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Introduction 

In [30], Vershik, Gelfand and Graev studied the construction of 
irreducible unitary representations of the group c=(X, G) of smooth maps 
of a compact manifold X with values in a Lie group G. Following the 
physical terminology such a group is called a current group. In case G = 
SL(2, R), they afforded factorizable irreducible unitary representations of 
the current group which depend upon measures on X. Their method 
reveals that the structure of a measure space is important rather than the 
structure of a manifold. In fact they started with the construction of those 
representations of the weak current group G<XJ. A weak current group 
is the group of maps of a measurable space X with only finitely many 
values in a topological group G. Furthermore their method relies deeply 
on the structure of the neighborhood of the trivial representation of G= 
SL(2, R). In other words, it is essential that there exists a canonical state 
on SL(2, R) (see [32] for its definition). 

Apart from the representation theory of current groups, there has 
been a remarkable progress in harmonic analysis on free groups. In [IO], 
Figa-Talamanca and Picardello found a close resemblance between har­
monic analysis on free groups and that of SL(2, R). Their results are 
known to be extended to certain free product groups (cf. [15]). 

Based on the above stated resemblance, we consider in this paper the 
construction of factorizable irreducible unitary representations of the weak 
current group G<XJ. Here X is a measurable space and G is the free 
product of a countable family (Gi)iEI of countable groups. Note that if 
all Gi are infinite cyclic then G is a free group. In Section 1 we show that 
a length function f, on G is negative definite, which yields a canonical 
state ,Jri(x)=tc<xJ where x E G and O<t<L The cyclic unitary represen­
tation Lt defined by 'rt is called the canonical representation. We remark 
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that when G is a free group our length function is different from the 
ordinary one. The ordinary length function on a free group is known to 
be negative definite (cf. [14]) and the corresponding canonical representa­
tion was recently considered in [25] for distinct purposes. In Section 2 
we show that the canonical representation Lt is irreducible if the cardi­
nality of /is infinite (see Theorem 1). In Section 3 we consider the case 
when G is the free product of an r family of finite groups of the same 
order s with q = (r - 1 )(s -1) > 2. In this case we show in Theorem 2 that 
Lt is not irreducible; if q- 112<t<l, Lt contains a unique irreducible sub­
representation L~ which is not weakly contained in the regular representa­
tion of G (so called a complementary series representation), and its ortho­
gonal complement is a subrepresentation of the regular representation. 
The existence of the unique irreducible summand L~ plays an important 
role for the construction of irreducible representations of a<x,. While if 
O<t<q- 112, Lt is weakly contained in the regular representation of G. 
The pure state <fat corresponding to L~ is given explicitly in (3.7). The 
similar results are obtained if we start with a canonical state 1fft given in 
(3.16) (see Theorem 2'). Section 4 is devoted to reviewing the general 
facts about unitary representations of direct limit groups. The reason is 
that a<xi can be viewed as a certain direct limit group. Applying the 
results in Sections 2, 3 and 4, we construct in Section 5 the factorizable 
irreducible unitary representations of a<xi parametrized by finite positive 
measures on X (see Theorem 3, Theorem 4 and Theorem 4'). When the 
cardinality of I is infinite no restriction is needed for a measure space 
(X, µ). The pure state for our representation is given by <Pµ (see (5.2)). 
While if G is the free product of a finite family of finite groups prescribed 
above, we need a certain condition on (X, µ) to get irreducible representa­
tions of a<x,. Such a condition is fulfilled if (X, µ) is a nonatomic 
Lebesgue space, in which case the pure state of our representation is given 
by 1ff µ (see (5.10)). The knowledge of the pure state enables us to see 
the possibility of the extension of the representations to those groups which 
contain a<x, as a dense subgroup ( cf. [30]). 

Acknowledgement. Most part of this work was done during the 
author's stay in Universite de Nancy I. The author expresses his hearty 
thanks to all the members of Department of Mathematics of Universite 
de Nancy for their hospitality. He also thanks to Professor Picardello 
who informed him the work [25]. 

§ 1. The canonical representations of a free product group 

Throughout the paper, let (G;);e 1 be a countable family of countable 
discrete nontrivial groups. We denote the free product group of (G;);eI 
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by G, that is, G=*terGt. Put G'=G-(e)(resp.G:=Gt-(e)foriel) 
where e is the unit element of G. Every x e G' can be written uniquely 
as a reduced word 

(1.1) 

where g;1 eG: 1 such that iJel(l<j<n) and iJ-=FiJ+i for l<j:::::n-1. 
We put ,e(x)=n and call it the length of x. We further define ,e(e)=O. 
Note that ,e(x-1)=,e(x). For x e G' in (1.1), we put 

(1.2) x(k)=g; 1 • • ·g;. (1 <k~n) and x(O)=e. 

