-b}. 

In view of (4.4.6) and (4.4.lOa) we assume b~Nwithout loss of generality. 
Then the cancellation identity reads as 
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0= I:: I:: 
d=b-N,b-N+2,•••,N-b iez 

X(q 2W+<2a-L)i-a12g~2i(n-a-2L).; d-a-2L)., b-a-2L).) 

-q 2W+<2a+L>i+a12 g~2i(n+a+2L).; d+a+2L)., b+a+2L).)) 

(4.4.11) X qmH(n,d,b,c) 

= I:; q2Ll•+2al+m(N-b)/2 I:; 
iez d 

X(q(-a- 2Li+md)l2J'.:l.1(d-a-2L)., b-a-2L).; µ_, 1,1_) 

-q(a+ZLi+m<L)/2 J~2i(d+a+2L)., b+a+2L).; µ+, V+)), 

whereµ±, v± are integers defined by (d±(a+2L).), b±(a+2L'J.)) e R,,±,•±· 
We used (4.4.lOb) and (4.3.12a) in deriving (4.4.11). Substitute (4.3.11) 
into (4.4.11) and replace (a+2L)., d) by (a, -d). The resulting sum I::a 
is equal to (the l.h.s.-the r.h.s.) of (4.1.17) with q replaced by q- 1• Thus 
(4.4.11) follows from Lemma 4.1.2. D 

Remark. From (4.4.8) and (4.3.12) Y11, (a, b, c) enjoys the following 
symmetries 

(4.4.12a) 

(4.4.12b) 

(4.4.12c) 

Ym(a, b, c)= Ym(L-a, L-b, L-c), 

= Ym(a, b, 2n-b-N), 

= Ym(a, b, 2n+2-b+N), 

if (b, c) e Sln), 

if (b, c) e Sz(n), 

if (b, c) e Ss{n). 

In this way the evaluation of Ym(a, b, c) for (b, c) e Sin), Sz(n) and Ss{n) 
reduces to that for Si(n), Si(n) and Sin), respectively. 

§ 5. One Dimensional Configuration Sums as Modular Functions 

In this section we identify the limit m-+oo of the 1D configuration 
sums Xm(a, b, c; q±1) and Ym(a, b, c; q±1) (up to some power corrections in 
q) with modular functions appearing in theta function identities. Regime 
I was fully treated in Part I. In what follows we shall deal with the other 
regimes III, IV and II. 

5.1. Regimes m and IV 

The modular functions c5~).1.(,.) (which we called the branching coe
fficients) have been defined in Appendix A of Part I. For our present 
purpose let us quote the expression (A.6) therein. 

Assume j 1, m1 e Z/2,j 2, m2 e Z, 0<ji<mi*0 (i= 1, 2) and m8=m 1+ 
m2 -2>0. We choose j 3 e Z+j 1 with the restriction O<j 3 < m3 for 
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c;;J.i.C,r) and O<j 3 <m 3 for cgJ2is(r). The branching coefficient ctJ,1.(r) 
is given by 

(5.1.la) 

(5.1.lb) 

(5.1.lc) 

(5.1.ld) 

(5.1.le) 

I; ) (summand), 
,;,:t,~-l:2:£'1EZ 

(summand)=(- 1y+c•1+<2l/Z(± l)n1qici-1);2+i2,+20 , 

2 

£"o= I; (mtn~+jtnt), 
i=l 

Here the sum is over integers t, n1, n2 and ei, ez= ± 1 with the restriction 
written as above. The integers e=e(e 1, n1) and r;=r;(e 1, n1) can be chosen 
arbitrarily for fixed e1 and ni- As for further properties of these branching 
coefficients (the modular invariance, the small q behavior etc, . · ·) see 
Appendix A in Part I. The modular functions c1~J.is(r) (j 1, m1 e Z) appear 
as the branching coefficinets in the irreducible decompositions of tensor 
products of Af!l modules. The 1 D configuration sums in regime III 
coincide with the cgJ21.(r): 

Theorem 5.1.1. 

(5.1.2a) Jim Xm(a, b, c)= Jim Xm(a, c, b)=qPc~;d(r), 
m even-oo m odd--->oo 

(5.1.2b) b+c-N r=----, 
2 

_ b-c+N+l 
S----- ' 

2 

(5.1.2c) b-a ) p=---r(r, s, a' 
4 

where c~;d(r) is given by (5.1.1) with 

(5.1.2d) 

Proof Substitute (4.1.7) into (4.4.5) and replace (j, k) by 
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according as mis even or odd, respectively. Using that 

(j fixed, M-+oo, with M=:=j mod 2), we obtain 

(5.1.3a) 

(5.1.3b) 

(5.1.3c) 

cp(q)3 lim Xm(a, b, c)=cp(q) 3 lim Xm(a, c, b) 
m even-+oo m odd-too 

=<p(q)3q-°'14(F(a, b, c)-F(-a; b, c)), 

cp(q)3q-°'''F(±a, b, c) 

= I: ( I: I: ) (-l)i+kqA.(±)(l,j,k), 
,ez J-;,_,±/2 jc,;,,±/2-1 

k,5;,(p±-1)/2 k"2(µ±+1)!2 

A<±l().,j, k)= -£1 2+( ~ +a)i- 1!1 a 

+Q}%(b+a-2Ll, c+a-2Ll), 
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where Q}":;(b, c) is defined in (4.1.7) and the integersµ±, J.1± are determined 
by 

(5.1.3d) (b+a-2Ll, c +a-2Ll) e Rp±,,±, µ±: odd, J.1±: even. 

On the other hand we have from (5.1.1) (note that s~12= 1 for 0<a<L/2) 

cp(q)3qPc~td(r') 
(5.1.4a) =( I: I: )(-lt+(s1+s,)/2qB(•1,ss,t,n1,ns), 

e+1,,;,i,~,,;,21 e-;,_i,~-1-;,_,go, 

+ (L-N)n! + rn1 + (N + 2)n:+sn2, 

where the sum in (5.1.4a) is taken in the same manner as in (5.1.la). We 
have explicitly exhibited the (s1, s2)-dependence of the summands. Note 
that the condition 2 1 e Z is fulfilled because of the restriction a-b=mN 
=O mod 2. As the first step to identify (5.1.4) with (5.1.3), we seek a 
transformation from the variables (t, ni, n2) to ().,j, k) such that the sum
mands in (5.1.4a) are transformed into those in (5.1.3a, b). This is 
achieved in the following way. We have 

(5.1.5) 
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if (t, n1, n2) is chosen as follows: 

(e1, e2) (+, +) (+, -) (-, +) (-, -) 

(5.1.6) t= t(e1, e2) 21+j+k 21+j+k -21-j-k -21-j-k 

n1 =ni(e 1, e2) -A -A -A 
n2=nz(e 1, e2) -1-k l+j -1-k 

From (5.l.4c) and (5.1.6) we deduce 

(5.l.7a) 

(5.l.7b) 

(5.l.7c) 

2'i( +, + )=(a+b)/2+ l-(L+2)1-(N+2)k, 

2'i(+, -)=(a+c-N)/2-(L+2)1-(N+2)j. 

Our next step is to partch up the summation domains in (5.l.4a) so as to 
make them coincide with those in (5.l.3b). To describe the constraints on 
the summation variables in (5.l.4a) we introduce the domain D,(Jc; e1, e2) 

(JC, e1, e2= ± 1) by 

D,(JC; e1, e2)={(j, k) E Z 2 I 1Ct(e1, e2)>1C(~(e1, nh1, e2))+ 1/2), 
(5.1.8) 

JC2\(e1, e2)> 1C(17(e1, niCe1, ez))-1/2)}. 

For example D,( +: +, +) reads as (see (5.1.6, 7)) 

D;(+; +, +)={(j,k) e Z 2 Jj+k>~(+, -1)-21+1, 

(N+2)k-:;;,-17( +, -l)-(L+2)1+(a+b)/2+ l}. 

Using the relation (5.1.5) and the fact (- l) 1+k=(- lY (see (5.1.6)) we 
recombine (5.l.4a) as follows. 

cp(q)3qPcttd(-r) 

=I:( I: I: ) 
,ez (j, k) ED,(+;-,+) UD,(-;-, -) (J, k) e D,(-; -, +) UD,(+;-, -) 

(5.1.9) 

-I;( I: I: ) 
lEZ (j, k) ED,(+;+,+) UD,(-; + ,-) (J, k) e D,(-; + ,+) UD,( +; +,-) 

X (-I)'+kqAH(l,J,k)_ 

Compare this expression with the one given in (5.1.3). They are identical 
if there exist~(+, -1) and r;(+, -A) such that 
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(5.1.lOa) 
~(±;+,±)UD;(+,+,+) 

={(j, k) E Z 2 Jj>lJ±/2, k<(µ± -1)/2}, 

(5.1.lOb) 
D;(+; +, ±)UD.(±, +, +) 

={U, k) e z 2 v <lJ±/2-1, kz(µ± + 1)12}. 

