Advanced Studies in Pure Mathematics 15, 1989 Automorphic Forms and Geometry of Arithmetic Varieties pp. 351-364

T-Complexes and Ogata's Zeta Zero Values

Masa-Nori Ishida

Dedicated to Prof. lckiro Satake and Prof. Friedrick Hirzehruck on their sixtieth birthdays

Introduction

In [Tl], Tsuchihashi defined the notion of cusp singularities in arbitrary dimension. They include the Hilbert modular cusp singularities as a special case. In this paper, we will show the rationality of the zeta zero value $Z(C, \Gamma; 0)$ of the zeta function associated to a Tsuchihashi cusp singularity which was defined by Ogata [Og]. He gave a formula for the zero value as a sum of integrals of C^{∞} -functions described by the characteristic function of the convex cone C. By this formula, he showed that the value is a half-integer in odd-dimensional case [Og, Theorem 2.3]. In two dimensional case, the singularity is a Hilbert modular cusp and 12 times the zeta zero value is an integer by [Z].

By the construction of Tsuchihashi cusp singularities, they have toroidal resolutions and the exceptional sets are toric divisors in the sense of [S2]. In order to describe toric divisors, we introduce the notion of *T-complexes* which is essentially equal to that of the weighted dual graphs which appear in [T1]. A T-complex Σ is a category with a finite number of objects. We define a functor D^0_Q from Σ to the category of Q -vector spaces. We show that the rational number field Q has a natural injection into the inductive limit ind $\lim_{\Sigma} D^0_{Q}$. We define a special element ω_{Σ} of ind $\lim_{x} D_{Q}^{0}$. When Σ is the T-complex associated to a toroidal resolution of a Tsuchihashi cusp singularity (C, *I'),* Ogata's formula means that there exists an explicit retraction ind $\lim_{\Sigma} D^0 \otimes R \rightarrow R$ and the zero value $Z(C, \Gamma; 0)$ is the image of ω_z in **R**. By using an equality in Section 1 for a nonsingular complete fan, we show that ω_x is in the image of **Q** in ind $\lim_{z} D_{Q}^{0}$ for any *T*-complex *Z*. This implies that the image of ω_{z} in *R* is independent of the retraction and is a rational number.

Received December 4, 1986.

§ **1.** An equality for a **nonsingular** complete fan

Let *N* be a free Z-module of finite rank and let $N_R = N \otimes_R R$. A nonempty subset σ of N_p is said to be a *strongly convex rational polyhedral cone (s.c.r.p. cone for short)* if there exists a finite subset $\{n_1, \dots, n_s\} \subset N$ such that $\sigma = R_0 n_1 + \cdots + R_0 n_s$ with $\sigma \cap (-\sigma) = \{0\}$, where $R_0 = \{c \in \mathbb{R} \}$; $c \geq 0$. An s.c.r.p. cone σ is said to be *nonsingular* if there exists a Z-basis ${n_1, \dots, n_r}$ of *N* such that $\sigma = \mathbb{R}_0 n_1 + \dots + \mathbb{R}_0 n_s$ for an integer $0 \leq s \leq r$. We call $\{n_1, \dots, n_s\}$ *the canonical set of generators for* σ and denote it by gen σ when σ is nonsingular. This set is uniquely determined by σ .

A nonempty collection Δ of s.c. r. p. cones is said to be a *fan* if (1) $\tau \in \Lambda$ and $\sigma \prec \tau$, which means that σ is a face of τ , imply $\sigma \in \Lambda$, and (2) if $\sigma, \tau \in \Lambda$ then $\sigma \cap \tau$ is a common face of σ and τ . For an s.c.r.p. cone π in N_R , we denote by $\Gamma(\pi)$ the set of faces of π . Clearly, $0 := \{0\}$ and π are in $\Gamma(\pi)$, and $\Gamma(\pi)$ is a fan in N_R . A fan Δ in N_R is said to be *complete* if it is finite and the union $\bigcup_{a \in \Lambda} \sigma$ is equal to N_R . It is said to be *nonsingular* if it consists of nonsingular cones.

For an s.c.r.p. cone ρ , we denote $N[\rho] := N/(N \cap (\rho + (-\rho)))$. $N[\rho]$ is a free Z-module with its rank equal to codim ρ . For a cone σ with $\rho \prec \sigma$, we denote by $\sigma[\rho]$ the image of σ in the quotient $N[\rho]_R = N_R/(\rho + (-\rho))$. If ρ is an element of a fan *L*, then $\Delta[\rho] = {\sigma[\rho]}$; $\sigma \in \Delta$ and $\rho \prec \sigma$ is a fan in $N[\rho]_p$.

For each nonzero element *x* in *N*, we denote $\gamma(x) = \mathbf{R}_{0}x$. The cone $r(x)$ is nonsingular of dimension one. If x is primitive, then gen $r(x) = \{x\}$.

Let Δ be a nonsingular fan in N_R . For a subset Φ of Δ , we set

$$
f(\varPhi) := \sum_{\sigma \in \varPhi} \prod_{x \in \text{gen } \sigma} \frac{1}{\exp(x) - 1},
$$

where we understand $\prod_{x \in gen} \sigma(1/(exp(x)-1))=1$ for $\sigma = \{0\}$. Let $M:=$ *Hom_z*(*N, Z*) be the *Z*-module dual to *N*. Since $x \in N$ is a linear function on the complex space $M_c = M \otimes_{\mathbf{z}} C$, $\exp(x)$ is understood to be a holomorphic function on M_c . Hence $f(\Phi)$ is a meromorphic function on M_c . Note that the meromorphic function $1/(\exp(z)-1)$ of a complex variable *z* has poles of order one at each point of $2\pi i \mathbb{Z}$ and it has no pole elsewhere. Since no gen σ contains both x and $-x$ for any $x \in N$, $f(\Phi)$ may have poles of order at most one along the hyperplanes $H_{x,d} = (x=2\pi i d)$ $\subset M_c$ for $x \in G(\Delta)$ and $d \in \mathbb{Z}$, where $G(\Delta) := \bigcup_{a \in \Delta} \text{gen } \sigma$. Note that $G(\Delta)$ is in one-to-one correspondence with the set $\Delta(1)$ of cones of dimension one in Δ by $x \mapsto \gamma(x)$.

In the rest of this section, we devote ourselves to proving the following theorem.

Theorem 1.1. Let n be the rank of N. If $n > 1$ and Δ is a nonsingular *complete fan, then* $f(\Delta)$ *is equal to zero.*

We prove the theorem by induction on *n.*

If $n=1$, then there is only one complete fan and the theorem is true since

$$
1/(\exp(x)-1)+1/(\exp(-x)-1)+1=0.
$$

Let $r \geq 2$ be an integer. We assume that the theorem is true for $1 \lt n \lt r-1$. We now suppose $n=r$.

Lemma 1.2. In the above situation, $f(\Delta)$ is an entire function on M_c .