In particular we write t"(X)=x(n-l) for x e G'. Let n e N, where N is 
the set of nonnegative integers. We put G(n)={x e G; .e(x)=n}. Then 
G(0)={e}, G(l)=Uter G: and in general 

(1.3) 

where i1, ···,in run through I with the property i1 -=FiJ+i· For m, n e N, 
we write m;\n=min {m, n}. Let x=gi, · · -gim and y=gh · · -gJ,. be the 
reduced word expression of x and y respectively where m, n> l. Then 
there exists a unique h with O~h<m;\n such that gi1 =gh, · · ·, gin=gih 
while gin+,*gih+,· If ih+i-=Fjh+i• then £(y- 1x)=m+n-2h. On the other 
hand if ih+i =jh+1' then .e(y- 1x)=m+n-2h-l. Hence we conclude that 
for x, ye G there exists a unique k with O<k<2 (£(x);\£(y)) such that 

(1.4) .e(y-'x)= .e(x)+ ,e(y)-k. 

Let 'ifo(G) be the space of all complex valued functions on G with finite 
support. We denote by o[x] where x e G the element of 'if 0 (G) given by 
o[x](y)= 1 or 0 according as y=x or not. Clearly o[x] where x e G yield 
a basis of 'ifo(G). Let L be the representation of G on 'if0 (G) defined by 
(L(x)f)(y)=f(x- 1y). Note that L(x)o[y]=o[xy]. Let 'if 0o(G) be the G­
invariant subspace of 'if0 (G) consisting of all functions having total mass 
0. If we put 

(1.5) a[x]=o[x]-o[t"(x)] where x e G', 

then a[x] e 'if0 o(G). Since o[x]= I:t:1a[x(k)]+o[e], it follows that {a[x]; 
x e G'} provides a basis of 'if 0 o(G). We introduce a G-invariant hermitian 
form on 'if o( G) by 

(1.6) (f,,fz)= - I:x,yeG £(y- 1x)f,(x)fz(y). 

From now on, we parametrize the elements of each Gt as follows; 
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(1.7) 

Then we may rewrite x e G' in (I.I) as 

(1.8) 

where iJ EI (I ~j~n) with iJ=/;=iJ+i (1 ~j:S::n-1) and p 1~ I (1 :S::j~n). 
Put b(p)=(p(I +p))- 112 for p:2". I. For x e G' given by (1.8), we put 

(1.9) 

Lemma 1.1. ( i) For x E G' in (1.8), we have 

(ii) For x,yeG',<s[x],s[y])=l or O according as x=y or not. 
Hence {s[x]; x E G'} provides an orthonormal basis of ~ 0 o(G) with respect to 
(1.6). 

Proof ( i) By (1.9) we can get (1.10) immediately. 
(ii) We note that 

<a[x], a[y]) = -£(y 1x)+ £(y 1r(x))+ £(r(y)- 1x)-£(r(y)- 1r(x)). 

From this and (1.4), it follows that if r(x)=/;=r(y) then <a[x], a[y])=O. 
Hence by (1.9) we have <s[x], s[y]) = 1 or O according as x= y or not. 
From (1.10) and the fact that {a[x]; x E G'} is a basis of ~ 00 (G), we con­
clude that {s[x]; x E G'} forms an orthonomal basis of ~ 0 o(G). 

Corollary 1.2. ( i ) The length function .e on G is negative definite. 
(ii) Let K be the completion of ~ 0 o(G) with respect to (1.6) Let U 

be the unitary representation of G on K which comes from the restriction of 
L to ~ 0 o(G). Define a map f3 of G into K by 

(1.11) f3(x)=o[x]-o[e]= I:{'.:f a[x(k)]. 

Then f3 is a total cocycle on G for the representation U, namely, 

(1.12) f3(xy)= U(x)(j3(y))+ j3(x) and 2- 1 1I j3(x) 112= £(x). 

Let O :S:: t < I. We define a function "P't on G by 

(1.13) for O<t:S::1 and t 0 =o[e]. 

Since £ is negative definite, it follows that "Vt is a positive definite function 
on G. We consider the cyclic unitary representation Lt of G on a Hilbert 
space Ht defined by "Vt (GNS construction). Clearly L 0 is the left regular 
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representation of G on H 0 =l 2(G), and L 1 is the trivial representation on 
H 1=C. For 0<t<l we recall the construction of (Lt, Ht). Define a G­
invariant hermitian form on 'G'o(G) by 

(1.14) 

Dividing 'G'o(G) by the G-invariant subspace of functions having norm 0, 
we get a prehilbert space and take its completion Hi. Let Lt be the 
unitary representation of G canonically obtained by L on 'G'o(G). Each 
o[x] provides a nontrivial element of Ht, which is denoted by the same 
letter. For x e G, we define r[x] e Hi as follows. Put r[e]=o[e]. For 
x e G' in (1.8), we put 

(1.15) r[x]= A(pn, t){(l +(Pn - l)t)o[x]-t I:K~o1 o[-r(x)ain,,J}. 

Here and in the sequel we write 

(1.16) A(p, t)=((l-t)(l +(p- l)t)(l +pt))- 112 for p> 1. 

Lemma 1.3. ( i) For x E G' in (1.8), we have 

(1.17) 
o[x] = tnr[e] + (1- t) I:~=t tn-k{(l +pkt)A(A, t)r[x(k)] 

+t I:K~11 A(h, t)r[x(k- l)ai.h]}. 

(ii) {r[x]; x e G} yields an orthonormal basis of Ht. 

