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§ 0. Introduction

Let G be a connected real semisimple Lie group, ¢ an involution of
G, and H an open subgroup of the fixed point group G°. Then the
homogeneous space G/H is called a semisimple symmetric space. In this
paper, a K-finite simultaneous eigenfunction of the invariant differential
operators on G/H is called a spherical function, where K is a maximal
compact subgroup of G' modulo center. It is known that such a spherical
function has an asymptotic expansion at infinity, which really converges,
as is shown by [HC] and [CM] in the group case and by [Ba] and [03] in
general cases. In this paper, we will give the main non-vanishing terms
in the expansion, that is, the growth order at infinity, by using some
geometric interpretation. It plays an important role for the harmonic
analysis on G/H.

The idea here is similar as in [MO], where we describe discrete series
for G/H. But we get a better result here than [MO, Lemma 1] which is
essential in [MO] and we can simplify the proof of the main theorem in
[MO]. In fact we can omit complicated arguments according to the
classification of root systems. The simpler proof is given in [Ma2].
Moreover for a given representation of G realized on a function space on
G/H, we can tell in which principal series for G/H the representation is
imbedded.
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In §1, we will construct linearly independent eigenfunctions for
Weyl group invariant differential operators with constant coefficients
defined on a root space. For a fixed eigenvalue, they are well studied
(cf. [St], [He2, Chapter 3.3]). We will construct the eigenfunctions which
holomorphically depend on the eigenvalue. A nice characterization of
them is given in Theorem 1.4. It is useful for the study of the expansions
of spherical functions at infinity when the eigenvalue is singular.

In § 2, we will review on the boundary value maps for the eigenfunc-
tions of invariant differential operators on riemannian symmetric spaces
of the non-compact type, which are first introduced to prove Helgason’s
conjecture in [K-].

In § 3, we will study intertwining operators between locally defined
sections of principal series for G/K. Combining the result in this section
with boundary value maps and Flensted-Jensen’s isomorphism, we have
our main theorem, which we will explain:

Fix a Cartan involution § of G with ¢f=fos. Let g be the Lie
algebra of G, g, the complexification of g and G, the connected and
simply connected Lie group with the Lie algebra g,. The involutions of
g, the complex linear involutions of g, and the complex analytic involu-
tions of G, which are induced by ¢ and 4 are denoted by the same letters,
respectively. Let g=0§-+q (resp. I-+p) be the decomposition of g into the
+1 and —1 eigenspaces for ¢ (resp. §). Let g%, ¢ and §? be subalgebras
of g, defined by

g*=tNh++/—1ENY++/—THNH+HN )
F=tNh+v—1(NYH), H=FINH+v—TENQ).

Fix maximal abelian subspaces a of pq and a? of p?=+—1(fNq)
+pNgq so that a?Da. Let (a)¥ be the dual of the complexfication
(af), of af and let X(a) and X(a?) be the root systems corresponding to
the pairs (g, a) and (g% af), respectively. We fix compatible positive
systems 3(a)* of X(a) and Z(af)* of X(af). Let ¥(a) and ¥'(a?) be the
corresponding fundamental systems. Put 3(a)”=—3(a)* and 3(a,) =
—2(a,)*. By the complexification { , » of the Killing form of g, we
will identify (a2), with (af)¥.

Let K be the analytic subgroup of G with the Lie algebra f and let
G%, K¢ and H* be the analytic subgroups of G, with the Lie algebras, g2,
¢ and ¢, respectively. We call the homogeneous space G%/K? the non-
compact riemannian form of G/H. Let K (resp. H¢) denote the set of
equivalence classes of finite-dimensional irreducible representations of K
(resp. H%) and for § e K let C(G/H) denote the linear span of all K-
finite C*= functions of type 4. Let CG/H)= ;2 C7(G/H) be the
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space of all K-finite C* functions on G/H. Define C3(G%/K¢) for § ¢ H¢
and C5.(G?/K?) similarly.

Let D(G/H) and D(G?/K?%) be the algebras of invariant differential
operators on G/H and G?/K¢, respectively. Then D(G/H) and D(G?/K?)
are naturally isomorphic through analytic continuation (cf. [O3, Lemma
2.1]). Let 2 be an element of (a%)¥. Then the algebra homomorphisms
%, of D(G/H)~D(G%/K?) to C is defined by the Harish-Chandra isomor-
phism D(G%/K*)=I(W(a%)). Here W(a?) is the Weyl group of X'(a) and
I(W(a) is the algebra of W(al)-invariant elements in the symmetric
algebra of (af),.

Now we define the spaces

o (G/H; M)={ue Cx(G/H); Du=1(D)u for all D e D(G/H)}
and
A yl(GUK 5 M)={u e C54(G?/K?); Du=X,(D)u for all D e D(G*/K?)}.
Then there exists an injective g-homomorphism
0.1 n: A (GIH; M)—> A 5a(G[K?; M)

which we call the Flensted-Jensen isomorphism ([FJ1]). In fact, 5 is an
isomorphism if G/H is simply connected. The map 7 is defined through
the analytic continuation.

Since X,,,=X, for w e W, we may assume
0.2) Re (2, a)=0 for all @ € 3(a%)*
and there exists a subset @ of ¥'(a?) so that
0.3) SN2=2ND 6 Ca.

Here 2+ ={p e (a)¥; {p, 2>=0}.

Put g%a,; a)={X e g%; [Y, X]=a(Y) for all Yea,}, nd=2aex(ﬂ5)+
g%(a,; a) and fi=0g(n?. Let N¢, N¢, A? and A4 be the analytic subgroup
of G¢ with the Lie algebras n?, fi¢, a? and a, respectively, and let M be
the centralizer of 4¢ in K¢ Then the subgroup P¢=M?AIN?¢ is a
minimal parabolic subgroup of G% For y e (ad)¥, we put

Bua(G?[P?; L)=Dscnalf € #(G); flgman)=f(g)a"*

0.4
©4 for (g, m,a,n) e GEX M*X AL X N¢ and fis of type d}.

Here p e (af)f is defined by p(Y)=trace ad(Y)|.d for Y ¢ af and %(G) is
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the space of hyperfunctions on G. It is known that any element of
B 14(G*/P?; L,) is a distribution ([FJ2, IV Corollary 10]).
We define the Poisson transform

0.5 P, Bud G4PY; LYy—>A yo(GK®; M)
by the formula

0.6) @)= focko.

Here dk is the normalized Haar measure on K¢
Suppose 2 e (af)¥ satisfies (0.2) and (0.3). Then we can define a
boundary value map

©.7) Bt A gd(GY K5 M)—> R yo(GE/P%; L)

and it follows from the main result in [K-] that &, and B, are bijective
and B, &, is a constant multiple of the identity map.

Definition 0.1. For a function « in &/ (G/H; #,) we define an
H“-invariant closed subset FBI,(y+) of G¢/P¢ by

(0.8) FBI,(y)=supp B; o 7(y).

For simplicity we will sometimes write FBI(y) in place of FBL{y).

If the set 2+ N 2(a¥) equals {« e 2(af); Re {2, a)=0}, then any
element of W(af)A except 4 does not satisfy at least one of the conditions
(0.2) and (0.3). Hence in this case we have no confusion even if we write
FBI(y-) in place of FBI(y). Now we can state one of our results which
is a special case of Theorem 4.1:

Theorem 0.2. Consider a non-zero function + in of (G/H; M)).
Suppose

(0.9) Re (1, ad>0  for all @ e 3(af)*.

Put V={weW(@h; FBI()CI(PWw'PY)D P}, aV={weV;{veV;
v<wh=g} and A= {wil;wedV}. Then for any pe A there exists a
non-zero analytic function c (k) on K such that

(0.10) Ylkah)= 3, csc(l)a* "+ bk, @) 3 e tyacrim @0

for (k,a,hye KX AXH. Here ¢ is a suitable positive number and the
real analytic function b(k,a) on KX A is bounded on the set {(k,a)e
KX A; a*<§ for all a ¢ U(a)} for any positive number 4.
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In the above theorem, v<w means that v is smaller than w with
respect to the Bruhat ordering and in general, C1(Y) means the closure
of Y for a subset Y of a topological space. In §4, we will give a similar
exact result as above in general cases where, for example, 2 does not
satisfy the regularity condition (0.9) or a tends to infinity along another
direction. Thus the problem to get spherical functions with a required
growth condition at infinity is reduced to the problem to get functions in
ABy(G4/P¢; L) with a certain support property. We remark that the
support of any element in #y«(G%/P%; L,) is an H%invariant compact
subset of G?/P? and that the double coset decomposition H?\G?¢/P?¢ is
studied well in [Mal], especially the number of cosets in H?¢\G?%/P¢ is
finite.

For example, regard a semisimple Lie group as a semisimple sym-
metric space and suppose that + is a matrix element of an irreducible
Harish-Chandra module for the group. Then FBI(y,) coincides with the
support of the &-module realized in a fiag manifold through Beilinson-
Bernstein’s correspondence (cf. [BB], [V]). We remark that out result in
§ 4 covers the case where 4 is singular and in this case the support of the
corresponding Z-module is generally not unique.

In this paper we will use the standard notation N, Z, R, R, and C.
Here N is the set of non-negative integers and R, is the set of positive
real numbers. For a real vector space E, let E* denote the dual space of
E and let E, and E* denote the complexification of E and E*, respectively.
In this paper, a manifold always means a real analytic manifold and
a differential operator always means a linear differential operator whose
coefficients are analytic functions. For a manifold M, we denote by
S (M), C(M), 2'(M) and #(M) the spaces of real analytic functions,
infinitely differentiable functions, distributions and hyperfunctions defined
on M, respectively. If M is a complex manifold, we denote by @(M) the
space of holomorphic functions on M.

The main result in §4 was obtained when the author was visiting
Faculté des Sciences de Luminy from April to June in 1984. The author
expresses his sincere gratitude to Prof. J. Carmona and Prof. P. Delorme
of Faculté des Sciences de Luminy who gave the author a nice atomos-
phere to study.

§ 1. Eigenfunctions of Weyl group invariant operators

Let E be an /-dimensional vector space over R, X a reduced root
system in the dual space E* of E and W its Weyl group. Fix a positive
non-degenerate bilinear form ¢ , » on E* which is invariant under the
Weyl group and identify £ and E* by this bilinear form. Choose a
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fundamental system ¥'={a,, - - -, a;} for 2. Let 3* be the corresponding
positive system and put 3¥-=—23*. For aroot « € X we denote by s,
the reflection with respect to « and by «Y the co-root associated with «.
Then we have by definition

v 20

T laay

Let w=w,- - -w, be a minimal expression for an element w in W as
a product of reflections with respect to simple roots. We will simply call
this a minimal expression for w and the number k& will be called the
length of w and denoted by /(w). Let a(j) be simple roots with w,=s,,
forj=1, - -+, k and put

(1.1)

(1.2 Zwy=3+*Nw'3-.
Then
(13) Z(W)z{wf : ‘Wk-105(k)a ] wla(z)’ a(l)}

and /(w)=4#2(w). In this paper we will write w=w" or w/<w for
elements w and w’ in W if and only if the following equivalent conditions
(1.4) and (1.5) are satisfied (cf. [De]). This defines a certain ordering in
W, which is called the Bruhat ordering.