Proof. Since $f(\Delta)$ is periodic with respect to the subgroup $2\pi i M \subset$ M_c , it is sufficient to show that $f(\Delta)$ has no pole along the hyperplane $H_{x,0}$ for each $x \in G(\Delta)$. Let $\gamma := \gamma(x)$ and $\Delta(\gamma \prec) := {\sigma \in \Delta; \gamma \prec \sigma}$. By definition, we have $f(\Delta) = f(\Delta(\gamma \prec)) + f(\Delta \setminus \Delta(\gamma \prec))$. It is easy to see that the restriction $xf(\Delta(\gamma \prec))|_{H_{x,0}}$ is equal to $f(\Delta[\gamma])$, where $\Delta[\gamma]$ is the fan in $N[\gamma]_R$ $=N_R/(\gamma+(-\gamma))$ induced by Δ . Since $\Delta[\gamma]$ is also a nonsingular complete fan and $N[\gamma] = N/(N_R \cap (\gamma + (-\gamma)))$ is of rank $r-1$, $f(\mathcal{A}[\gamma])$ is equal to zero by the induction assumption. Hence $f(\Delta(\gamma\prec))$ has no pole along $H_{x,0}$. If $-\gamma$ is not an element of Λ , then $f(\Lambda/\Lambda(\gamma))$ has no pole at $H_{x,0}$ by definition. Hence so is $f(\Lambda)$. Suppose $-\gamma \in \Lambda$. Then $f(\Lambda) \Delta(\gamma \prec) = f(\Lambda(-\gamma \prec)) +$ $f(A\{(A(\gamma\prec))\cup A(-\gamma\prec))\}$ has no pole at $H_{x,0}$, since $(-x)f(A(-\gamma\prec))$ is zero on $H_{x,0}$ similarly as above. $q.e.d.$

Let *m* be an element of *M*. We define the *C*-linear mapping φ_m : *C* $\rightarrow M_c$ by $\varphi_m(t) = tm$ for $t \in C$. We denote by $g_m(t)$ the pull-back $\varphi_m^*(f(\Delta))$. By the above lemma, $g_m(t)$ is an entire function on C.

Lemma 1.3. *Suppose m is not in* x^{\perp} : = {v \in *M_R*; $\langle v, x \rangle$ = 0} *for any* $x \in G(\Delta)$. *Then* $g_m(t)=0$.

Proof. By the definition of $f(\Delta)$, we have

$$
g_m(t) = \sum_{\sigma \in \Lambda} \prod_{x \in gen} \{ (1/(\exp(a_x t) - 1) \},\
$$

where $a_x = \langle m, x \rangle$ for each $x \in G(\Lambda)$. The integers a_x 's are not zero by assumption. By Lemma 1.2, $g_m(t)$ is an entire function on C. Since a_x 's are integers, $g_m(t)$ has the periodicity $g_m(t+2\pi i)=g_m(t)$. Hence, in order to prove $g_m(t)=0$, it is sufficient to show that

$$
|g_m(t)| \longrightarrow 0, \quad \text{as } | \text{Re } t | \longrightarrow \infty.
$$

Let $H(m)$ be the hyperplane $\{u \in N_R; \langle m, u \rangle = 0\}$ in N_R , and let $H^+(m):=\{u \in N_R$; $\langle m, u \rangle \ge 0\}$ and $H^-(m):=\{u \in N_R$; $\langle m, u \rangle \le 0\}$. It is clear that

$$
1/(\exp(a_x t) - 1) \longrightarrow 0, \quad \text{as } \operatorname{Re} a_x t \longrightarrow \infty, \text{ and}
$$

$$
1/(\exp(a_x t) - 1) \longrightarrow -1, \text{ as } \operatorname{Re} a_x t \longrightarrow -\infty.
$$

Since $\sigma \in \Lambda$ is contained in $H^+(m)$ (resp. $H^-(m)$) if and only if $a_n > 0$ (resp. $a_r \leq 0$) for every $x \in \text{gen } \sigma$, we have

$$
g_m(t) \longrightarrow \sum_{\sigma \in \Delta^{-}} (-1)^{\dim \sigma}, \quad \text{as } \text{Re } t \longrightarrow \infty, \text{ and}
$$

$$
g_m(t) \longrightarrow \sum_{\sigma \in \Delta^{+}} (-1)^{\dim \sigma}, \quad \text{as } \text{Re } t \longrightarrow -\infty,
$$

where $\Delta^- := \{\sigma \in \Delta : \sigma \subset H^-(m)\}\$ and $\Delta^+ := \{\sigma \in \Delta : \sigma \subset H^+(m)\}.$ We set Φ : $= \{\sigma \cap H^+(m); \sigma \in \Lambda \backslash \Lambda^-\}$ and $\Phi_0 := \{\sigma \cap H(m); \sigma \in \Lambda\}$. Then $\Phi \cap \Phi_0 = \emptyset$ and $\Phi \cup \Phi$ _o is a finite polyhedral decomposition of $H^+(m)$. By [1, Lemma 1.6], for example, we have $\sum_{\tau \in \emptyset} (-1)^{\dim \tau} = (-1)^{\tau}$. The same lemma also implies that $\sum_{\sigma \in \mathcal{A}} (-1)^{\dim \sigma} = (-1)^r$. Since the map $\Lambda \setminus \Lambda^- \to \Phi$ which sends σ to $\sigma \cap H^+(m)$ is bijective and preserves the dimension of cones, the limit $\sum_{\sigma \in \Delta^{-}} (-1)^{\dim \sigma}$ in the first case is equal to zero. The second limit is also zero since the equality $\sum_{i \in A^+} (-1)^{\dim \sigma} = 0$ is proved similarly. q.e.d.

By Lemma 1.3, the entire function $\varphi(\Lambda)$ is zero on rational lines **R**m in M_R which are not contained in $\bigcup_{x \in G(A)} x^{\perp}$. Clearly, the union of such lines is dense in M_R . Thus $\varphi(\Lambda)$ is zero on M_R . Since $\varphi(\Lambda)$ is an analytic function, it is also zero on M_c . $q.e.d.$

Remark 1.4. Let $\sum_{k=0}^{\infty} B_k t^{k-1}/k!$ be the power series expansion of $1/(\exp(t)-1)$. The coefficients B_k 's are known as the Bernoulli numbers. The above theorem for $n = 1$ means the wellknown fact that $B_1 = -1/2$ and $B_{2k+1} = 0$ for $k > 0$.

§ **2. T-complexes**

We denote by $\mathscr C$ the category of pairs (N, σ) of a free Z-module N of finite rank and an s.c.r.p. cone σ in N_R . For an object $\alpha \in \mathcal{C}$, we denote $\alpha = (N(\alpha), \sigma(\alpha))$. For two objects $\alpha, \beta \in \mathscr{C}$, a morphism $u: \alpha \rightarrow \beta$ consists of an isomorphism $u_z: N(\alpha) \to N(\beta)$ such that $u_R(\sigma(\alpha))$ is a face of $\sigma(\beta)$, where $u_R = u_Z \otimes 1_R : N(\alpha)_R \to N(\beta)_R$. Since any morphism *u* is determined by the isomorphism u_{z} , the following lemma is obvious.

