Advanced Studies in Pure Mathematics 15, 1989 Automorphic Forms and Geometry of Arithmetic Varieties pp. 351–364

T-Complexes and Ogata's Zeta Zero Values

Masa-Nori Ishida

Dedicated to Prof. Ichiro Satake and Prof. Friedrich Hirzebruch on their sixtieth birthdays

Introduction

In [T1], Tsuchihashi defined the notion of cusp singularities in arbitrary dimension. They include the Hilbert modular cusp singularities as a special case. In this paper, we will show the rationality of the zeta zero value $Z(C, \Gamma; 0)$ of the zeta function associated to a Tsuchihashi cusp singularity which was defined by Ogata [Og]. He gave a formula for the zero value as a sum of integrals of C^{∞} -functions described by the characteristic function of the convex cone C. By this formula, he showed that the value is a half-integer in odd-dimensional case [Og, Theorem 2.3]. In two dimensional case, the singularity is a Hilbert modular cusp and 12 times the zeta zero value is an integer by [Z].

By the construction of Tsuchihashi cusp singularities, they have toroidal resolutions and the exceptional sets are toric divisors in the sense of [S2]. In order to describe toric divisors, we introduce the notion of *T-complexes* which is essentially equal to that of the weighted dual graphs which appear in [T1]. A *T*-complex Σ is a category with a finite number of objects. We define a functor D_Q^0 from Σ to the category of Q-vector spaces. We show that the rational number field Q has a natural injection into the inductive limit ind $\lim_{\Sigma} D_Q^0$. We define a special element ω_{Σ} of ind $\lim_{\Sigma} D_Q^0$. When Σ is the *T*-complex associated to a toroidal resolution of a Tsuchihashi cusp singularity (C, Γ) , Ogata's formula means that there exists an explicit retraction ind $\lim_{\Sigma} D_Q^0 \otimes R \to R$ and the zero value $Z(C, \Gamma; 0)$ is the image of ω_{Σ} in R. By using an equality in Section 1 for a nonsingular complete fan, we show that ω_{Σ} is in the image of Q in ind $\lim_{\Sigma} D_Q^0$ for any *T*-complex Σ . This implies that the image of ω_{Σ} in Ris independent of the retraction and is a rational number.

Received December 4, 1986.

§ 1. An equality for a nonsingular complete fan

Let N be a free Z-module of finite rank and let $N_R = N \bigotimes_Z R$. A nonempty subset σ of N_R is said to be a strongly convex rational polyhedral cone (s.c.r.p. cone for short) if there exists a finite subset $\{n_1, \dots, n_s\} \subset N$ such that $\sigma = R_0 n_1 + \dots + R_0 n_s$ with $\sigma \cap (-\sigma) = \{0\}$, where $R_0 = \{c \in R; c \ge 0\}$. An s.c.r.p. cone σ is said to be nonsingular if there exists a Z-basis $\{n_1, \dots, n_r\}$ of N such that $\sigma = R_0 n_1 + \dots + R_0 n_s$ for an integer $0 \le s \le r$. We call $\{n_1, \dots, n_s\}$ the canonical set of generators for σ and denote it by gen σ when σ is nonsingular. This set is uniquely determined by σ .

A nonempty collection Δ of s.c.r.p. cones is said to be a *fan* if (1) $\tau \in \Delta$ and $\sigma \prec \tau$, which means that σ is a face of τ , imply $\sigma \in \Delta$, and (2) if $\sigma, \tau \in \Delta$ then $\sigma \cap \tau$ is a common face of σ and τ . For an s.c.r.p. cone π in N_R , we denote by $\Gamma(\pi)$ the set of faces of π . Clearly, $\mathbf{0}:=\{0\}$ and π are in $\Gamma(\pi)$, and $\Gamma(\pi)$ is a fan in N_R . A fan Δ in N_R is said to be *complete* if it is finite and the union $\bigcup_{\sigma \in \Delta} \sigma$ is equal to N_R . It is said to be *nonsingular* if it consists of nonsingular cones.

For an s.c.r.p. cone ρ , we denote $N[\rho] := N/(N \cap (\rho + (-\rho)))$. $N[\rho]$ is a free Z-module with its rank equal to codim ρ . For a cone σ with $\rho \prec \sigma$, we denote by $\sigma[\rho]$ the image of σ in the quotient $N[\rho]_R = N_R/(\rho + (-\rho))$. If ρ is an element of a fan Δ , then $\Delta[\rho] = \{\sigma[\rho]; \sigma \in \Delta \text{ and } \rho \prec \sigma\}$ is a fan in $N[\rho]_R$.

For each nonzero element x in N, we denote $\gamma(x) := \mathbf{R}_0 x$. The cone $\gamma(x)$ is nonsingular of dimension one. If x is primitive, then gen $\gamma(x) = \{x\}$.

Let Δ be a nonsingular fan in N_R . For a subset Φ of Δ , we set

$$f(\Phi) := \sum_{\sigma \in \Phi} \prod_{x \in \text{gen } \sigma} \frac{1}{\exp(x) - 1},$$

where we understand $\prod_{x \in \text{gen}\sigma} (1/(\exp(x)-1))=1$ for $\sigma = \{0\}$. Let $M := \text{Hom}_Z(N, Z)$ be the Z-module dual to N. Since $x \in N$ is a linear function on the complex space $M_C = M \otimes_Z C$, $\exp(x)$ is understood to be a holomorphic function on M_C . Hence $f(\Phi)$ is a meromorphic function on M_C . Note that the meromorphic function $1/(\exp(z)-1)$ of a complex variable z has poles of order one at each point of $2\pi i Z$ and it has no pole elsewhere. Since no gen σ contains both x and -x for any $x \in N$, $f(\Phi)$ may have poles of order at most one along the hyperplanes $H_{x,d} = (x = 2\pi i d)$ $\subset M_C$ for $x \in G(\Delta)$ and $d \in Z$, where $G(\Delta) := \bigcup_{\sigma \in \Delta} \text{gen } \sigma$. Note that $G(\Delta)$ is in one-to-one correspondence with the set $\Delta(1)$ of cones of dimension one in Δ by $x \mapsto \gamma(x)$.

In the rest of this section, we devote ourselves to proving the following theorem. **Theorem 1.1.** Let *n* be the rank of *N*. If $n \ge 1$ and Δ is a nonsingular complete fan, then $f(\Delta)$ is equal to zero.

We prove the theorem by induction on *n*.

If n=1, then there is only one complete fan and the theorem is true since

$$1/(\exp(x)-1)+1/(\exp(-x)-1)+1=0.$$

Let $r \ge 2$ be an integer. We assume that the theorem is true for $1 \le n \le r-1$. We now suppose n=r.

Lemma 1.2. In the above situation, $f(\Delta)$ is an entire function on M_{c} .

