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Introduction

In [T1], Tsuchihashi defined the notion of cusp singularities in arbi-
trary dimension. They include the Hilbert modular cusp singularities as
a special case. In this paper, we will show the rationality of the zeta zero
value Z(C, I'; 0) of the zeta function associated to a Tsuchihashi cusp
singularity which was defined by Ogata [Og]. He gave a formula for the
zero value as a sum of integrals of C~-functions described by the charact-
eristic function of the convex cone C. By this formula, he showed that
the value is a half-integer in odd-dimensional case [Og, Theorem 2.3]. In
two dimensional case, the singularity is a Hilbert modular cusp and 12
times the zeta zero value is an integer by [Z].

By the construction of Tsuchihashi cusp singularities, they have
toroidal resolutions and the exceptional sets are toric divisors in the sense
of [S2]. In order to describe toric divisors, we introduce the notion of
T-complexes which is essentially equal to that of the weighted dual graphs
which appear in [T1]. A T-complex X is a category with a finite number
of objects. We define a functor D}, from X' to the category of Q-vector
spaces. We show that the rational number field Q has a natural injection
into the inductive limit ind lim; D). We define a special element o, of
ind limy Dj. When 2 is the T-complex associated to a toroidal resolution
of a Tsuchihashi cusp singularity (C, I"), Ogata’s formula means that
there exists an explicit retraction ind limy D& R—R and the zero value
Z(C, I'; 0) is the image of w; in R. By using an equality in Section 1 for
a nonsingular complete fan, we show that vy is in the image of Q in
ind lim; D} for any T-complex X. This implies that the image of w in R
is independent of the retraction and is a rational number.
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§ 1. An equality for a nonsingular complete fan

Let N be a free Z-module of finite rank and let Np=NQ,R. A
nonempty subset ¢ of N, is said to be a strongly convex rational polyhedral
cone (s.c.r.p. cone for short) if there exists a finite subset {n,, - .-, n,}JCN
such that ¢=Rm + - - - +Ryn, with ¢ (—0)={0}, where R;={c e R;
¢>0}. An s.c.r.p. cone g is said to be nonsingular if there exists a Z-basis
{ny, ---,n,} of N such that ¢=Ryn,+ - - - + Ryn, for an integer 0<s<r.
We call {n,, - - -, n,} the canonical set of generators for ¢ and denote it by
gen ¢ when ¢ is nonsingular. This set is uniquely determined by o.

A nonempty collection 4 of s.c.r.p. cones is said to be a fan if (1)
7 ¢ 4 and ¢ <z, which means that ¢ is a face of 7, imply ¢ € 4, and (2) if
o, r € 4then ¢ Nz is a common face of ¢ and z. For an s.c.r.p. cone 7 in
Ny, we denote by I'(x) the set of faces of z. Clearly, 0:={0} and r are
in I'(z), and I'(x) is a fan in Ni. A fan 4 in Ny is said to be complete if
it is finite and the union  J,., o is equal to Ng. It is said to be nonsingular
if it consists of nonsingular cones.

For an s.c.r.p. cone p, we denote N[pl:=N/(NN (p+(—p)).- Nlp]is
a free Z-module with its rank equal to codim p. For a cone ¢ with p<g,
we denote by o[p] the image of ¢ in the quotient Nplgr=Ng/(o+(—p)).
If p is an element of a fan 4, then A[p]={c[p]; ¢ ¢ 4and p<s}is a fan in
Nlplg-

For each nonzero element x in N, we denote 7(x):=R,x. The cone
7(x) is nonsingular of dimension one. If x is primitive, then gen ¥ (x)={x}.

Let 4 be a nonsingular fan in N. For a subset @ of 4, we set

1

f(Q)"—ZaEGi Hngena&i)"(;s‘ja
where we understand [ cgon.(1/(exp(x)—1)=1 for ¢={0}. Let M:=
Hom,(N, Z) be the Z-module dual to N. Since x ¢ N is a linear function
on the complex space My=M®,C, exp(x) is understood to be a holo-
morphic function on M,. Hence f(@) is a meromorphic function on M.
Note that the meromorphic function 1/(exp(z)—1) of a complex variable
z has poles of order one at each point of 27iZ and it has no pole else-
where. Since no gene contains both x and —x for any x e N, f(@) may
have poles of order at most one along the hyperplanes H,, ;={(x=2xrid)
C Mg for xe G(4) and d e Z, where G(4):=|_J,csgen0. Note that G(4)
is in one-to-one correspondence with the set 4(1) of cones of dimension
one in 4 by x—7(x).