Lemma 2.1. *Every morphism* $u : \alpha \rightarrow \beta$ *in* \mathcal{C} *is epimorphic and monomorphic.*

For an object $\alpha \in \mathcal{C}$, we denote $r(\alpha)$:=rank $N(\alpha)$ and $d(\alpha)$:= $\dim \sigma(\alpha)$. Clearly, $0 \le d(\alpha) \le r(\alpha)$ for any α . For each nonnegative integer r, we denote by \mathscr{C}_r , the subcategory of \mathscr{C} consisting of $\alpha \in \mathscr{C}$ with $r(\alpha)=r$. It is obvious that the category *C* is the disjoint union of \mathcal{C}_r 's.

Definition 2.2. A subcategory Σ of $\mathscr C$ is said to be a *graph of cones* if the class mor Σ of morphisms in Σ is a finite set.

If Σ is a graph of cones, then Σ consists of finite objects, since $1_a \in$ mor Σ for each $\alpha \in \Sigma$.

Example 2.3. Let Δ be a finite fan of N_R . Then we regard Δ as a graph of cones by identifying Δ with $\{(N, \sigma) : \sigma \in \Delta\}$ and by defining morphism $u:(N, \sigma) \rightarrow (N, \tau)$ to be in mor Δ if and only if $u_{\mathbf{z}}$ is the identity. Furthermore, any subset Φ of Δ is similarly considered to be a graph of cones.

Let Σ be a graph of cones and let ρ be an element of Σ . We denote by $\Sigma(\rho\prec)$ the comma category consisting of the pairs $\beta'=(\beta, v)$ of an element $\beta \in \Sigma$ and a morphism $v : \rho \rightarrow \beta$ in mor Σ . A morphism $u' : \beta' =$ $(\beta, v) \rightarrow \gamma' = (\gamma, w)$ in the category $\Sigma(\rho \prec)$ consists of a morphism $u : \beta \rightarrow \gamma$ such that $u \circ v = w$. By defining $N(\beta') = N(\beta)$, $\sigma(\beta') = \sigma(\beta)$ and $u'_z = u_z$, we see that $\Sigma(\rho \prec)$ is also a graph of cones and is contained in $\mathscr{C}_{r(\rho)}$. Similarly, the comma category $\Sigma(\prec\rho)$ consists of pairs $\beta' = (\beta, v)$ of $\beta \in \Sigma$ and $(v: \beta \rightarrow \rho) \in \text{mor } \Sigma$. $\Sigma(\prec \rho)$ is also a graph of cones contained in $\mathcal{C}_{r(\rho)}$ if we define $N(\beta')$ and $\sigma(\beta')$ in the same way as above.

Let $\beta' = (\beta, v)$ be an element of $\Sigma(\rho \prec)$. Then $v_R(\sigma(\rho)) \subset N(\beta)_R$ is an s.c.r.p. cone of dimension $d(\rho)$. We denote by $\beta'[\rho]$ the object of $\mathcal{C}_{r(\rho)-d(\rho)}$ with $N(\beta'[\rho]) := N(\beta)[v_R(\sigma(\rho))]$ and $\sigma(\beta'[\rho]) := \sigma(\beta)[v_R(\sigma(\rho))]$. Let $u' : \beta'$ $-\gamma' = (r, w)$ be a morphism in $\Sigma(\rho \prec)$. Then the isomorphism $u'_z : N(\beta)$ $\rightarrow N(r)$ induces a morphism $\beta'[\rho] \rightarrow \gamma'[\rho]$ in $\mathcal{C}_{r(\rho)-d(\rho)}$ which we denote by *u'*[*o*]. Hence if we set $\Sigma[\rho]: = {\beta'[\rho]: \beta' \in \Sigma(\rho \prec)}$ and mor $\Sigma[\rho]: = {\mu'[\rho]}$; $u' \in \text{mor } \Sigma(\rho \prec)$, $\Sigma[\rho]$ is a graph of cones contained in $\mathscr{C}_{r(\rho)-d(\rho)}$ which is naturally isomorphic to $\Sigma(\rho \prec)$ as categories. We call $\Sigma[\rho]$ the link of Σ *at p.*

A subcategory Φ of Σ is said to be *star closed* if $\Phi(\rho\prec)=\Sigma(\rho\prec)$ for every $\rho \in \Phi$, and *star open* if $\Phi(\prec \rho) = \Sigma(\prec \rho)$ for every $\rho \in \Phi$. Since star closed or star open subcategories are full subcategories, we also call them star closed or star open *subsets* of *S,* respectively.

Definition 2.4. A *homomorphism* $\varphi : \Sigma \rightarrow \Sigma'$ of graphs of cones consists of a functor $\bar{\varphi}$: $\bar{\Sigma} \rightarrow \bar{\Sigma}'$ and a collection $\{\varphi_{\alpha}; \alpha \in \Sigma\}$ of morphisms $\varphi_{\alpha} : \alpha \rightarrow \overline{\varphi}(\alpha)$ such that the diagram

is commutative for every $u: \alpha \rightarrow \beta$ in mor Σ . φ is said to be an *isomorphism* if $\overline{\varphi}$ is isomorphic, i.e., $\overline{\varphi}$ induces a bijection mor $\Sigma \rightarrow$ mor Σ' , and all φ_{α} are isomorphisms.

For a morphism $u: \alpha \rightarrow \beta$ in \mathcal{C} , we denote $i(u):=\alpha$ and $f(u):=\beta$. The connectedness of a graph of cones is defined in the same way as that of usual graphs. Namely, Σ is connected if and only if the equivalence relation generated by $i(u) \sim f(u)$ for $u \in \text{mor } \Sigma$ has at most one equivalence class.

Now we are ready to define the notion of T-complexes.

Definition 2.5. A graph of cones Σ is said to be a *T-complex* if

 (1) *I* is nonempty and connected,

(2) for any $\rho \in \Sigma$, the comma category $\Sigma(\prec \rho)$ is isomorphic to $\Gamma(\sigma(\rho))\setminus\{0\}$ as graphs of cones, and

(3) for any $\rho \in \Sigma$ the link $\Sigma[\rho]$ is isomorphic to a complete fan. Furthermore, Σ is said to be *nonsingular* if $\sigma(\alpha) \subset N(\alpha)_R$ is a nonsingular cone for every $\alpha \in \Sigma$.