Schematic explanation of the patch-up procedure (5.1.lOa) is given in Fig. 
5.1. 

D,.(-;-,+) 

Die(+;-,-) 

Fig. 5. 1 An example of the patch up procedure of the sum-
mation domains in the (j, k) plane. 

Thus the remaining task is to check (5.1.10). In the following we denote 
~( - , - A.), 'Y)( - , - 4), µ +, lJ + simply by ~, 'Y/, µ, lJ and verify the upper case 
in (5.1.lOa). The other cases are similar. Now that we have 

D;(+;-, +)={(j,k)eZ2i-24-j-k>~+l, 
(5.1.lla) 

(a-c+N)/2+ 1 +(L+2)4+(N+2)jz'Y)}, 

D;(-;-, -)={(j,k)eZ 2 J-24-j-k<~, 
(5.1.llb) 

(a-b)/2+(L+2)4+(N +2)k::;:TJ- l}, 

the condition that assures the existence of 'Y/ is stated as follows. 

(5.1.12) 

(5.1.13a) 

(5.l.13b) 

E1={'Y) e zj{j E Zljz N~l ('Y)-(L+2)A.-a-~+N 

={j E ZJjzlJ/2}}, 

E2={'Y) e zj{k e Zlk< N~2 ('Y)-(L+2)A.-a;b -1)} 
={k E ZJk::;'.:(µ-1)/2}}. 

It is easy to see 
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(5.1.14a) 

(5.1.14b) 
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E1={r] e Z\1Jm1n<7J<1)ma,}, 

1)max=(L+2)i+(a-c+N)/2+ 1 +(N +2) X {v/2 , 
min v/2-1 

Ez=fo e Z\1);,,1n<1J<1J:.iax}, 

1J:,,ax=(L+2)1+(a-b)/2+1 +(N+2)X {(µ+ l)/ 2. 
min (µ-1)/2 

Now (5.1.12) is clear since we have 

1):i,ax -7Jm1n = (c-b + N)/2 +(N +2)(µ-v + 1)/2 + 2> 0, 

1Jmax-1J:X.1n = (b-c+N)/2+(N +2)(v-µ+ 1)/2>0. 0 

Much the same as in regime III, our result in regime IV is stated as 
follows. 

Theorem 5.1.2. For (b, c) e S1(n), 

(5.l.15a) 

(5.1.15b) 

Here 

(5.1.15c) 

lim Ym(a, b, c; q-l)q(m/4)(c-b)+m(m+1)N/4 
m.even-oo 

= lim Ym(a, c, b; q-l)q«m+l)/4)(b-c)+m(m+1)N/4 

m. odd-oo 

if Lis odd, 

meven-oo 

+ Ym(L-a, b, c; q-l))q<mf4)(e-b)+(m(m+1)N)/4 

= lim et12(Ym(a, c, b;q- 1) 
modd-oo 

+ Ym(L-a, c, b; q-l))q«m+l)/4)(b-c)+(m(m+l)N)/4 

=qac}td(r), if Lis even. 

b-a ( <l=---r r,s,a), 
2 

where the integers r, s are defined in (5.1.2b) and the c;:J(r) is given by 
(5.1.1) with 

(5.1.15d) 

Proof As was done for Theorem 5.1.1 the proof consists of two 
steps: 
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(i) Write down the l.h.s. (resp. r.h.s.) as a sum over (J.,j, k) (resp. 
(t, n1, n2)) and find the transformations between ().,j, k) and (t, n1, n2) 

such that the summands are mapped to each other. 
(ii) Utilizing the parameters ~ and TJ, patch up the summation domains 

in the r.h.s. to make them coincide with those in the l.h.s. 

Here we shall only demonstrate (i). The step (ii) is almost the same as 
the one for Theorem 5.1.1. 

We substitute (4.3.9) and (4.3.12a) into (4.4.8) and replace q by q- 1 

and (j, k) by 

(j+; +1, ;-k) or (k+ mil' m;l -j) 

according as m is even or odd. Then in the limit m- oo we get 

<p(q)B lim Ym(a, b, c; q-l)q(m/4)(c-b)+(m(m+l)N)/4 

(5.l.16a) 
m, even-oo 

=<p(q)B lim Ym(a, c, b; q-l)q«m+l)/4)(b-c)+(m(m+l)N)/4 

m. odd-oo 

='P(q)8q-af2(G(a, b, c)-G(-a, b, c)), 

<p(q)3q-at2G(±a, b, c) 

(5.l.16b) = I:; ( I:; I:; ) (-I)1Hq.1<±>(l,J,k;a', 
iez J;,.,±/2 J~•±/2-1 

k,S:(p±-1)/2 k;,.(µ±+t)/2 

;:f<±)().,j, k; a)= -2LJ. 2 -(±2a-L)). 

- l+l a+j+l(b+a-2L).) 
2 2 

(5.l.16c) 
+ ~(c+a-2LJ.)-(j+ ~)kN 

+1-(j-k)(j-k+ 1), 
2 

where the integers µ±, 1.1± is given by (5.1.3d). Next we write down the 
branching coefficients c~;d(-r-) in the r.h.s. of (5.l.15a, b) 

(5.l.17a) 
<p(q)Bq•c~;d(-r-)=e~'2( I:;_ I;_ ) 

,+1s:t,~s:1r1ez e;,.t,~-1;,.1r1ez 

X (- })1+(11+12)/2(± It•qB(s1,•2,t,n,,n2), 

(5.l.17b) 
t(t-1) - b-a 

JJ(e1, e2, t, nu n2)=--'---'--+t.i't(e 1, e2)+--
2 · 2 

+(L/2-N)nf +rn, +(N +2)n:+sn 2 , 
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(5.l.17c) 

Consider the case L is odd. The condition !l I e Z asserts that n1 e 2Z. 
In this case we can transform (5.1.17) into (5.1.16) through the following 
rule: 

(5.1.18) 

where (t, ni, n2) is given in terms of ().,j, k) as 

(e1, e2) (+, +) (+, -) (-, +) (-,-) 

(5.1.19) t 4l+j+k 4l+j+k -41-j-k -41-j-k 

n1 -21 -21 -21 -21 

n2 -21-k 2l+j 2l+j -21-k 

From (5.1.18) and (5.1.19) together with the patch-up argument we 
conclude (5.l.15a). (Note that ef12= 1 in this case.) In the case L is 
even, the condition !l 1 e Z is satisfied irrespective of the parity of n1• Thus 
<p(q)8quc;;j(r) in (5.1.17) consists of two kinds of the summands cor
responding to n1 e 2Z or n1 e 2Z + 1. The former can be treated in the 
same way as the case L is odd and is identified with 

<p(q)3 lim efl2Ym(a, b, c; q-1)q<mf4)(c-b)+(m(m+l)N)/4 
meven-oo 

(5.1.20) 
=<p(q)8 lim efl2Ym(a, c, b; q-1)q«m+1)/4)(b-c)+(m(m+l)N)/4_ 

m odd-+oo 

Transform the latter summands (n1 e 2Z + 1) via 

(5.1.21) 

(+, +) (+,-) (-,+) (-, -) 

4l+j+k+2 4l+j+k+2 -41-j-k-2 -41-j-k-2 

-21-1 -21-1 -21-1 

-21-k-1 2l+j+l -21-k-1 

Under the rule (5.1.21) we have 

(5.1.22) 

Thus their contribution to <p(q)8quc;;;}(-r) is equal to 
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m even-= 

(5.1.23) = +SD(q)3 lim c~12Ym(L-a, c, b; q- 1) 
m odd---,.oo 

X q ((m+ 1)/<)(b- c) + (m(m + !)N)/4_ 

From (5.1.20) and (5.1.23) we arrive at (5.1.15b). D 

By virtue of the symmetries (4.4.12) the evaluation of the limit m--HXJ 

of Ym(a, b, c; q- 1) for (b, c) e Sz(n)-S.(n) reduces to the case (b, c) e Si(n) 
described above. 

Remark. It is not easy to find the lowest power in q of the Cj:},h(r:) 
by using (5.1.1). In Appendix A this is done by manipulating the ID 
configuration sums. 

5.2. Regime II 

In this paragraph we prove 

Theorem5.2.1. Let I:::;;;a, b:::;;;L-1. We set £i=<b+(j-I)N). 
The (CJ) is a ground state configuration, and we have 

(5.2.1) 

where 

1 ( L ' 2 1 . L ) 2 1 
v(a, b)= ---- --b) +-(--a +-. 