In the rest of this section, we devote ourselves to proving the follow-
ing theorem.
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Theorem 1.1. Let n be the rank of N. If n>>1 and A is a nonsingular
complete fan, then f(4) is equal to zero.

We prove the theorem by induction on n.
If n=1, then there is only one complete fan and the theorem is true

since
(exp(x)—1)+1/(exp(—x)—1)+1=0.

Let r>>2 be an integer. We assume that the theorem is true for
1<n<r—1. We now suppose n=r.

Lemma 1.2. In the above situation, f(4) is an entire function on M,.

Proof. Since f(4) is periodic with respect to the subgroup 2ziM C

My, it is sufficient to show that f(4) has no pole along the hyperplane H, ,
for each x e G(4). Let r:=7(x) and 4(r<):={0 e 4;7<g}. By defi-
nition, we have f(4)=f(4(7 <) +f(A\4(r<)). It is easy to see that the
restriction xf(4(r <)|u, , is equal to f(4[r]), where 4[] is the fan in N[r]g
= Ng/(r 4+(—7)) induced by 4. Since A4[r] is also a nonsingular complete

fan and N[71=N/(Nx N (7 +(—7))) is of rank r—1, f(4[r]) is equal to zero
by the induction assumption. Hence f(4(y <)) has no pole along H, ,. If
—7is not an element of 4, then f(4\4(7 <)) has no pole at H, , by definition.

Hence so is f(4). Suppose —7 e 4. Then f(ANAF<)=fA(—7<))+
JU\A(r<)Ud(—7<))) has no pole at H,,, since (—x)f(4(—7<)) is
zero on H, ; similarly as above. g.e.d.

Let m be an element of M. We define the C-linear mapping ¢,.: C
—Mg by ¢,(t)=tmfor t e C. We denote by g,() the pull-back ¢X(f(4)).
By the above lemma, g,,(?) is an entire function on C.

Lemma 1.3. Suppose m is not in x+:={ve Mg; (v, x)=0} for any
x e G(4). Then g,(t)=0.

Proof. By the definition of f(d), we have
gm(t) = Za €4 n xEgen o{(l/(exp(axt)_ 1)}3

where a,={m, x) for each x € G(4). The integers a,’s are not zero by
assumption. By Lemma 1.2, g,,(¢) is an entire function on C. Since a,’s
are integers, g,,(¢) has the periodicity g, (t+2xi)=g,(¢). Hence, in order
to prove g,(¢)=0, it is sufficient to show that

|gn(t)] —>0, as |Ret|—> co.
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Let H(m) be the hyperplane {u e Ng; (m,uy=0} in Ng, and let
H*(m):={ue Np; {m, uy>0} and H (m):={u e Ng; {m,uy<0}. Itis
clear that

1/(exp(a,t)—1) —> 0, as Rea,t—> oo, and

1/(exp(a,t)—1)——> —1, as Rea,t —> — 0.

Since ¢ € 4 is contained in H *(m)(resp. H~(m)) if and only if a,>0 (resp.
a,<0) for every x € gen ¢, we have

gnlt) —> 2 cu(— 1)1, as Ret——> o0, and

gm(l)_>za64+(" l)dim”, as Ret——> — 00,

where 4~ :={c e 4; s CH (m)} and 4" :={c e 4; cCH*(m)}. Weset D:
={oNH*(m);0e A4 }and @,:={c "\ H(m); ¢ e 4}. Then ® N D,=0 and
@ U@, is a finite polyhedral decomposition of H*(m). By [1, Lemma 1.6],
for example, we have > . ,(—1)*™*=(—1)". The same lemma also implies
that >, (—1)*™°=(—1)". Since the map 4\4-—@ which sends ¢ to
o\ H*(m) is bijective and preserves the dimension of cones, the limit
> eea- (— )%™ in the first case is equal to zero. The second limit is also
zero since the equality >, ¢ 4. (— 1)*™°=0 is proved similarly. g.e.d.