Proof. Since $f(\Delta)$ is periodic with respect to the subgroup $2\pi iM \subset M_c$, it is sufficient to show that $f(\Delta)$ has no pole along the hyperplane $H_{x,0}$ for each $x \in G(\Delta)$. Let $\gamma := \gamma(x)$ and $\Delta(\gamma \prec) := \{\sigma \in \Delta; \gamma \prec \sigma\}$. By definition, we have $f(\Delta) = f(\Delta(\gamma \prec)) + f(\Delta \setminus \Delta(\gamma \prec))$. It is easy to see that the restriction $xf(\Delta(\gamma \prec))|_{H_{x,0}}$ is equal to $f(\Delta[\gamma])$, where $\Delta[\gamma]$ is the fan in $N[\gamma]_R = N_R/(\gamma + (-\gamma))$ induced by Δ . Since $\Delta[\gamma]$ is also a nonsingular complete fan and $N[\gamma] = N/(N_R \cap (\gamma + (-\gamma)))$ is of rank r-1, $f(\Delta[\gamma])$ is equal to zero by the induction assumption. Hence $f(\Delta(\gamma \prec))$ has no pole along $H_{x,0}$. If $-\gamma$ is not an element of Δ , then $f(\Delta \setminus \Delta(\gamma \prec))$ has no pole at $H_{x,0}$ by definition. Hence so is $f(\Delta)$. Suppose $-\gamma \in \Delta$. Then $f(\Delta \setminus \Delta(\gamma \prec)) = f(\Delta(-\gamma \prec)) + f(\Delta(\langle (\gamma \prec) \cup \Delta(-\gamma \prec)))$ has no pole at $H_{x,0}$, since $(-x)f(\Delta(-\gamma \prec))$ is zero on $H_{x,0}$ similarly as above.

Let *m* be an element of *M*. We define the *C*-linear mapping $\varphi_m : C \to M_c$ by $\varphi_m(t) = tm$ for $t \in C$. We denote by $g_m(t)$ the pull-back $\varphi_m^*(f(\Delta))$. By the above lemma, $g_m(t)$ is an entire function on *C*.

Lemma 1.3. Suppose *m* is not in $x^{\perp} := \{v \in M_R; \langle v, x \rangle = 0\}$ for any $x \in G(\Delta)$. Then $g_m(t) = 0$.

Proof. By the definition of $f(\Delta)$, we have

$$g_m(t) = \sum_{\sigma \in \mathcal{A}} \prod_{x \in \text{gen } \sigma} \{ (1/(\exp(a_x t) - 1)) \},$$

where $a_x = \langle m, x \rangle$ for each $x \in G(\Delta)$. The integers a_x 's are not zero by assumption. By Lemma 1.2, $g_m(t)$ is an entire function on C. Since a_x 's are integers, $g_m(t)$ has the periodicity $g_m(t+2\pi i)=g_m(t)$. Hence, in order to prove $g_m(t)=0$, it is sufficient to show that

$$|g_m(t)| \longrightarrow 0$$
, as $|\operatorname{Re} t| \longrightarrow \infty$.

Let H(m) be the hyperplane $\{u \in N_R; \langle m, u \rangle = 0\}$ in N_R , and let $H^+(m):=\{u \in N_R; \langle m, u \rangle \ge 0\}$ and $H^-(m):=\{u \in N_R; \langle m, u \rangle \le 0\}$. It is clear that

$$1/(\exp(a_x t) - 1) \longrightarrow 0$$
, as $\operatorname{Re} a_x t \longrightarrow \infty$, and $1/(\exp(a_x t) - 1) \longrightarrow -1$, as $\operatorname{Re} a_x t \longrightarrow -\infty$.

Since $\sigma \in \Delta$ is contained in $H^+(m)$ (resp. $H^-(m)$) if and only if $a_x > 0$ (resp. $a_x < 0$) for every $x \in \text{gen } \sigma$, we have

$$g_m(t) \longrightarrow \sum_{\sigma \in d^-} (-1)^{\dim \sigma}, \quad \text{as } \operatorname{Re} t \longrightarrow \infty, \text{ and}$$
$$g_m(t) \longrightarrow \sum_{\sigma \in d^+} (-1)^{\dim \sigma}, \quad \text{as } \operatorname{Re} t \longrightarrow -\infty,$$

where $\Delta^- := \{\sigma \in \Delta; \sigma \subset H^-(m)\}$ and $\Delta^+ := \{\sigma \in \Delta; \sigma \subset H^+(m)\}$. We set $\Phi := \{\sigma \cap H^+(m); \sigma \in \Delta \setminus \Delta^-\}$ and $\Phi_0 := \{\sigma \cap H(m); \sigma \in \Delta\}$. Then $\Phi \cap \Phi_0 = \emptyset$ and $\Phi \cup \Phi_0$ is a finite polyhedral decomposition of $H^+(m)$. By [1, Lemma 1.6], for example, we have $\sum_{r \in \Phi} (-1)^{\dim r} = (-1)^r$. The same lemma also implies that $\sum_{\sigma \in \Delta} (-1)^{\dim \sigma} = (-1)^r$. Since the map $\Delta \setminus \Delta^- \to \Phi$ which sends σ to $\sigma \cap H^+(m)$ is bijective and preserves the dimension of cones, the limit $\sum_{\sigma \in \Delta^-} (-1)^{\dim \sigma}$ in the first case is equal to zero. The second limit is also zero since the equality $\sum_{\sigma \in \Delta^+} (-1)^{\dim \sigma} = 0$ is proved similarly. q.e.d.

By Lemma 1.3, the entire function $\varphi(\Delta)$ is zero on rational lines Rm in M_R which are not contained in $\bigcup_{x \in G(\Delta)} x^{\perp}$. Clearly, the union of such lines is dense in M_R . Thus $\varphi(\Delta)$ is zero on M_R . Since $\varphi(\Delta)$ is an analytic function, it is also zero on M_C .

Remark 1.4. Let $\sum_{k=0}^{\infty} B_k t^{k-1}/k!$ be the power series expansion of $1/(\exp(t)-1)$. The coefficients B_k 's are known as the Bernoulli numbers. The above theorem for n=1 means the wellknown fact that $B_1 = -1/2$ and $B_{2k+1} = 0$ for k > 0.

§ 2. T-complexes

We denote by \mathscr{C} the category of pairs (N, σ) of a free Z-module N of finite rank and an s.c.r.p. cone σ in N_R . For an object $\alpha \in \mathscr{C}$, we denote $\alpha = (N(\alpha), \sigma(\alpha))$. For two objects $\alpha, \beta \in \mathscr{C}$, a morphism $u : \alpha \rightarrow \beta$ consists of an isomorphism $u_Z : N(\alpha) \rightarrow N(\beta)$ such that $u_R(\sigma(\alpha))$ is a face of $\sigma(\beta)$, where $u_R = u_Z \otimes 1_R : N(\alpha)_R \Rightarrow N(\beta)_R$. Since any morphism u is determined by the isomorphism u_Z , the following lemma is obvious.