(1.4) Let w=w,---w, be a minimal expression for w. Then there
exist indices jj, - - -, j, so that w'=w, .. .w, and 1<, <... <j <k

(1.5) There exist non-negative integer r and elements w®, ..., w™®
in W so that w=w®, w=w®, [(wD)<J(wV-?) and wP(wi-Y)* is a
reflection with respect to a root in 3 for j=1, -- ., r.

We remark that hereafter in this section all the statements and
proves are also valid even if we replace the Bruhat ordering in W by the
following one in W:

w<w’ if and only if /(w)<<I/(w’).

For a subset @ of ¥ we put EF=E*\ > ,co Ra, o=2NE¥, J5=
2t N2, 2g=—2% and

(1.6) W©)={we W; wS5CS*).

Let W, be the subgroup of W generated by reflections with respect to
simple roots in @. Then W, is the Weyl group of the root system 3, in
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E¥. Since the map W(O)X Wy (w”, w)—>w’w' to W is bijective (cf.
[War, Chapter 1.1.2]), for an element w in W we can define two elements
w(@) in W(B) and wy in W, so that w=w(@)w,. Then I(w)=I(w(@))+
l(wg). Let s* denote the unique element in W, satisfying s*X* =23,
Then s§25=275.

Let E, be the complexification of E, S(E) the symmetric algebra of
E,, P(E) the algebra of polynomial functions on E, and R(E) the field of
rational functions on F, in the complex category. Replacing E by E*,
we similarly define E¥, S(E*), P(E*) and R(E¥*). Then naturally S(E)
~P(E*) and S(E*)=P(E). Extending { , > to a complex bilinear
form on E}, we identify EF with E,. In fact for 2 ¢ E¥ the corresponding
element H, e E, is defined so that {1, uy=p(H;) for any pe E¥. More-
over any polynomial function on a subspace of E, is extended to an
element of P(E) through the orthogonal projection of E, onto the sub-
space with respect to { , >. Given Y e E, let 9, denote the differential
operator on E, defined by

t=0

7 @y f)(X)=<_5t_ f(X—i—tY))] for Xe E, fe O(E,) and 1 € C.

The map E 3 Y3, can be uniquely extended to an algebra isomorphism
of S(E) onto the algebra C[o] of holomorphic differential operators on
E, with constant coefficients. For an element p in S(E), let 3, denote
the corresponding differential operator. Let I(W) denote the algebra of
W-invariant elements in S(E), which is generated by [ algebraically
independent homogeneous elements.

Given 2 ¢ E¥, we will consider the space

(1.8) HQ)={u e O(E,); 3,u=p(u for all p e I(W)}.

Especially the element of H(0) is called a W-harmonic polynomial and it
is known that

(1.9) S(E)=1(W)Q H(0).

Since dim C[3l/2 ¢ CI0)8,— p(A))=4W, the dimension of the space
H(2) equals #W. We will construct functions in O(E} X E,) which form a
basis of H(2) for any 21¢ E¥. Since d,exp {4, X)=p(A)exp{4, X, the
functions exp {wi, X are elements of (1.8) for all w in W. If (1, a)=0
for any « ¢ %, then obviously H(A)=73,cw Cexp{wi, X ).

In this section we will usually use the notation (2, X)) for the variable
of functions on E* X E, and at the same time we will sometimes regard A
as a holomorphic parameter of functions on E, with the variable X.
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Definition 1.1. Let R(E*)" denote the group algebra of W over
R(E*). For every element w in W with w=e, fix a simple root a(w) in
Y s0 that /(ws,,)<</(w). Then inductively define elements
(1.10) 80=2 wew alw, v; AV
in R(E¥)" as follows. Here we W and a(w, v; 2) € R(E*).
d.=e,

8 =L2, a(W)V > 3 a(WSa(uy> U3 AV — (WS> U Sa(uy A)USe ()
vEW
if w=e.

(1.11) {

Lemma 1.2. If a(w, v; )0, then w=v and a(w, v; 1) is homo-
geneous of degree — I(w) with respect to 2. Especially

aw, w; D)=(— D' [ se s (A @V>".
Proof. We will prove the lemma by the induction on /(w). We may
suppose w£e. Put w=ws,,,. Definition 1.1 implies

(1.12) a(w, v; =<2, a(w)V>(aW’, v; D) —a(W’, USeeuy 3 Saqund))-

If w=w,- - -w, is a minimal expression for w’, then w=w, .- w5, is a
minimal expression for w. Hence if W' >uvs,,, or w=v, then w=v (cf.
(1.4)). Combining this with the hypothesis of the induction, we have
w=v if a(w, v; 2)#£0. It is clear that a(w, v; 1) is homogeneous of degree
—I(w). Also by the hypothesis of the induction we have a(w, w; 1)=

— 2 aW)Y > (=D [[ae s @n€Satmds @) =(= 1" [[eez @t a’)~!
because 2(W)={a(W)} U s, 2 (w’) (cf. (1.3)). Q.E.D.

Theorem 1.3. For OC¥ and w e W, put
Te(A)= Haezg (4, a’)
and
(1.13) W, 23 X) =S e @O, 03 2) exp 0k, X,

Then we have the following :
i) a(w, v; 2) are well-defined in the sense that they do not depend
on the choice of a(w) in Definition 1.1.

i) re(Na(w, v; 1) e P(E¥) if we W.
ii1) (w, 2; X) e O(E* X E,) for we W.
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v)  psd, 4 X)=m6() " Xuew, (— DI exp (wa, X
V) (@,—pW(w, 25 X) € 3w P(E¥)Y(v, 4; X)  for p e S(E).

vi) Put h,(X)=+(w,0; X). Then the matrix

(ah,ﬂlf(wa 2;X) lX:U)U,wGWe
with components in P(E*) is invertible for any 2 ¢ E¥.
vii) Denoting

(1.14) E@Y={Aec E¥; (A, a)=+0 for a ¢ 3}
and

(1.15) $a(0, 2; X)= (g, 2; W(6)~X),

we have

(1.16) HN)=3"yew Cdo(w, 2; X)  for 2 e E@Y.

Here we remark E(WY =E¥, wp=w and w(¥')=e.
viii) If we Wy, h(X) is a homogeneous Wo-harmonic polynomial of
degree I(w) and

1.17) y(w, 2,5 X)=h,(X)exp<{i,, XD
Jor any 2 e E¥ satisfying {2, a>=0 for all « € 0.
Proof. Suppose wz=e. By putting w'=ws,,, we have

(L18)  lw, 2; X)={4, aW)V > (f(W', 25 X)— (W', S,0und s X)).

Suppose (W', 2; X) e O(E¥ X E,). Since (W, S,md; X)=yW', 2; X) if
{4, a(w)V>=0, we have (w, 1; X) e O(E¥ X E,) by (1.18). Hence Theo-
rem 1.3. iii) is obtained by the induction on /(w).

Put 2t={p e E¥; (4, v)=0} for 1 ¢ E¥, put

Um)={2e E¥; $Q+* N 2*)=m}
for a non-negative integer m and moreover put
H'(D)=2wew Cho(w, 2; X).

Since a(w, v; 2) € O(U(0)) and therefore (w, 1; w'X) e H(Z) for (w, w’, 2)
e WX W X U(0), we have H'(Q)C H(A) for any 2 e E¥ by the analytic
continuation for the parameter 21 ¢ E¥*. We will show dim H/(Q)=4#W
for any 4 e E(®), which implies (1.16). When 2 e U(0), it follows from
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(1.13) and Lemma 1.1 that the functions ¢4(w, 2; X) on E, are linearly
independent for w e W and therefore dim H/(2)=4#W.

Let fe X" and pe ftNU(1). First we remark that the condition
wu=w'y for any elements w and w’ in W means w=w’ or w=w's,. Put
W'={we W;X(w)>p} and W”"=W—W’. It is clear that ve W’ if
and only if vs;e W”. Put H'()=2,cw Cexp{wy, X>. Then dim
H'"()=4W/2 and H"(1)=2 yew Cexp<{wy, X>. It is clear that
a(D)¥a(w, v; ) e P(E*) for a suitable integer N. Fix we W. When
a(w,v; ) is not identically zero, we put a(w, v; ft+ p) =t "®c(v; t)
with a suitable m(v) € Z. Here c(v; ¢) is a holomorphic function defined
in a neighborhood of the origin in C with ¢(v; 0)£0. Put m(v)=— oo
when a(w,v;)=0. Let m be the largest integer in {m(v); ve W}
Assume m=1. Put A={v e W; m(v)=m} and A'={v e W; m(v)=m—1}.
Since

th(w, 4 Bt; X)=>3 ew c(v; 1)t™ "™ exp {vp+vpt, X,

we have > ,.,c(v; 0)exp {vy, X >=0, which implies that if ve A, then
vs; € 4 and ¢(v; 0)+ c(vs,; 0)=0. Putting d(v; t)=1""(c(v; 1)+ c(vs,; 1))
for v e A, we have c(v; t)exp{vu+vpt, X )+ c(vs,; t)exp{us u+vsy8t, X
=c(v; t) exp (vp+ vpt, X )(1—exp{— 2vpt, X))+ td(v; t) exp {vssp+
vspt, X ) and therefore the function

3 (c: 02B, X +d (3 0)) exp {opss X
(1.19) + é‘; ¢(v; 0) exp v, X>

is (w, p; X) if m=1 and O otherwise. Hence m=1. Thus we have
ry(a(w, v; ) e OUO)N U(1)). Moreover ({4, pra(w, v; ))|sL is a well-
defined meromorphic function on g+ and satisfies

(1.20) (K2, BYa(w, v; D) |1+ (K2, Bra(w, vsy; )|+ =0.

Since the codimension of the compliment of U(0)N U(1) is larger
than one, we have r,(Da(w, v; 2) € O(E¥). On the other hand, if w e W,
it follows from (1.12) that there exists an integer N so that z,(2)"a(w, v; 2)

e P(E*) for (w, v) € W’ X W because 3, is a root system with the Weyl
group W,. Hence ng(Da(w, v; 2) € P(E*) if we W,.

Suppose p e E(@Y N U(1). Then the element §in 3* with gL 3 u is
contained in Xj. Suppose ve W’ and put v'=vs;. Lemma 1.2 says
that a(v, v; p+ Bt) has a pole of order 1 at the origin. Hence v>v’ as
we have seen. In general we have proved

(1.21) ws,<w if and only if S e 2(w)
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(cf. [De, Proposition 2.3]). The preceding argument (cf. (1.19)) assures
the existence of non-zero constants C,, so that
YW, g3 X)— ConrsW, 15 X) € 2 oo Crs(W', 25 X) with

exp {wy, X if we W,
{wB, X exp {wp, X if we W,

(1.22)

If w<w and we W,, then w ¢ W,. Hence by the induction on I(w,)
we have +r,(we, s W(O)'X) e H(y) for we W and therefore dim H'(y)
= # W.