4(L-2) 2 4L 2 24 

As for the symbol< > see Appendix B. There we prove that (£j) is 
a ground state configuration in the sense of Part I, section 2.4. An explicit 
form of <fim(£1, • • ·, £m+z) is given in (B.1). In fact, the following relation 
holds (see Lemma B.3 and the last remark in Appendix B) 

(5.2.2) 
Xm(a, £m+1' Em+z; q- 1) 

=Xm_i(a, em, gm+i; q-1)q-m1em-lm+211•(I + O(qam)), 

where a is some positive constant. Thus the proof of (5.2.1) is reduced 
to the case 1<£m+i, £m+2:::;;;L-I, £m+2 =£m+i+N by the repeated use of 
(5.2.2). 

The modular functions e11.,(-r) have been described in Appendix B of 
Part I. They are the branching coefficients appearing in the irreducible 
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decompositions of level 1 highest weight modules of the affine Lie algebra 
A~}~1 with respect to the embedded q 1>. Here we shall exploit the 
characterization of (e~ir))o,;j,ks:t in terms of its inverse matrix. 

Lemma 5.2.2 ((B. 11, 12) of Part I). Set 

(5.2.3a) fti/r) = c:~(p{h) + Pt-h)), 

(5.2.3b) 

PL(r) = I:; ( _ )<k'-J)/2q<k'-Jl<k'-J+2J;s- (k'+IJ2/4(e+ZJ +J'/4e+1;3, 
k'=k mod 2(£+2) 

if j, k E Z and j = k mod 2, 

otherwise. 

Then we have 

(5.2.4) 

where 3;~, = 1 if j' =) mod 2£ and = 0 otherwise. 

Remark. By the definition, PL(r) has the following symmetries 

(5.2.5) 

For [3 E Z, define the function H;,.N>([3) by 

(5.2.6) 

where J;:>(b, c; q) is the fundamental solution described in sections 4.1-2. 
By ( 4.2.1) H!,!:>([3) can also be expressed as 

(5.2.7a) 

(5.2.7b) 

H!,{:>([3)=(-l)""q-m(m+1)N/4+w2/2 I:; (-l)"qv(v-2w+1)/2j!,{:l(v), 
vez 

Nm-[3 w=--~. 
2 

Note that the summand in (5.2.7a) is supported in the interval O~v<mN. 
In the case N= 1 (4.2.23), (5.2.6) together with the formula (4.1.14) give 

(5.2.8) 

From (5.2.7) and Theorem 4.2.2, we deduce the symmetry: 

(5.2.9) 

In what follows we make use of several representations of J:t>(v) derived 
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in section 4.2, and determine the large m behavior of H;/ 1([3) in various 
regions of /3. The results are given in Lemma 5.2.3-6. 

Lemma 5.2.3 ((3.28) of Part I). For N> 1, [3>mN, 

(5.2.10) H;/'(/3)= O(q-m(m+l)N/Hw•tz). 

Proof First we show that 

(5.2.lla) 

(5.3.llb) 

J;,,N1(v)= 1 + · · · 
=0 

if 0<v<mN (m>l), 

otherwise. 

By the definition (4.2.1), (5.2.llb) is clear. Recall the expression (4.2.2) 
for j;,,N1(v). Note that the Gaussian polynomial is of the form 1 +O(q). 
Under the assumption 0<v<mN, we see (9 defined in (4.2.2b)) 

min 9=9l 1=o=0. 
J-;;:O 

Thus the lowest order of the first term in (4.2.2a) is unity. Because of the 
symmetry (4.2.7) we can assume that v<mN/2. Then it is shown that the 
second term in (4.2.2a) does not contain the power lower than q 1• Thus 
we have (5.2.lla). Since the minimum of v(v-2w+ 1)/2 in the interval 
0<v<mNis attained at v=0 (note that w<0), we obtain (5.2.10). O 

The expression (4.2.2) yields the following estimate of /;,,_N>(v) as m tends 
to oo (when vis fixed): 

(5.2.12) j;,,,N>(v)= [v+m-1] + O(qmN-v+1), 
m-1 

Applying this to (5.2.7) with [3=mN (w=0) we obtain 

q v(v+l)/2 
lim qm<m+l)N/4fl;,,N>(mN)= I:; (-1)"--- rp(q), 
m-oo vEZ (q)v 

(5.2.13) 

where we have used the formula (4.1.14) in the limit M_,,.oo, 

Lemma 5.2.4 ((3.30) of Part I). Assume that N> 2. Then for mN> 
[3>m(N-C), C=min(2, 4(L-N-2)/(L-4)), 

(5.2.14) fl;,,_N)(/3)= O(q-m(m+l)N/4+o,(m+1-w/2)). 

Proof Substitute the expression (4.2.20) into (5.2.7). After elimi
nating x0 by (4.2.21a), we perform the x1-summation utilizing the formula 
(4.1.14). The result takes the form: 
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(5.2.15a) 

(5.2.15b) 

(5.2.15c) 

(5.2.15d) 
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+ I; ((j-l)m-(w-1/2)j)xj, 
2<;,j,;,N 

where the sum I; in (5.2.15a) is taken over all non-negative integers x2 , 

••• , xN. In (5.2.15a) the product (q.'1'0);;;, is non-zero if 

(5.2.16) 

Under the assumption Nm>[3>m(N-C) (O<w<mC/2~m), we can dis
card the latter possibility, for 

(5.2.17) 9' 0 +m= 1 +m-w+ I; (j-2)xi>O. 
2<;.j<;,N 

In the former case in (5.2.16), the lowest order term of the product (q.'I'•),;;, 
as well as the q-multionomial coefficient in (5.2.15a) is unity. Thus apart 
from the obvious overall factor in (5.2.15a), the lowest power of H;,,,ll)(/3) 
is given by 

(5.2.17a) 

where Dis the domain of (x2, ••• , xN) specified by 

(5.2.17b) D={(xz, ···,XN)ezN-I\Xz, ···,XN?:.0, m?:.0,Yo?:.l}. 

Let us evaluate (5.2.17). For N=2 it is easily seen by using the condition 
m>x 2 ?:.w that the minimum is attained by x2 =w. This gives the value 
9' 1 =w(m+l-w) leading to (5.2.14). In the sequel we prove the case 
N?:_3. First we seek for the point that attains the minimum in {(x2, • • ·, xN) 

E RN- 1\x2, • • ·, xN>O, m?:.0, 9' 0> l}. Consider the derivative of 9' 1 with 
respect to xi (2~i<N). Then there appear the terms (i-l)m-wi (see 
(5.2.15d)). Ifwe rewrite this as (i-l)(m-w)-w and use the condition 
w~I;z,;,j,;,N(J-l)xj, we have for 2~i~N 

aY 1 ?:.(i2-3i+3)xi+ I; ((i-3)k+2)x" 
(5.2.18) axi 2<;.k<i 

+ I; (k-2) (i-l)xk+(i-l) (m-w)+i/2>0. 
i<kC'{.N 
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This implies that the points in question are located on the hyperplane 
I; 2,;;J,;;N(j-l)x 1 =w. If N>4 we derive further by using w= 
I:2,;;J,;;N(j-J)X1 that 

(5.2.19) 

(N-2)aY'i -(N-1) aY'i 
axN axN-l 

N-3 N-4 w-1 
=--xN+--xN-1+ I; (k-l)xk+-->0. 

2 2 2,;;k,;;N-2 2 

Thus we must set xN=0 to attain the minimum. Repeated use of this 
argument reduces the problem to the case xN= ... =x 4 =0. Then, x2+ 
2X8 =w and (5.2.19) reads as 

(5.2.20) aY'i -2 a!l'1 =Xs-1/2. 
axs ax2 

From this we see that the minimum is attained at x 2 = w -1, x 8 = 1/2, x 4 = 
.. · =XN=0. Actually x2 and x3 range within Z Therefore (5.2.20) leads 
us to the conclusion for all N(> 3) that 

From this and (5.2.15a) we establish (5.2.14). D 

Remark. In the case N= 1 it follows from the expression (5.2.8) that 

(5.2.22) H<;/(/3) = 0, for m> f,> -m. 

Lemma 5.2.5. Assume that N>2. For 0<w-s,_mN/2, set u=w/m 
(0<u<N/2). Then we have as m--HXJ 

(5.2.23) h;{:l(um)= O(q<N-2)u 2m•/2N+linear terms In m), 

where h';,.Nl(w) has been defined in (4.2.28b-d). 