Lemma 2.1. Every morphism $u : \alpha \rightarrow \beta$ in C is epimorphic and monomorphic. For an object $\alpha \in \mathscr{C}$, we denote $r(\alpha) := \operatorname{rank} N(\alpha)$ and $d(\alpha) := \dim \sigma(\alpha)$. Clearly, $0 \le d(\alpha) \le r(\alpha)$ for any α . For each nonnegative integer r, we denote by \mathscr{C}_r the subcategory of \mathscr{C} consisting of $\alpha \in \mathscr{C}$ with $r(\alpha) = r$. It is obvious that the category \mathscr{C} is the disjoint union of \mathscr{C}_r 's.

Definition 2.2. A subcategory Σ of \mathscr{C} is said to be a graph of cones if the class mor Σ of morphisms in Σ is a finite set.

If Σ is a graph of cones, then Σ consists of finite objects, since $1_{\alpha} \in$ mor Σ for each $\alpha \in \Sigma$.

Example 2.3. Let Δ be a finite fan of N_R . Then we regard Δ as a graph of cones by identifying Δ with $\{(N, \sigma); \sigma \in \Delta\}$ and by defining morphism $u: (N, \sigma) \rightarrow (N, \tau)$ to be in mor Δ if and only if u_Z is the identity. Furthermore, any subset Φ of Δ is similarly considered to be a graph of cones.

Let Σ be a graph of cones and let ρ be an element of Σ . We denote by $\Sigma(\rho \prec)$ the comma category consisting of the pairs $\beta' = (\beta, v)$ of an element $\beta \in \Sigma$ and a morphism $v : \rho \rightarrow \beta$ in mor Σ . A morphism $u' : \beta' = (\beta, v) \rightarrow \gamma' = (\gamma, w)$ in the category $\Sigma(\rho \prec)$ consists of a morphism $u : \beta \rightarrow \gamma'$ such that $u \circ v = w$. By defining $N(\beta') = N(\beta)$, $\sigma(\beta') = \sigma(\beta)$ and $u'_Z = u_Z$, we see that $\Sigma(\rho \prec)$ is also a graph of cones and is contained in $\mathscr{C}_{r(\rho)}$. Similarly, the comma category $\Sigma(\prec \rho)$ consists of pairs $\beta' = (\beta, v)$ of $\beta \in \Sigma$ and $(v : \beta \rightarrow \rho) \in \text{mor } \Sigma$. $\Sigma(\prec \rho)$ is also a graph of cones contained in $\mathscr{C}_{r(\rho)}$ if we define $N(\beta')$ and $\sigma(\beta')$ in the same way as above.

Let $\beta' = (\beta, v)$ be an element of $\Sigma(\rho \prec)$. Then $v_R(\sigma(\rho)) \subset N(\beta)_R$ is an s.c.r.p. cone of dimension $d(\rho)$. We denote by $\beta'[\rho]$ the object of $\mathscr{C}_{\tau(\rho)-d(\rho)}$ with $N(\beta'[\rho]) := N(\beta)[v_R(\sigma(\rho))]$ and $\sigma(\beta'[\rho]) := \sigma(\beta)[v_R(\sigma(\rho))]$. Let $u' : \beta' \rightarrow \gamma' = (\gamma, w)$ be a morphism in $\Sigma(\rho \prec)$. Then the isomorphism $u'_Z : N(\beta) \rightarrow N(\gamma)$ induces a morphism $\beta'[\rho] \rightarrow \gamma'[\rho]$ in $\mathscr{C}_{\tau(\rho)-d(\rho)}$ which we denote by $u'[\rho]$. Hence if we set $\Sigma[\rho] := \{\beta'[\rho] : \beta' \in \Sigma(\rho \prec)\}$ and mor $\Sigma[\rho] := \{u'[\rho]; u' \in \text{mor } \Sigma(\rho \prec)\}$, $\Sigma[\rho]$ is a graph of cones contained in $\mathscr{C}_{\tau(\rho)-d(\rho)}$ which is naturally isomorphic to $\Sigma(\rho \prec)$ as categories. We call $\Sigma[\rho]$ the link of Σ at ρ .

A subcategory Φ of Σ is said to be *star closed* if $\Phi(\rho \prec) = \Sigma(\rho \prec)$ for every $\rho \in \Phi$, and *star open* if $\Phi(\prec \rho) = \Sigma(\prec \rho)$ for every $\rho \in \Phi$. Since star closed or star open subcategories are full subcategories, we also call them star closed or star open *subsets* of Σ , respectively.

Definition 2.4. A homomorphism $\varphi: \Sigma \to \Sigma'$ of graphs of cones consists of a functor $\overline{\varphi}: \Sigma \to \Sigma'$ and a collection $\{\varphi_{\alpha}; \alpha \in \Sigma\}$ of morphisms $\varphi_{\alpha}: \alpha \to \overline{\varphi}(\alpha)$ such that the diagram

is commutative for every $u: \alpha \rightarrow \beta$ in mor Σ . φ is said to be an *iso-morphism* if $\overline{\varphi}$ is isomorphic, i.e., $\overline{\varphi}$ induces a bijection mor $\Sigma \rightarrow \text{mor } \Sigma'$, and all φ_{α} are isomorphisms.

For a morphism $u: \alpha \rightarrow \beta$ in \mathscr{C} , we denote $i(u):=\alpha$ and $f(u):=\beta$. The connectedness of a graph of cones is defined in the same way as that of usual graphs. Namely, Σ is connected if and only if the equivalence relation generated by $i(u) \sim f(u)$ for $u \in \text{mor } \Sigma$ has at most one equivalence class.

Now we are ready to define the notion of *T*-complexes.

Definition 2.5. A graph of cones Σ is said to be a *T*-complex if

(1) Σ is nonempty and connected,

(2) for any $\rho \in \Sigma$, the comma category $\Sigma(\prec \rho)$ is isomorphic to $\Gamma(\sigma(\rho)) \setminus \{0\}$ as graphs of cones, and

(3) for any $\rho \in \Sigma$ the link $\Sigma[\rho]$ is isomorphic to a complete fan. Furthermore, Σ is said to be *nonsingular* if $\sigma(\alpha) \subset N(\alpha)_R$ is a nonsingular cone for every $\alpha \in \Sigma$.

All the known examples of *T*-complexes are essentially written as follows:

There exist a fan $\tilde{\Sigma}$ of N_R and a subgroup $\Gamma \subset \operatorname{Aut}_Z(N)$ such that

(1) $U=(\bigcup_{\sigma\in\tilde{z}}\sigma)\setminus\{0\}$ is a nonempty connected open cone of N_R , and

(2) Γ induces a free action on $\tilde{\Sigma}\setminus\{0\}$ and $\#(\tilde{\Sigma}\setminus\{0\})$ is finite modulo Γ .