All the known examples of T-complexes are essentially written as follows:

There exist a fan $\tilde{\Sigma}$ of N_R and a subgroup $\Gamma \subset \text{Aut}_z(N)$ such that

(1) $U=(\bigcup_{\alpha\in\tilde{\mathcal{I}}} \sigma)\setminus\{0\}$ is a nonempty connected open cone of N_R , and

(2) *I* induces a free action on $\tilde{\Sigma} \setminus \{0\}$ and $\sharp(\tilde{\Sigma} \setminus \{0\})$ is finite modulo *r.*

Let Σ be a set of representatives of $\tilde{\Sigma}\setminus\{0\}$ modulo Γ . For each element $\alpha \in \Sigma$, we set $N(\alpha) := N$ and $\sigma(\alpha) := \alpha$. For elements $\alpha, \beta \in \Sigma$, a morphism $u: \alpha \rightarrow \beta$ consists of an element $u_z \in \Gamma$ such that $u_R(\alpha) \subset N_R$ is a face of the cone β . Then we see that Σ is a T-complex. Σ is nonsingular if and only if so is $\tilde{\Sigma}$.

Examples 2.6. We will give examples of T-complexes of the above form.

(1) *Toric variety type.* Let $\tilde{\Sigma}$ be a complete fan of N_R and $\Gamma = \{1_N\}$. Then $\Sigma = \tilde{\Sigma} \setminus \{0\}$ is a T-complex.

(2) *Degenerate Abelian variety type.* Let $N = \mathbb{Z}^{n+1}$, $C = \{(x_1, \dots, x_n)\}$ x_{n+1}) \in \mathbb{R}^{n+1} ; x_{n+1} > 0} and *I* be a subgroup of finite index of the group of the matrices of the form

$$
\begin{bmatrix} 1 & 0 & b_1 \\ \cdot & \cdot & \cdot \\ 0 & 1 & b_n \\ 0 & \cdot & 0 & 1 \end{bmatrix} \quad (b_i \in \mathbb{Z}).
$$

Then, for a *I*-invariant polyhedral decomposition $\tilde{\Sigma}$ of $C \cup \{0\}$, we get a T-complex Σ .

(3) *Tsuchihashi cusp singularity type.* When *C* is an open convex cone which contains no lines in N_R , such a pair (C, T) induces an isolated singularity which is independent of the choice of $\tilde{\Sigma}$. A Hilbert modular cusp singularity is a special case of this type of singularities. Other cases and some explicit examples were studied by Tsuchihashi [TI].

(4) *Inoue-Kato manifold type.* Let *A* be an $n \times n$ -matrix of positive integers with the determinant ± 1 , and let $N = \mathbb{Z}^n$ and $\pi = \{(x_1, \dots, x_n) \in$ N_R ; $x_1, \dots, x_n \ge 0$. Then $\bigcup_{m \in \mathbb{Z}} A^m(\pi) \setminus \{0\}$ is an open half-space and $\bigcap_{m\in \mathbb{Z}} A^m(\pi)$ is a closed half-line. Let $C:=((\bigcup_{m\in \mathbb{Z}} A^m(\pi))\setminus (\bigcap_{m\in \mathbb{Z}} A^m(\pi))$ and $I = \{A^m; m \in \mathbb{Z}\}.$ Then there exists a nonsingular I -invariant polyhedral decomposition $\tilde{\Sigma}$ of $C \cup \{0\}$. By these data, we can construct a compact non-Kähler manifold of dimension *n* with the fundamental group Z [T2]. When $n=2$, this is known as a hyperbolic Inoue surface (see **[MO**, Sec. 15]). *C* is connected if $n \geq 3$. The associated T-complex corresponds to an anti-canonical divisor of the manifold if det $A = 1$.

§ **3. Functors on a graph of cones**

We denote by $\mathcal{C}^{n,s}$ the full subcategory of \mathcal{C} consisting of $\alpha \in \mathcal{C}$ such that the cone $\sigma(\alpha)$ is nonsingular. We denote the canonical set of generators gen $\sigma(\alpha) \subset N(\alpha)$ simply by gen α . For a morphism $u : \alpha \rightarrow \beta$ in $\mathcal{C}^{n.s.}$, we have $u_z(\text{gen }\alpha) \subset \text{gen }\beta$. For each $\alpha \in \mathcal{C}^{n.s.}$, we denote $x(\alpha) = \prod_{x \in \text{gen }\alpha} x$ which is an element of the symmetric power $S^{d(a)}N(\alpha)$ over Z. For a morphism $u: \alpha \to \beta$ in $\mathscr{C}^{n.s.}$, we set $x(u) := \prod_{x \in \text{gen } \beta \setminus u_{\mathbf{Z}}(\text{gen } \alpha)} x \in S^{d(\beta)-d(\alpha)} N(\beta)$.

Let k be a commutative ring with unity. For each nonnegative integer *m*, we define the functor D_k^m : $\mathcal{C}^{n.s.} \rightarrow (k$ -modules) as follows. For each $\alpha \in \mathscr{C}^{n,s}$, we set $D_k^m(\alpha) := S^{\alpha(\alpha)+m}N(\alpha)_k$ where $N(\alpha)_k := N(\alpha) \otimes_{\mathbf{Z}} k$ and the symmetric power is taken over the ring k. For a morphism $u : \alpha \rightarrow \beta$, we define the homomorphism $D_k^m(u)(z) := x(u) \cdot S^{d(\alpha) + m} u_k(z)$, where $S^d u_k$: $S^dN(\alpha)_k \rightarrow S^dN(\beta)_k$ is the symmetric power of $u_k = u_{\mathbf{Z}} \otimes 1_k$. It is easy to see that D_k^m satisfies the axiom of functors. We denote by k^{\sim} the constant functor defined by $k^{\sim}(\alpha):=k$ and $k^{\sim}(u):=1_k$ for all $\alpha \in \mathcal{C}^{n.s.}$ and $u \in$ mor $\mathscr{C}^{n,s}$. We define the morphism of functors $\varepsilon : k \to D_k^0$ by $\varepsilon(\alpha)(a) :=$ $ax(\alpha) \in D_k^0(\alpha)$ for $\alpha \in \mathcal{C}^{n.s.}$ and $a \in k$. Since $x(u) \cdot S^{d(\alpha)}u_k(x(\alpha)) = x(\beta)$, for $u : \alpha \rightarrow \beta$, this is indeed a morphism of functors.

Let Φ be a graph of cones. Then, for a functor $V: \mathcal{C}^{n.s.} \rightarrow (k$ -modules), the inductive limit ind $\lim_{\phi} V$ is described as the cokernel

$$
\bigoplus_{u \in \operatorname{mor} \phi} V(i(u)) \xrightarrow{\frac{p}{q}} \bigoplus_{\alpha \in \phi} V(\alpha) \longrightarrow \operatorname{ind} \lim_{\phi} V
$$

where *p* consists of the identities $1_{V(i(u))} : V(i(u)) \to V(i(u)) \subset \bigoplus_{\alpha \in \mathcal{P}} V(\alpha)$ and *q* consists of the homomorphisms $V(u): V(i(u)) \to V(f(u)) \subset \bigoplus_{\alpha \in \mathcal{D}} V(\alpha)$. For a graph of cones Φ , we get a homomorphism ind $\lim_{\phi} \varepsilon$: ind $\lim_{\phi} k \to \infty$ ind $\lim_{\phi} D_{k}^{0}$. Note that ind $\lim_{\phi} k^{\sim} = k$ if ϕ is nonempty and connected.