Proof ( i) We shall show (1.17) by induction argument. Suppose 
(1.17) holds for all x e G(k) with 1 <k~n-1. Let x e G(n) written as 
(1.8). We have only to see that 

o[x] = to[i-(x)] +(1- t){(l + Pnt)A(pn, t)r[x] + t I:K~11 A(h, t)r[-r(x)ai.h]}. 

This can be derived from (1.15) by induction on Pn· 
(ii) Since r[x]=Lh(x))r[ai.PJ (see (1.15)) and (1.14) is G-invariant, 

it is enough to consider (r[x] I r[y])t for x, ye G(l). Using (1.15), we can 
see (r[x] I r[y])t = 1 or 0 either x= y or not by direct computations. 

The above constructed unitary representation (Lt, Ht) of G is cyclic 
with cyclic vector r[e] such that (Li(x)r[e] \r[e])i=,Jri(x) for x e G. We 
call (Le, Hi) where 0<t< 1 as the canonical representation of Gin analogy 
with the canonical representation of SL(2, R) in [30]. 

§ 2. The canonical representations of an infinitely generated free product 

In this section, we assume that the cardinality of I is infinite. We 
may set l={l, 2, · · ·}. Let 0<t<I, and (Li, Hi) be the canonical 
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representation of G introduced in Section 1. Our aim is to proving the 
irreducibility of it. For N> 1, we define bounded operators PfN> on H, 
by 

(2.1) 

We denote the orthogonal projection of H, onto Cr[e] by P,. 

Lemma 2.1. For any u e H,, we have limN_"" IIPfN>u-Piulli=O. 

Proof First we show the lemma for r[x] (x e G). From Lemma 1.3, 
it follows that 

and hence 

which implies 

IIPfN>r[e]-r[e] II~= 1-2(l-t 2)112 N- 1• 

Thus the lemma holds for r[e]. If £(x)>2, then by (1.15) Li(a, 1)r[x]= 
r[a,1x]. For such x, we have 

Again the lemma holds for r[x] with £(x)>2. Finally assume that x= 
a;p e G(I). If i-=!=-j, then Li(aJ1)r[a;p]=r[aJ1a;p] by (1.15). Hence 

Pt>r[a;p] = (tN)- 1 I:'*; r[a,1a;p] +(tN)- 1Li(a;1)r[a;p]. 

From (1.15) and (1.17), L,(a;1)r[a;p] is written as a finite linear combina­
tion of r[x] with x e G;. Consequently 

II PfN>r[a;p] II~= 1-2N-1. 

This means that the lemma holds for r[x] with £(x)= 1. Hence the lemma 
also holds for all u which are finite linear combinations of r[x] (x e G). 
Since these u form a dense subset of Hi and the operator norms of PfN> 
where N> 1 are uniformly bounded by 1- 1, we conclude that the lemma 
holds for all u e Hi. 

Theorem 1. Let G be the free product of a countable family (G;);er 
of countable groups. Assume that the cardinality of I is infinite. Let O< 
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t<l. Then the canonical representations (Lt, Ht) of Gare irreducible and 
pairwise inequivalent. 

Proof Let H be a closed nonzero invariant subspace of Ht. First 
we show that there exists u e H such that Ptu=f=O. Let u= I:vew cvr[y] 
be a nonzero element of H. Put S(u)={Y e G; cv=f=O}. If e e S(u), then 
Ptu=c.r[e]=f=O. Suppose e ~ S(u). Put n=min {.e(y); ye S(u)}. Then 
n > l and we can choose x = ai,p, · · · ai,.p,. e S ( u) such that ai,p, · · · ai,.p ~ 
S(u) for P<Pn· We shall see Pe(Le(x- 1)u)=f=O. Using (1.15) and (1.17), 
we have Pe(Le(x- 1)r[x])=(l +(pn- l)t)A(pn, t)r[e], which is nonzero. For 
ye S(u) such that -r(y)=f=-r(x), we have Le{x-1)r[y]=r[x- 1y] and hence 
Pe(Le(x- 1)r[y])=O. If ye S(u) such that y=ai,p, · · ·ai,.p with p>pn, then 
Le(x- 1)r[y]=Le(ai,.~,.)r[a;,.p]. It can be written as 

A(p, t){(l + (p-1 )t)o[ain~,.a;,.p]- t I;t:~ o[ain~nai,.J} 

by (1.15). Applying Pt, we obtain that Pe(Lt(x- 1)r[y])=O. Consequently 
H contains an element u such that Ptu=f=O. Take such u and consider the 
sequence {P;Nlu; N>l}. Since H is invariant, each Pt)u e H. By 
Lemma 2.1, this sequence converges to Ptu. Since His closed, it follows 
that Ptu e H. Hence r[e] e H. On the other hand r[e] is a cyclic vector 
for (Lt, Ht). This implies H=Ht. Let O<t 1=;t:t2 <1. Since 'V"t,*'V"t,, 
Lt, and Lt, are inequivalent. 

§ 3. The canonical representations of a finitely generated free product 

Let G= *ieI Gi be the free product of a countable family of coun­
table groups. In this section, we assume that I= {l, 2, . · . , r} and all G; 
are finite groups of the same order s. Put 

(3.1) q=(r-l)(s-1) 

and assume q~2. It follows from (1.3) that 

(3.2) \G(n)!=r(s-l)qn-t for n2: 1. 