Proof The case N=2 is obvious from (4.2.46) and so is the case 
u=0 from h;{:'(0)= 1 (see (4.2.33)). In the following we assume N>3 and 
u*0. We employ the expression (4.2.28b-e) for the function h;{:'(w). Our 
proof here consists of three steps : 
(i) Under the conditions I:is:J,;;N-dY1=s 1 and y 1>0, extract the mini
mum of the power ~ ( 4.2.28d) as a function of si-
(ii) Supply (i) with the contributions from the j-summand in h~Nl(w-s"i). 
(iii) Under the conditions 0<s 1<w and 0<j<(w-s 1)/N (or l<j< 
(w-s 1)/N, see (4.2.28e)), minimize the total power obtained in (ii). 
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In the working (i)-(iii) we shall regard y1 e R rather than y 1 e Z. This 
does not effect the estimations to the order of m2• 

( i) Let s1 be a non-negative constant. Eliminate Yi by using the 
latter of (4.2.28c). Then the power [l}l, in (4.2.28d) is written as 

[l}l,= I:: [l}l,1,kY1A-(mN-2(w-si)+I) I:: (j-l)y 1 
(5.2.24a) 2~j,k-S:.N-1 2:;;'.j-5:,N-1 

+((N-l)m-w+(s 1 + 1)/2)s1, 

(5.2.24b) [l}l,1,k=[l}l,k,J=(min(j, k)-1) max(j, k). 

Our aim here is to evaluate the quantity 

(5.2.25a) min [l}l,, 
li 

The quadratic form I:;z,;;J,k,;;N-i[l}l,1,ky1A is positive definite. This follows 
from the fact that the inverse of ([7Jl,1k)J,k-z, ... ,N-i is given by 

2 -1 
-1 2 -1 

-1 2 

(5.2.26) 

2 -1 
N-2 -1 
N-l 

Thus the minimum of [l}l, is attained by the point M where its inward de
rivatives with respect to 15 are non-negative. It is given by 

(5.2.27) 
for N=3. 

The condition is checked as follows (recall the assumption OSo. WSo.mN/2): 

--- =(N-2)(mN-2w+l)>0 a[l}l, I 
ayN-1 5i 

for N>3, 

( (N -1) a[l}l, -j-3.!!!__)l-=(N -l-j)(mN -2w+ l)>O 
ay1 aYN-1 M 

for N:2:4 and 2So.jSo.N-2. 
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In this way we obtain 

(5.2.28) min Bl=Bl\M'=.si(N-3)(w-(s 1+1)/2)+m)/(N-1). 
Jj 

(ii) Define the functions O//i{s1,j; w), 0/tz{s,,j; w) by 

(5.2.29a) 

(5.2.29b) 

0/ti(si,j; w)=si((N-3)(w-(s 1 + 1)/2)+m)/(N-1) 

+(w-s1)(w-s 1-l)+N 2j2/2 

-(N + l)(w-s,)j+Nj/2, 

0/tz(si,j; w)=s 1((N-3)(w-(s 1 + 1)/2)+m)/(N-1) 

+(w-s 1)2+N 2j2/2 

-(N + l)(w-s 1)j-Nj/2. 
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In addition to (5.2.28), 0//1 and 0//2 respectively count the power of q com
ing from the first and the second terms in (4.2.28e) with w replaced by 
w-s 1• These are positive definite quadratic forms of s1 andj. 

(iii) From (i), (ii) and (4.2.28b-e) we now have the estimation 

(5.2.30a) h;:''(w~=O(q.-), 

( 5.2.30b) 0// = min ( 0/ti', 0//:), 

(5.2.30c) 0//f=min 0/ti(s,,j; w), (i= 1, 2), 
Lt 

(5.2.30d) Dt={(s 1,j) e R2i0<s1<w, O<j<(w-s,)/N}, 

(5.2.30e) Dt={(s,,j) e R2\0<s 1<w, l<j<(w-s,)/N}. 

(we put 0//;=oo if w<N.) Consider the point M*=(O, w/N) on the 
boundaries of Dt and D;, and the derivatives of 0/ti at M* 

(5.2.31a) a0/121 =-N -w, 
aj M* 2 

(5.2_3lb) (Na~,_ a~1 )[ =(N a~2 _ a~2 )j =mN-2w+N. 
as1 a; M* as1 a; M* N-1 

Ifwe set w=um (O<u<N/2) and letm-+oo, (5.2.3la) tends to -oo while 
(5.2.3lb) remains positive because of the assumption O<w<mN. Thus 
we can employ the same argument as in (i) to find 

(5.2.32) O/tf--0/ti(o, um; um)=N- 2 m2 +lineartermsinm. 
m-oo N 2N 

From this and (5.2.30) we establish (5.2.23). D 
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Lemma 5.2.6 ((3.31) of Part I). Assume that N>2. For m(N-C) 
>LB\ (C de.fined in Lemma 5.2.4), set t=/3/m (\t\~N-C). Then we have 

(5.2.33) H;,,,Nl(mt)= O(q-t•m•/4N+linear terms in m). 

Proof In view of the symmetry (5.2.9) it is sufficient to verify the 
case m(N-C)>/3>0 (N-C>t?:_O). Substitute (4.2.28a) into (5.2.7) and 
replace v by v+w. The v-summation using the formula (4.1.14) yields w 

defined in (5.2.7b)) 

(5.2.34) 
H;,.Ml(/3)=(- l)"'q-m(m+l)N/4+.,•/2 

X I: (qw- .. +1)mN-2Wqw(m-o,+l)h~l(w). 
o,,;.w,,;.mN/2 

The product (qw-o,+l)mN-2w is non-zero only if 

(5.2.35) 

By virtue of the assumption m(N-C)>/3>0 (i.e. mC/2<w<mN/2), the 
latter can be discarded, which leads to 

(5.2.36) 

From (5.2.34-36) and Lemma 5.2.5, we obtain 

H;,,,Nl(mt)= O(q~m•+linear terms inw), 

<1=-N +.l( N-t) 2 + min (u(l-N-t)+ N-2 uz) 
4 2 2 (N-t)/2,f.u,f.N/2 2 2N 

=-t 2/4N. 

where we used the assumption O< t( <N -C). 

Proof of Theorem 5.2.1. It is sufficient to show that 

(5.2.37) lim x,,,(a, b, h+N)=ef:!-1,a.-1(r), 
m-oo 

mN2pmod2(L-2) 

where O<b, h+N<L and 

(5.2.38a) 

(5.2.38b) 

M(m, a, b)= m(m+ l)N 
4 

1 ( L ) 2 
-4(_L ___ 2_) mN+2-b 

+-1 (L -a)2+_1 . 
4L 2 · 24 

D 
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Let us introduce the function Ym(b, b') by 

(5.2.39) 

where ftt/1:) is given in (5.2.3). Thanks to Lemma 5.2.2, (5.2.37) is equi
valent to the following statement 

lim Y,n(b, b')=r;(-r) 
m-= 

(5.2.40) mNaapmod2(L-2) 

ifb'-l=±(b-p-1) 

mod 2(L-2), 

= 0 otherwise. 

Using Theorem 4.4.1 we express xm(a, b, b+N) in terms of JJN>(*, *+N; 
q- 1). Substitute the explicit form (5.2.3) of ftLt,b'-h) into (5.2.39). After 
a little calculation we find 

(5.2.4la) 

(5.2.4lb) 

(5.2.41c) 

Ym(b, b')= I; Z 71.(ft, b), 
fiEZ, fi=b-b' mod2(L-2) 

zm(ft, b) = qm(m+l)N/4-w(mN-w+L/2-b)/(L-2) H;,,,M'(ft), 

where the function H;,,,N>(ft) has been defined by (5.2.6) and w by (5.2.7b). 
First consider the case N = 1. Then Y,n(b, b') is written by using (5.2.8) as 

Ym(b, b')= I; (- l)"q"(2m+L(,+1)-2b)/(2L-4)(q,+1)m 

v;;?::0 
2JJ=b-b' -m mod 2(L-2) 

+ I; (-l)•q(L,2+(2m-L+2b),+2m(b-1))/(2L-4l(q")m• 

,;,:1 
2v:b-b'-mmod 2(L-2) 

In this form it is straightforward to take the limit m-+oo. We obtain 
(recall that b>O) 

lim YnJb, b')=cp(q) if b'=b-p mod 2(L-2), 

otherwise. 
(5 .2.42) m-=, maapmod2(L-2) 

This proves (5.2.40) for N = 1. Next we treat the case N> 2. Much the 
same as in (5.2.42), we find for general N using (5.2.13) and (5.2.4lc) that 

(5.2.43) lim zm(mN, b)=cp(q). 