Lemma 3.1. Let Σ be a nonsingular T-complex. Then, there exists a *morphism of functors* $v: D_k^0|_{X} \to K^{\infty}|_{X}$ *such that* $v \circ \varepsilon$ *is the identity on* Σ *. In particular, ind lim_n* ϵ *defines an injection* $k \rightarrow \text{ind lim}_{x} D_{k}^{0}$ *and the image is a direct summand.*

Proof. Let $\Sigma_1 = \{ \gamma \in \Sigma : d(\gamma) = 1 \}$. By the condition (2) in Definition 2.5, Σ does not contain zero-dimensional cone. Hence Σ_1 is a star open subset of *I.* Let γ be an element of \sum_{i} and let gen $\gamma = \{x\}$. Since x is a primitive element of $N(\gamma)$, kx is a direct summand of $N(\gamma)$ _k. Hence, there exists a *k*-homomorphism $v(\gamma): N(\gamma)_k \to k$ such that $v(\gamma)(x) = 1$. By the condition (2) in Definition 2.5, there is no morphism $u : \gamma \rightarrow \gamma'$ if $\gamma, \gamma' \in \Sigma_1$ and $\gamma \neq \gamma'$. Hence we get a morphism of functors $v: D_k^0|_{\Sigma_1} \to k^{-}|_{\Sigma_1}$ which satisfies $v \circ \varepsilon$ $=$ id on Σ_1 . Let Φ be a maximal star open subset of Σ such that $\Sigma_1 \subset \Phi$ and that there exists a morphism of functors $v: D_k^0|_{\phi} \to k^{\infty}|_{\phi}$ with $v \circ \varepsilon = id$ on Φ . Assume $\Phi \neq \Sigma$ and let ρ be an element of $\Sigma \backslash \Phi$ with the smallest $d(\rho) = : d$. By Definition 2.5, (2), we have an isomorphism $\sum (\prec \rho) \simeq$ $\Gamma(\rho)$ {0}. By the minimality of $d(\rho)$, ν induces a morphism of functors $\nu': D_{k}|_{\Gamma(\rho)\setminus{0,p}}\rightarrow k^{\sim}|_{\Gamma(\rho)\setminus{0,p}}$. Let $N=N(\rho)$ and let $\{x_1,\cdots,x_r\}$ be a basis of *N* such that gen $\rho = \{x_1, \dots, x_d\}$. The free *k*-module $S^d N_k$ has $\{x_1^{a_1} \dots \}$ $x_r^{a_r}: a_1, \dots, a_r \geq 0, a_1 + \dots + a_r = d$ as a basis. For each face α of ρ , gen α is a subset of $\{x_1, \dots, x_d\}$ and the image of $S^{d(\alpha)}N_k$ in S^dN_k is generated by monomials of degree d which is divisible by $x(\rho/\alpha) = \prod_{x \in \text{gen } \rho \setminus \text{gen } \alpha} x$. For each monomial *z* of degree *d*, we define $\nu'(\rho)(z) := \nu'(\alpha)(y)$ if $z =$ $x(\rho/\alpha)y$ for some $\alpha \in \Gamma(\rho) \setminus \{0, \rho\}$ and for a monomial *y* of degree $d(\alpha)$, and we define $v'(\rho)(z) := 0$ otherwise. Since $d = d(\rho) \geq 2$, $\Gamma(\rho) \setminus \{0, \rho\}$ is nonempty. Since $x(\rho) = x(\rho/\alpha)x(\alpha)$, we have $\nu'(\rho)(x(\rho)) = 1$. We see easily that the definition does not depend on the choice of α and hence $\nu'(\rho) \circ D_{\nu}^{\rho}(u) = \nu'(\alpha)$ for every $u: \alpha \rightarrow \rho$. Thus the morphism of functors ν' is extended to $\Gamma(\rho) \setminus \{0\}$. Since there is no morphism $\rho \rightarrow \alpha$ in Σ with $\alpha \in \Phi$, we can combine this extended ν' with ν , and we get an extension of ν to $\Phi \cup \{\rho\}$. This contradicts the maximality of Φ and we have $\Phi = \Sigma$. q.e.d.

We call ν in the above lemma a *retraction* of $D^0_k|_{\overline{x}}$ to $k^{\sim}|_{\overline{x}}$. In the proof of the above lemma, the extension of ν' to $\Gamma(\rho)\setminus\{0\}$ depends on the choice of the basis $\{x_1, \dots, x_r\}$ of N. Hence the retraction ν is neither unique nor canonical. We will see in Section 5 that there exists an explicit retraction for $k=R$ in the case of Thuchihashi cusp singularities.

Let Σ be a graph of nonsingular cones, i.e., a graph of cones contained in $\mathcal{C}^{n,s}$, and let ρ be an element of Σ . We are going to define the restriction

$$
\text{ind } \lim_{\Sigma} D_k^0 \longrightarrow \text{ind } \lim_{\Sigma \upharpoonright a} D_k^{d(\rho)}
$$

of the inductive limit of D_{k}^{0} to the link of ρ .

We define the homomorphism

$$
h'_{\rho}: \oplus_{\alpha \in \varSigma} D^0_k(\alpha) \longrightarrow \oplus_{\alpha'[\rho] \in \varSigma[\rho]} D^{d(\rho)}_k(\alpha'[\rho])
$$

by $h'_{\rho}((y_{\alpha})) := (\bar{y}_{\alpha})$ where $y_{\alpha} \in S^{d(\alpha)}N(\alpha)_k$ and \bar{y}_{α} is the image of y_{α} by the natural homomorphism $S^{d(\alpha)}N(\alpha)_k \rightarrow S^{d(\alpha)}N(\alpha'[\rho])_k$ if $\alpha'=(\alpha, u) \in \Sigma(\rho \prec)$ for a morphism $u: \rho \rightarrow \alpha$. Note that $d(\alpha) = d(\alpha'[\rho]) + d(\rho)$ in this case. Similarly, we define the homomorphism

$$
h^{\prime\prime}_\rho:\oplus_{u\in\operatorname{mor}\nolimits\Sigma}D^0_k(i(u))\longrightarrow\oplus_{u^\prime\lceil\rho\rceil\in\operatorname{mor}\nolimits\Sigma\lceil\rho\rceil}D^{d(\rho)}_k(i(u^\prime[\rho]))
$$

by $h''_s((z_u)) := (\bar{z}_{u'})$ for $z_u \in S^{d(i(u))} N(i(u))_k$ and $\bar{z}_{u'}$ is the image of z_u in $S^{d(i(u'))}\overline{N(i(u'|_{\rho}]))_k}$ if $u' \in \text{mor }\Sigma(\rho \prec)$ is defined by $u \in \text{mor }\Sigma$.