Let x e G(m) and n> 1. We set G(n, k; x)={Y e G(n); .e(xy)=m+ 
n-k} for O~k<2(m/\n) (see (1.4)). The following lemma is an immediate 
consequence of the argument below (1.3). So we leave the proof to the 
reader. 

Lemma 3.1. Let x e G(m). The set G(n) can be decomposed into 
the disjoint union of G(n, k; x) where O<k<2(m/\n). Moreover if m/\n 
~ 1, the cardinalities of G(n, k; x) are given as follows. 
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\G(n, O; x)\=qn, \G(n, 2(m/\n); x)\=qn-m;\n, 

\G(n, 2k; x)\=(r-2)(s- I)qn-k-l for I ;S;k:c;;:m/\n-I and 

\ G(n, 2k+ 1; x)\=(s-2)qn-k-l for O~k:c;;:m/\n-1. 

Lemma 3.2. Let o::;;:t< I. For fixed y, z e G, the function ~f'i(z-1xy) 
of x E G belongs to l2(G) if and only if O;S;t<q- 112. 

Proof Put l=£(y) and m=£(z). To see the lemma, it is enough 
to show that :Z::nGl+m :Z::xeG<n) ,f1,i(z-1xy) 2 is finite. Put G(n, k; y, z)= 
{x e G(n); £(z- 1xy)=l+m+n-k}. Applying Lemma 3.1, we have for 
n';;;J+m 

" .,, (z-1xy)2= "z(z+m) tzu+m+n-k) \G(n k· y z)\ 
.L...JxEG(n) \ft L..Jk=O , , , • 

Since \ G(n, k; y, z) \ ;S;\ G(n) \, the right hand side is dominated by 

Hence we conclude that tiCz-1xy) e l2(G) if and only if qt 2<I. 

Let <jJ be a positive definite function on G. <jJ is said to be associated 
with the regular representation if it is of the form <jJ = f * J where f e /2( G) 
and ](x)= f(x- 1). This means that the cyclic unitary representation of G 
defined by <jJ is a subrepresentation of the regular representation (cf. [7]). 
A positive definite function <jJ on G is said to be weakly associated with 
the regular representation if <jJ is in the closure of {f * ];J e l2(G)} with 
respect to simple convergence on G. This means that the cyclic unitary 
representation of G defined by <jJ is weakly contained in the regular 
representation (cf. [8]). One can show the following lemma without any 
essential change of the argument in [14], where the case of free groups is 
considered. 

Lemma 3.3. A positive definite function <jJ on G is weakly associated 
with the regular representation of G if and only if for any O < t < I the func­
tion <Pti belongs to l2(G). In particular 'P't is weakly associated with the 
regular representation if and only if O;S;t;S;q-112. 

Let O<t:c;;:I. For t=faq-112 we put 

(3.3) c(t)= 1 +r 1(r-l)(l-t)(l +(s- l)t)(qt 2- l)- 1• 

We find that c((qt)- 1)= 1- c(t) and c(t) is a monotone decreasing func­
tion for q- 112<t:c;;:I such that c(l)= 1 and c'(l)= -s(r-1)/r(q-1). For 
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O<t<l such that t=/=-q-112, we put 

(3.4) Ci(n)= c(t)+(l-c(t))(qt 2)-n for n e N. 

(3.5) Ci(n)= 1 +r- 1(s-1)- 1(2q+(s-2)q 1'2-r(s- l))n 

We note that if q- 112 <t::S: 1 

(3.6) 

We define a function </Ji on G by 

(3.7) <fii{x) = f i(x)Ci( £(x)). 

One can verify ¢<qii-1=<pi and for t=/=-q-112 

(3.8) <pi= c(t)ti + (1- c(t))t(qiJ-1· 
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for n e N. 

Lemma 3.4 ( cf. [15]). </Ji is a pure positive definite function on G for 
q- 112 <t< 1. The irreducible unitary representation of G defined by <pi for 
q- 112 <t< 1 is not weakly contained in the regular representation. 

Proof The first assertion is proved in [15] for the case when all Gt 
are finite cyclic groups of the same order. It is quite easy to extending 
their results to our case (cf. [5]). The second assertion is a direct con­
sequence of Lemma 3.3. 

Let Xn be the characteristic function of G(n). 

Lemma 3.5. Let O<t< 1. For x e G and n> 1, we have 

(3.9) 

and/or m/\n>l, we have 

(3.10) 

Proof Note that (o[x] IXn)i= I:vEG(n) t 1<x-ly). Using Lemma 3.1, we 
get, by putting m=f(x), (o[x]IXn)t= I:%<:tAn) tm+n-k IG(n, k; x)I- Again by 
Lemma 3.1, it can be written as 

(qt)ntm{l +q-1(r-2)(s-1) I:r::-r-1 (qt2)-k 

+(s-2)(qt)-1 I;r::-t-1 (qt2)-k +(qt2)-m,\n}. 

This agrees with r(r- l)- 1(qt)ntmCi(m/\n) by simple computations. Since 
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(Xm I Xn)i= I:xEG(m) (o[x] I Xn)t, (3.10) follows from (3.9) and (3.2). 