Thus the remaining task is to show that the contributions from all other 
values of ft vanish in the limit m-+oo. By Lemma 5.2.3, 5.2.4 and 5.2.6 
we deduce the following estimates: 
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zm(P, b) = O(q-w(2mN-Lw+L-2b)/(2L-4)) 

if p>mN (w<O), 
= Q(qw(2(L-N-2)m-(L-4)w+L-4+2b)/(2L-4)) 

if mN>p>m(N-C) (O<w<mC/2), 
== O(qAm 2 +linear terms in m), 

if p=mt, \t\:sN-C (mC/2:sw:sm(N-C/2)), 

where A=(L-N-2)(N 2 -t 2)/(4N(L-2))>0 (see (2.2.2)). Now it is 
clear that zm(P, b) in these regions converges to zero as m tends to co. 
This is also the case for the remaining region p< -m(N- C) due to the 
symmetry (5.2.9). D 

Appendix A. Minimum/Maximum Configurations 

In section 5 we identified the 1 D configuration sums with modular 
forms. It is important to know the lowest power in the q-expansion of 
these modular forms, for they are related to the critical exponents of the 
models. (See section 4 in Part I.) In regime I the modular forms are 
given in the form of infinite product (Part I (A. 14)), and the lowest power 
can be easily read off. In regime II the modular forms e}ir) have been 
encountered previously and the lowest power is known (see (5.1.6) in [10] 
or (2.4) in [7]). In regimes III and IV, where the modular forms are 
characterized by theta function identities (Part I (A.3)), it is not straight
forward to pinpoint the lowest power (the fractional power mod Zfollows 
immediately). Here we do it by singling out the sequence that attains 
the minimum (regime IIl)/maximum (regime IV) of 

(A.1) 

under the condition that 

(A.2) 

A.1. Regime m 

H(a, b, c) \a-c\ 
4 

We define 2m+ 1 integers aj (-m:sJ <m) by 

aj=b+JN 

=c+JN 

if J-==m mod 2, 

otherwise. 



Exactly Solvable SOS Models 103 

Note that if a>am or a<a-m there is no sequence satisfying (A.2). Without 
loss of generality we assume that a<a 0• We also assume that a_1>l. 
Because of the symmetry (Part I (A. 5)) of the branching coefficient this 
does not restrict our aim. 

Lemma A.1. Under these assumptions let µ be a positive integer 
such that a_µ<a<ai-µ· The minimum of (A.I) among admissible sequence 
(11)J=1, ... ,m+2 satisfying (A.2) is attained by the following sequence: 

(A.3) =C 

if I<j<µ, 

else if j=m mod 2, 

otherwise. 

The minimum is 

(A.4) 

'Pm(£1, ' ' ', £m+2) 

= a-b-µ(2a-b-c)-µ(µ-I)N 
4 

= a-c-µ(2a-b-c)-µ(µ-I)N 
4 

if w=.m mod 2, 

otherwise. 

Proof. Because of the assumption a_1 > I the (lJ) of (A.3) is admis
sible. Therefore it is sufficient to show that this attains the minimum of 
(A.I) among weakly admissible sequences satisfying (A.2). Assume that 
(.eJ) attains the minimum. Take any successive four .e1, .eJ+i, .eJ+2, .e1+s (1 < 
j < m-1 ). They are subject to the following: If .e J + 1 > .e M then the weight 
(A. l) strictly decreases if we replace .e 1 + 1 by .e 1 + 1 - 2. Therefore this re
placement should violate the weak admissibility of the sequence. This im
plies that .e,=.e 1+1 +N. Similarly, if .e1+1 <.e1+s then we have .eJ= .e1+1-N. 
The (l 1) is the unique one which satisfies these restrictions as well as (A.2). 
Therefore the minimum of (A.l) is attained solely by the (lJ). It is straight
forward to compute (A.4). D 

A.2. Regime IV 

H( b ) - . . ( -b min (a, c)-b+N) a, , c -lllln n , _ __c_.c._ __ _ 

2 
if b<n, 

. (b 1 b-max(a, c)+N) =mtn -n- , -------'-----'---
2 

(A.5) 
if b>n+I. 

We seek for the sequence (lJ) that attains the maximum of (A.l) where 
the weight function H(a, b, c) is given by (A.5). As noted in Part I (eqs. 
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(3.9-11)) this resembles the negative of the weight in regime III. Therefore 
it may be expected that the maximum is attained again by (A.3). This is 
partially true as we shall see below.' 

We assume that 

(A.6) b+c-N <n-N. 
2 -

This is not restrictive, for the branching coefficients relevant to regime IV 
are all obtained as the m-+oo limit of Ym(a, b, c; q- 1) with b, c satisfying 
(A.6). 

Because of the restriction (A.6) we cannot assume that a<a0 as we 
did in Lemma A.I. We need two more candidates maximizing (A.I) (see 
Fig. A.I): Letµ be a positive integer such that aµ_1~a<aµ. We set 

(A.7a) =C 

With µ > 2 as above we set 

l?'=a-U-I)N 

=c+N 

(A.Sa) =b+N 

=C 

a_1 =b-N 

a_2 = c -2N 

if I<j<µ, 

else if j=m mod 2, 

otherwise. 

if l~j~µ-l, 

if j = µ=m mod 2, 

if j=µ$m mod 2, 

else if j=.m mod 2, 

otherwise. 

Fig. A. 1 The configurations maximizing the weight 
m 

"f=/HU1, £1+1, £1+2). 
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The (It) differs from the (l?l) only at.i=µ. We shall use these sequences 
under the condition 

(A.7b) 

(A.8b) 

respectively. The sequences (11), (ej1l) and (ej2l) are weakly admissible, but 
they are not necessarily admissible. For a given a there exists a unique 
path connecting a to b, c among these three. 

Lemma A.2. The maximum of (A.I), among weakly admissible se
quences satisfying (A.2), is uniquely attained by one of (A.3), (A.7-8). Let 
a_µ<a<a 1 _µ (I-m<µ<m). The maximum value </>max is 

(A.9) 

</>max= m(c-b)+m(m+ I)N+µ(2a-b-c)+µ(µ-I)N 
4 

if µ-m mod2, 

= (m+ l)(c-b)+m(m+ I)N+µ(2a-b-c)+µ(µ- I)N 
4 

otherwise. 

The proof of this lemma will be given in Lemma A.3-8. The se
quences used in the proof are weakly admissible unless otherwise stated. 
For (.e1)J=Jo,···,h and (.e;)J=Jo,···,h such that 

(A.lOa) 

or whenj 0 =1 

(A.lOb) 

.ej = .e; 

we denote by (.e1)<(.e;) and say the latter dominates the former if 

where .eJ= .e; U<.io or .i> j 1) are supplemented arbitrarily. We abbreviate 
H(.eJ, .eJ+t• .e1+2) (resp. H(.e1, .e;+1, .e1+2)) to H1 (resp. n;). If we replace 
</>m of (A.I) with 1:i=i or.1H(.e1, .e,+i• .e,+2) where or.1 <or.1+1 (.i= 1, · · ·, m) 
the proof goes well without change. In fact we need this generalization 
later in the proof of Lemma A.9. 
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Lemma A.3. Consider an(£,) such that 

where I::=;:i::=;:m-1. We also assume that £m<c and £i>£i+ 1-N. Then 
the ( £ ;) defined by 

dominates the(£,). 

if i+I<j~m, 

otherwise, 

Proof We have H;_ 1'2:_Hi_1, H;=Hi-1, H;=HJ=O (i+l<j< 
m-1), and H'm=Hm+ 1. This implies (£J)<(£ 1). D 

Lemma A.3 tells that if(£ 1) attains the maximum and £m <c, then (£1) 

must be of the form (A.3). Now we consider the case £,n> c. 

Lemma A.4. Assume that (£J)J=i, ... ,i+4 and(£1)J=i, .. ·,i+4 satisfy (A.IO), 
and that 

Proof Assume that £i+z'2:.n+ 1. Then we have H;>Ht-1, H~+' 
>Hi+ 1+l and H;+2 =Hi+ 2• From this follows (£J)<(£ 1). The other 
case is proved similarly. D 

Lemma A.5. Assume that (£1)J=i, .. ·,i+4 and (£~)J=i· .. ,i+4 satisfy (A.IO), 
and that 

£i+3+£i+4-N<n--N a a +N a, a 2 - , -t:,i+z=-t:,i+t , -t:,i+z=-t:,i+4· 

Proof We have H~ > Hi-n+(£i+z+£i+4)/2, H~+1 > Hi+1 +n+ l
(£i+2+£i+4)/2 and H~+2 =Hi+z· Noting that 

D 
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From Lemma A.4-5 we can conclude that if (gJ) satisfying (A.2) at
tains the maximum of <fam and if gm> c then one of the following is valid: 
(i) gm=b+N, 
(ii) gm=gm-1-N. 

Note that (J?l) and{J?l) satisfies (i) and (ii), respectively. Now we 
distinguish these two as in (A.7b) and (A.Sb). 