Next put me(AD(s§, 2; X)=2 luew, b(w; 2) exp {wi; X). Here the
elements b(w; A) in P(E*) are homogeneous of degree 0 with respect to 1
because a(s¥, v; ) are homogeneous of degree —I/(s¥). Hence b(w; 1)
are constant functions and therefore it follows from (1.20) that b(w; )
b(ws,; A)=0 for any Be Xi. Since b(s¥; )=(—1)'“s by Lemma 1.2,
we have Theorem 1.3. iv).

Let {g(v)} be a set of polynomials in H(0) so that H(0)=>_,.» Cq(v).
Put A(Z; X)= (3 yype(W, 25 X))y, ew. It follows from (1.8) and (1.9) that
for any fixed (4, X) e E¥ X E,, if a function u in H () satisfies (3,¢,u)(X)
=0 for any v e W, then u=0 because the Taylor expansion of u at
X vanishes. Hence dim H’(i)=rank A(1; X) for any X e E,. Since
dim H'(Q)=4W for 2e E@O)YN(UMO)U U(1)) as we have shown, the
holomorphic function det A(1; 0) never vanishes on E(@)Y N (U(0) U U(1)).
Since the codimension of the compliment of the set U(0)U U(1) is larger
than one, we have det A(2; 0)=£0 for any 2 ¢ E(®) and we obtain (1.16).
The above argument also proves Theorem 1.3. vii) in the case when
O=7.

It follows from (1.13) and Lemma 1.2 that (3,— p(WA)y(w, 4; X) e
NEFXE)N D e RIEEF)Y(v, 2; X) for we W and p e S(E). Moreover
since C[0]H(A)C H(2) and since (w, 2; X) (w e W) form a basis of H(1)
for any 2 € E¥, we have Theorem 1.3. v).

Let f,, - - -, f, be a basis of the space of Wg-harmonic polynomials,
Here r=4W,. Fix an element v in E¥ satisfying {v, a)>+0 for o« & X,.
Then replacing W by W,, the equality (1.16) assures the existence of the
functions f7(¢, X) in O(C X E,) which satisfy

{Z§=1 Cfit, X)=2 ew, Cexp{wut, X) if 10,
F50, X)=f(X)

forj=1, -..,r. Hence

(1.23) S Ot X)=Sew, Cy(w, vt; X)
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for £ 0. We can put =0 in (1.23) by the analytic continuation because
fit, X)(j=1,...,r) are linearly independent for any ¢ and so are
J(w, vt; X) (we Wy). Hence h,(X) is a Wy-harmonic polynomial for
any we W,. Let A,eEF. Suppose {(1,, «p)=0 for a«e®. Then
(W, vt+2, 5 X)==(w, vt; X)exp{1,, X > if we Wy This means (1.17).
Now we remark that Lemma 1.2 implies

(1.24) Ww(w, t 7125 tX)=1"y(w, 2; X) for te C—{0}.

This proves that /,(X) is a homogeneous polynomial of degree I(w).

Let «'(w, 2; X) be functions given in (1.13) by using other simple
roots ¢’(w) in Definition 1.1 which satisfy I(ws, ) <</(w). Then Lemma
1.2 proves

(125) l[I‘(U, 29 X)—‘!f/(va Za X):Zv’<v I’(U/; 2)‘!’(0/’ 25 X)

for some r(v'; ) e R(E*). Since the left hand side of (1.25) belongs to
O(E¥ X E,) and since (w, 1; X) (w ¢ W) are linearly independent for any
¢ E¥ we have r(v'; ) € P(E¥). Owing to (1.24), we see that r(v’; 1) is
homogeneous of degree /(v)—I(v). Hence we can conclude r(v'; 2)=0
because /(v')<I(v) if v“<<v. Thus we have Theorem 1.3. i).

Put £, ,(D)=0,4(w, 2; X)|x-,. Since A, is homogeneous of degree
I(v), it follows from Lemma 1.2 that f, ,(2) is a homogeneous polynomial
with degree /(v)—/(w). For any permutation ¢ of We, 3 ,,cw({(W)—I(ow))
=0. This means det (f,,,(4)),,ecw, IS constant, which we denote by f.
On the other hand, we see from Theorem 1.3. viii) that &, (w € W) are basis
of We-harmonic polynomials. Moreover we have det (9,,/,|x=0)e,wew,
+0 because we have proved the same statement for the basis of W-
harmonic polynomials. Hence f-~0. Q.E.D.

Now we have the following characterization of «(w, 1; X) or
a(w, v; A):

Theorem 1.4. Fix an element w in W. Then any function f,(2, X) in
O(E* X E,) satisfying the following two conditions is a constant multiple of
W(w, 2; X) defined in Theorem 1.3.
) [, tX)=1'"f (2, X) Jor any t e C —{0}.
11) fw(zo’ X) € Cexp <W20, X>+Zl(v)<l(w),vew Cexp <U20, X>
Jor any fixed 2, e (EF).

Proof. Put f,(2, X)=73 ,cwa(2)exp{vi, X>. Here a,(2) are cer-
tain meromorphic functions on E¥ with the homogeneous degree — /(w).
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Then the proof of (1.20) and (1.21) implies that @,(2) [[.esw) <A @) €
O(E¥), whence a,(2)=Ca(w, w; 2) with a suitable Ce C. Considering
the function f, (1, X)— Cy-(w, 2; X), the same proof as that of Theorem
1.3.1) gives f,,(2, X)=Cy(w, 2; X). Q.E.D.

Put Py(E*)=R(E*)NO(E@©)). The map 3: S(E) 3 p—0, is ex-
tended to the Py(E *)-linear map of Py(E*)®S(E), which will be denoted
similarly. Then we have

Proposition 1.5. Retain the notation in Theorem 1.3. Given OC¥
and v e W, there exists p € Po(E*)YRQH(0) which satisfies the conditions
(1.26)—(1.30) for any v’ e W:

(1.26) 0,06(V; 2; X)=0  if v(0)#v(O).

(1.27) 2,86(V(O)s8, 2; X)=go(v, 2; X).

(1.28)  8,86(UsE, sE2; X) 20 implies v'(0)=v(0) and v},=v,.
(1.29) 3,66(vst, s52; X)=exp (va, X.

(130) 2,050 (W2 XD =(TTacsg sy Ch ) €xp 0k, X,

Proof. For simplicity we denote s§ by u. Since ¢o(w, 1; X)=
Y(we, 2; w(O)~'X), we can easily reduce the proposition in the case when
v(@)=e. Therefore we assume v e W,. Use the notation in Theorem
1.3 and put B(2)= (04,0, 25 X)|x=0)uw,uwewy- Since a(u, w; 2) are
homogeneous of degree —I(u) with respect to 2, 9,(u, 2; X)|x-, is
homogeneous of degree r —/(u) if g € S(E) is homogeneous of degree r.
Let ¢ be a permutation of the elements in W. Since 3 ,ew (I(W)+1(ow)
—IW) =2 wew 0 W)+ 1(uw)—I(uw) =0, det B(2) is homogeneous of
degree 0, that is, det B(2) is constant. On the other hand, since %, is a
We-harmonic skew polynomial, 37, ¢y, Ch,=Clolt, =3 yew o Onuftu (cf.
[St] and (1.9)) and therefore det B(2)=det B(0)=~0 from Theorem 1.3. vi).
Hence there exists p e Zwe% P(E®)h,, (CP(E*)QH(0)) such that

00ty 25 X) |5 oe=0,,0(V, 45 X)|x=0 for any we W.
Combining this with Theorem 1.3.v) and vi), we have 3,4(u, 2; X)=

¥(v, 2; X).
Now from Lemma 1.2 we have

Y(vu, ud; X)=73 oson,wew a(U, wu; ul) exp wuul, X

=2 lwzv,wew, a(vu, wu; u) exp {wi, X
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and
a(vu, vu; ul)=(—1)*@» HaGE(vu) {ua, CYV>_1
= naezg—zw) A, avy™?

because

o) =uC* Nw) 2 )=udiNv ' 2; =2 Nv 2,5
=—QiNv¥H=—Ci—- (" Nv '35 =—(25—2(v)

for ve W,.

Fix 1e E¥ so that {1, a)#0 for a«e . Since 9,y (u, 2, X)=
(v, 2; X), we have d,a(u, v; 2) exp (v, X )=a(v, v; X)exp{vi, X) and
therefore Lemma 1.2 and Theorem 1.3. iv) prove (1.30). For v/ e W,,

8, (V'u, ud; X) € 3,C[01(u, 2; X)=C[o],yr(u, 1; X)
=Cl (W, 2; X)CT 3 0zo C¥r(w, 2; X) =32, Cexp{wi, X

and

O, (V' ud; X) € D pugeru Cir(wu, ul; X)
:Zw;u',wewe C‘!f(wu7 uza X):szv’,weW@ Cexp <w2, X>

Hence 3,4y v'u, ud; X)=0if v/ in W, does not satisfy v"<v. Moreover
dpyr(vu, ud; X)=C(2) exp {vi, X) with a suitable C(2) e P(E*). Compar-
ing (1.30) with a(vu, vu; ul), we have C(2)=1.

Let pe E(®)Y. Then there exists Y e E, so that if an element
(w, w) in WX W satisfies {wy, Y>={(w'p, ¥, then w’ e wW,. Since
dyexp{A, X>={2, Y>exp{2, X, Lemma 1.6 assures the existence of
polynomial r of ¥ with coefficients in R(E¥) so that the coefficients are
holomorphic in a neighborhood U(y) of p and moreover 8, exp {wi, X
equals exp {wa, X ) if we W, and 0 otherwise. This means 3,¢(w, 1; X)
equals ¢(w, 1; X) if we W, and O otherwise. Similarly 3,4(wu, ud; X)
equals ¢(wu, ud; X) if w e W, and 0 otherwise. Using (1.8) and (1.9), we
can choose r in (R(EF)NO(U(w))RH(0). For any fixed 1¢ E¥, if an
element / in H(0) satisfies ,¢(w, 1; X)=0 for any w e W, then A=0 (cf.
Theorem 1.3 iv)). This means that r does not depend on p Hence
r e Po(E¥)QH(0). Then pr e P,(E*)QH(0) is the required one. Q.E.D.

Lemma 1.6, Let m and n be positive numbers. For E=(&,, -+ -, Epvn)
eC"™™ put Pz,8)=Tlierp (z—8&) with I(j)={1, ---,m+n}—{j}.
Moreover put P(z,&)=737., Pz, &)/PL&,; 8. Then P(z, &) defines a
holomorphic function on U={(z, §) e C**™**; &,5=&, for j=1, - .., m and
k=m+1, .- -, m+n} and satisfies
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1 i 1<j<m,

P =
€ 9 {0 if m<j<m+n.

Proof. For positive numbers i and j with i<j<m, put H, ,=
{@oectmm &=¢} and Hi ;={(z,8) e H, ;; £, &, for 1<i/<j’
<m with (i’,j)+, /)}. Then P(z, &) is clearly holomorphic on U—
Uhsicjem Hy,y. Letpe UNH] ;. Then Pz, £)/P (& &) is holomorphic
atpifkstiand k=£j. Put I(i,/)=IGNI(j) and

0:./2, =Pz, &) [rerw.n ;&) — P2 &) [Theru,n Ei—En)-

Since Q; ,(z, &)l¢,-¢,=0, there exist a polynomial R, ,(z, &) with Q, ((z, &)
=(&,—&,)R, (z, &). Since the function

P,(z, &)/PL&,, E)+Pj(za E)/Pj(sj’ )

equals

Ri.j(za é)/n keIl (Ei—ék)(gj—‘fk)y

it is holomorphic in a neighborhood of p. This means P(z, ¢) is holo-
morphic in U except a subvariety of U with codimension larger than one.
Hence P(z, &) is holomorphic in U. The other part of the lemma is clear.