Lemma 3.6. Suppose q- 112 <t<I. Then 
( i ) the sequence {II Xn llt1 Xn; n :::=:: 1} in Hi converges strongly to an 

element n 
(ii) We have llr~II,= 1 and for x E G 

(3.11) (o[xJ I rn, = c(t)- 11\b,(x). 

(iii) If we put 

(3.12) 

then we get 

(3.13) 11rrn,=1, cmrD,=O and r[e]=c(t)-' 12r~+(l-c(t)- 1) 112n. 
Proof (i) It follows from (3.10) that (IIXmllt1 Xm\llXnllt1 Xn)i= 

C,(m/\n)(C,(m)C,(n))- 112• Since q- 112<t<l, it follows from (3.6) that 
limm,n-= (II Xm llt1 Xm 111 Xn llt1 Xn)t = l. This yields that {II Xn llt1 Xn; n~ I} is a 
Cauchy sequence in Hi. Hence it has a limit, which we denote by n 

(ii) Since the norms of 11Xnllt1 Xn are 1, we get llr~l\,=1. By (i) 
we have (o[x] I rni = limn-= II Xn llt1 (o[x] I Xn)t, which equals 

limn-= te<xlCi(l(x)/\n)C,(n)- 112 

by (3.9) and (3.10). Using (3.6) and (3.7), we obtain (3.11). The asser­
tion (iii) is evident from (i) and (ii). 

Lemma 3.7. Suppose q- 112<t<I. Thenfor x E G we have 

(3.14) 
(L,(xmln\=sb/x), (LJxm\rDi=O and 

(Li(x)r; I rD,=t(qt)-l(x). 

Proof Let m=f(x) and n~m. From (3.11) we find that 

(L,(x)Xn I r~)i=c(t)- 112 I:vEG(n) te(xy)C,(t(xy)). 

Using Lemma 3.1, we get 

which can be written as 

tm(qtt{C,(n+m)+q- 1(r-2)(s-l) I:zi:l (qt 2)-kC,(n+m-2k) 

+ (qt)-1(s-2) I:;%":l (qt 2)-kCi(n+m-2k- I)+(qt 2)-mC,(n-m)}. 
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Since IIXn llt=r(r- 1)-1(qt)nCin) 1J2 and 

(Lt(xm I rr)t = limn-~ II Xn 11;-1(Lix)Xn I mt, 

it follows from (3.6) that the right hand side is equal to 

r 1(r- l)tm{l +q- 1(r-2)(s- l) 'f:/!::::l (qt 2)-k 

+(qt)-l(s-2) I;r::l (qt2)-k+(qt2)-m}. 

The last expression coincides with <Pix). Note that by (3.11) 

(Lixm I r[e])t = err I o[x- 1Dt = c(t)- 112<jJt(x). 
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Since r! is given by (3.12) and (LtCxm I mt =<Pix), we can deduce 
(LixmlrDt=0. Finally 

(Lix)n I rDt = (l -c(t)- 1)- 112(Lix)r[e] I rDt -c(t)- 112(Lixm I rDt· 

Using (3.12), we find that the right hand side agrees with (l-c(t)- 1)- 1(,trc(x) 
-c(t}- 1<faix)), which equals ,fr<qtJ-,(x) by (3.8). 

By virtue of Lemma 3.7, we can define for q- 112<t<l two closed 
invariant subspaces of Ht as follows. Let H~ be the closure of the linear 
span of {LtCxm; x e G} in Ht, and let H} be the orthogonal complement 
of Hi in Ht. We often denote the restriction of Lt to H1 (resp. HD by 
L! (resp. LD. 

Theorem 2. Let (Gt)i:ai:ar be the family of finite groups of the same 
orders, and assume q=(r-l)(s-1)>2. Let 0<t<l, and denote the 
canonical representation of the free product G of (Gt)i;;;t;;;r by (Lt, Ht). 

( i) If q- 112<t<l, it can be decomposed into the direct sum of two 
subrepresentations (L1, H!) and (L}, HD. Furthermore L~ is the irreducible 
unitary representation defined by <Pt and hence it is not weakly contained in 
the regular representation. On the contrary, L} is the cyclic unitary repres­
entation with cyclic vector n, which is defined by ,fr<qti-1· Hence it is a 
subrepresentation of the regular representation. 

(ii) If0<t<q- 1/2, the canonical representation Lt is weakly contained 
in the regular representation. 

Proof ( i ) By definition, L~ is the cyclic unitary representation with 
cyclic vector n and (L~(xm I n)t = <Pix). Since <Pt is pure, L~ is irreducible 
and since <Pi is not weakly associated with the regular representation, L~ 
is not weakly contained in it. We shall show that r! is a cyclic vector 
for L}. Suppose that there exists u e H} orthogonal to any finite linear 
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combination of {L}(x)n; x e G}. Since H} is the orthogonal complement 
of H~, it follows from (3.13) that u is orthogonal to any finite linear com­
bination of {L,(x)r[e]; x e G}. Since r[e] is a cyclic vector for L,, u must 
be zero. Therefore r} is a cyclic vector for L}. Using (3.14) and Lemma 
3.3, we conclude that L} is a subrepresentation of the regular representation. 

(ii) If O<t~q- 112, ,Jr, is weakly associated with the regular repre­
sentation by Lemma 3.3. Hence L, is weakly contained in the regular 
representation. 