Let Σ be a set of representatives of $\tilde{\Sigma} \setminus \{0\}$ modulo Γ . For each element $\alpha \in \Sigma$, we set $N(\alpha) := N$ and $\sigma(\alpha) := \alpha$. For elements $\alpha, \beta \in \Sigma$, a morphism $u : \alpha \to \beta$ consists of an element $u_z \in \Gamma$ such that $u_R(\alpha) \subset N_R$ is a face of the cone β . Then we see that Σ is a *T*-complex. Σ is non-singular if and only if so is $\tilde{\Sigma}$.

Examples 2.6. We will give examples of *T*-complexes of the above form.

(1) Toric variety type. Let $\tilde{\Sigma}$ be a complete fan of N_R and $\Gamma = \{1_N\}$. Then $\Sigma = \tilde{\Sigma} \setminus \{0\}$ is a T-complex.

(2) Degenerate Abelian variety type. Let $N = \mathbb{Z}^{n+1}$, $C = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1}; x_{n+1} > 0\}$ and Γ be a subgroup of finite index of the group of the matrices of the form

$$\begin{pmatrix} 1 & 0 & b_1 \\ \ddots & \vdots \\ 0 & 1 & b_n \\ 0 \cdots 0 & 1 \end{pmatrix} \quad (b_i \in \mathbb{Z}).$$

Then, for a Γ -invariant polyhedral decomposition $\tilde{\Sigma}$ of $C \cup \{0\}$, we get a *T*-complex Σ .

(3) Tsuchihashi cusp singularity type. When C is an open convex cone which contains no lines in N_R , such a pair (C, Γ) induces an isolated singularity which is independent of the choice of $\tilde{\Sigma}$. A Hilbert modular cusp singularity is a special case of this type of singularities. Other cases and some explicit examples were studied by Tsuchihashi [T1].

(4) Inoue-Kato manifold type. Let A be an $n \times n$ -matrix of positive integers with the determinant ± 1 , and let $N = Z^n$ and $\pi = \{(x_1, \dots, x_n) \in N_R; x_1, \dots, x_n \ge 0\}$. Then $\bigcup_{m \in \mathbb{Z}} A^m(\pi) \setminus \{0\}$ is an open half-space and $\bigcap_{m \in \mathbb{Z}} A^m(\pi)$ is a closed half-line. Let $C := (\bigcup_{m \in \mathbb{Z}} A^m(\pi)) \setminus (\bigcap_{m \in \mathbb{Z}} A^m(\pi))$ and $\Gamma = \{A^m; m \in \mathbb{Z}\}$. Then there exists a nonsingular Γ -invariant polyhedral decomposition $\tilde{\Sigma}$ of $C \cup \{0\}$. By these data, we can construct a compact non-Kähler manifold of dimension n with the fundamental group \mathbb{Z} [T2]. When n=2, this is known as a hyperbolic Inoue surface (see [MO, Sec. 15]). C is connected if $n \ge 3$. The associated T-complex corresponds to an anti-canonical divisor of the manifold if det A = 1.

§ 3. Functors on a graph of cones

We denote by $\mathscr{C}^{n.s.}$ the full subcategory of \mathscr{C} consisting of $\alpha \in \mathscr{C}$ such that the cone $\sigma(\alpha)$ is nonsingular. We denote the canonical set of generators gen $\sigma(\alpha) \subset N(\alpha)$ simply by gen α . For a morphism $u: \alpha \to \beta$ in $\mathscr{C}^{n.s.}$, we have $u_{\mathbf{Z}}(\text{gen } \alpha) \subset \text{gen } \beta$. For each $\alpha \in \mathscr{C}^{n.s.}$, we denote $x(\alpha) = \prod_{x \in \text{gen } \alpha} x$ which is an element of the symmetric power $S^{d(\alpha)}N(\alpha)$ over \mathbf{Z} . For a morphism $u: \alpha \to \beta$ in $\mathscr{C}^{n.s.}$, we set $x(u):=\prod_{x \in \text{gen } \beta \setminus u_{\mathbf{Z}}(\text{gen } \alpha)} x \in S^{d(\beta)-d(\alpha)}N(\beta)$.

Let k be a commutative ring with unity. For each nonnegative integer m, we define the functor $D_k^m : \mathscr{C}^{n.s.} \to (k\text{-modules})$ as follows. For each $\alpha \in \mathscr{C}^{n.s.}$, we set $D_k^m(\alpha) := S^{d(\alpha)+m}N(\alpha)_k$ where $N(\alpha)_k := N(\alpha) \otimes_Z k$ and the symmetric power is taken over the ring k. For a morphism $u : \alpha \to \beta$, we define the homomorphism $D_k^m(u)(z) := x(u) \cdot S^{d(\alpha)+m}u_k(z)$, where $S^d u_k :$ $S^d N(\alpha)_k \to S^d N(\beta)_k$ is the symmetric power of $u_k = u_Z \otimes 1_k$. It is easy to see that D_k^m satisfies the axiom of functors. We denote by k^\sim the constant functor defined by $k^\sim(\alpha) := k$ and $k^\sim(u) := 1_k$ for all $\alpha \in \mathscr{C}^{n.s.}$ and $u \in$ mor $\mathscr{C}^{n.s.}$. We define the morphism of functors $\varepsilon : k^\sim \to D_k^0$ by $\varepsilon(\alpha)(a) := ax(\alpha) \in D_k^0(\alpha)$ for $\alpha \in \mathscr{C}^{n.s.}$ and $a \in k$. Since $x(u) \cdot S^{d(\alpha)}u_k(x(\alpha)) = x(\beta)$, for $u : \alpha \to \beta$, this is indeed a morphism of functors. Let Φ be a graph of cones. Then, for a functor $V: \mathscr{C}^{n.s.} \to (k$ -modules), the inductive limit ind $\lim_{\phi} V$ is described as the cokernel

$$\bigoplus_{u \in \operatorname{mor} \varphi} V(i(u)) \xrightarrow{p}_{q} \bigoplus_{\alpha \in \varphi} V(\alpha) \longrightarrow \operatorname{ind} \lim_{\varphi} V$$

where p consists of the identities $1_{V(i(u))} : V(i(u)) \to V(i(u)) \subset \bigoplus_{\alpha \in \emptyset} V(\alpha)$ and q consists of the homomorphisms $V(u) : V(i(u)) \to V(f(u)) \subset \bigoplus_{\alpha \in \emptyset} V(\alpha)$. For a graph of cones Φ , we get a homomorphism ind $\lim_{\phi} \varepsilon$: ind $\lim_{\phi} k^{\sim} \to$ ind $\lim_{\phi} D_k^0$. Note that ind $\lim_{\phi} k^{\sim} = k$ if Φ is nonempty and connected.