Proposition 3.2. Let Σ be a nonsingular T-complex and let ρ be an *element of* Σ . Then the diagram

$$
\oplus_{u \in \operatorname{mor} S} D_k^0(i(u)) \xrightarrow{p} \oplus_{\alpha \in S} D_k^0(\alpha)
$$
\n
$$
\oplus_{u'[\rho] \in \operatorname{mor} S[\rho]} D_k^{d(\rho)}(i(u'[\rho])) \xrightarrow{p} \oplus_{\alpha'[\rho] \in S[\rho]} D_k^{d(\rho)}(\alpha'[\rho])
$$

commutes for p and q, respectively.

Proof. Let *v* be in mor Σ and let *z* be an element of the direct summand $D_k^0(i(v))$ of $\bigoplus_{u \in \text{mor } s} D_k^0(i(u))$. We have $h'_\rho(p(z)) = p(h''_p(z))$, since their components for $\alpha'[\rho] \in \Sigma[\rho]$ are both equal to the image z_u of *z* in $S^{d(i(v))}N(\alpha'[\rho])_k$ if $\alpha'=(i(v), u)$ for some $u: \rho\rightarrow i(v)$ and are both zero otherwise. Hence the diagram is commutative for p .

Now we prove the commutativity for q. Let $\beta = f(v)$. The component for $\beta'[\rho]$ of $h'_{\rho}(q(z))$ is equal to the image $v(z)_w$ of $v(z) := D_k^0(v)(z)$ in $S^{d(\beta)}N(\beta'[\rho])_k$ if $\beta' = (\beta, w)$ for some $w : \rho \rightarrow \beta$ and zero otherwise. On

the other hand, the same component of $q(h''_n(z))$ is equal to $v_n[\rho](z)$ if β' $=(\beta, v \circ t)$ for some $t: \rho \rightarrow i(v)$ and is zero otherwise, where $v_i: (i(u), t) \rightarrow$ $(\beta, v \circ t)$ is defined by *v* and z_t is the image of *z* in $S^{d(i(v_t))}N(i(v_t)[\rho])_k$. Here note that such t is unique by Lemma 2.1. Clearly, these components $v(z)$ _w and $v,[p](z)$ for $\beta'[\rho]$ are equal if there exists such a *t*. By the condition (2) in Definition 2.5, such a *t* exists if and only if $w_z(\text{gen } \rho)$ v_z (gen *i(v)*). If *t* does not exist, there exists $x \in \text{gen } \rho$ such that $w_z(x) \notin \mathbb{R}$ $v_z(\text{gen } i(v))$. Hence, $x(v)$ is divisible by $w_z(x)$ and $v(z)_w \in S^{d(\beta)}N(\beta'[\rho])_k$ is also zero since $N(\beta'[\rho]) = N(\beta)/Zw_z(\text{gen } \rho)$. *q.e.d.*

We denote by $h_{\rho, z}$, or simply h_{ρ} , the homomorphism ind $\lim_{z} D_k^0 \rightarrow$ ind $\lim_{x \to a} D_x^{d(\rho)}$ induced by the diagram in the above proposition.

Let *N* be a free Z-module of rank $r \ge 0$. We denote by $B(N_k)$ the total ring of homogeneous quotients of the symmetric algebra S^*N_k . $B(N_k)$ is written as the direct sum $\bigoplus_{m\in\mathbb{Z}}B(N_k)_m$ of the k-vector spaces consisting of the homogeneous elements of degree *m.*

Let Δ be a nonsingular fan in N_R , and let m be a nonnegative integer. For each $\alpha \in \Delta$, we define the homomorphism $\lambda_{\alpha}^{\alpha}: D_{k}^{m}(\alpha) \rightarrow B(N_{k})_{m}$ by $\lambda_{\alpha}^{\alpha}(z)$: $=z/x(\alpha)$ for $z \in S^{d(\alpha)+m}N_{k}$. It is easy to see that these homomorphisms commute with $D_k^m(u)$ for every morphism $u: \alpha \rightarrow \beta$ in Δ . Hence we get the limit homomorphism λ_4 : ind $\lim_{A} D_{k}^{m} \rightarrow B(N_{k})_{m}$.

For a nonsingular T-complex Σ and for an element $\rho \in \Sigma$, we denote by \bar{h}_{ρ} the composite $\lambda_{\Sigma[\rho]} \circ h_{\rho}$: ind $\lim_{\Sigma} D_k^0 \to B(N[\rho]_k)_{d(\rho)}$, where $N[\rho] =$ $N(\rho)[\rho].$

Lemma 3.3. Let Σ be a nonsingular T-complex. Then an element z *in* ind $\lim_{z} D_k^0$ *is in the image of* ind $\lim_{z} \varepsilon$ *if and only if* $\bar{h}_o(z) = 0$ *for every* $\rho \in \Sigma$.

Proof. The image of the morphism $\varepsilon(\alpha): k(\alpha) \to D_k^0(\alpha)$ is equal to $kx(\alpha) \subset S^{\alpha(\alpha)}N(\alpha)_k$. Since the image of $x(\alpha)$ in $S^{\alpha(\alpha)}N[\alpha]_k$ is zero for every α , the necessity of the condition is obvious.

Now we suppose $z \in \text{ind } \lim_z D_k^0$ satisfies $\bar{h}_o(z) = 0$ for every $\rho \in \Sigma$. We may assume $z\neq0$ because otherwise the assertion is obvious. Let (z_n) $\epsilon \oplus_{\alpha \in \Sigma} D_k^0(\alpha)$ be a representative of *z* such that $d = \max\{d(\alpha); z_{\alpha} \neq 0\}$ is minimal. We will show $d=1$. Assume $d>1$ and take (z_a) so that the cardinality of $\{\alpha \in \Sigma: d(\alpha) = d \text{ and } z_{\alpha} \neq 0\}$ is the smallest. Let ρ be an element of *Z* such that $d(\rho)=d$ and $z_{\rho}\neq 0$. By the definition of *d*, we have $z_{\alpha} = 0$ for any $\alpha \in \Sigma(\rho \prec)$ with $\alpha \neq \rho$. Hence the condition $\bar{h}_{\rho}(z) = 0$ implies that the image of $z_{\rho} \in S^d N(\rho)_k$ in $S^d N[\rho]_k$ is zero. Let gen $\rho =$ ${x_1, \dots, x_d}$. Since $N[\rho] = N(\rho)/(Zx_1 + \dots + Zx_d)$, the kernel of the homomorphism $S^dN(\rho)_k \to S^dN[\rho]_k$ is equal to $\sum_{i=1}^d x_i S^{d-1}N(\rho)_k$. Hence z_ρ is