By Lemma 1.3, the entire function ¢(4) is zero on rational lines Rm
in My which are not contained in (_J,c 44, x+. Clearly, the union of such
lines is dense in M. Thus ¢(4) is zero on Mp. Since ¢(4) is an analytic
function, it is also zero on M. g.e.d.

Remark 1.4. Let 3 7, B,t*~'/k! be the power series expansion of
1/(exp(#)—1). The coefficients B,’s are known as the Bernoulli numbers.
The above theorem for n==1 means the wellknown fact that B,= —1/2 and
By, =0 for k>0.

§2. T-complexes

We denote by ¥ the category of pairs (N, ¢) of a free Z-module N of
finite rank and an s.c.r.p. cone ¢ in Ng. For an object o ¢ ¥, we denote
a=(N(a), o(x)). For two objects «, 8 € ¥, a morphism u : «—j consists
of an isomorphism u, : N(a)—>N(p) such that ug(c(a)) is a face of ¢(B),
where upg=1u, @1 : N(@)r > N(f)g. Since any morphism u is determined
by the isomorphism u,, the following lemma is obvious.

Lemma 2.1. Every morphism u : a—p in € is epimorphic and mono-
morphic.
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For an object we %, we denote r(x):=rank N(w) and d(a):=
dime(a). Clearly, 0<<d(ax)<r(a) for any «. For each nonnegative
integer r, we denote by €, the subcategory of € consisting of « € € with
r(e)=r. It is obvious that the category ¥ is the disjoint union of ¢,’s.

Definition 2.2. A subcategory X of ¢ is said to be a graph of cones
if the class mor X' of morphisms in X is a finite set.

If X' is a graph of cones, then 3 consists of finite objects, since 1, €
mor X for each a € X.

Example 2.3. Let 4 be a finite fan of Nz. Then we regard 4 as a
graph of cones by identifying 4 with {(N, ¢); 0 e 4} and by defining
morphism u : (N, ¢)—(N, 7) to be in mor 4 if and only if u, is the identity.
Furthermore, any subset @ of 4 is similarly considered to be a graph of
cones.

Let 2 be a graph of cones and let p be an element of 2. We denote
by X(p<) the comma category consisting of the pairs 3'=(8, v) of an
element § € ¥ and a morphism v: p—f in mor 3. A morphism u’: p'=
(8, v)—7"=(r, w) in the category X (p~<) consists of a morphism u: §—7
such that uov==w. By defining N(B)=N(B), 0(8)=0c(B) and uz=uy,,
we see that X(p<) is also a graph of cones and is contained in %,,.
Similarly, the comma category 2 (< p) consists of pairs f’=(8, v) of e ¥
and (v:f—p)emory. 2X(<p) is also a graph of cones contained in
%y if we define N(8') and ¢(#) in the same way as above.

Let §'=(8, v) be an element of X (p<). Then vglc(p)) CN(B)g is an
s.c.r.p. cone of dimension d(p). We denote by 5[] the object of &, ,,_4(,,
with N(&ToD):=N(®va@(o)] and o(#lo):=o(Dvalo(@). Let o’ :
—¥'=(7, w) be a morphism in 2 (p<). Then the isomorphism uy: N(B)
—N(7) induces a morphism f[p]->7[p] in %), Which we denote by
w'[p]. Hence if we set X[p]:={p[p]: B’ ¢ 2 (p<)} and mor X[p]:={u[p];
u’ e mor Y(p=<)}, 2p] is a graph of cones contained in %, ,,_ 4(,, Which is
naturally isomorphic to X (p<) as categories. We call X'[g] the link of X
at p.

A subcategory @ of X is said to be star closed if @(p<)=23(p<) for
every p e @, and star open if (< p)=23(<p) for every pe @. Sinze star
closed or star open subcategories are full subcategories, we also call them
star closed or star open subsets of 2, respectively.