Lemma A.6. Assume that (g1) 1-t,···,t+ 4 and(g 1)1-t···,tH satisfy (A.10), 
and that 

We set 

Then we have 

(A.Ila) 

(A.llb) 

In either case we have 

(g1)>(g1) 

(g1)<(g1) 

if m<O, 

ifm>l. 

(H H' ) gi+3-gi+I +N max i+l• t+i = 2 . 

Proof We consider (A.Ila) first. We have H1>H~+m, Hi+r?::. 
H~+l-m and Hi+2 =H~+z· Therefore (A.Ila) is valid. If m> 1, we have 
H;>H 1-m+l, H~+1>Hi+ 1+m and Ht+z=H~+z· This implies (A.llb). 

D 

Thus we have proved the last four gm_,, gm, gm+t> gm_,_2 are as expected 
in (A.7-8) if (g1) attains the maximum. (Remember that we are assuming 
that gm>c). We now prove 

(A.12) g1=g1+1+N if j= 1, . · ·, m-2. 

Assume that 

(A.13a) g1 -g 1_,_1=N if j=i+l, ... , m--1, 

(A.13b) <N if j=i. 
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If Ut+.ei+ 2)/2<n then (,ei+2-£w-N)/2<n-N and .ei+1>.et+a· This 
is a contradiction, for .et must be equal to .ei+1 +N from Lemmas A. 4-6. 
Therefore it is sufficient to show (A.12) when (£t+.ei+ 2)/2;?:n+l. 

Lemma A.7. Let (£1) satisfy (A.2), (A.13). We also assume 

.ei+.et+2 >n+2. 
2 -

Define (£1) by £1=£ 1 U=l, · · ·, i, m+l, m+2) and £1=£ 1 -2 U=i+I, 
... , m), then we have (£1)>(£ 1). 

Proof We have H;=H 1 U=l, · · ·, i-2), H;_ 1 ?:_Ht-1, H;>Hi-I, 
H;=H 1 =0 (j=i+I, · · ·, m-2) and H'r,,_1>Hm_ 1+1. Therefore (£1) 
dominates (.e 1). D 

Lemma A.8. Let (£1) satisfy (A.2), (A.13). We also assume 

(A.15) n+I. 

There are three cases to consider: 

(Case 1) .ei-(m-i-1)N~b 
Define (£1) by 

=C 

if j=l, · · -,m-3, 

if j=m-2 and 

if j=m-2 and 

if j=m- I, m+ I, 

if j=m, m+2. 

(Case 2) b<(-(m-i-I)N~c+N 
Define (£1) by 

if j=l, · · -,m-2, 

if j=m-l and 

if j=m-I and 

if j=m+I, 

=C if j=m, m+2. 
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(Case 3) c+N<t,-(m-i-I)N<b+2N 
De.fine ( t 1) by 

t 1=t,-(j-i)N 

=b 

=C 

if j=I, .. . , m, 

if j=m+I, 

if j=m+2. 

In each case the (£1) dominates the (t 1). 

Proof From (A.14) and t,+ 1=tH 2+N, we have 

109 

We denote this quantity by p. Relevant values of H1 and H} are: 

j i i+I · .. m-4 m-3 m-2 m-I 

H1 p 0 0 0 0 b-tm-1 +N 
2 

H~ 
J 

(Case 1) 0 0 0 b-tm-1 + c-b+N b-c+N 
2 p 2 2 

(Case 2) 0 0 0 0 c-tm_ 1+N + b-c+N 
2 p 2 

(Case 3) 0 0 0 0 0 b-tm-1+N+ 
2 p 

Noting that (tm_1-c-N)/2>I we have (t 1)>(t 1). D 

We have proved that the maximum of <fim, among weakly admissible 
sequences satisfying (A.2), is attained by one of (£1), (£?'), (£?'). 

The maximum value (A.9) is obtained by a straightforward computa
tion. 

Lemma A.9. The maximum of <fim among admissible sequences is 
attained by one of (l 1), (l11>), (£)2'), if it is admissible. Otherwise we need 
the following modification: (We assume that m is even. If m is odd, we 
must interchange band c.) 

(i) µ=1 anda+c<N+2 

(A.15a) 
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(ii) µ= -1 and a+b>2(L-N-1) 

(A.15b) £~2)=2L-N-2-a 

The maximum value is modified to 

. ( a+c-N-2 a+b) (A.16) the r.h.s. of(A.9)+mm 0, 2 , L-N-I-- 2 - . 

Proof Using the assumption that L>2N+3, we can verify that 
the sequences (£J), (£T), (£?l) are admissible except for (i) and (ii). In 
these cases we have H(a, £2, £3)<H(a, £2, b). Therefore £3 must be equal 
to b. Since H(£ 2 b, c) is independent of £2 for the admissible values of £2, 

our task is to pick up £2 that maximizes H(a, £2, b). Thus we obtain (A.15), 
and then (A.16) follows immediately. D 

Appendix B. Ground State Configuration in Regime II 

Let (b, c) be any admissible pair. In this appendix we shall determine 
the admissible sequences (£J) that maximize the weight 

,f,. (A d ) .;f!, • \£J-£1+2\ 
'f'm ~l, '· ·, ~m+2 =,";;tJ 4 , 

under the restriction 

For £ e Z we denote by < £) the unique integer satisfying 

(B.l) I<<£)<L-l, <£)-l:=±(£-1) mod2(L-2). 

Lemma B.1. Define (f)±l) by 

£)±) =(b±(m- j + l)N) 

=b 

=C 

if l<j<m, 

if j=m+l, 

if j=m+2. 

We denote by µm(b) a positive integer determined by 

1- µm(b)(L-2)<b-mN <L-c- l-µm(b)(L-2). 

Then we have 

where 
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(B.2) 'Ym(b, c) 

_ m2N+m(c-b)+µm(b)(µm(b)-I)(L-2)+2µm(b)(b-mN- I) 
- 4 . 

Proof The integer µ,11,(b) gives the number of reflections along the 
([tl) (see Fig. B.l). If µm(b)=O the weight is given by (m2N+m(c-b))/4. 
The deficiency in the weight at the i-th reflection (counting from the right) 
is (1 + mN -(i-1 )(L- 2)-b )/2. Therefore the exact value of the weight 
is given by (B.2). D 

Fig. B.1 The configuration (&?l). 

Lemma B.2. m> µm(b)+(µm(b)-1)/N. 

The proof is easy. From this we know, in particular, that m- µm(b) 
tends to oo when m-oo. Therefore if mis sufficiently large the sequence 
&j=(b+NJ) must contain a pair (et, ti+ 1) such that et+i=&t+N. 

Lemma B.3. Let x be an integer such that (b-N)<x<(b+N), 
and set 

~m(x, b, c)=max ('Ym(b, c), 'Ym(L-b, L-c))-( 'Ym-i(x, b)+ m I ~-cl). 

Then ~m(x, b, c)>O and Jim infm-~ ~m(x, b, c)/m>O. 

Proof We set µ<-l=µm(b), µ<+l=µ,n(L-b) and µ=µm_i(x). There 
are five cases : 

( i) 

µ 

µ 

(ii) 

µ+I 

µ+I 

(iii) 

µ+I 

µ 

(iv) 

µ-I 

µ 

(v) 

µ 

µ+I 

We set ~<-l=4('Ym(b, c)-'Ym_ 1(x, b)-mlx-clf4) and ~<+l=4('Ym(L-b, 
L-c)-'Ym-iCx, b)-mjx-clf4). The following prove the claim of this 
lemma: 
Case (i), (v), x>c. 

~<+>=(2m-I)N+b-x 

=(2µ-1)(2L-N-2-b-x) 

if µ=0, 

ifµ> I. 
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Case (i), (iii), (iv), x<c. 

2fiH=(2m-2µ-l)(x+N-b). 

Case (ii), (iii), xzc. 

2fi<+l=(2µ+ 1)(2L-2-N-b-x). 

Case (ii), (v), x::;: c. 

22<-l=2µ(L-N--2)+x+b-N-2 

=2(x--b+N)(m-µ-3/2) 

Case (iv), xzc. 

if m=µ+l, 

ifmzµ+2. 

22<+l>(2µ-3)(2L-N-2-b-x)+2(L-2). D 

From Lemma B.3 follows that the sequence £j=(b+JN) is a ground 
state configuration in the sense of section 2 of Part I. In fact, we have 
01m(£,.+1, £m+2) > 01,nCL-lm+t• L-£m+ 2). Therefore (£J) maximizes the 
weight efim(£,, • " ", £m+2)-

Appendix C. Branching Coefficients and String Functions 

Here we relate the branching coefficients CJ~M.('r:) and the string func
tions of Ai'l (see Part I, Appendix B). This observation is due to V. G. 
Kac. Our LHP results in regime III, IV for N = 2 are shown to coincide 
with the particular cases studied in [11] by using the expressions in C.3. 