of the form $\sum_{i=1}^{d} x_i y_i$ for $y_i \in S^{d-1}N(\rho)_k$. By the condition (2) in Definition 2.5, there exists u^i : $\mu_i \rightarrow \rho$ in Σ such that u^i (gen μ_i) = gen $\rho \setminus \{x_i\}$, i.e., $x(u^i) = x_i$, for each $i = 1, \dots, d$. Let $y'_i \in S^{d-1}N(\mu_i)_k$ be the element which satisfies $S^{d-1}(u^{i})(y_{i}')=y_{i}$, for each an *i*. Let $y'=(y_{i}')$ be the element of $\bigoplus_{u \in \text{mor } S} D_k^0(i(u))$ defined by $y'_u = y'_i$ if $u = u^i$ for some *i* and $y'_u = 0$ otherwise. Then we have $q(y') = \sum x_i y_i = z_\rho$, while the components of $p(y')$ are zero for every α with $d(\alpha) \ge d$. Let $(z'_\alpha)=(z_\alpha)+p(y')-q(y') \in \bigoplus_{\alpha \in \Sigma} D_k^0(\alpha)$. Then clearly, max $\{d(\alpha): z_{\alpha} \neq 0\} \leq d$ and $z_{\alpha} = z_{\alpha}$ for $\alpha \in \Sigma$ with $d(\alpha) = d$ except when $\alpha = \rho$. Since $z'_{\rho} = 0$ and (z'_{α}) is also a representative of *z*, this contradicts the minimality of $\{\alpha \in \Sigma : d(\alpha) = d \text{ and } z_{\alpha} \neq 0\}$. Hence we have $d=1$.

Let $\rho \in \Sigma$ be an element with $z_{\rho} \neq 0$. Then since $d(\rho)=1$, we have gen $\rho = \{x(\rho)\}\$. By the condition $\bar{h}_{\rho}(z) = 0$, we see that z_{ρ} is in $kx(\rho) = 0$ $\ker(N(\rho)_k \to N[\rho]_k)$ which is equal to the image of $\varepsilon(\rho): k^{\sim}(\rho) \to D_k^0(\rho)$. Hence every z_a is in the image of $k²(\alpha)$. *q.e.d. q.e.d.*

§ 4. ω-invariant of a T-complex

Let Δ be a nonsingular fan in N_R and let m be a nonnegative integer. For each $\alpha \in \Lambda$, we set

$$
\omega_{\alpha}^{m} := \left[\prod_{x \in \text{gen } \alpha} \frac{x}{\exp(x) - 1} \right]_{d(\alpha) + m},
$$

where $[f]_d$ denotes the homogeneous part of degree d of a power series f. Note that $x/(\exp(x) - 1)$ is an element of the completion of the symmetric algebra S^*N_Q with respect to the natural grading. Hence $(\omega_\alpha^m)_{\alpha \in \Lambda}$ is an element of $\bigoplus_{\alpha \in A} D_{\mathcal{O}}^m(\alpha)$.

Lemma 4.1. Let ω_{μ}^{m} be the image of (ω_{α}^{m}) in ind $\lim_{\Delta} D_{\Omega}^{m}$. If Δ is a *nonsingular complete fan, then* $\lambda_4(\omega_4^m) \in B(N_o)_m$ is equal to zero.

Proof. Since $x(\alpha) = \prod_{x \in \text{gen } \alpha} x$, we see that $\lambda_{\alpha}^{\alpha}(\omega_{\alpha}^{m})$ is equal to the homogeneous part of degree *m* of $\prod_{x \in \text{gen } a} 1/(\exp(x)-1)$. Hence $\lambda_1(\omega_1^m)$ is equal to that of $\sum_{\alpha \in A} \prod_{x \in \text{gen } \alpha} 1/(\exp(x)-1)$, which is zero by Theorem 1.1. q.e.d.

Let Σ be a nonsingular T-complex. For each $\alpha \in \Sigma$, we set $\omega_{\alpha} :=$ $\prod_{x \in \text{gen } \alpha} x/(\exp(x) - 1)$ _{d(a)} $\in D^0_{\mathcal{Q}}(\alpha)$.

Proposition 4.2. *In the above situation, let* ω_z *be the class of* $(\omega_a)_{a \in \Sigma}$ *in* ind $\lim_{z} D_{Q}^{0}$. *Then* ω_{z} *is in the image of* ind $\lim_{z \to z}$.

Proof. By Lemma 3.3, it is sufficient to show $\bar{h}_\rho(\omega_z)=0$ for every

 $\rho \in \Sigma$. Let $N=N(\rho)$. Since ρ is the initial object of $\Sigma(\rho\prec)$, we may regard $N(\alpha) = N$ for every $\alpha \in \Sigma(\rho \prec)$ and $u_{\mathbf{z}} = 1_N$ for every $u \in \text{mor } \Sigma(\rho \prec)$. For each $\alpha \in \Sigma(\rho \prec), \alpha[\rho]$ is the nonsingular cone of $N[\rho]_R$ with gen $\alpha[\rho] = {\bar{x}}$; $x \in \text{gen } \alpha \ge \rho$) where \bar{x} denotes the image of $x \in N$ in $N[\rho]$. Since $x/(\exp(x)-1)=1$ on $M[\rho]_C$ for $x \in \text{gen } \rho$, the restriction of $\prod_{x \in \text{gen } \alpha} x/(\exp(x)-1)$ to $M[\rho]_C$ is equal to $\prod_{\bar{x} \in \text{gen } \alpha[\rho]} \bar{x}/(\exp(\bar{x})-1)$. Since $d(\alpha[\rho]) = d(\alpha) - d(\rho)$, we have $\omega_{\alpha}|_{M[\rho]} = \omega_{\alpha[\rho]}^{d(\rho)}$. Hence $h_{\rho}(\omega_{\Sigma}) = \omega_{\Sigma[\rho]}^{d(\rho)} \in$ ind $\lim_{z \uparrow e^{-t}} D_{k}^{d(\rho)}$. Since $\Sigma[\rho]$ is a nonsingular complete fan by Definition 2.5, (3), $\bar{h}_o(\omega_{\bar{x}}) = \lambda_a \circ h_o(\omega_{\bar{x}})$ is zero by Lemma 4.1. q.e.d.

Lemma 3.1 and Proposition 4.2 imply that there exists a unique rational number *a* for each nonsingular T-complex Σ such that (ind $\lim_{x \to 0}$ (a) = ω_x . We also denote $\omega_x := a$ and call it *the w-invariant* of the T-complex *2.*

Proposition 4.2 implies obviously the following:

Corollary 4.3. *Let* ν : $D_R^0|_{\Sigma} \rightarrow R^-|_{\Sigma}$ *be an arbitrary retraction. Then* ind $\lim_{x \to \infty} v((\omega_{\alpha})) \in \mathbb{R}$ *is equal to the rational number* ω_{α} .

Remark 4.4. Let Σ be a nonsingular T-complex, and let d be a positive integer such that

(1) $d\omega_{\alpha} \in D^0_{\mathbf{Z}}(\alpha)$ for every $\alpha \in \Sigma$.

Then $(d\omega_{\alpha}) \in \bigoplus_{\alpha \in \Sigma} D_{\mathbf{Z}}^0(\alpha)$ satisfies the condition of Lemma 3.3 for $k = \mathbf{Z}$. Hence $d\omega_x$ is an integer. The minimal number satisfying (1) depends only the dimension r of Σ . For example, $d=12$ for $r=2$ and $d=720$ for $r=4$.