Q.E.D.

For OC¥ and v e W, let P$(4, 9) be the differential operator g, in
Proposition 1.4. We remark that its coefficients belong to Pg(E*)=
R(EX)NO(EY). Fix a basis {H,, - - -, H} of E, and put 9;,=0y, (=1,
-+, ). Define a9, (2) e P(E¥) by

(1.31) 0,66, 25 X)=2 luew 45,0,u(Dge(w, ; X).

Then Theorem 1.3. v) and (1.15) say

(1.32) a8, (A)={va, H,>
and
(1.33) a8 ,. ()50 means v(@)=w(O) and vy =w,.

For an element 1 ¢ E¥, consider a C[¢]-module
(1.34) N et Uy =2 wew @G,y (1=7=Lve W)

with generators 9. Then we have
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Theorem 1.7. Assume 2 ¢ E(BY. Then the C[0]-module
(1.35) M : 3= p(Du (pe I(W))

is isomorphic to N g by the map @ of A to W ¢ defined by O(u)=73 |, o, uS.
The inverse of @ is the map &’ defined by @' (uS)=P2(2, d)u.

Proof. First remark the following. It follows from Theorem 1.3.
vi) and (1.9) that if Qe C[9] satisfies Q¢=0 for all ¢ e H(2), then
Qe ZpGI(W) C[91@,— p(2))-

Put u,=P%Q2,du for ve W. For v'e W(@), Proposition L5
implies that if we substitute u by ¢,(v's¥, 1; X), then the functions u,=
P22, d)pe(v'sE, 2; X) satisfy AN o. Since H(A)=73", cwe Cl0lg(V'sE, 2; X),
u,=P3(2, d)¢ also satisfy 4" for all ¢ e H(2) and therefore the map @’ is
a homomorphism. By the same reason, ¢=7 ,ewe Puld, d)¢ for all
¢ € H(2), which means @’ is surjective. On the other hand, it is clear
from the definition (1.34) that dim /g <{W. Since dim .#Z=4#W, the

homomorphism @’ is an isomorphism and the map @ is its inverse.
Q.E.D.

Remark 1.8. Theorem 1.3.1) is proved in [BGG, Theorem 3.4].
The proof in [BGG] is quite different from the one given here.

§ 2. Boundary value maps for riemannian symmetric spaces

In this section we will review the property of boundary value maps
for eigenfunctions of invariant differential operators on riemannian sym-
metric spaces of the noncompact type. Before to do so, we will continue
to study the system of differential equations introduced in the previous
section. The strong connection between them will be revealed.

Retain the notation in § 1. Define H,, - - -, H, € E so that «,(H)=
8;,; for 1<i<l and 1< <), where U'={a,, - - -, &;} as we put in § 1.
Put t,=exp —2{a;, X)> and identify E with R, by the map R’ >t=
(t, -+, t)—>,—%H,;logt,e E. Then 9;, which is 95, by definition,
equals —2¢,9/dt;. For simplicity we put 9,=t,0/0t; and 9=(9,, - - -, %).
Let p(H,, ---, H), ---,p,(H, ---, H) be homogeneous elements in
I(W) which generate I(W). Fix an element p in E} and for 1e E}
consider the system

M: p](<(oﬁ Hl>—21919 Y <p, HZ>—2191)M

@1 |
=p, (& HY, -+, & HYu  for j=1,.--,1

of differential equations on R'. Put Y,={teR';1;=0} and Y=
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Y,N---NY,. Then the system .# has regular singularities along the set
of walls {Y}, ---, ¥;} with the edge Y. In general, we use microlocal
analysis to define boundary values of solutions. for the system of diffe-
rential equations with regular singularities along boundaries. But the
system .# is so simple that we can explain the method in [O2] to define
boundary value maps in this case without using microlocal analysis.

Fix p e E¥ so that the subgroup {w e W; wu=y} equals W, with a
suitable ©C ¥. By replacing ¢ by wy with a suitable w e W, we may
assume this when we consider the system .# with 2=p. The indicial
equation corresponding to .# is obtained by replacing &; by s, in (2.1)
and sz(zw,li MR Zw,l)"_‘(%<Io——wz7 Hl>’ T %(p—wl, Hl>) (W € W)
are the characteristic exponents. Let £ be an open neighborhood of p
in E(OY and let ,/(FE) be the space of real analytic function on E with
the holomorphic parameter 1 ¢ 2. Let ,/(E; .#) be the space of solu-
tions of .Z in ,/(E). Remark that the system .# is transformed into
the system d,u'=u' (p e I(W)) studied in § 1 through the automorphism
Clo]l » Qrsexp {p, X Yo Qoexp {—p, X of C[3] and the correspondence
w=exp{p, Xpu. By virtue of Theorem 1.7, the system .# is isomorphic
to the system

Q2 o 9= en Boul  (ISj<Lve W)

for any 2¢ 2. The isomorphism is given by M 3 u—> @ us € Vg
and its inverse is defined by A4 ¢ 3 u8—Q%(, Nu e .#, where

(2.3) b3, (D=3 <p—v4, H;),

2.4 b8, D= —%a5, .2 if v£w (cf. (1.31))

and

2.5) 052, H=exp {—p, X} o P3(4,0) > exp {p, X).
Noting

(2.6) exp{vi—p, X p=t{2. . .t}

by the identification E ~R%, we put
@.7) g9, 1)=exp (— p, X pa(ush, s52; X)

for ve W. Then H(E; A)= > new o (E)pHRA, X) = ol (EYFY (cf.
Theorem 1.3). In fact any solution u(Z, t) € ,#(E; .#) is uniquely written
in the form

28 u(d, 1)=2 luew a,(Aga(2, X)



578 T. Oshima

with some a,(2) € ,/(E). By using theorem 1.7 we define boundary
value maps g4 of ,/(E; .#) in the following way. o
First remark that the solution of the system

(2.9) Kot (9,—3p—v2 HD)u,=0  (j=1,---,1)

with an element v e W equals a(d)t* with suitable function a(2) of 2,

where % equals the function (2.6). In the case when v e W (@), since
0892, Du(A, t) is a solution of (2.9) for u(a, t) e ;A (E; A), we define
o) by

(2.10) 05, Du=g3wt*.
Then in this case we have
2.11) BE()=a,(2)

by virtue of Proposition 1.5. Given ve W. Suppose B5(u) are defined
for w e W satistying both we<{ve and w e vW, and suppose S5(u)=a,(2).
Then we can define g8(u) by

212) O34, DA )= Fluwco,weow, BaWdu(?, 1))=pr)t™

because Proposition. 1.5 assures that the left hand side of (2.12) is a solu-
tion of (2.9). Thus we can inductively define 8¢ so that (2.11) holds. We
will remark some facts concerning this procedure.

For a fixed 2 e U(y), we can define the boundary values for the
solution of the system (2.1) by the above procedure. Then the boundary
values are constants.

Put (E}Y={2e E}; {2, a)=0 for any ¢ € 2}. Suppose O=¢j, that
is, pe (E¥Y. By denoting 8,,=p2, we have

2.13) U@, )= ner Bul)t™.

Fix an element v e W. Suppose Bi(u)=0 for any w e W satisfying
both we<ve and w e vW,. Then f8(u) is simply defined by (2.10). This
follows from the fact that the correspondence u=Q%(2, u, defines a
C[o]-homomorphism of .#°, onto the quotient of .# defined by the rela-
tions u8=0 (we W, wya<v, and w e vW,) in (1.34) through Theorem 1.7.
Moreover in virtue of Proposition 1.5 we have

(214) ﬁg(u)(l, f)Z(H aezg-z(v@) <25 05V>)ﬁv(u)(2, t)
for 2e U(w)N(EF).
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Now we will review boundary value maps of eigenfunctions for
invariant differential equations on riemannian symmetric spaces of the
noncompact type. We will use the notation introduced in §0. But
hereafter in this section and the next section we only consider riemannian
symmetric spaces. Hence we may suppose =0 and we will omit the
superfix 4 for simplicity. For example, we will write a,, P etc. in place
of a?, P¢ etc.

Let ¥(a,)={as - - -, o;} be the fundamental system of X(a,) and
{H,, ---, H} the dual basis of ¥(a,). Fix homogeneous elements
p(Hy, -+, Hy), - -+, p(H,, - -+, Hy) in I(W(a,)) which generate I(W(a,)).
Then the operator 4,, - - -, 4, in D(G/K) corresponding to p,, - - -, p, by
the Harish-Chandra isomorphism generate D(G/K). In [OS] we construct
a compact G-manifold X where the riemannian symmetric space G/K is
smoothly imbedded as an open G-orbit. It has the following properties:

There exists local coordinate systems (x, £)=(x;, -+, Xz by, -+, ;)
of X so that G/K={(x,t) e X; ,>0, - -+, #,>>0} and the G-orbit B=

{G,t) e X; t,=-..=1,=0} is isomorphic to G/P. For 2e(a,)¥ the
system
(2.15) M Au=7(d)u for j=1,.-.,1

of differential equations has an analytic extension on X and it has regular
singularities in the weak sense along the set of walls Y, defined by #,=0
with the edge B. The indicial equation for .#, equals

pj(<pa Hl>—2317 DR <P> Hl>—2sl)=pj(<2a H1>, REREY <25 Hl>)
for j=1,---,1

and therefore the characteristic exponents are
216)  2,=p,1, -+ 5 A )=Gp— Wi, Hy), - -+, §{o— w2, H.))

which are parametrized by w € W(a,). Comparing the systems .# and .#,
we can consider that the system .# is a perturbed system from .# or that
A is the first approximation of .#.

Fix p e (a,)¥ so that

2.17) Re{y, a)=0 for all w e 3(a,)*
and there exists a subset O of ¥'(a,) satisfying
(2.18) 2Npt=3N3 . ceCa.

Put 3 ={a e 3(a,; 2/2 ¢ 2(a,)}. Since X is a reduced root system
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in a* with the Weyl group W(a,), we can define 35, Wy, W(0) and 3(w)
as in § 1 by replacing 3, E and Wby ¥, a, and W(a,), respectively. Let
2 be a sufficiently small open neighborhood of y. Let ,2/(G/K) denote
the space of real analytic functions on G/K with the holomorphic para-
meter 2 in Q and let ,.o/(G/K; #) denote the space of the solutions of .#
in ,o/(G/K). Let U be any open subset of G/P. Identifying U with a
left P invariant subset of G, we put

B(U; Ly)={f € oB(U); figman) = fi(g)a"~*

2.19)
forall (1, g, m,a,n) e QX GXM X A,XN}

Here ,%(U) denotes the space of hyperfunctions on U with the holomor-
phic parameter 4 in £.