C.1. Products of theta functions 

For a positive integer m and a real number µ, define [10] 

(C.l) et~J.(u, -r:)= I:: (±?qm7 2/2z-mr, q=e2•i<, Z=e2,iu, 
r-n+µ/m,nEZ 

The Theta Null Werte have the product representation (see (1.5.3)) 

(C.2) s=±. 

The theta function (C.1) obey the standard multiplication formula 

(C.3) 
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functions introduced in Part I, Appendix A and those here are connected 
by 

(C.4) e <•1,••>(z q)-e<•,) (u/2 ·)+~ e<••) (u/2 ·) J,m , - j,2m , " w1 -.1,2m , "' • 

C.2. Branching coefficients and string functions 

Recall the definition of the branching coefficients c}1M.(-r): 

(C.5) et::.!(z, q)8};;.;;;(z, q)/8t2'+>(z, q)= I: c5~>M0(q)8};,'r!;(z, q). 
Js 

Here the sum ranges over j 3 e Z + j 1 such that 0 <ja < m3 (if e = +, then 
j 3 <m 3). On the other hand, the level m string functions cµ,(-r) (=c:;::11{-r) 
in the notation of [10]) for A?> are characterized by the identity 

(C.6) ec-.+) (z q)/e<-,+>(z q)- "'\, cm(,,.)~me<.+,+)(z q) k+l,m.+2 , 1,2 , - £...J Jk "' r--J J,m , • 
OS:JS:m,j=kmod2 

In the l.h.s. of (C.5), replace the part 8};;.;;j(z, q)/8f;;,+>(z, q) by the r.h.s. 
of (C.6), use (C.4) and apply (C.3). The result reads 

where the sum is taken over j e Z/2(m2 -2)Zandj 3 e Z/4(m2 -2)m 3Zunder 
the conditions j j 2 -1 mod 2, j 3 j + j 1 mod 2(m2 - 2). Equating the co
efficients of linearly independent e1;,;:;(z, q)'s, we get an expression of 
ctj, 1.(-r:) in terms of string functions cµ,(1:) and the Theta Null Werte (C.2). 
Explicit formula for cµ,(1:) for small m can be found in [10], pp. 219-220. 

C.3. Branching coefficients for m2 = 3, 4 

We give below the resulting formulas for m2 =3, 4. In the case m1 e 
z+ 1/2, we find it convenient to replace the j 3 sum in the r.h.s. of (C.5) by 
0<j 3 <2m 3 with the restrictionj 3 + l=j, + j 2 mod 2 (recall that by the de
finition in Appendix A.1 of Part I c}1M0(1:)= -ec}11o 2ms-Js(-r:)). Recall also 
that ifj 1, m1 e Z andj 3 + l=j 1+j 2 mod 2, then c51M.(-r:)=0. In the sequel 
we set 

The case m2 =3. 
Here we use the formula c~o(-r:)=11(1:)-1• 

(i) m1 e z+ 1/2. 
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I 

(ii) m1 E Z. 

c<•J. (-r)=.,,,(-r)-1em•(e<•) (0 -r)-ets) (0 -r)). j1J2Ja ·, Js k,2n , ~,2n , 

The case m2 = 4. 
Put r ±(-r)=c~h)±c~h), ro(-r)=c~i(-r). Th~ we have 

i 

r +(-r)= e- ri/24'1)(-r; 1 )'Y)(-r)-2, r _(-r) =~ (; )'Y)(-r)-2, 

rh)='Y)(2-r)'Yj(-rt2 • 

We give the results in'the casej 3 ~l ::=j 1 + j 2 ~o14. The other case j 8+ 
1 = j 1 + j 2+2 mod 4 can be obtamed by negatmg

1 
r _{-r). 

(i) m I E Z+ 1/2, jz= l, 3. 

(s) ( )- l r ( )(Q(+) (0 )-Q(+) (0: .-)) CJ,Jds ?' - 2 + ?' ok,4n , ?' Ot,4n 1 • 
I 

+1-r _(-r)(BtJn<0, -r)-(-)1 181~~(0, -r)). 
2 : 

(ii) m1 e Z+l/2, j 2=2. 

C)~1.1.(-r)=rh)(BtJn(0, -r)-8;;~(0, -r)). 

(iii) m1 E Z,j 2 = 1, 3. 

I 

(s) ( )- 1 r ( ) ms(Q(s) (0 ,,.)_Q(e) (Q' .-)) 
Chi.Jo?' -2 + ?' ejs Ok/2,n '• Oif2,n !' • 

! 

+ 1 r (.-)~m•(Q«-)mlS)(0 "")-(-l--)"8((-)"'is)(O -r)) 2 - " '-'"Js O'/c/2,n , " ! t/2,n , • 

(iv) m1 e Z, j 2 =2. 

c}~'M•(~)=ro{-r)e7.•(8i12,n(0, -r)-Bfa,nCO, -r)). 

Appendix D• Free Ener,y 
I 

In this appendix we shall give the free enw-gy for the fusion vertex 
models (section 2.3) and the restricted SOS model~ (section 2.2), and discuss 
its critical behavior. The calculation is based bn the inversion relation 
method [8, 12]. As it turns out, the inversion r~lations for the restricted 
SOS models are formally identical with those fqr the vertex models (with 
the parameter .:l replaced by 2K/L); consequentl~ the free energy itself has 
the same form under this correspondence. · 
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D.1. Unitarity and crossing symmetry 

First let us recall the unitarity relation for vertex models. As in 
section 2.3 we denote by Ce End (V@V) the transposition operator. 

Lemma D.1. Let R(u) be a solution to the Yang-Baxter equation 
(2.3.2) (with V1 =Vi= V,) satisfying the initial condition (2.3.3a). Then we 
have 

(D.1) R12(u)R21(-u)=p(u)/, 

where R12(u)=R(u), R21(u)= CR(u)C and p(u) is a scalar function (Fig. D.1). 

2 

----u--1 

2-------u 

1 

= p(u)x 

2 

,_J 1 

I 
1 

Fig. D. 1 The unitarity relation for vertex models. The r.h.s. 
is proportional to the scalar operator. 

Proof Setting v= -u in (2.3.2) and using (2.3.3a) we find 

R12(u)R21(-u) = R2'(-u)R' 2(u). 

This implies that the l.h.s. of (D.I) commutes with matrixes of the form 
X@I, l@X (Xe End (V)). Hence it must be a scalar. D 

The function p(u) in (D.1) can be determined by comparing a particular 
matrix element. For the original eight vertex weight (2.3.1) we have 

(D.2) 

(Note that in this case R(u) = CR(u)C.) The unitarity relation for the 
(M, N)-weight RMN(u) in section 2.3 reads as follows. We set R1}N(u)= 
RMN(u), R'fiM(u)=CNMRMN(u-M+N)CNM, and regard both as acting on 
the same space V@· · -@V(see section 2.3 for CMN). 

M+N 

Lemma D.2. Assuming M> N we have 

(D.3) 
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Proof. For definiteness, let M=3 and N=2. Then by the definition 

R~:(u)=a(u)P123PuR 12(u+2)R 22(u+ I)R82(u)R11(u+ I)R21(u)Rs1(u- I), 

R:(-u)=a(-u- I)P123Pu 

XR 18(-u+ l)R 12(-u)R 11(-u- l)R 23(-u)R 22(-u-l)R 21(-u-2), 

where a(u) = [1]6 /([2lz[u + 2][u + 1]2[u]). In the second line we have reshaflled 
the super:fixes (I, 2) and (1, 2, 3) under the symmetrizers (cf. (2.3.6)). Using 
(2.3.6) and (D.2) repeatedly we obtain (D.3) (Fig. D.2). The general case 
is similar. D 

2 1 2 

u+ 

2 u+ 

-u-1 -u-2 

-u -u-1 

-u+l -u 

I u u-1 

2 u+l u 

3::::: \[@: 
2 3 

1 2 3 

Fig. D. 2 The unitarity relation for fusion vertex models. 

Hereafter we shall be concerned with the case M=N. Eq. (D.3), to be 
also called the "first inversion relation", then reads 

(D.4) 

where C=CNN· 
Let R(u) denote the matrix of the eight vertex weight obtained by 

rotating the lattice through 90°, i.e. 

(D.5) R~f(u) = Rf!(u). 