Definition 2.4. A homomorphism ¢ : 23" of graphs of cones con-
sists of a functor @:X¥—2" and a collection {p,; @ € 2} of morphisms
¢, : a—@(c) such. that the diagram
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___”___;‘B

<R

Pa B o8

p@)—" ()

is commutative for every u:a—f in mor 3. ¢ is said to be an iso-
morphism if @ is isomorphic, i.e., ¢ induces a bijection mor ¥—mor 3’,
and all ¢, are isomorphisms.

For a morphism u:a—f in €, we denote i(u):=« and f(u):=p.
The connectedness of a graph of cones is defined in the same way as that
of usual graphs. Namely, 3 is connected if and only if the equivalence
relation generated by i(u) ~ f(u) for u € mor X has at most one equivalence
class.

Now we are ready to define the notion of T-complexes.

Definition 2.5. A graph of cones 3 is said to be a T-complex if

(1) 2 is nonempty and connected,

(2) for any pe X, the comma category 3(<p) is isomorphic to
I'(o(p))\{0} as graphs of cones, and

(3) for any pe X the link X[p] is isomorphic to a complete fan.
Furthermore, 2 is said to be nonsingular if ¢(a«) C N(a)g is a nonsingular
cone for every o € 3.

All the known examples of T-complexes are essentially written as
follows:

There exist a fan 3’ of N and a subgroup I” CAut,(N) such that

(1) U=(U,es0)\{0} is a nonempty connected open cone of Nk,
and

(2) I induces a free action on 3\{0} and #(3\{0}) is finite modulo
r.

Let 3 be a set of representatives of 3\{0} modulo I". For each ele-
ment o e 3, we set N(a):=N and o(a):=«. For elements o, B2, a
morphism u : «—f consists of an element u, € I" such that uz(a) C Ny is
a face of the cone 8. Then we see that X is a T-complex. 2 is non-
singular if and only if so is 3.

Examples 2.6. We will give examples of T-complexes of the above
form.

(1) Toric variety type. Let 3 be a complete fan of Ny and I'={1,}.
Then 3= 3\{0} is a T-complex.

(2) Degenerate Abelian variety type. Let N=Z"*', C={(x;, - - -,
X, € R™'; x,,,>>0} and I be a subgroup of finite index of the group of
the matrices of the form
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1 0 b )
’0 1 b, (b,e Z).
0---0 1]
Then, for a [-invariant polyhedral decomposition 3 of CU{0}, we get a

T-complex X.

(3) Tsuchihashi cusp singularity type. When C is an open convex
cone which contains no lines in N, such a pair (C, I") induces an isolated
singularity which is independent of the choice of 3. A Hilbert modular
cusp singularity is a special case of this type of singularities. Other
cases and some explicit examples were studied by Tsuchihashi [T1].

(4) Inoue-Kato manifold type. Let A be an n X n-matrix of positive
integers with the determinant 41, and let N=Z" and z={(x;, - - -, X,,) €
Ng; %y, + -+, x,220}. Then |,,zA™@)\{0} is an open half-space and
(MnezA™(@) is a closed half-line. Let C:=(_nezA™@N(nezA4A™(x)) and
I'=={A™;m e Z}. Then there exists a nonsingular ["-invariant polyhedral
decomposition 3 of C U{0}. By these data, we can construct a compact
non-Kihler manifold of dimension » with the fundamental group Z [T2].
‘When n=2, this is known as a hyperbolic Inoue surface (see [MO, Sec.
15]). Cis connected if n>>3. The associated T-complex corresponds to
an anti-canonical divisor of the manifold if det A =1.

§ 3. Functors on a graph of cones

We denote by ¥™* the full subcategory of ¢ consisting of a ¢ € such
that the cone ¢(«) is nonsingular. We denote the canonical set of gener-
ators gen g(a) C N(a) simply by gena. For a morphism u: —f§ in ™%,
we have u,(gena)CgenB. For each & € ¥, we denote X(a)= [|zcgonaX
which is an element of the symmetric power S*“N(«) over Z. For a
morphism u : a—f in €™, we set x(u): =[] segen uggon X € Séd-aN(g),