Definition 2.1. For pe ()} satisfying (2.17) and (2.18) we define
an ordering <, in W(a,):

For elements v and w in W(a,) the relation v<{,w holds if and only
if one of the following two conditions holds:

i} wvp=wy and v<w in the Bruhat ordering in W(a,).

ily vustwpand §vp—wy, Hye Nforj=1, ..., L

We remark that v<<w implies Re {vp—wy, H,>=0forj=1, ---,/
(cf. [Di, Lemma 7.7.2]) and that the condition —3%<{vy, aV> ¢ N for any
« e 2(a,)* implies the non-existence of an element w in W(a,) with w<,v
(cf. [K-, Appendix II, Proposition 2J).

Let u(2, x, t) be an element of ,&/(G/K; #). We will explain the
definition of the boundary values of u(4, x, t) which is given in [O2] (cf.
[KO, Section 5], [0S, §2.2], [Sc, Chapter 5.2], [MOIl, § 3] and [O3, § 3]).
The system .# has regular singularities in the sense of [KO, Definition
5.1] after the coordinate transformation #,—~¢7 with a positive integer
m>1. Moreover after the transformation u(4, x, t)—t¥.--t¥u(2, x, t)
with a suitable non-negative integer k, any component of any character-
istic exponents does not take a strictly negative integer. Through these
transformations, the characteristic exponent 1,=(2,,,, - - -, 4,,;) changes
into (mi, +k, ---,mi, ,+k). The following procedure is valid only
after these transformations. But we pretend that we can assume m=1
and k=0 to make the notation simple. Let p* be a point in v/ —1 SEX
—(Ui//—18%,X with a base point pin U. Then in a neighborhood
of p*, the system .# is microlocally isomorphic to a system

(220) '/79: 19jﬁg:Z‘AweW(ap) Bj,v,wag (1 élélb ve W)

of microdifferential equations for 2 € 2 by a correspondence i = 0% and
U= Zvemup) R87¢ with suitable microdifferential operators Qf and RF
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([KO, Theorem 5.3]) with the holomorphic parameter 1. Here the
microdifferential operators B, , ,, satisfy

(2.21) B, ,=b;,.2) if vp=wp
(cf. (2.2)—(2.4)) and
2.22) if B, ,+0 and vu£wy, then w<,v and ord B, , ,<0.

Moreover o4(09)2, x, $)=0°%, s) and o,.(RE)(, x,s) equals 1 if we
W(®) and 0 otherwise under the notation in [O2].

Now the condition that any 2, ; does not take a strictly positive
integer for 2 e £ assures the existence of the unique extension #(4, x, ¢) of
u(2, x, t) such that # is a hyperfunction on X with the holomorphic
parameter 2 ¢ 2, supp #C C1(G/K) in X, ii],,x=u and that i is a solution
of # on X (KO, Corollary 5.11 and Theorem 5.12]). Considering the
solution # microlocally in a neighborhood of p*, we can define boundary
values f9 (1) in a similar way as in the case for a solution of .Z. Then

¢ o(u) are hyperfunctions defined in a neighborhood of p in B.
If all the boundary values 89 (u) are real analytic at p, we say that
the solution u is ideally analytic at p (cf. [02, § 5]) and then u has the

following form:
(2.23) U= wew D oteo A, (A X, 1)q,, 4, ).

Here m is a certain non-negative integer, a,,,(4, x, t) are real analytic
functions of (x, t) in a neighborhood of p with the holomorphic parameter
e and g, 4, t) are certain real analytic functions of ¢ for 0,1,
-++,0<,€1 with the holomorphic parameter 1e £. The functions
gy, {2, t) do not depend on u and have the expression

224 G, (A 1)=2 0,40 A0, 0, s(RYT 07107 0

with meromorphic functions g, ,, () which are analytic when
(2.25) —3wi,aVY ¢ N for any o e 3(a,)*.
Furthermore we have

(2.26) G, (tt, 1)=r, (lOg t)te>

with certain polynomials r,, J(log¢) of logt=(logt, ---,logt,). Espe-
cially if ${wp, &V ¢ Z for any a € X(a,)*, we can put m=0 and g,, (2, 1)
= thw,

Fix an element v in W(a,) and consider the condition that 85 ,(u)



582 T. Oshima

vanishes for any point p in U and for any w in W(a,) satisfying w<,v.
This coondition is well-defined in the sense that it does not depend on the
choice of local coordinate systems and we write the condition as follows:

2.27) Bé(w)|y =0 for any w e W(a,) with w<,v.
Putting

(2.28) o(G|K; M),={u € ,/(G|K; M); u satisfies (2.27)}

and vR={v2; 2 € 0}, we can define a g-equivariant map

(2.29) B3 ol (GIK; M)y—>RB(U; Lyg)

by patching 87 () tog~ether for pe U (cf. [02, §3]). In fact, for ue
oA (GIK; M),, since (QFfH)(A, x,t) is a microfunction solution of the
system A7, (cf. (2.9)), B9 ,(u) is defined by

(2:30) (05, x, 1)= P2 (WA, X)1%,

where the both hand side of (2.30) are regarded microfunctions defined
in a neighborhood of p*.

If U=G/P, then #(G/P; L,,) is a G-module and B¢ is a G-equi-
variant map. On the other hand, if §{g, V) ¢ Z for any « € X(a,), then
O=q, A (GIK; M),= o4 (GIK; M) for any w e W(a,) and in this case
we write f5=p,. For a fixed 2 ¢ 2, we can similarly define boundary
values for a solution » (without the holomorphic parameter) of .# in the
same way and the map §, in (0.7) is defined by ¢ with U=G/P.

Let u e ,o/(G/K; #),. Comparing the case where the systems are
A and .#, we have by [02, Theorem 4.5]

(231) ﬁg(u)(& x)=(r[ acz} —E(ve)<2: “V>)481)(u)(z> x)

for any 2 e Q satisfying (2.25). 'Assume u is ideally analytic at p. Then
in the expression (2.23) we have by [02, § 4 and § 5]

(2.32) a, 2, x,1)=0 if w<,v and wu==vp
and
(233) 7‘=0 av,j (27 xa t)qv,j(2> t)=Zw€vW9 cw(z’ xa t)¢3)('2, t)

(cf. (2.7)) with real analytic functions c,(2, x, ¢) satisfying

(2.34) ¢, x,8)=0 if w<,v and wu=vp
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and

(235) cv(& X, 0)_':51?(1'{)(25 x)'

Lastly we remark that ¢S(u, t)t-# is a homogeneous polynomial of
logt=(ogt, - --,logt) with degree I(s¥)—1(vy).

§ 3. Localization of intertwining operators

In this section we want to study a local property of intertwining
operators between most continuous principal series of the class one with
respect to K. First we will recall the intertwining operaters (cf. [Hel]).

The space Z(G) of hyperfunctions on G is a left G-module by
GX H(G) 2 (g, f(x)—>(m /)Nx)=f(g"'x) e #(G) and hence #(G) has the
induced g-module structure. For 4 e (0,)F put

Z(G/P; Ly={f € #(G); flgman)= f(g)a*"*

3.1
G-D for (g, m,a,n) e GXM X A,XN}.

Then any K-fixed vector of #(G/P; L,) is a constant multiple of the func-
tion 1; e &/(G) defined by

3.2) 1(kan)y=a*-* for (k,a,n) e KX A, XN.

For any w e W{(a,) there exists a function T2, ¢ 9'(G)N #(G/P; L,,;) with
meromorphic parameter 2 e (a,)¥ so that the linear map

T B(G|P; L)—>A(G[P; Ly;)

(3.3) f6) e TN@ = Tk

is a G-homomorphism. We fix a representative w in K for every w in
W(a,) and normalize 7}, so that

(34) LN = fen)an,
for fe #(G/P; LYNC=(G) and 2¢ —C,. Hence N,=NNw"'Nw,

(3.5 C.={2¢(a)F; Rel{4, a)>0 for « e 3(a,)*}

and the Haar measure d#, on N, is normalized by

(.6) Lv 1_,(p)dA,=1.
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Then T satisfies

3.7 supp T3, C C1(Pw™'P),
and

3.9) T (mangm’a’'n'y=Ti(g)a***a'™*-*
for (m,a,n, g, m',d,n)e M XA XNXGXMXA,XN

which comes from (3.4) and the G-equivariance of 4. Here we remark
3.9 PwP=PwN,P=wN,P
because
PwP=NAMwP =NwP=(NNwNw " YNNwNw - )wP
=w@w 'NwNN)P=wN,P.

For an individual root « in 2(a,) we put

L'(m,+m ) (&< DG, @)+ 5m,)

¢, ()=
@ I(Gm,+4m )l (32, &V 3+ 3m )0 (EA, &)+ tm+Emy,)

I'(Ma+Ms)  si_yaa¥s-dma )
d (D)= bRt ICEAPES LIVIFS o0 OO BN
O= T amtim L)
and
e =TG4 a" >+ im A+ DIEA, )+ im+Emy,)
by denoting m,=dim g(a,; @). Moreover for w e W(a,) we put

(3.10) 2(w)={a € 2(a)*; ware J(a)” and L ¢ Z(ap)},

oD =[Taezw €A duD)=T]aczw du(2) and e,(A)=Teezw €A

By the element s* ¢ W(a,) with s*X(a,)* =2(a,)” we define c(2)=c(2),
dA)=ds(2) and e(d)=eu(l). Then ¢,(2) equals d,(Ae, (1) and
d,(—2)"'T% are holomorphically extended for all 1 ¢ T2 and

(3.11) o=, =T 1,

If w=w,-..w, is a minimal expression for w e W(a,), then we have the
product formula

(.12) Th=T gt T gh,

For @ e ¥(a,) let s, denote the reflection with respect to « and put
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P,=Cl1(P5,P).
Definition 3.1. For w e W(a,) and subsets S and S’ of G/P we put

(3.13) WIS1=SP,yP.cs* - * Puagiys
(3.19) W(S:S)={we W(a,); wlSIN S’}
and

B.15) W(S:SN)={we W(S:5"); {ve W(S:5); v<wi=T},

where W==5,, * - SaySay 15 @ minimal expressions of w with «(1), -- -,
a(k) e ¥'(a,) and we identify subsets of G/P with right P-invariant subsets
of G.

Here we remark

(3.16) P,y -P,py=Cl(PW'P)=]],c,, PW'P (cf. [MO,Lemma 8]).

For an open subset U of G/P we put
(3.17) BU; L)={f e B(U); f(gman)= f(g)a*~*
for (g,m,a,n) e GXM X A,X N}
and for a subset S of G/P we put

(3.18) #(S; L)=lim #(U; L,),

U>8s
where U runs through open subsets of G/P containing S. Similarly for a
subset V of K/M we put

(3.19) ZV)=lim #(U),

Uov
where U runs through open subsets of K/M containing V. Then the
restriction map to K N .S induces a bijection
(3.20) G5t B(S; L)-—>Z(KNS/MNS).

For simplicity we will denote ¢, 5,5 by ¢,

Since it follows from (3.7) and (3.16) that supp T;,Cw[{e}], the
integral transformation (3.3) induces the g-equivariant map of #(w~'[S];
L) to #(S; L, for any subset S of G/P, which will be denoted by the
same notation. Thus we have the commutative diagram

Tt B(G|P; L)——>H(G|P; L,y)
(3.21)
Tl Bw'[S]; L)—>A(S; Ly
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if —2 is not a pole of 4,. Here the vertical maps are defined by natural
restrictions. .