The following crossing symmetry holds: 

R(- I -u) = -(aY@f)R(u)(aY@l), 

This implies together with (D.2) and the symmetry R(u)= CR(u)C (Fig. D.3) 

- - [2+u] r-u] R(u)R(-2-u)= I I I. 
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1 2t)_ -l+u 

= p(u)x 

-1-u 1 

2 
2 

Fig. D. 3 The second inversion relation. 

More generally, for the (N, N)-weight RNN(u) define RNN(u) by (D.5). In 
the same way as Lemma D.2 we have the "second inversion relation" for 
RNN(u): 

LemmaD.3. 

(D.6) RNN(u)CRNA-2-u)C= [N+t+u] [N-t-u]I. 

D.2. The free energy of the fusion vertex models and the restricted SOS 
models 

In order to discuss the free energy for the fusion vertex models, we 
must specify the regimes to consider. Following the case of the restricted 
SOS models, we deal with the four cases below. 

Regime I: -l<p<O; O<u<K/}.,-1, 

(D.7) Regime II: O<p<I, O<u<Kf}.,-1, 

Regime III: O<p<l, -l<u<O, 

Regime IV: -I<p<O, -l<u<O. 

In regimes II and III, K' is real and positive, while in regimes I and IV so 
is K' =K' -iK rather than K'. The end points u= -1, 0 are "inversion 
points" and K/}.,-1 is a "virtual inversion point" in the terminology of 
[12). We define w by 

(D.8) 

and set 

(D.9) 

W=e-2•J.u/K' in regime II, III (p = e- •K' tK), 

in regime I, IV (p= -e-•it'tK), 

A=2Kj}.,. 

Now let tc denote the partition function per site 
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where Z is the partition function and vi/ the number of sites of the lattice. 
The free energy per site is given by f= -k 8 Tiog "· From (D.4) and (D.6) 
we obtain the following inversion relations. 

Regime III, IV: 

(D.10) 

,c(u)!C(-u)= [N;u] [N;u], 

,c(u)K(- 2 -u)= [N+:+u] [N-:-u]. 

Regime I, II: 

(D.11) 

,c(u)1C(-u)= [N;u] [N;u], 

,c(u),c(A-2-u)= [N+:+u] [N-:-ul 

The inversion relations for the restricted SOS models follow from (2.1.25) 
and (2.2.19). Identifying J. with 2K/L (and A with L) we find that they 
have the same form as (D.10-11). The definitions of regimes (D.7) and of 
the parameter w (D.8) agree with those for the SOS models. 

It is straightforward to compute the free energy. We apply the con
jugate modulus transformation (3.1.5-6) (wherein Lis to be read as 2K/J.) 
and solve (D.10-11) for ,c(u). The result is expressed as follows. 

Regime I: (v=rcJ./K', A>2N) 

log ,c(u)= I; F(j)+ I; G(j), 
jE2Z jE2Z+l 

F( ·)=F(- ·)=l_X sh(Nvj/2)ch((A-2N-2)vj/4) 
1 1 j sh(vj/2)ch((A-2)vj/4)sh(Avj/4) 

(D.12) X sh (uvj/2) sh ((A-2-2u)vj/4), 

G( ·)=G(- ·)=l_X sh (Nvj/2) sh((A-2N-2)vj/4) 
1 1 j sh(vj/2)sh((A-2)vj/4)ch(Avj/4) 

X sh (uvj/2) ch ((A-2-2u)vj/4). 

Regime II: (v=2rcJ./K', A>2N) 

log ,c(u) = I; F(j), 
jEZ 



Exactly Solvable SOS Models 

(D.13) 

FU)=F(-j)=!:_X sh (Nllj/2) sh (ull j/2) 
j sh(llj/2) sh((A-2)llj/2) sh(Allj/2) 

X (sh((A-N-2)llj/2) sh((A- l-u)llj/2) 

-sh (Nl.lj/2) sh ((u+ l)l.lj/2)). 

Regime III: (l.1=211:l/K', A> N) 

log ,c(u)= ~ FU), 
;ez 

FU)=F(-j)= _ 'l:.._X sh(Nvj/2)ch((A-N-l)llj/2) 
(D.14) . j sh(llj)sh(Allj/2) 

X sh (ullj/2) sh ((u+ l)l.lj/2). 

Regime IV: (l.1=11:l/K', A>2N) 

log tc(u)= ~ FU)+ I; GU), 
jE2Z JE2Z+l 

FU)=F(-j)= _'l:.._X sh(Nllj/2) ch((A-2N-2)llj/4) 
j sh (llj) sh (Al.lj/4) 

X sh (ul.lj/2) sh ((u+ l)llj/2), 
(D.15) 

GU)= G(-j)= _ 3__ X sh (Nllj/2) sh ((A-2N-2)llj/4) 
j sh(llj) ch(Allj/4) 

X sh (ullj/2) sh ((u+ l)l.lj/2). 
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Here we have assumed that A> Nor 2N for simplicity. Otherwise the 
expression should be modified. (This comes from the difference of the 
behavior of the factors E(xu, xL) or E(xu, -xL 12) appearing in the r.h.s. of 
the inversion relations.) 

As we remarked before, the free energy for the restricted SOS models 
are obtained simply by replacing}. by 2K/L (A by L). 

D.3. Critical behavior 

The critical behavior of the free energy can be studied in] the follow
ing way. For a functionf(x), let 

j(f;)= J:oof(x) exp (211:ixf;)dx 

denote it Fourier transform. Poisson's summation formula asserts~that in 
the casef(-x)=f(x) 

~ JU)=f(o)+2 I:f(t;). 
jEZ <<':1 
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The free energy results (D.12-15) are rewritten as 
Regime II, III: 

I; F(j)=F(0)+2 I; F(~), 
jEZ e:2,1 

Regime I, IV: 

I; FU)+ I; G(j)=_!_(F(O)+G(O))+I; (F(~/2)+(-)•G(~/2)). 
JE2Z JE2Z+I 2 o:2'.1 

The 0-th term represents the critical value log tC<<l(u). It is the same for 
regime I/II or regime III/IV, and is given by 

Regime I, II: 

1 <<l()-f= dt sh(Nt/2)sh(ut/2) 
og IC u - -= t sh (t/2) sh ((A-2)t/2) sh (At/2) 

X (sh ((A-N-2)t/2) sh ((A- l -u)t/2) 

-sh (Nt/2) sh ((u+ l)t/2)). 

Regime III, IV: 

logtC<cl(u)=- 2f= dt sh(Nt/2)ch((A-N-l)t/2) 
-= t sh (t) sh (At/2) 

X sh (ut/2) sh ((u+ l)t/2). 

The above formula for regime III-IV agrees with the result of [13] (eq. 
(2.23) there). 

To study the behavior of Pm (or F(~/2), G(~/2)) for ~>O, we deform 
the contour of integration to surround the upper half plane and pick up 
the residues. Thus we get the following results for general A (the case of 
the fusion vertex models). Here (log 1C(u)).1ng denotes the non-analytic 
part oflogtC(u) in \p\. 

Regime I, II: 

(log 1C(u))s1ng 

Regime III: 

4 sin2 (Nn:/(A-2)) sin (2n:u/(A- 2))X \p\Af<A-2) 
sin (2n:/(A-2)) 

+ O(\p\2A/(A-2)). 

(log tC(u)).1ng=4 :~: ~;g; sin n:uX \p\A12+0(\p\A) if N is odd, 

log tC(u) is regular if N is even. 
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Regime IV: 

(log K(u))s1ng=4 . sin n-u X \p\A12+ O(\p\A) 
sm (An-/2) 

log K(u) is regular 
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if Nis odd, 

if Nis even. 

Complications occur when A is an integer because of the double poles in 
F(j) and G(j). This is the case of the restricted SOS models. Careful 
examination shows that the results above should then be modified as follows. 

Regime I, II: 

(log K(U))slng 4 sin 2(Nn-/(L-2)) sin (2n-u/(L- 2))X \p\Lf(L-2> 
sin (2n-/(L-2)) 

+ O~p\2L/(L-2>). 

The only exception occurs when L = 4 and N = 1 (Ising model). In 
this case we have 

{ 1] 

(log K(u)).1ng= _ _±_ sin n-uX \p\2 log \Pl+ O(\p\' log \p\). 
7t" 

Regime III: 

(log K(u))s1ng= .±. sin n-ux \p\L12 log \Pl+ O(\p\L log \pl) 
7t" 

log K(u) is regular 

Regime IV: 

if L is even and N is odd, 

otherwise. 

(log K(u))s1ng = (- )L12.±. sin n-ux \p\L/Z log I Pl+ O(lp\L log \pl) 
7t" 

if L is even and N is odd, 

(log K(u))s1ng=(- )(L-IJ/ 24 sin n-ux \p\L12+ O(lp\8Lf2) 

if L is odd and N is odd, 

log K(u) is regular otherwise. 
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