Let & be a commutative ring with unity. For each nonnegative
integer m, we define the functor Dy : €™% —(k-modules) as follows. For
each o € €™, we set D™(a):=S***"N(a), where N(a),:=N(a)Rzk and
the symmetric power is taken over the ring k. For a morphism u: a—8,
we define the homomorphism DPu)(z): =x(u)- S« *™u,(z), where Su, :
SeN(a),—>S“N(B); is the symmetric power of u,=u,®1,. It is easy to
see that D7 satisfies the axiom of functors. We denote by £~ the constant
functor defined by k~(«):=k and k~(u):=1, for all ¢ ¢ €™ and ue
mor €™*. We define the morphism of functors ¢ : k~—D}, by e(a)(a):=
ax(a) € DY) for a e €% and a e k. Since x(u)- S*u,(x(a))=x(8), for
u: a—>p, this is indeed a morphism of functors.
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Let @ be a graph of cones. Then, for a functor V: €™+ —(k-modules),
the inductive limit ind lim, ¥ is described as the cokernel

Bucmors V(i) T3 Beco V@) — ind lim, V
q

where p consists of the identities 1,y @ V(i@)—=>V (i) C®,e0V(a) and
g consists of the homomorphisms V(u) : V(i@)—V{(f(u)) TP, V(a). For
a graph of cones @, we get a homomorphism ind lim,e : ind lim, k~—
ind lim, D{. Note that ind lim, k~ =k if @ is nonempty and connected.

Lemma 3.1. Let X be a nonsingular T-complex. Then, there exists a
morphism of functors v : DY|;—k™|s such that v o ¢ is the identity on X. In
particular, ind limj e defines an injection k=—>ind limy D} and the image
is a direct summand.

Proof. Let X ,={reX;d(r)=1}. By the condition (2) in Definition 2.5,
2 does not contain zero-dimensional cone. Hence 2, is a star open subset
of X. Let7 be an element of X, and let gen 7y ={x}. Since x is a primitive
element of N(7), kx is a direct summand of N(7),. Hence, there exists a
k-homomorphism v(7) : N(7),—k such that v(7)(x)=1. By the condition
(2) in Definition 2.5, there is no morphism u: ¥ —7 if 7,7’ ¢ 2, and 7 7.
Hence we get a morphism of functors v : D}|;,—k~|z, which satisfies yoe
=id on ¥,. Let @ be a maximal star open subset of X such that X, C @
and that there exists a morphism of functors v : D}|,—>k™~|, with voe=id
on @. Assume @23 and let p be an element of X\@ with the smallest
d(p)=:d. By Definition 2.5, (2), we have an isomorphism 3(<p)=~
I'(p)\{0}. By the minimality of d(p), v induces a morphism of functors

Vi DYooy —K oo .- Let N=N(p) and let {x,, - - -, x,} be a basis
of N such that gen p=1{x,, -- -, x,}. The free k-module S*N, has {x%. ..
Xy idy, -, a,20, a4+ - +a,=d} as a basis. For each face & of p,
gen « is a subset of {x;, - - -, x,} and the image of S** N, in S?N, is gener-

ated by monomials of degree d which is divisible by x(o/c) = [T s¢ gen p\genoX-
For each monomial z of degree d, we define v/'(p)(2):=v'(a)(y) if z=
x(p/a)y for some o € I'(p)\{0, p} and for a monomial y of degree d(a),
and we define v'(p)(2):=0 otherwise. Since d=d(p)>2, I'(p)\{0, p} is
nonempty. Since x(p)=x(p/a)x(x), we have v'(p)(x(p))=1. We see
easily that the definition does not depend on the choice of « and hence
v'(p) o DY(u)=1"(a) for every u: a—p. Thus the morphism of functors v’
is extended to I"(p)\{0}. Since there is no morphism p—« in 3 with « ¢ @,
we can combine this extended »” with v, and we get an extension of v to
@ U{p}. This contradicts the maximality of @ and we have 0=23. q.e.d.
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We call v in the above lemma a retraction of D}|; to k~|;. In the
proof of the above lemma, the extension of v’ to I'(p)\{0} depends on the
choice of the basis {x,, - - -, x,} of N. Hence the retraction v is neither
unique nor canonical. We will see in Section 5 that there exists an explicit
retraction for k=R in the case of Thuchihashi cusp singularities.