Fix an element g in (a,)*. Let £2 be an open neighborhood of p.
We defined the space #(U; L,) in § 2, which is the space of holomorphic
functions f; on 2 with values in Z(U; L,)C ,%#(U). Then it is clear that
the above argument is valid even if we replace L, and L,, by L, and L,,.
Now we can state the key lemma in this paper.

Lemma 3.2. - Fix we W(a,) and p ¢ G/P. Assume we W(V: {p}) by
denoting V=w={p}]. Let f,e B(V;L,). We define r, ¢ B{p}; Ly,a) by

(3.22) Q={1¢Q; d(—2)"50}.

i) The function ), can be holomorphically extended with respect to
the parameter 2 and defines an element of #({p}; L,q). Therefore we can
define T4 f, =\, e B({p}; L,,) by the holomorphic extension because +,
depends only on f,.

ii) Assume moreover

(3.23) e w#0and —F{y, V) ¢ N—{0} for any a ¢ Z(w).
Then +,70 if f,#0.

Proof. First we remark that T2(k™!) e 2/(K/M) is defined by the
map .

G2 CUKIM) 3 g T PPO=[ | (T PmIdn, e C

when 1¢ —C,. If (supp ¢)N(KNWN,P) is compact, the right hand
side of (3.24) is holomorphically extended for all 1 ¢ (a,)¥, which means
that T(k™') e 2/(K/M) is holomorphically extended for all 1 in a
neighborhood of KN WwN,P. Hence there exists an open neighborhood
U of PN,w™'P=Pw'P in G such that T}|, is holomorphically extended
for all 2 e (a,)F*. Since the support of T'% is contained in C1(Pw~'P), we
can put U=G—\J, <, ,PW~'P. Define T}, € 2'(G) with |¢|<e by

A+ps
. Ty

P f
nt 2m4/ —1 Jisi=e s—t

and put T3,=T,*—T;, for 0<egl. Then the above argument
implies that supp T3 ,C (), <, PW'P. Define

1H,,(x)=f f0TL (k- x)dk  for j=1and 2.
K
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Here we remark that for any neighborhood U of w~'[{p}] there exists a
neighborhood U’ of the point p so that the condition x ¢ U’ and k~'x e
Pw'P implies k ¢ U and therefore the above integral can define a func-
tion ] , € B({P}; Luzsw,:). Since the closed set |, ., w/[supp f] does not
contain p by the assumption, 43 ,=0 as an element of Z({p}; Ly, up0)-
Hence +, which equals -} , is holomorphically extended on wf.

Suppose an element /] e Z(V; L) satisfies /= f,. Then there exists
fi e #B(V;L,,,,) with the holomorphic parameter # (| |« 1) which satisfies
Suvoi— Lo =1f7. Hence Thf, = (T f e pb 1T 5 D)oy = T4
by the holomorphic extension and therefore we can replace f; by ¢;'o¢,f,
to prove the second part of the lemma. Moreover since the restriction
map of #(G/P; L,) to #(V; L,) which contains ¢,f, is surjective we may
also assume f; € Z(G/P; Ly).

The idea of the rest part of the proof is same as in the proof of
[MO, Lemma 2]. Hereafter we can assume e,(1)7=0 and w[supp f,] 3 p
for t e 2. We will prove the last statement of the theorem by the induc-
tion on /(w). Hence assume w=s, with « € ¥(a,). Let P,=M,A,N, be
the Langlands decomposition of P, with 4,C 4, and N,CN and let a(x)
be the Lie algebra of M, N 4,. If 2 and 2’ belong to — C, and their restric-
tions on a(x) coincide, it follows from (3.4) that (7 4¢; '¢)(k) = (T ben'¢)(k)
for ke K and ¢ e C=(K/M) because wN,,CM,. This implies that ¢,T7,
only depends on 2l,,. Therefore to prove the last statement of the
theorem, we may assume

Re (2, B)>0 for any B e X(a,)* which is not parallel to a.

Then the Poisson transform

u(e)=|_flehdk

of f, is a simultaneous eigenfunctions of invariant differential operators
on G/K. Suppose e 2. Then we can define boundary values B,u, e
A(G|P; Ly,) and B,u; € #(G/P; L, ) because © = under the notation in
§2. They satisfy

ﬁ Uy=C (Z)f;l
and

Buttz=c(Wh)eu(— DT L ki

as was shown in [K-] Proposition 6.1. We remark that the function
c(wd)c,(—2)~' can be holomorphically extended to 2=y and the value at
A=y is not zero.
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First consider the case
(3.25 Re{p,a>=0 and <y, a>=+0.

Then ¢(2) and B.u, are also holomorphically extended to 2=y and their
values at A=p are not zero. Since S,u, vanishes in a certain neighbor-
hood U of p, 8,u,}y is holomorphically extended to 2=y and it follows
from [MO, Lemma 1] that the support of the value at 2=y contains p.
This means +,50.

Next consider the case

(326)  Relp ap<0, e ()#0 and —4{y, a) ¢ N—{0}.

Then 77, and T% are analytic at 1=y Put f;=97%f, and suppose
supp f4 3 p. We will lead a contradiction. Note that %Y= 2T Lf,
=c(— Ve, (A f; and c,(— p)c ()70. Therefore by replacing S and 2 by
V and w2, respectively, in the diagram (3.21), we can see V' (supp f) ==&
because w[¥']=F and V N (supp f,)#=. Since Re {wy, a)>0, the con-
dition supp f;2p and VN (supp f})+ @ implies supp T2, 3p as we
have just proved. This contradicts to the fact supp J %/, =supp f,  p.
Now consider the case

(3.27) (s )y =0.

By shrinking £ if necessary, we can define boundary values ffu, e
B(G|P; Ly,) and pou, € B(U; L,,,) with © ={a}, where U is a open subset
of G/P satisfying U N supp pfu,=. They satisfy

,Bée“x=<2» a¥>B.u; and ‘Bgulzﬁwullll

for A e £’ (cf. (2.29)). Since pfu, is a non-zero constant multiple of f,,
[MO, Lemma 2] says supp f%u, > p as in the case (3.25) and therefore
0.

Lastly assume /(w)>1. Let w=s5,, -+ -5, b€ @ minimal expression
with «(j) e ¥(a,). Put v=s,4_ 5 -Suq, and V’'=s,,[{p}]l. For any
g eV’ we have v-'[{g}]CV for ve W(supp f;: V'). Hence y;=T:f, e
#(V'; L,y) can be holomorphically extended to i=p. Since J(w)=
2Z(w)Uv'a(k) and since there exists g e V' satisfying v[supp fi] 2 ¢, we
have ;=0 for any 2 e £ by the hypothesis of the induction. Then
applying the result in the case /(w)=1 to ,=.7 2 4%, we can conclude

Sa(k)

V70 QED.

Remark 3.3. The above proof implies that Lemma 3.2 is also valid
in the distribution category. But considering that we have reduced the
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proof of Lemma 2.2. ii) to [MO, Lemma 2] which is proved by using
Holmgren’s theorems ([SKK, Chap. III, Proposition 2.1.3] and [O2,
Theorem 4.4]) and Sato’s fundamental theorem ([SKK, Chap. III, Corol-
lary 2.1.2]), we can prove Lemma 2.2. ii) by using [BG, Theorem 4]. The
precise argument will be left to readers.

Let S be a subset of G/P and f an element in Z(w™'[S]: L,). Then
applying Lemma 3.2 to the function f;=¢;"0¢,(f), we can define 7%4f ¢
#({p}; L,,) for any point p ¢ S under the notation in Lemma 3.2 and
therefore we have 9% f'e %4(S; L,,). Replacing # by 2, we have

Theorem 3.4. Let w be an element of W(a,), 2 an element of (a,)f, S
a subset of G/P, U an open subset of G/P with UDw'[S]and V a closed
subset of U withwe W(V:S). Putting

(3.29) A(V1; L)={fe B(U; Ly; supp fC V'},
we can define a g-homomorphism
(3.30) T B(V]; L)—>#(S; L)

in the way mentioned above. Let fe B([V]; L) with w'[S]Nsupp f+#J.
Then T L(f)+#0 if the following condition holds:

(B.31) e (—D£0 and —1{(A, a) ¢ N—{0} for any a € Z(w).

Proof. Note that for the function f in the theorem there exists a
point p e S with w=[{ p}] N supp '+ @. Hence Theorem 3.4 easily follows
from Lemma 3.2. Q.E.D.

Definition 3.5. Let 2 be an element of (a,)} satisfying (0.2) and
(0.3). For subsets S and S’ of G/P we put
E(S: S7; )={wa; we W(S: SN},
E(S:S"; )={ne5(S:S";2);
[ve B(S:8;2); Re {p—v, H,, - -+, Re {p—v, Hy))
¢ [0, o) — {0} =),
W(S:S"; )={we W(S:5); {ve W(a,); v, wNW(S: §) =}
and
W(S:S"; )={we W(S:5"); wie5(S:S"; D}
Theorem 3.4 has several applications. One of them is the following:

Theorem 3.6. Use the notation in § 1 and § 3. Let 2 be an element
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in (a,)% satisfying (0.2) and (0.3) and let B, be the boundary value map
(3.32) Bi: A (GIK; M)—>FB(GIP; L)

which corresponds to B8 (cf. §2). Here O={a e ¥(a,); (A, a)=0}. Let
u be a non-zero function in oA(G/K; M,) and p a point in G/P. Put S=
supp fa.  Then for an element v in w(a,)

(3.33) B w=0  if ve W(S:{p})
and
(3.39) 8,0 . if ve W(S: {p}; A).

Especially when u is ideally analytic at p, then there exist a positive
number ¢ and a neighborhood U of p such that

(3'35) u(x, t)——'—ZweW(S:(p};z)dw(x)ng(z: t)—l—r(x, t) Zé‘:l ZwEW(S:(p};Z) tlwt;

with certain real analytic functions a,(x) on UN(G/P) and a certain
bounded real analytic function r(x, t) on U N (G/K). Moreover

(3.36) a()=p,w i veW(S:{ph; DNW(S:{p}; ).

Remark 3.7. The functions ¢5(1, t) (w e W(a,)) are given in (2.7).
They are linearly independent and

(3.37) G, ) =h(w; t)t*e,

where A(w; t) are homogeneous polynomials of (logt, - .-, log ¢;) with
degree /(s¥)—I(w,) and correspond to Wg-harmonic polynomials on a,
(cf. Theorem 1.3). Especially if {2, a)£0 for any «e 3(a,), then
h(w; t)=1. Moreover if Re {2, a)+0 for any & € X(a,), then W(S: {p}; 2)
=W(S: {p}; 2) in Theorem 3.6.