In the following, we consider the cyclic unitary representations of G, 
which possess the properties quite similar to those of the canonical repre­
sentations. Let £'(x) = [dp,(x)/dt],- 1, that is, 

(3.15) £'(x)= .e(x)+ c'(l)(I -q-&<xl) where x e G. 

Since <;b, is positive definite, we find that £' is negative definite. For O< 
t~ I, we define a positive definite function 1/f, on G by 

(3.16) 

Let (II,,£,) be the cyclic unitary representation of G defined by Ifft. We 
denote the inner product of£, by ( , ),. Note that o[e] induces a cyclic 
vector for J'f',. Put 

(3.17) 

and 

(3.18) 

for n e N 

Bi(m, n)= ta<m+ni + (r-2)(s- l)q-1 I;%'t1n-1 (qt2t kta<m+n-n) 

+ (s-2)(qt)-1 I;;;i,t0n-1 (qt2t kta(m+n-2k-1) 

+ (qt2)- m/\nt a (m+n-2m/\n). 

As in Lemma 3.5, we can get 

(3.19) where x e G(m) 

and hence 

(3.20) 

Since ta(n) is a monotone increasing function of n EN and limn-oo ta(n) = I, 
we conclude from (3.18) that if q- 112 <t< I limm,n-oo B,(m, n) exists. While 
we find that for fixed m EN limn_00 B,(m, n)=r(r- l)- 1C,(m) (cf. Lemma 
3.5). Hence by (3.6) we get limm,n-00 B,(m, n) = r(r- 1)- 1c(t). This 
implies (cf. Lemma 3.6) that {II Xn ll;-1 Xn; n"?:. I} is a Cauchy sequence in J'f', 
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and has a limit u~ e ::lt'i for q- 112<t<I. As in the proof of (3.11), we 
have 

(3.21) (o[x], unt = d(t)<fai(x) 

where 

(3.22) d(t)=tc'(t)/2c(t)-t/2. 

Put u}=(l-d(t)2)- 112(o[e]-d(t)u~). Then as in Lemma 3.7, we get 

(3.23) 

and 

(3.24) as £(x)-oo. 

Let~ be the closure of the linear span of {.lli(xM; x e G} and let ::If'! be 
the orthogonal complement of ::lf'i in ::lt'i. We denote the restriction of 
the representation lli to ::If'~ (resp. ::lf'D by ll~ (resp . .llD. In conclusion, 
we obtain the following theorem, whose proof is quite similar to that of 
Theorem 2. 

Theorem 2'. Let G be the free product of a family (G.) 1;:,;.;:,;r of finite 
groups of the same orders such that q=(r-l)(s-1)>2. Let (lli, ::lt'i) be 
the cyclic unitary representation of G defined by 1fft (see (3.16)). 

( i) If q- 112<t<l, it can be decomposed into the direct sum of sub­
representations ll1 and ll}. Moreover ll1 is the irreducible unitary repre­
sentation defined by <Pt· While ll! is the cyclic unitary representation with 
cyclic vector u!, which is a subrepresentation of the regular representation. 

(ii) If O<t~q- 112, llt is weakly contained in the regular representa­
tion. 

In what follows, we use the notational convention that H1=H 1 and 
Hf={O} for O~t<q- 112, whose orthogonal complement is denoted by H}. 
Let O<t 1, • • ·, tn:S 1 and putt= t1 • • • tn- Let T=@ 1;:,:,.;:,;nLt, be the tensor 
representation of G on the tensor product Hilbert space H = @1:a;.;a;n Hie 
We define a G-equivariant isometry j of Hi into Has follows. We put 
j(Li(x)r[e])= T(x)(@ 1;a;.;a;n r[e]) for x e G, and extend it linearly on the 
dense subspace of Hi spanned by finite linear combinations of Li(x)r[e] 
(x e G). Note that for x, ye G (j(Li(x)r[e] I j(Li(y)r[e])) is equal to 
CTi;a;;:,;n ti, (y 1x), which agrees with '\fri(y 1x)=(Li(x)r[e] ILi(y)r[e])t since 
t= t1 • • • tn. Hence j can be extended to a G-equivariant isometry of Hi 
into H. The next lemma will be used in Section 5. 

Lemma 3.8. Suppose that q- 112<t,<l for 1 <i~n and q- 112<t= 
t1 • • • tn :_SI. Then j maps Hi into 01:a;,;:,;n Hf,. 
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Proof If t= 1, then all ti= 1 so that the lemma is clearly true. 
Assume t < 1. It follows from Theorem 2 that T can be decomposed into 
the direct sum of G-invariant closed subspaces H(s,, · · ·, sn)=®iaaiaanH:; 
where (s,, ... , sn) e {O, l}n. Since H~ is irreducible and occurs with 
multiplicity one, j (H~) must be contained in exaclty one component of the 
above decomposition. Since H~ is never contained weakly in the regular 
representation, we have only to see that each H(s 1, • • ·, en) except 
(s,, . · . , en)= (0, · · ·, 0) is weakly contained in the regular representation. 
By rearranging, we may assume that c1 = ···=ck= l and ck+i= ···=en 
=0 where k> I. For (y,, · · ·, Yn) e Gn, we put 