When r is odd, we can show that ω_{Σ} is a half-integer in the same way. as Ogata's [Og, Theorem 2.3].

§ **5. Ogata's zeta zero value**

Let C, Γ , $\tilde{\Sigma}$ and Σ be as in Example 2.6, (3). The characteristic function ϕ_c on the open convex cone *C* is given by

$$
\phi_c(x) := \int_{c^*} \exp(-\langle x, x^* \rangle) dx^*,
$$

where $C^* \subset M_R$ is the dual cone of *C* and dx^* is a Euclidean metric. Ogata [Og] defined the zeta function of the pair (C, Γ) by

$$
Z(C,\Gamma;s):=\sum_{x\in (N\cap C)/\Gamma}\phi_{C}(x)^{s}
$$

which converges for complex numbers s with $\text{Re } s > 1$ and can be extended meromorphically to the whole complex plane. He proved in $[Og, Propo-$

sition 3.10] that this zeta function is regular at $s=0$ and the value is equal to

$$
\sum_{\alpha \in \Sigma} \int_{\alpha} \prod_{x \in \text{gen } \alpha} (\partial_x/(1-\exp(-\partial_x)))|_{d(\alpha)} G_2(t) dt_{\alpha}
$$

where ∂_k is the first order derivation defined by

$$
\partial_x f(t) = \lim_{h \to 0} \{ (f(t + hx) - f(t))/h \},\
$$

 dt_a is the Lebesgue measure on α normalized with respect to the basis gen α and $G_2(t) = \exp(-\phi_c(t)^{-2})$.

Let α be an element of Σ . By extending the correspondence $x \mapsto -\partial_x$ to their products, we get an isomorphism $z \mapsto D_z$ from $D_R^0(\alpha) = S^{\alpha(\alpha)} N_R$ to the **R**-module of derivations of order $d(\alpha)$ with constant coefficients.

Proposition 5.1. *For each* $\alpha \in \Sigma$, *we define the homomorphism* $F(\alpha)$: $S^{d(a)}N_R{\rightarrow}R$ by

$$
F(\alpha)(z) := \int_{\alpha} D_z G_2(t) dt_{\alpha}.
$$

Then F is a retraction of the morphism of functors $\varepsilon|_{\mathcal{I}} : \mathbb{R} \rightarrow D_{\mathbb{R}}^0|_{\mathcal{I}}$, *i.e., F* is a morphism of functors and $F \circ \varepsilon |_{\Sigma}$ is *identity*.

Proof. Let α be an element of Σ and let gen $\alpha = \{x_1, \dots, x_d\}$. We take a coordinate (t_1, \dots, t_r) of N_R such that $t_i(x_j) = \delta_{i,j}$, where $\delta_{i,j}$ is Kronecker's delta. Since $D_{\epsilon(a)(1)} = \prod_{i=1}^{d} (-\partial/\partial t_i)$, we have

$$
(F\circ \varepsilon)(\alpha)(1) = \int_0^\infty \cdots \int_0^\infty \prod_{i=1}^d (-\partial/\partial t_i) G_2(t) dt_1 \cdots dt_d.
$$

By [Og, Lemma 3.5], the partial derivatives of $G_2(t)$ goes to zero at infinity. Hence this integral is equal to $G_2(0) = 1$. Hence it is sufficient to show that F is a morphism of functors. Let $u : \beta \rightarrow \alpha$ be a homomorphism in Σ . We may regard gen $\beta = \{x_1, \dots, x_d\} \subset$ gen α for an integer $0 \le d' \le d$. Furthermore, it is sufficient to show the commutativity in the case $d' =$ *d*-1. Then, for an element $z \in D_R^0(\beta)$, we have $D_z = (-\partial/\partial t_d)D_z$ for z' $=D_R^0(u)(z)$. Hence

$$
F(\alpha)(D_R^0(u)(z)) = \int_0^\infty \cdots \int_0^\infty \left(\int_0^\infty (-\partial/\partial t_a) D_z G_z(t) dt_a \right) dt_1 \cdots dt_{d-1}
$$

=
$$
\int_0^\infty \cdots \int_0^\infty D_z G_z(t) dt_1 \cdots dt_{d-1}
$$

=
$$
F(\beta)(z).
$$
q.e.d.

Let α be in Σ . Then, for ω in Section 4, we have

 $D_{\varphi_{\alpha}} = \left[\prod_{x \in \text{gen } \alpha} (\partial_x / (1 - \exp(-\partial_x))) \right]_{d(\alpha)}.$

Hence by Ogata's formula, Corollary 4.3 and Proposition 5.1, we have the following:

Theorem 5.2. *The zeta zero value* $Z(C, \Gamma; 0)$ *is equal to the* ω *-invari*ant $\omega_{\rm x}$ *of the T-complex* Σ *. In particular, it is a rational number.*

References

- [I] M.-N. Ishida, Torus embeddings and de Rham complexes, in Commutative Algebra and Combinatorics, Proceedings of USA-Japan Conf., Kyoto 1985, (M. Nagata and H. Matsumura, eds.), Advanced Studies in Pure Mathematics, **11** (1987), 111-145.
- [MO] T. Oda, Lectures on Torus Embeddings and Applications (Based on joint work with K. Miyake), Tata Inst. of Fund. Res., Bombay, Springer-Verlag, Berlin, Heidelberg, New York, 1978.
- [Od] T. Oda, Convex Bodies and Algebraic Geometry, An Introduction to the Theory of Torie varieties, Ergebnisse der Math. (3) **15,** Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1988.
- (Og] S. Ogata, Special values of zeta functions associated to cusp singularities, Tohoku Math. J., 37 (1985), 367-384.
- [Sl] I. Satake, Special values of zeta functions associated with self-dual homogeneous cones, in Manifolds and Lie groups (Notre Dame Ind., 1980), Progress in Math., **14,** Birkhauser, Boston, 1981, 359-384.
- [S2] I. Satake, On numerical invariants of arithmetic varieties of Q-rank one, Automorphic forms of several variables, Taniguchi Symp., Katata, 1983 (I. Satake and Y. Morita, eds.), Progress in Math., **46,** Birkhauser, Basel, Boston, Stuttgart, 1984, 353-369.
- [Tl] **H.** Tsuchihashi, Higher dimensional analogues of periodic continued fractions and cusp singularities, Tohoku Math. **J., 35** (1983), 607-639.
- [T2] H. Tsuchihashi, Certain compact complex manifolds with infinite cyclic fundamental groups, Tôhoku Math. J., 39 (1987), 519-532.
- [Z] D. Zagier, Valeur des fonctions zêta des corps quadratiques réels aux entiers négatifs, Journées Arithmétiques de Caen (Univ. Caen, Caen, 1976), Asterisque, Nos. **41-42,** Soc. Math. France, Paris, 1977, 135-151.

Mathematical Institute Tohoku University Sendai, 980 Japan