Let X be a graph of nonsingular cones, i.e., a graph of cones con-
tained in ¥™*, and let p be an element of 2. We are going to define the
restriction

Lo o oo p
ind limy D} —> ind lim ;D¢

of the inductive limit of Df to the link of p.
We define the homomorphism

h, @ ,e s Di(a) —> Dertyie st PR (o [0])

by 7 ((y.)):=(¥,.) where y, € S*“N(a), and ¥, is the image of y, by the
natural homomorphism S*“N(a),~—>S*“N(a'[p]);, if &’ =(a, 1) € Z(p<)
for a morphism u: p—a. Note that d{a)=d(a'[p])+d(p) in this case.
Similarly, we define the homomorphism

By 2 @uemor s D2 (i) —> Burppremor s, D (W [0])

by 1/((z,)):=(z,.) for z, e S*““N(i(w), and Z,, is the image of z, in
SN NG| p])), if ' € mor X (p<) is defined by u € mor 3.

Proposition 3.2. Let X be a nonsingular T-complex and let p be an
element of 3. Then the diagram

D
®u€mor ED%(Z'(M)) —— EBaé ED%(CK)
q
K A

P
®u’[p15mor EEp]D%(p)(i(u,[p])) —> @a'[p]e zgiji(P’(a’[p])
q

commutes for p and q, respectively.

Proof. Let v be in mor X and let z be an element of the direct
summand DY(i(v)) of @y emor » D). We have h(p(2))=p(h;(2)), since
their components for a’[p] € Z[p] are both equal to the image z, of z in
SN [p])y, if &' =(i(v), u) for some u: p—i(v) and are both zero
otherwise. Hence the diagram is commutative for p.

Now we prove the commutativity for g. Let f=f(v). The com-
ponent for 8'[p] of #,(¢(2)) is equal to the image v(z),, of v(2): =Di(vV)(2)
in S*®N(B[o)): if f/=(8, w) for some w: p—pB and zero otherwise. On
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the other hand, the same component of g(%,'(2)) is equal to v,[p](z,) if 8’
=(B, vot) for some ¢ : p—i(v) and is zero otherwise, where v, : (i(u), t)—
(B, vot) is defined by v and z, is the image of z in S?““PN(i(v,)[o])s.
Here note that such ¢ is unique by Lemma 2.1. Clearly, these components
v(2),, and v,[pl(z,) for f'[p] are equal if there exists such a . By the con-
dition (2) in Definition 2.5, such a ¢ exists if and only if wy(gen p)C
vy(geni(v)). If ¢ does not exist, there exists x e gen p such that wy,(x) ¢
v (geni(v)). Hence, x(v) is divisible by w,(x) and v(2),, € S*®N(B'[p]):
is also zero since N(B'[p]) =N(B)/Zwy(gen p). q.e.d.

We denote by 4, 5, or simply #,, the homomorphism ind lim,; D}—
ind lim ;D¢ induced by the diagram in the above proposition.

Let N be a free Z-module of rank r=>0. We denote by B(N,) the
total ring of homogeneous quotients of the symmetric algebra S*N,.
B(N,) is written as the direct sum @,,.,B(N,), of the k-vector spaces
consisting of the homogeneous elements of degree m.

Let 4 be a nonsingular fan in Ng, and let m be a nonnegative integer.
For each « € 4, we define the homomorphism 2% : D™(«)—B(N,),, by 23(2):
=z/x(a) for z € S¢=*™N,. Ttis easy to see that these homomorphisms
commute with D7(u) for every morphism u : @—f in 4. Hence we get the
limit homomorphism 1, : ind lim, Dy~ B(Ny),,-

For a nonsingular T-complex 2 and for an element p € 3, we denote
by h, the composite 25,70k, :ind limy D4—B(N[pl)4(,, Where N[o]=
N(p)lpl-

Lemma 3.3. Let X be a nonsingular T-complex. Then an element z
in ind limy D} is in the image of ind limjy ¢ if and only if h,(z)=0 for every
pel.

Proof. The image of the morphism e(«) : k~(a)—Di(«) is equal to
kx(a) CS*“N(a);. Since the image of x(a) in S NJ«], is zero for every
«, the necessity of the condition is obvious.