Then the set of finite linear combinations of u(Yi, · · ·, Yn) where (Yi, · · ·, 
Yn) e Gn is dense in H(l, · · ·, 1, 0, · · ·, 0). Every matrix coefficient for 
the representation T restricted to H(l, · · ·, 1, 0, · · ·, 0) is in the closure 
of the linear spans of the matrix coefficients of the form 

f(x)=(T(x)u(Yi, · · ·, Yn) [ u(z,, ···,Zn)) 

with respect to simple convergence on G. Hence it is enough to show 
that the abovefbelongs to /2(G). By Lemma 3.7, we have 

Since [sbi,(z;1xyi)\;£;sbi,(e)= 1, [f(x)\< Tiiaaiaak 'f'<qt,)-hi:'xui). Note that 
q- 112 <t<ti<I and therefore (q1J- 112 <(qt)- 1<I for 1::;;:;<n. Hence we 
have \f(x) I;£; n 1,ai,ak 'f'(qt)-,Cz;'xyi). Applying Lemma 3.2, we obtain 
f E /2(G). 

§ 4. Unitary representations of direct limit groups 

Let (B, <) be a directed ordered set. Let (Hf/,j~//) be a B-direct 
system of Hilbert spaces. This means that each Hfi is a Hilbert space 
with inner product (\)fi, and eachj~fi for i;<71 is an isometry of Hfi into 
H~ such that j«=id. and J.,=jr.~oj~, for i;<71<r;,. The direct limit 
Hilbert space (H~,jfi) is defined as follows. Let (li.m H,,jfi) be the set­
theoretical direct limit of (H,,j~,)- Note that li.m H//=UHsj/HrJ and 
j// is the canonical map of Hfi into lim Hfi. We remark that jr; = j~ o j~fi for 
i;<71 and ifj/u)=j/v) then there exists r;, e B with i;<r;, and r;<r;, such 
thatjr.,(u)=j,iv). We define an inner product on lim H, as follows. Let 
ht e lim Hfi (i= I, 2). Then we can select i; e B and vi e Hfi such that 
hi=jivi) (i=l, 2). Put 
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(4;1) 

which is easily seen to be well-defined. Let H 00 be the completion of 
fun H. with respect to (I). It follows from the definition of the inner 
product thatj. can be extended to an isometry of H. into H 00 and j.(H.) 
yields a closed subspace of H 00 • Let (G,, i~.) be a B-direct system of 
topological groups. We denote the corresponding direct limit group by 
(Goo= fun G,, i0). Assume that for each ~ e B there is given a unitary 
representation (n-,, H,) of G., and for ~<'1/ there is given a G.-equivariant 
isometry j~. of H. into H~ such that (H.,j~.) provides a B-direct system 
of Hilbert spaces. In this setting, we say that (n-0, H.,j~,) is a B-direct 
system of unitary representations of a B-direct system of topological 
groups (G,, i~,)- Let (G00 , i,J (resp. (H00 ,j,)) be the direct limit group 
(resp. the direct limit Hilbert space). Then we are able to define a 
unitary representation n-oo of G00 on H 00 in the following manner. Let 
g e G00 and he fun H,. Select~ e B, x e G and u e H, such that g=i.(x) 
and h=j.(u). Put 

(4.2) 

It is obvious that the right hand side does not depend on the choice of 
~. x and u. Sincej. is an isometry, we can obtain quickly (n-00 (g)h 1 I n-00 (g)h 2) 

=(h 1 jh2) for h1, h2 e fun H, and g e Goo. Since fun H. is dense in Hoo, 
n-00 (g) can be extended to a unitary operator on H 00 • Furthermore we can 
see that n-00 yields a unitary representation of G00 on H 00 • The following 
lemma (which is probably known) was pointed out to the author by Dr. 
Obata and Dr. Yamashita. 

Lemma 4.1. Keep the notations and assumptions. Suppose further 
that each (n-,, H,) is irreducible. Then (n-00 , H 00 ) is irreducible. 

Proof Let A be a G00 -equivariant continuous linear operator on Hoo­
We have only to see that A is a scalar operator. Since j. is a G,­
equivariant isometry of H. into H 00 and (n-,, H,J is irreducible, it follows 
that (n-00 o i,,j.(H.)) is an irreducible unitary representation of G, equivalent 
to (n-., H 0). For each ~ e B, let P. be the orthogonal projection of H 00 

onto j.(H.). Then P,AP, (viewed as an operator on j.(H,)) is G,,­
equivariant. Since (n-00 o i.,j.(H 1J) is irreducible, there exists i. e C such 
that P.AP,=l,P. for each~ e B. Sincej.(H.) is contained in j,(H,) for 
~<C, it follows that P,P,=P,P,=P,. Hence for ~<C we have l,P,= 
P,AP,=P,P,AP,P.=l,P.. This implies l.=l, for ~<C. Let~. 1J e B. 
By taking Ce B such that ~<C and 1J<C, we conclude that l.=l,=l~. 
Consequently 10 is independent of~ e B. From now on, we write l=l,. 
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Let h; e lim He (i= 1, 2). Then there exists ~ e E such that h; ej.(H.), 
that is, Peh; =ch; (i= 1, 2). We have (Ah1 I h2)=(AP.h 1 I P.h 2)=(P 0AP.h 1 I h2) 

= l(h, I h2). Since lim He is dense in H 00 and A is continuous, we conclude 
that A=lid. 