Lemma 3.1. Let Σ be a nonsingular T-complex. Then, there exists a morphism of functors $\nu: D_k^0|_{\Sigma} \rightarrow k^{\sim}|_{\Sigma}$ such that $\nu \circ \varepsilon$ is the identity on Σ . In particular, ind $\lim_{\Sigma} \varepsilon$ defines an injection $k \longrightarrow \operatorname{ind} \lim_{\Sigma} D_k^0$ and the image is a direct summand.

Proof. Let $\Sigma_1 = \{ \gamma \in \Sigma; d(\gamma) = 1 \}$. By the condition (2) in Definition 2.5, Σ does not contain zero-dimensional cone. Hence Σ_1 is a star open subset of Σ . Let γ be an element of Σ_1 and let gen $\gamma = \{x\}$. Since x is a primitive element of $N(\gamma)$, kx is a direct summand of $N(\gamma)_k$. Hence, there exists a k-homomorphism $\nu(\tilde{\gamma}): N(\tilde{\gamma})_k \to k$ such that $\nu(\tilde{\gamma})(x) = 1$. By the condition (2) in Definition 2.5, there is no morphism $u: \gamma \rightarrow \gamma'$ if $\gamma, \gamma' \in \Sigma_1$ and $\gamma \neq \gamma'$. Hence we get a morphism of functors $\nu: D_k^0|_{\Sigma_1} \to k^{\sim}|_{\Sigma_1}$ which satisfies $\nu \circ \varepsilon$ =id on Σ_1 . Let Φ be a maximal star open subset of Σ such that $\Sigma_1 \subset \Phi$ and that there exists a morphism of functors $\nu: D_k^0|_{\varphi} \to k^{\sim}|_{\varphi}$ with $\nu \circ \varepsilon = id$ on Φ . Assume $\Phi \neq \Sigma$ and let ρ be an element of $\Sigma \setminus \Phi$ with the smallest $d(\rho) = : d$. By Definition 2.5, (2), we have an isomorphism $\Sigma(\prec \rho) \simeq$ $\Gamma(\rho) \setminus \{0\}$. By the minimality of $d(\rho)$, ν induces a morphism of functors $\nu': D_k^0|_{\Gamma(\rho)\setminus\{0,\rho\}} \to k^{\sim}|_{\Gamma(\rho)\setminus\{0,\rho\}}$. Let $N = N(\rho)$ and let $\{x_1, \dots, x_r\}$ be a basis of N such that gen $\rho = \{x_1, \dots, x_d\}$. The free k-module $S^d N_k$ has $\{x_1^{a_1} \cdots$ $x_r^{a_r}: a_1, \dots, a_r \ge 0, a_1 + \dots + a_r = d$ as a basis. For each face α of ρ , gen α is a subset of $\{x_1, \dots, x_d\}$ and the image of $S^{d(\alpha)}N_k$ in $S^d N_k$ is generated by monomials of degree d which is divisible by $x(\rho/\alpha) = \prod_{x \in \text{gen } \rho \setminus \text{gen } \alpha} x$. For each monomial z of degree d, we define $\nu'(\rho)(z) := \nu'(\alpha)(y)$ if z = $x(\rho/\alpha)y$ for some $\alpha \in \Gamma(\rho) \setminus \{0, \rho\}$ and for a monomial y of degree $d(\alpha)$, and we define $\nu'(\rho)(z) := 0$ otherwise. Since $d = d(\rho) \ge 2$, $\Gamma(\rho) \setminus \{0, \rho\}$ is nonempty. Since $x(\rho) = x(\rho/\alpha)x(\alpha)$, we have $\nu'(\rho)(x(\rho)) = 1$. We see easily that the definition does not depend on the choice of α and hence $\nu'(\rho) \circ D_{k}^{0}(u) = \nu'(\alpha)$ for every $u: \alpha \to \rho$. Thus the morphism of functors ν' is extended to $\Gamma(\rho) \setminus \{0\}$. Since there is no morphism $\rho \to \alpha$ in Σ with $\alpha \in \Phi$. we can combine this extended ν' with ν , and we get an extension of ν to $\Phi \cup \{\rho\}$. This contradicts the maximality of Φ and we have $\Phi = \Sigma$. q.e.d.

We call ν in the above lemma a *retraction* of $D_k^0|_{\Sigma}$ to $k^{\sim}|_{\Sigma}$. In the proof of the above lemma, the extension of ν' to $\Gamma(\rho) \setminus \{0\}$ depends on the choice of the basis $\{x_1, \dots, x_r\}$ of N. Hence the retraction ν is neither unique nor canonical. We will see in Section 5 that there exists an explicit retraction for $k = \mathbf{R}$ in the case of Thuchihashi cusp singularities.

Let Σ be a graph of nonsingular cones, i.e., a graph of cones contained in $\mathscr{C}^{n.s.}$, and let ρ be an element of Σ . We are going to define the restriction

ind
$$\lim_{\Sigma} D_k^0 \longrightarrow$$
 ind $\lim_{\Sigma \cap \rho} D_k^{d(\rho)}$

of the inductive limit of D_k^0 to the link of ρ .

We define the homomorphism

$$h'_{\rho}: \bigoplus_{\alpha \in \Sigma} D^0_k(\alpha) \longrightarrow \bigoplus_{\alpha' [\rho] \in \Sigma[\rho]} D^{d(\rho)}_k(\alpha'[\rho])$$

by $h'_{\rho}((y_{\alpha})):=(\bar{y}_{\alpha'})$ where $y_{\alpha} \in S^{d(\alpha)}N(\alpha)_k$ and $\bar{y}_{\alpha'}$ is the image of y_{α} by the natural homomorphism $S^{d(\alpha)}N(\alpha)_k \rightarrow S^{d(\alpha)}N(\alpha'[\rho])_k$ if $\alpha'=(\alpha, u) \in \Sigma(\rho \prec)$ for a morphism $u: \rho \rightarrow \alpha$. Note that $d(\alpha)=d(\alpha'[\rho])+d(\rho)$ in this case. Similarly, we define the homomorphism

$$h_{\rho}^{\prime\prime}: \bigoplus_{u \in \operatorname{mor} \Sigma} D_{k}^{0}(i(u)) \longrightarrow \bigoplus_{u^{\prime}[\rho] \in \operatorname{mor} \Sigma[\rho]} D_{k}^{d(\rho)}(i(u^{\prime}[\rho]))$$

by $h_{\rho}''((z_u)):=(\bar{z}_{u'})$ for $z_u \in S^{d(i(u))}N(i(u))_k$ and $\bar{z}_{u'}$ is the image of z_u in $S^{d(i(u'))}N(i(u'[\rho]))_k$ if $u' \in \text{mor } \Sigma(\rho \prec)$ is defined by $u \in \text{mor } \Sigma$.

Proposition 3.2. Let Σ be a nonsingular T-complex and let ρ be an element of Σ . Then the diagram

commutes for p and q, respectively.