Now we suppose z e ind limy D} satisfies 4,(z)=0 for every pe 3.
We may assume z+0 because otherwise the assertion is obvious. Let (z,)

€ @, s Di(a) be a representative of z such that d=max{d(«a); z,#0} is
minimal. We will show d=1. Assume d>1 and take (z,) so that the
cardinality of {« € X'; d(a)=d and z,+0} is the smallest. Let p be an
element of X such that d(p)=d and z,£0. By the definition of d, we
have z,=0 for any « € Y(p<) with @s=p. Hence the condition %,(z)=0
implies that the image of z, e SN(p), in S?N[p], is zero. Let genp=
{xs, - - -, x;}. Since N[p]=N(p)/(Zx,+ - - - +Zx,), the kernel of the homo-
morphism S*N(p),—S*Nlpl. is equal to > 7, x,S*'N(p),. Hence z, is
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of the form > ¢, x,y, for y, € S¢~'N(p),. By the condition (2) in Defi-
nition 2.5, there exists u’: y;-—»p in X such that #* (gen ;) =gen p\{x,}, i.e.,
x(u*)=x,, foreach i=1, - - -, d. Let y; e §%~'N(u,), be the element which
satisfies S¢- ') (y})=y;, for each an i. Let y'=(y,) be the element of
B emor s Di(i(w)) defined by y.,=y. if u=1u* for some i and y,, =0 otherwise.
Then we have ¢(y")= x,y,=z,, while the components of p()’) are zero
for every a with d(a)>d. Let (z))=(z,)+p(}")—q()) € @,cx Di(a).
Then clearly, max{d(a):z,+#0}<d and z,=z, for ¢ € X with d(a)=d
except when aw=p. Since z,=0 and (z,) is also a representative of z, this
contradicts the minimality of {« € X; d(«)=d and z,+0}. Hence we have
d=1.

Let p e X be an element with z,20. Then since d(p)=1, we have
gen p={x(p)}. By the condition %,(z)=0, we sec that z, is in kx(p)=
ker(N(p),—NI[pl.) which is equal to the image of £(p): k~(0)—D3(p).
Hence every z, is in the image of k~(«). g.e.d.

§4. w-invariant of a T-complex

Let 4 be a nonsingular fan in N and let m be a nonnegative integer.
For each « e 4, we set

w

ma. x _—
« [zelggna exp(x)—1 ]d(a)wm

where [/], denotes the homogeneous part of degree d of a power series f.
Note that x/(exp(x)—1) is an element of the completion of the symmetric
algebra S*N, with respect to the natural grading. Hence (0}),c, is an
element of @, , D).

Lemma 4.1. Let o7 be the image of (w™) inind lim,Dg. If disa
nonsingular complete fan, then 2 (o7) € B(N,),, is equal to zzro.

Proof. Since x(a)=1]]scgona¥> We see that 15(w7) is equal to the
homogeneous part of degree m of ] eqonsl/(€Xp(x)—1). Hence A,(w}) is
equal to that of 3, ., [],egen« 1/{(€Xxp(x)—1), which is zero by Theorem I.1.

g.e.d.

Let X be a nonsingular T-complex. For each o € 2, we set w,:=
[H régena x/(exp (x)— 1)]d(a) € DOQ(“)‘

Proposition 4.2.  In the above situation, let wy be the class of (@ ec s
in ind limy DY. Then wy is in the image of ind limy «.

Proof. By Lemma 3.3, it is sufficient to show 4,(w;)=0 for every
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pe 2. Let N=N(p). Since p is the initial object of X (p<), we may regard
N(a)=N for every ae Y(p<) and u,=1, for every u e mor Y(p<).
For each ae X(p<), af[p] is the nonsingular cone of N[p], with
gen a[p]={X; x € gen a\gen p) where x denotes the image of xe N in
N[p]. Since x/(exp(x)—1)=1 on M][p]. for x e gen p, the restriction of
T segene X/(€xp (x) — 1) to M[p]c is equal to [] ;¢ conaro3 X/(€Xp(X)—1). Since
d(alp))=d(a)—d(p), we have a)a]M[p]C—;wZEﬁ. Hence h,(wy)=wifhe

ind limy,; D¢, Since X[p] is a nonsingular complete fan by Definition
2.5, (3), h(wz)=2,0h,(0y) is zero by Lemma 4.1. q.ed.