Proof of Theorem 3.6. Let {2 be a small open neighborhood of 2.
Put fi==¢"00 B(w) and u,=2(f,) for ve £ and moreover put £'=
{pe;%{1 V) ¢ Zfor any a € 2(a,)}. By the induction on /(v) we will
prove B8 (u,)=0 (resp. B8 ,(u,)#0) for any v e 2 if v ¢ W(S: {p}) (resp.
ve W(S:{p}; ). The hypothesis of the induction means Bg ,(u,)=0 if
w<,v. Hence by (2.29) we have

ﬁg,p(uu)z(n aezg—zwe) <1J, 05v>)‘8m(1/l,,) foryve

in a neighborhood of p. By virture of [K-, Proposition 6.1] we have
Bow)=c(vv)c,(—v)'T f, for y e . Note that
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c(vy)cv(—-u)"l Hael‘g—z‘(ve) <”> av>

:—"(naezg—z(v) Ca(”))(naezg-z(vs) <V, “V>)

and therefore that this function is holomorphically extended to the point
y=2 with a non-zero value. Hence it follows from (3.21) and Lemma
2.2 that 89 ,(u,) has the required property. Thus we have the theorem
because u,= Cu with a non-zero C e C.

The second part of Theorem 3.6 is clear from § 2. Q.E.D.

§ 4. Asymptotic behavior of spherical functions

In this section we will use the notation defined in §0. As in the
argument in [MO, § 3], we can study the asymptotic behavior of a K-finite
spherical function 4 at infinity on G/H through the boundary value
problem on the riemannian form G%/K? of G/H by using Flensted-Jensen’s
duality. Applying Theorem 3.6 to our situation we have a precise result
for the asymptotic behavior in terms of the set FBI,(y»). To state the
result we prepare some notation.

We put T(@)={a, ---, a;} and ¥(aH)={a, ---,a.}. They are
compatible fundamental systems of the root systems X(a) and X(a?),
respectively. Let {w,, - -+, @;} and {@,, - - -, @, } be the dual basis (i.e.
afw)=20,, @,(@;,)=38,;, ;¢ a and &, ¢ qaj). As we defined in §3, for
subsets S and S’ of G¢/P? we put

W(S: §)={w ¢ W(eD); S-CLP*w PN S'£ 2}
and
W(S: S)={we W(S:8); {ve W(S:5); v<w}=},

where the ordering in W(a?) is the Bruhat ordering. For a subset /=
{5 =+ *» ¥yemy} Of () with a positive number m</ we define a map

0, )" ———> A
4.1 w w
=1 + > Ym——>a(y)=exp (= 2t 0y l0g ).

We put a(y)=day(y) for simplicity. Forv=(y, ---,v,) € C™ and
¥ € (0, o0)™ we put

Y=yt Y
For the above S, S’, I and an element 2 in (af)¥ we put

u1(2)=(u1(2)15 AR Vl(l)m)=(<(o——27 a)j(l)>> Tty <‘0'—25 wj(m)>) € Cm,



592 T. Oshima

E(S: S )={v,(wd); we W(S: S},
E(S:8; )={veE(S:8;2);{V e 5,(S:5;2);
(Re (v;—v1), - - -, Re (v, —17,) € [0, 00)"—{0}} =}
and
YS: S D)=H,(S:S"; )N {v(wd); we W(S: S}

For a subset @ of ¥'(a?) we define

Z5={p e @) N Suco Ras 2 ¢ 3@
and
W(O)={w & W(ah); wIzC J(ad)}.

Let W,y be the subgroup of W(af) generated by the reflections with
respect to the roots in @. Then for w e W(0) we define unique elements
w(@) e W(O) and wg € W, such that w=w(@)ws,.

Theorem 4.1. Let 2 be an element of (a9} satisfying (0.2) and (0.3)
and let ¥ be a non-zero element of o ((G/H; M}). Put @=T(aHN 1+
and 0'={a e T(a?); Re{a, Ay=0}. For an element w, of W(a) and a
non-void subset I={a,y,, - - -, ;o of ¥(a) we fix a representative of w,
in K¢, denote it by the same symbol for simplicity and put

A=E (FBLT): w,P%;2) and N'=&FBLY): w,P%; 1)

(¢f. Definition 0.1 for FBI(U)). Then there exists a positive number e such
that

U(gwa (MW H) =3, c4 D 5 ¢, x(8)p,, (log yy, - - -, log y,. )y

4.2) )
+1(g ¥) D ven Dt VVi

for (8,y) e GX(0, c0)™. Here ¢, (g) are real analytic functions on G,
r(g, ¥) is a continuous functions on GX[0, co)™ and ¢, , are homogeneous
polynomials with m-variables whose degree<42,. Moreover

(43) Z;c(:)l Cu,k(g)¢u,k(10g y17 Tty log ym)g—to U(‘ Ve A/'
Assume I=U(a) and fix v € A'. Putting

4.4) N(w, y)=max {N§ Z{k;deg by, 5=N} C»,k(g)¢y,k(10g Y v, log ym)?—:o}-

we have
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4.5) N(w,,v)>max{§ 35 —I(we); w e W(FBL(y): w,P?) and v,(wa)=y}.

Especially the equality holds in (4.5) when the following conditions is satis-
fied.

If we W(FBL(y): w,PY N W(FBL(y): w,PY) Wy, and v, (wl)=v,

4.6
then w e W(FBL(y): w,PH)W,.

Remark 4.2. i) Since FBI(¥) is an H¢%invariant subset of
G¢/P¢, the condition FBL(¥)- C1(Péw 'PY)Nw,P?£ P is equivalent to
FBL(¥)-C1(Péw~'P9)D Hw,P%. Any open H?orbit in G?/P? is of the
form Hw,P* with a suitable w, ¢ W(a) and conversely H?w,P? is open
for any w, € W{(a). Moreover the number of the cosets of H?¢\G%/ P? is
finite and the cosets are parametrized in [Mal].

ii) If 7 satisfies

“.7 {2, a)+0 for all @ e 2'(a?),

then in the above theorem @=¢ and degree ¢, ,=0 and therefore we
can put ¢, ,=1 and k(v)=1 and the equality holds in (4.5).
iii) If

4.8 AN 2(@)={xe Z(a?); Re {4, a)=0},

then @=60’ A= /4" and (4.6) is valid.

iv) If af=aq, then (4.6) is also valid because y,(w2) e A’ implies
we W(FBL(y): w,PY)Ws.

v) If there exists y ¢ A— A’ or the condition (4.6) is not valid, then
the term in (4.2) corresponding to v is studied by considering FBIL,,,(+)
for we W,.. The precise argument will be discussed elsewhere.

Proof of Theorem 4.1. First note that the proof here will go similar
as in [MO, §3]. We remark that we have only to prove (4.2) for (g, y) e
Gx (0,5 Let X be a compact G-manifold constructed [0O3, § 1] where
G/H is embedded as an open G-orbit X. We will identify G/H with X.
Then for g, € G the point gyw,a,(y)wy'H € X converges to a point p(g,) €
80X in X when y e (0, co)™ converges to 0. As in [03, § 3], we can define
boundary values of ¥ on the G-orbit G-p(g;). Since « is ideally analytic
at p(g,), we have an estimate (4.2) for (g, y)e U(g,)X (0, o)™ with a
suitable finite subset 4 of C™ and polynomials ¢, ,. Here U(g,) is a
neighborhood of g, in G. Moreover the condition (4.3) and the number
N(w,, A) ar described by the vanishing or the nonvanishing of the corre-
sponding boundary values of . Since the boundary values are real



594 T. Oshima

analytic, if we prove (4.2) and (4.3) for (g, ) € U(g,) X (0, &)™ with only
one fixed g, ¢ G, they are also valid for any (g, ¥) e GX (0, co)™. It is the
same for the number N(w,, 1).

Let p € X to which wya(y)wy' converges when y e (0, 6)* converges
to 0. Let ¥ be a neighborhood of p in X. Since there exists g, ¢ G with
p(g,) e V, the estimate (4.2) for (g, ) e U(g,) X (0, 5)™ follows from (4.2)
for (g, y) € U(e) X (0, §)* with I=¥(a). Hence to prove Theorem 4.1 we
have only to consider (4.2) for (g, y) € U(e) X (0, §)* with =¥ (a). More-
over since G-p=K-p we may replace U(e) by a neighborhood U of e in
K.

Now we apply the Flensted-Jensen isomorphism 7 to . Let K, be
a complexification of K. Then +(ka) (ke K, ae A) is extended to a
function +(ka) on K, X A so that +(ka) is holomorphic in k € K,. And
() (haK®)=(ha) for (h, a) e H* X A.

Let ¥~ be a compact G?-manifold constructed in [O1] where the
riemannian symmetric space G¢/K¢ is smoothly embedded as an open
G?-orbit X7. We put d(t)=exp > ,—a@,logt, e A? for t=(t,, ---, ) ¢
(0, o). Then @(t)=a(y) means t,=y, if &,|,=a; and t,=1 if @,],=0.
Let g(%) (resp. g) be a points in §X” to which Aw,a(»)K? (resp. w,d(z)K?)
converge when y (resp. t) converge 0. Note that w, e K¢, G-q~=G%/P?
and ¢ corresponds to w,P% Moreover we remark that z(y) is ideally
analytic at g(#) and also at g. Since z(y) is H%finite and any neighbor-
hood of p in X contains a point g(h,) with a suitable /4, ¢ H¢, the asymp-
totic behavior of p(y)(hw,a(»)K?) for y—0 can be reduced to that of
() (Aw,d(t)K?) for t—0. - Then applying Theorem 3.6 and Remark 3.7
to 5(4), we exactly obtain (4.2) and (4.3).

Now suppose I=¥(a). Since »(¥') is Hfinite, we may assume that
the functions ¢, (k) on H? are H%finite. For a ¢ A? define a, ¢ H¢N A?
and a,e A so that a=ay,. Then for each c,,(h) there exist a finite
subset {z, - - -, uy} of (§¢Na®)* and non-zero real analytic functions
¢, x,:(h) on H? such that

4.9) ¢, (waws D)= ¢, . (Makt for he H* and a e A7

We remark that p, are real valued on §2Na? Combining (4.2) with
(4.9) we have an asymptotic behavior of 5(:)(x) when x tends to p and
therefore the rest part of the theorem follows from Theorem 3.6 because
(4.6) implies the following:

If we W(FBL(y): w,P%) and w’ e W(FBI(y); w,P?) satisfy p,(w'2)
=y, Re(wA—w'2, 0,>>0 for i=1,...,I” and (WA—w'd, 0,»=0 for
J=1, -+, [, then there exists w”’ ¢ W(FBL(y): w,P?) so that wi=w"2.

Q.E.D.
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Corollary 4.3. Let p be a positive number. Then for a function ¢
o (GIH; M) the following conditions are equivalent.

(4.10) e L*(G/H) (={4; ¥ is a measurable function on G/H and
P is integrable modulo the center of G with respect to the invarinat

measure.}).
(4.11)  FBL(y)-C1(P*w~'P?%) has no inner point for any we W(a?)

satisfying

(Re<w2+ (%-1),7, o) s Re<w2—|—(—§——1)p, wl>) ¢ (— oo, 0.

(4.12)  There exist positive numbers ¢ and C such that

‘W(kwa(y)w_xH) l_é C 1—[ 3.=1 y;.2/10)<p:wf>+ &
for (k, y) € K X(0, o) and w ¢ W(a).

(4.13) There exist positive numbers ¢, § and C such that

| ewa(yw~ H)|< C T}y ymemies
Sfor (k, y) e KX(0,3)" and w e W(a).