Proof. Let v be in mor Σ and let z be an element of the direct summand $D_k^0(i(v))$ of $\bigoplus_{u \in \text{mor } \Sigma} D_k^0(i(u))$. We have $h'_{\rho}(p(z)) = p(h''_{\rho}(z))$, since their components for $\alpha'[\rho] \in \Sigma[\rho]$ are both equal to the image z_u of z in $S^{\mathfrak{d}(\mathfrak{l}(v))}N(\alpha'[\rho])_k$ if $\alpha' = (i(v), u)$ for some $u : \rho \to i(v)$ and are both zero otherwise. Hence the diagram is commutative for p.

Now we prove the commutativity for q. Let $\beta = f(v)$. The component for $\beta'[\rho]$ of $h'_{\rho}(q(z))$ is equal to the image $v(z)_w$ of $v(z) := D^0_k(v)(z)$ in $S^{d(\beta)}N(\beta'[\rho])_k$ if $\beta' = (\beta, w)$ for some $w : \rho \rightarrow \beta$ and zero otherwise. On the other hand, the same component of $q(h_{\rho}'(z))$ is equal to $v_t[\rho](z_t)$ if $\beta' = (\beta, v \circ t)$ for some $t: \rho \rightarrow i(v)$ and is zero otherwise, where $v_t: (i(u), t) \rightarrow (\beta, v \circ t)$ is defined by v and z_t is the image of z in $S^{d(i(v_t))}N(i(v_t)[\rho])_k$. Here note that such t is unique by Lemma 2.1. Clearly, these components $v(z)_w$ and $v_t[\rho](z_t)$ for $\beta'[\rho]$ are equal if there exists such a t. By the condition (2) in Definition 2.5, such a t exists if and only if $w_z(\text{gen } \rho) \subset v_z(\text{gen } i(v))$. If t does not exist, there exists $x \in \text{gen } \rho$ such that $w_z(x) \notin v_z(\text{gen } i(v))$. Hence, x(v) is divisible by $w_z(x)$ and $v(z)_w \in S^{d(\beta)}N(\beta'[\rho])_k$ is also zero since $N(\beta'[\rho]) = N(\beta)/\mathbb{Z}w_z(\text{gen } \rho)$.

We denote by $h_{\rho,\Sigma}$, or simply h_{ρ} , the homomorphism ind $\lim_{\Sigma} D_k^0 \rightarrow$ ind $\lim_{\Sigma \cap D} D_k^{d(\rho)}$ induced by the diagram in the above proposition.

Let N be a free Z-module of rank $r \ge 0$. We denote by $B(N_k)$ the total ring of homogeneous quotients of the symmetric algebra S^*N_k . $B(N_k)$ is written as the direct sum $\bigoplus_{m \in \mathbb{Z}} B(N_k)_m$ of the k-vector spaces consisting of the homogeneous elements of degree m.

Let Δ be a nonsingular fan in N_R , and let m be a nonnegative integer. For each $\alpha \in \Delta$, we define the homomorphism $\lambda_{\Delta}^{\alpha}: D_k^m(\alpha) \to B(N_k)_m$ by $\lambda_{\Delta}^{\alpha}(z): = z/x(\alpha)$ for $z \in S^{d(\alpha)+m}N_k$. It is easy to see that these homomorphisms commute with $D_k^m(u)$ for every morphism $u: \alpha \to \beta$ in Δ . Hence we get the limit homomorphism λ_{Δ} : ind $\lim_{\lambda \to 0} D_k^m \to B(N_k)_m$.

For a nonsingular *T*-complex Σ and for an element $\rho \in \Sigma$, we denote by \bar{h}_{ρ} the composite $\lambda_{\Sigma[\rho]} \circ h_{\rho}$: ind $\lim_{\Sigma} D_{k}^{0} \rightarrow B(N[\rho]_{k})_{d(\rho)}$, where $N[\rho] = N(\rho)[\rho]$.

Lemma 3.3. Let Σ be a nonsingular T-complex. Then an element z in ind $\lim_{\Sigma} D_k^0$ is in the image of ind $\lim_{\Sigma} \varepsilon$ if and only if $\overline{h}_{\rho}(z) = 0$ for every $\rho \in \Sigma$.

Proof. The image of the morphism $\varepsilon(\alpha) : k^{\sim}(\alpha) \to D_k^0(\alpha)$ is equal to $kx(\alpha) \subset S^{d(\alpha)}N(\alpha)_k$. Since the image of $x(\alpha)$ in $S^{d(\alpha)}N[\alpha]_k$ is zero for every α , the necessity of the condition is obvious.

Now we suppose $z \in \operatorname{ind} \lim_{\Sigma} D_k^0$ satisfies $\bar{h}_{\rho}(z) = 0$ for every $\rho \in \Sigma$. We may assume $z \neq 0$ because otherwise the assertion is obvious. Let $(z_{\alpha}) \in \bigoplus_{\alpha \in \Sigma} D_k^0(\alpha)$ be a representative of z such that $d = \max\{d(\alpha); z_{\alpha} \neq 0\}$ is minimal. We will show d=1. Assume d>1 and take (z_{α}) so that the cardinality of $\{\alpha \in \Sigma; d(\alpha) = d \text{ and } z_{\alpha} \neq 0\}$ is the smallest. Let ρ be an element of Σ such that $d(\rho) = d$ and $z_{\rho} \neq 0$. By the definition of d, we have $z_{\alpha} = 0$ for any $\alpha \in \Sigma(\rho \prec)$ with $\alpha \neq \rho$. Hence the condition $\bar{h}_{\rho}(z) = 0$ implies that the image of $z_{\rho} \in S^d N(\rho)_k$ in $S^d N[\rho]_k$ is zero. Let gen $\rho = \{x_1, \dots, x_d\}$. Since $N[\rho] = N(\rho)/(Zx_1 + \dots + Zx_d)$, the kernel of the homomorphism $S^d N(\rho)_k \to S^d N[\rho]_k$ is equal to $\sum_{i=1}^d x_i S^{d-1} N(\rho)_k$. Hence z_{ρ} is of the form $\sum_{i=1}^{d} x_i y_i$ for $y_i \in S^{d-1}N(\rho)_k$. By the condition (2) in Definition 2.5, there exists $u^i : \mu_i \to \rho$ in Σ such that u^i (gen μ_i) = gen $\rho \setminus \{x_i\}$, i.e., $x(u^i) = x_i$, for each $i = 1, \dots, d$. Let $y'_i \in S^{d-1}N(\mu_i)_k$ be the element which satisfies $S^{d-1}(u^i)(y'_i) = y_i$, for each an *i*. Let $y' = (y'_u)$ be the element of $\bigoplus_{u \in \text{mor } \Sigma} D_k^0(i(u))$ defined by $y'_u = y'_i$ if $u = u^i$ for some *i* and $y'_u = 0$ otherwise. Then we have $q(y') = \sum x_i y_i = z_\rho$, while the components of p(y') are zero for every α with $d(\alpha) \ge d$. Let $(z'_\alpha) = (z_\alpha) + p(y') - q(y') \in \bigoplus_{\alpha \in \Sigma} D_k^0(\alpha)$. Then clearly, $\max\{d(\alpha) : z'_\alpha \neq 0\} \le d$ and $z'_\alpha = z_\alpha$ for $\alpha \in \Sigma$ with $d(\alpha) = d$ except when $\alpha = \rho$. Since $z'_\rho = 0$ and (z'_α) is also a representative of z, this contradicts the minimality of $\{\alpha \in \Sigma; d(\alpha) = d$ and $z_\alpha \neq 0\}$. Hence we have d = 1.