Lemma 3.1 and Proposition 4.2 imply that there exists a unique
rational number a for each nonsingular 7-complex 2 such that
(ind lim; e)(¢)=ws. We also denote wy:=a and call it the w-invariant

of the T-complex 2.
Proposition 4.2 implies obviously the following:

Corollary 4.3. Let v: D%|;—R~ |5 be an arbitrary retraction. Then
ind lim; v((w,)) € R is equal to the rational number wy.

Remark 4.4. Let X be a nonsingular T-complex, and let d be a
positive integer such that

(1) dw, € DY(a) for every wwe 2.

Then (dw,) € @, s D%(«) satisfies the condition of Lemma 3.3 for k=2Z.
Hence dw; is an integer. The minimal number satisfying (1) depends only
the dimension r of 2. For example, d=12 for r=2 and d=720 for r=4.

When r is odd, we can show that w; is a half-integer in the same way
as Ogata’s [Og, Theorem 2.3].

§ 5. Ogata’s zeta zero value

Let C, I', 5 and X be as in Example 2.6, (3). The characteristic
function ¢, on the open convex cone C is given by

do(x): :L* exp(— {x, x*))dx*,

where C*C My is the dual cone of C and dx* is a Euclidean metric.
Ogata [Og] defined the zeta function of the pair (C, I') by

Z(C, I'; 8):=2 se wneyr $o(X)°

which converges for complex numbers s with Re s>>1 and can be extended
meromorphically to the whole complex plane. He proved in [Og, Propo-
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sition 3.10] that this zeta function is regular at s=0 and the value is equal
to

2| DI @/(—exp(—0))]aGu(1)dl,

a€l Ja reégena

where 9, is the first order derivation definel by
0. f(O)=lim {(£(t-+h0)— (1)) B},

dt, is the Lebesgue measure on « normalized with respect to the basis
gen « and Gy(t)=exp(— ¢o(2) 7).

Let o be an element of Y. By extending the correspondence x— —0,
to their products, we get an isomorphism z+ D, from Dy(x)=S** N to
the R-module of derivations of order d(«) with constant coefficients.

Proposition 5.1. For each a € 2, we define the homomorphism F(a):
S“@Np—>R by

Fla)(2): =L D,G,(1)dr,.

Then F is a retraction of the morphism of functors ¢|y : R™|;—>D%|s, i.e., F
is a morphism of functors and F o ¢|5 is identity.

Proof. Let « be an element of 3 and let gena={x,, -- -, x;}. We
take a coordinate (¢, - - -, t,) of Ny such that #,(x;)=4,, , where g, , is
Kronecker’s delta. Since D,y = [[%, (—3/at,), we have

(Foa)@ =+ [l (~a) G0y .

By [Og, Lemma 3.5], the partial derivatives of G,(¢) goes to zero at infinity.
Hence this integral is equal to G,(0)=1. Hence it is sufficient to show
that F is a morphism of functors. Let u: f—« be a homomorphism in %.
We may regard genf={x,, ---, x,, JCgena for an integer 0<{d’'<d.
Furthermore, it is sufficient to show the commutativity in the case d’'=
d—1. Then, for an element z € D%(B), we have D, =(—3d/dt,)D, for z’
=D%w)(z). Hence

F(oz)(D‘}z(u)(z)):J:- : I: (J: (—a/atd)Dsz(t)dtd)dt,- dt,,

:r’. . ,Jm D.G,()dt,- - -dt, .
:F(ﬁ) @), g.e.d
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Let @ bein 3. Then, for w, in Section 4, we have

Dwa: [[1 zreégena (ax/(l _exp(_ax)))]d(a)'

Hence by Ogata’s formula, Corollary 4.3 and Proposition 5.1, we have the
following:

Theorem 5.2. The zeta zero value Z(C, I'; 0) is equal to the w-invari-

ant wy of the T-complex 2. In particular, it is a rational number.
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