(4.14) There exist positive numbers e, 3 and C such that the following
holds for we W(a) and k=1, ---, I

[(kwa(y)w H)|< Cy@/mieen+e
Jor ke Kand y e (1—08, 1)*7*x (0, ) X (1—4, 1)!-*,

Proof. The equivalence of the conditions (4.11), (4.12), (4.13) and
(4.14) is a direct consequence of Theorem 4.2 and its proof. On the
other hand, the invariant measure dy on G/H satisfies

$du=C Tueweo [ dlhowalw H)DG) 2. D

G/H x( M1 Vi

for compactly supported continuous functions ¢ on G/H and D(y) satisfies
C [Ty X2 <1+ DML G Tlh yy*ee? for y e (0, 2).

Here C, C, and C, are positive constant number. Hence the condition
(4.10) follows from (4.12). The proof of the fact that (4.10) implies (4.13)
is the same as the proof of [MO, Proposition 2]. Q.E.D.

Remark 4.4. The condition (4.12) for p=2 is better than [MO,
Lemma 1 and Proposition 2]. This enables us to simplify the proof of
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[MO, Theorem 1]. A simpler proof is given in [Ma2].

Corollary 4.5. For a function r € o (G/H; M) the following con-
ditions are equivalent. If «r satisfies the equivalent conditions, we say that
< is tempered.

(4.15) e L**(G/H) for any §>0.
(4.16) FBIL(y)-C1(Pw~'P%) has an inner point for any we W(af)
satisfying

(Re<W2a 0)1>a ) RC<W2, (01>) ¢ (— o, O]l'
(4:17)  There exist positive numbers C, and & such that

| (kwa(y)w="H) | C, T4y y§o0e
Jor e>0, we W(a) and (k, ) € K (0, 9"

(4.18)  There exist positive numbers C and N such that

[(kwa(y)w=H)|< C(1+(log a(p), log a(»)p) T4 y§e”
Sfor we W(a%) and (k, y) e KX (0, co).

Proof. The equivalence of (4.15) and (4.17) follows from Corollary
4.3. The equivalence of (4.16), (4.17) and (4.18) follows from Theorem
4.1. Q.E.D.

§5. An imbedding theorem

In this section we also use the notation defined in § 0. For simplicity
we assume G has a finite center. First we review principal series for
G/H (cf. [03, §4]). Let P, denote the parabolic subgroup of G with the
Langlands decomposition P,=M,A,N, such that M,A, is the centralizer
of a in G and the Lie algebra 1, of N, is spanned by the root spaces in g
corresponding to X(a)*. Let m, and a, be the Lie algebras of M, and
A,, respectively. Let U(g) be the universal enveloping algebra of g, a,
be a maximal abelian subspace of p containing a, 3(a,) be the root system
for the pair (g, a,), 2(a,)* be a positive system of 3(a,) compatible to
2(a)*, g(o) be the Lie algebra spanned by the root spaces g(a,; 2) in g for
the roots 2 € X(a,) with 2],=0 and m(s) be the centralizer of g(¢) in nt,.
Let G(o) and M (), be the analytic subgroups of G with Lie algebras g(c)
and m(¢), respectively, and put M(¢)= M (0),Ad; (Ad(K) Nexp(v/ —1 a,)).
Then m, is the direct sum of m(s) and g(s) and moreover we have
[a,, af]=0, M,C M, G(e6)C H and M,=M(s)G(c). Let W(a; H) be the
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subgroup of W(a) whose elements have representatives in KN H. For an
element w of W(a; H)\W(a), we fix a representative of w in W(a) and
also that of w in K and denote them by the same symbol w. We
can choose the representative w so that Ad(w)a,=qa, Ad(w)j=i,
m@) N AdW)h=m(e)NY and w(Z(1);)=2(i)+. .Here we put

t=+/ -1 Na), i=t+a, 2(=2(a), ZH*=2(a)",
Z(@o={a e 2(1); «l,=0} and I(j);=2(}), N 2()".

We identify jF with (ag)¥. The restricted root system for the reductive
symmetric pair (m(s), m(e) N H) is naturally identified with 2(j),.

Let (z, E,) be a finite dimensional irreducible representation of P,
which has a non-zero (P, N w™'Hw)-fixed vector with a suitable w e W(a)
and let ¥V, be a vector bundle over G/P, associated to z. Then the space
of (hyperfunction, C~ or K-finite etc.) sections of V., is called to belong
to the (most continuous) principal series for G/H (cf. [O3, Definition 4.3]).
In this section we consider principal series in the category of Harish-
Chandra modules and so we denote by U, the Harish-Chandra module of
K-finite sections of V,. For the above z, there exist an element p e a C{¥
and a finite dimensional irreducible representation & of M(¢) with a non-
zero (M (¢) N w='Hw)-fixed vector satisfying

(5.1) z(mxany=a*~*&(m) for (m, x, a,n) e M(a) X G(o) X A, X N,.

Here p is the half sum of the roots in 3(a,)* counting the multiplicities.
In this case we put U,=U, ,. Let d& (resp. d&) be the highest weight
(resp. lowest weight) of the representation & with respect to 2(f);. Then
de e /—11* and d€ e 4/ — 1 t* because £ has a non-zero (M (c) N w="Hw)-
fixed vector.

Theorem 5.1. Let 2 be an element of (ad)¥ satisfying (0.2) and (0.3),
A be a non-zero element of o ((G/H; M;) and U(y) be the Harish-Chandra
module generated by . Fix an element w e W(a) and choose any element
v e W(EFBIL(y); wP?) (cf. the first part of §4). Then there exist a Harish-
Chandra module U, ,, belonging to the principal series for G/H and a linear
map

e U(y)—>U,,,

which satisfies the following conditions:
(52)  dy)=O0.
(53) val,=p and WI—p)|,= —dE.
(5.4) £ has a non-zero (M (o) N w='Hw)-fixed vector.
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(5.5) a(X)ot=rton(X) and n(k)ot=¢on(k) for X e g and k ¢ K.

Here n(X) and n(k) are linear maps induced by the left translations which
define the structure of Harish-Chandra modules.

Remark 5.2. If U(y) is irreducible, then FBI,(¢)=FBI,(y) for any
non-zero ¢ € U(y). This is clear from the g-equivariance of the boundary
value map ;.

Proof. Use the notation in §0 and §4. Put U,=pg,°n(U(y)) and
S=HwP? Since the support of any element of U, is contained in
FBI,(y), Theorem 3.4 assures an existence of a non-trivial g,-homomor-
phism

T U——>%B(S; L,)).

Put U,=Im 77%. Since S is an open H%orbit in G¢/P? and any
element ¢ of U, is H%finite, ¢ is real analytic on S. Let K, be the com-
plexification of K and put ¢,(k)=g¢(kwP?) for ke H% Since, 3, 5, and
7, are f-equivariant, the germ of §, at e has a unique holomorphic
extension ¢, on K,. Then we can define a function ¢, on G by

ds(kxan)= g,(kw=")a"*-* for (k, x,a,n) e KX G(e)X A, XN,

and an injective map r: U, 3 ¢,—¢; € &/(G). We note that the Lie algebra
of G(¢) is contained in the complexification of the Lie algebra of M? and
so is a,NY. Also n, is contained in the complexification of the Lie
algebra of N?. Moreover we have n(X)or=ro(X) because ¢, is defined
through the analytic continuation.

Put ¢’=(m(e) N H)4++— 1 (m(e)Nq) and let G’ be the analytic sub-
group of H? with the Lie algebra ¢’. Fix a non-zero ¢ ¢ U, and also
fix ke H* with $(wk)+0. Consider the function u(g)=¢(wkg) (g € G’)
on G’. The group G’'N P?¢ is a minimal parabolic subgroup of G’ with
the Langlands decomposition (G'N MG NAH(G' NN and the Lie
algebra of G’ N A¢ equals 4/ —11. Since

u(gman)=u(g)a’*-* for (m, a,n) e (G'NMHX(GZNAHX(G' NN

and the linear span of left translations of u by the element of G’ is a
finite dimensional vector space, (vA-—p)|, is a highest weight of an
irreducible finite dimensional representation § of G’ with a non-zero
(G’ N K%-fixed vector. Moreover

f u(gm)dm=0.
G'NnKe
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Now remark that ¢’ N {=m(es) N} and Ad(w)m(e)NH=m(e)NY.
Hence we have the g,-isomorphism

p: Imr— (G)
w W

b—3@=[  g(gman.
(M ()N HDo

Here (M () N H), is the identity component of M (g) N H.

Let J be a Cartan subgroup of G whose Lie algebra contains both i
and a,. Then [O3, Lemma 4.6] claims M(¢) N H=(M(o) "\ H),(M()N
HNJ). When we apply the Flensted-Jensen isomorphism to U (), we
may consider that the group M(e)N HNJ (CKN H) is contained in M¢
and therefore ¢,(g) is right w=*(M(¢) "\ H N J) w-invariant. Since M ()N
wHw=(M(c) N H)w- (M (@) H N )w, ég) is right (M(e)N w~'Hw)-
invariant.

Combining the above arguments, we conclude that the image of p is
contained in the following space:

U= { f e /(G); fis left K-finite,

f(gmxan)= f(g)a>-* for (g, m, x, a, n)
e GX(M@)NwHW)X Gle) X A, X N,,

f@=1:40) [, flgm)tutm)am},

where X;. is the character of the representation §* of M(g), contragradient
to 6 by identifying § with a representation of M(g), through the com-
plexification of G’ in K,. Then the highest weight of d is equal to the
negative of the lowest weight of 6*. Since M(c)/M (), is a finite group,
U, decomposes into a finite direct sum of Harish-Chandra modules U, ,
with multiplicity free which satisfy the conditions in Theorem 5.1 (cf.
[03, Theorem 4.10 and Theorem 4.11]). Thus we have the theorem.
Q.E.D.

Remark 5.3. Let G’ be a connected real semisimple Lie group.
Put G=G'X G, 0(gy, &:)=(8:, &) and H={(g,g) e G; g€ G'}. Then the
symmetric space G/H is naturally identified with the group manifold .
We call this case a group case.

In this case a sphereical function +» on G/H means a right and left
K’-finite function on G’ with an infinitesimal character and the Harish-
Chandra module U(y) means a (g’, K’)-bimodule whose structure is
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induced from the left and right G’-actions on G’. A principal series for
G/H means the direct tensor product of the usual most continuous (non-
unitary) principal series of G’ and its contragradient. In this case
Wa; Hy=W(a)~W{(a;) and we can always assume w=e in Theorem
5.1. If we apply Theorem 5.1 to the discrete series of G’, by the study
of the structure of H?\G%/P? (cf. [Mal]) we have the same result as in
[KW] for the imbedding of the discrete series into the principal series.

Using a similar technique as in [FOS], we can prove the following
claim in the group case, which is not true in a general case. The precise
argument will be given elsewhere.

Let v be an element of W(a,) which satisfies

(Re(vA—wi, ,), - - -, Re{vd—wi, w,.)) € [0, o0) —{0}
for any w e W(FBL(y); P%),

then for any Harish-Chandra module which satisfies (5.3) there exists
no non-zero homomorphism of U(y) to U, .
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