Let $\rho \in \Sigma$ be an element with $z_{\rho} \neq 0$. Then since $d(\rho) = 1$, we have gen $\rho = \{x(\rho)\}$. By the condition $\overline{h}_{\rho}(z) = 0$, we see that z_{ρ} is in $kx(\rho) = ker(N(\rho)_k \rightarrow N[\rho]_k)$ which is equal to the image of $\varepsilon(\rho) : k^{\sim}(\rho) \rightarrow D_k^0(\rho)$. Hence every z_{α} is in the image of $k^{\sim}(\alpha)$.

§ 4. ω -invariant of a *T*-complex

Let Δ be a nonsingular fan in N_R and let *m* be a nonnegative integer. For each $\alpha \in \Delta$, we set

$$\omega_{\alpha}^{m} := \left[\prod_{x \in \text{gen}\,\alpha} \frac{x}{\exp(x) - 1}\right]_{d(\alpha) + m},$$

where $[f]_d$ denotes the homogeneous part of degree d of a power series f. Note that $x/(\exp(x)-1)$ is an element of the completion of the symmetric algebra S^*N_Q with respect to the natural grading. Hence $(\omega_a^m)_{a \in d}$ is an element of $\bigoplus_{\alpha \in d} D_0^m(\alpha)$.

Lemma 4.1. Let ω_{Δ}^{m} be the image of (ω_{α}^{m}) in $\operatorname{ind} \lim_{\Delta} D_{Q}^{m}$. If Δ is a nonsingular complete fan, then $\lambda_{\Delta}(\omega_{\Delta}^{m}) \in B(N_{O})_{m}$ is equal to zero.

Proof. Since $x(\alpha) = \prod_{x \in \text{gen } \alpha} x$, we see that $\lambda_{d}^{\alpha}(\omega_{\alpha}^{m})$ is equal to the homogeneous part of degree m of $\prod_{x \in \text{gen } \alpha} 1/(\exp(x)-1)$. Hence $\lambda_{d}(\omega_{d}^{m})$ is equal to that of $\sum_{\alpha \in d} \prod_{x \in \text{gen } \alpha} 1/(\exp(x)-1)$, which is zero by Theorem 1.1. q.e.d.

Let Σ be a nonsingular *T*-complex. For each $\alpha \in \Sigma$, we set $\omega_{\alpha} := [\prod_{x \in \text{gen}\alpha} x/(\exp(x) - 1)]_{d(\alpha)} \in D^{0}_{Q}(\alpha).$

Proposition 4.2. In the above situation, let ω_{Σ} be the class of $(\omega_{\alpha})_{\alpha \in \Sigma}$ in ind $\lim_{\Sigma} D_0^0$. Then ω_{Σ} is in the image of ind $\lim_{\Sigma} \varepsilon$.

Proof. By Lemma 3.3, it is sufficient to show $\bar{h}_{\rho}(\omega_{\Sigma})=0$ for every

 $\rho \in \Sigma$. Let $N = N(\rho)$. Since ρ is the initial object of $\Sigma(\rho \prec)$, we may regard $N(\alpha) = N$ for every $\alpha \in \Sigma(\rho \prec)$ and $u_Z = 1_N$ for every $u \in \text{mor } \Sigma(\rho \prec)$. For each $\alpha \in \Sigma(\rho \prec)$, $\alpha[\rho]$ is the nonsingular cone of $N[\rho]_R$ with gen $\alpha[\rho] = \{\bar{x}; x \in \text{gen } \alpha \setminus \text{gen } \rho\}$ where \bar{x} denotes the image of $x \in N$ in $N[\rho]$. Since $x/(\exp(x)-1)=1$ on $M[\rho]_C$ for $x \in \text{gen } \rho$, the restriction of $\prod_{x \in \text{gen } \alpha} x/(\exp(x)-1)$ to $M[\rho]_C$ is equal to $\prod_{\bar{x} \in \text{gen } \alpha \in \rho} \bar{x}/(\exp(\bar{x})-1)$. Since $d(\alpha[\rho]) = d(\alpha) - d(\rho)$, we have $\omega_{\alpha}|_{M[\rho]_C} = \omega_{\alpha[\rho]}^{d(\rho)}$. Hence $h_{\rho}(\omega_{\Sigma}) = \omega_{\Sigma[\rho]}^{d(\rho)} \in \rho$ ind $\lim_{\Sigma \in \rho]} D_k^{d(\rho)}$. Since $\Sigma[\rho]$ is a nonsingular complete fan by Definition 2.5, (3), $\bar{h}_{\rho}(\omega_{\Sigma}) = \lambda_d \circ h_{\rho}(\omega_{\Sigma})$ is zero by Lemma 4.1. q.e.d.

Lemma 3.1 and Proposition 4.2 imply that there exists a unique rational number a for each nonsingular *T*-complex Σ such that (ind $\lim_{\Sigma} \varepsilon$) $(a) = \omega_{\Sigma}$. We also denote $\omega_{\Sigma} := a$ and call it *the* ω -invariant of the *T*-complex Σ .

Proposition 4.2 implies obviously the following:

Corollary 4.3. Let $\nu: D^0_{\mathbf{R}}|_{\Sigma} \to \mathbf{R}^{\sim}|_{\Sigma}$ be an arbitrary retraction. Then ind $\lim_{\Sigma} \nu((\omega_{\alpha})) \in \mathbf{R}$ is equal to the rational number ω_{Σ} .

Remark 4.4. Let Σ be a nonsingular *T*-complex, and let *d* be a positive integer such that

(1) $d\omega_{\alpha} \in D_{\mathbf{Z}}^{0}(\alpha)$ for every $\alpha \in \Sigma$.

Then $(d\omega_{\alpha}) \in \bigoplus_{\alpha \in \Sigma} D_Z^0(\alpha)$ satisfies the condition of Lemma 3.3 for k=Z. Hence $d\omega_{\Sigma}$ is an integer. The minimal number satisfying (1) depends only the dimension r of Σ . For example, d=12 for r=2 and d=720 for r=4.

When r is odd, we can show that ω_{Σ} is a half-integer in the same way as Ogata's [Og, Theorem 2.3].

§ 5. Ogata's zeta zero value

Let C, Γ , $\tilde{\Sigma}$ and Σ be as in Example 2.6, (3). The characteristic function ϕ_c on the open convex cone C is given by

$$\phi_c(x) := \int_{C^*} \exp(-\langle x, x^* \rangle) dx^*,$$

where $C^* \subset M_R$ is the dual cone of C and dx^* is a Euclidean metric. Ogata [Og] defined the zeta function of the pair (C, Γ) by

$$Z(C,\Gamma;s) := \sum_{x \in (N \cap C)/\Gamma} \phi_C(x)^s$$

which converges for complex numbers s with $\operatorname{Re} s > 1$ and can be extended meromorphically to the whole complex plane. He proved in [Og, Proposition 3.10] that this zeta function is regular at s=0 and the value is equal to

$$\sum_{\alpha \in \Sigma} \int_{\alpha} \left[\prod_{x \in \text{gen } \alpha} \left(\partial_x / (1 - \exp(-\partial_x)) \right) \right]_{d(\alpha)} G_2(t) dt_{\alpha} \right]$$

where ∂_k is the first order derivation defined by

$$\partial_x f(t) = \lim_{h \to 0} \{ (f(t+hx) - f(t))/h \},\$$

 dt_{α} is the Lebesgue measure on α normalized with respect to the basis gen α and $G_2(t) = \exp(-\phi_c(t)^{-2})$.

Let α be an element of Σ . By extending the correspondence $x \mapsto -\partial_x$ to their products, we get an isomorphism $z \mapsto D_z$ from $D_R^0(\alpha) = S^{d(\alpha)}N_R$ to the **R**-module of derivations of order $d(\alpha)$ with constant coefficients.

Proposition 5.1. For each $\alpha \in \Sigma$, we define the homomorphism $F(\alpha)$: $S^{d(\alpha)}N_{\mathbf{R}} \rightarrow \mathbf{R}$ by

$$F(\alpha)(z):=\int_{\alpha}D_{z}G_{2}(t)dt_{\alpha}.$$

Then F is a retraction of the morphism of functors $\varepsilon|_{\Sigma} : \mathbb{R}^{\sim}|_{\Sigma} \to D^{0}_{\mathbb{R}}|_{\Sigma}$, i.e., F is a morphism of functors and $F \circ \varepsilon|_{\Sigma}$ is identity.

Proof. Let α be an element of Σ and let gen $\alpha = \{x_1, \dots, x_d\}$. We take a coordinate (t_1, \dots, t_r) of N_R such that $t_i(x_j) = \delta_{i,j}$, where $\delta_{i,j}$ is Kronecker's delta. Since $D_{\varepsilon(\alpha)(1)} = \prod_{i=1}^{d} (-\partial/\partial t_i)$, we have

$$(F \circ \varepsilon)(\alpha)(1) = \int_0^\infty \cdots \int_0^\infty \prod_{i=1}^d (-\partial/\partial t_i) G_2(t) dt_1 \cdots dt_d.$$

By [Og, Lemma 3.5], the partial derivatives of $G_2(t)$ goes to zero at infinity. Hence this integral is equal to $G_2(0)=1$. Hence it is sufficient to show that F is a morphism of functors. Let $u: \beta \rightarrow \alpha$ be a homomorphism in Σ . We may regard gen $\beta = \{x_1, \dots, x_{d'}\} \subset \text{gen } \alpha$ for an integer $0 < d' \le d$. Furthermore, it is sufficient to show the commutativity in the case d' = d-1. Then, for an element $z \in D^0_R(\beta)$, we have $D_{z'} = (-\partial/\partial t_d)D_z$ for $z' = D^0_R(u)(z)$. Hence

$$F(\alpha)(D_{R}^{0}(u)(z)) = \int_{0}^{\infty} \cdots \int_{0}^{\infty} \left(\int_{0}^{\infty} (-\partial/\partial t_{d}) D_{z} G_{2}(t) dt_{d} \right) dt_{1} \cdots dt_{d-1}$$

=
$$\int_{0}^{\infty} \cdots \int_{0}^{\infty} D_{z} G_{2}(t) dt_{1} \cdots dt_{d-1}$$

=
$$F(\beta)(z).$$
 q.e.d.

Let α be in Σ . Then, for ω_{α} in Section 4, we have

 $D_{w_{\alpha}} = [\prod_{x \in \text{gen}\,\alpha} \left(\frac{\partial_x}{(1 - \exp(-\partial_x))} \right)]_{d(\alpha)}.$

Hence by Ogata's formula, Corollary 4.3 and Proposition 5.1, we have the following:

Theorem 5.2. The zeta zero value $Z(C, \Gamma; 0)$ is equal to the ω -invariant ω_x of the T-complex Σ . In particular, it is a rational number.

References

- M.-N. Ishida, Torus embeddings and de Rham complexes, in Commutative Algebra and Combinatorics, Proceedings of USA-Japan Conf., Kyoto 1985, (M. Nagata and H. Matsumura, eds.), Advanced Studies in Pure Mathematics, 11 (1987), 111-145.
- [MO] T. Oda, Lectures on Torus Embeddings and Applications (Based on joint work with K. Miyake), Tata Inst. of Fund. Res., Bombay, Springer-Verlag, Berlin, Heidelberg, New York, 1978.
- [Od] T. Oda, Convex Bodies and Algebraic Geometry, An Introduction to the Theory of Toric varieties, Ergebnisse der Math. (3) 15, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1988.
- [Og] S. Ogata, Special values of zeta functions associated to cusp singularities, Tôhoku Math. J., 37 (1985), 367–384.
- [S1] I. Satake, Special values of zeta functions associated with self-dual homogeneous cones, in Manifolds and Lie groups (Notre Dame Ind., 1980), Progress in Math., 14, Birkhäuser, Boston, 1981, 359–384.
- [S2] I. Satake, On numerical invariants of arithmetic varieties of Q-rank one, Automorphic forms of several variables, Taniguchi Symp., Katata, 1983 (I. Satake and Y. Morita, eds.), Progress in Math., 46, Birkhäuser, Basel, Boston, Stuttgart, 1984, 353-369.
- [T1] H. Tsuchihashi, Higher dimensional analogues of periodic continued fractions and cusp singularities, Tôhoku Math. J., 35 (1983), 607-639.
- [T2] H. Tsuchihashi, Certain compact complex manifolds with infinite cyclic fundamental groups, Tôhoku Math. J., 39 (1987), 519–532.
- [Z] D. Zagier, Valeur des fonctions zêta des corps quadratiques réels aux entiers négatifs, Journées Arithmétiques de Caen (Univ. Caen, Caen, 1976), Astérisque, Nos. 41-42, Soc. Math. France, Paris, 1977, 135-151.

Mathematical Institute Tohoku University Sendai, 980 Japan