Remark. We explicate an example that even if (1r0, H.) (~ e E) are 
not necessarily irreducible, the resulting representation 1r00 happens to be 
irreducible. Let l={l, 2, 3, · · · }. Let (G;);ez be a family of finite groups 
G;, each of which has the same order s. Let G be the free product of 
(G;);er· By Theorem 1 the canonical representation (L 1, Ht) of G where 
O<t<I is irreducible. For a>I we put G<al=G1*Gz*· · ·*Ga, which can 
be viewed as a subgroup of G. Furthermore G<aJ is regarded as a sub­
group of G<bl for a<b. Consequently {G<aJ; a> l} forms a direct system of 
discrete groups, whose direct limit agrees with G. For a> I and O<t<I, 
let (L;a>, Hlal) be the canonical representation of G<al. Then Hfal is 
isomorphic to the closed G<aJ_invariant subspace of Ht spanned by {r[x]; 
x e G<al}. Moreover Llal is equivalent to the representation of G<aJ 
obtained by the restriction of Lt to it. Evidently {(Lf°l, Hlal); a> I} 
yields a direct system of unitary representations of the direct system { G<aJ; 
a> 1}. The corresponding representation of G= lim G<aJ defined in (4.2) 
is identified with Li. (Lla>, H?l) for a> I are not necessarily irreducible 
(see Theorem 2), but the resulting representation Li is irreducible (see 
Theorem 1). 

Now we review a construction of a E-direct system of unitary repre­
sentations of a E-direct system of topological groups (G0, i,0) (cf. [13] and 
(30]). Suppose that we are given a positive definite function (/)0 on Ge for 
each ~ E E satisfying 

(4.3) for ~<YJ. 

This assures the existence of a positive definite function (/) on the direct 
limit group (G00 ,ie) such that (/)oi.=(/) 0 for ~EE. Let (rr.,H.) be the 
cyclic unitary representation of Ge with cyclic vector re defined by ({) e, so 
that 

(4.4) (/) .(x) = (rr .(x)r. Ir.) for x E Ge. 

For ~<YJ, we can define a G1;-equivariant isometry j,1; of H. into H, as 
follows. For x e G. we put 

(4.5) 

Then by ( 4.3) and ( 4.4) we have 
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for x, ye Ge. Since {rrix)re; x e Ge} is total in He, we conclude from 
(4.5) and (4.6) that j,e can be extended to a Ge-equivariant isometry of 
He into H,. Furthermore we can check easily that (rre, He,j,e) provides 
a E-direct system of unitary representations of a E-direct system of 
topological groups (Ge, i,e). Let (rr00 , H 00 ,je) be the resulting unitary 
representation of (G00 , ie). Put 

(4.7) for some~ e E. 

It follows immediately that r 00 is an element of H 00 , which does not depend 
on the choice of~- Moreover r 00 is a cyclic vector for (rr00 , H 00 ,je) and 

(4.8) 

§ 5. Construction of irreducible unitary representations of G<x> 

Let (X, @) be a measurable space. Let G<X> be the group of maps 
of X having finitely many values in a topological group G. Such a group 
G(X) is sometimes called a weak current group (cf. [13]). Let Ebe the set 
of all finite partitions of (X, @). For ~' r; e E, we write ~ <r; if r; is a 
refinement of~- Then (E, <) provides a directed ordered set. For ~= 
{X,, ... , Xn} e E, let Ge be the subgroup of G<x> consisting of maps 
which take constant values on each Xi. Every element of G, is of the 
form 

(5.1) 

where/.,,1,···,-"n(Xt)={xi} for lsi<n. This implies that G, is canonically 
isomorphic to the n copies Gn of G. Let r; e E such that ~ <r;. Then 
there exists a natural monomorphism i,e of G, into G,, and (G,, i, 0) yields 
a E-direct system of topological groups. The direct limit group agrees 
with (G(X), ie) where ie is the natural inclusion of Ge into G<x>. 

Now we take Gas the free product of a countable family (Gi)tEI of 
countable groups. Let µ be a finite measure on (X, @). Define a func­
tion (f) P on G<x> by 

(5.2) (f)µ(f)=exp {-t £(f((l)))µ(d(l))}. 

The restriction of (f)P to Ge is denoted by (f)e· Then (4.3) holds for 
{(f),; ~ e E}. For ~={X 1, • • ·, Xn} e E, we put 

(5.3) for 1 S:_i<n. 
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Note that exp {-µ(X)}<t;<l for l~i<n. Let (Le,, He.) be the canonical 
representations of G introduced in Section 1. Put 

(5.4) 

The canonical inner product of H, is denoted by (I),. Define the repre­
sentation L, of G, on He by 

(5.5) 

Define r E E H, by 

(5.6) r,=r[e]@·. -@r[e]. 

Lemma 5.1. For~ e B, (L,, H,) is a cyclic unitary representation of 
G. with cyclic vector re such that 

(5.7) for f e G,. 

Proof Since each Le, is a cyclic unitary representation of G with 
cyclic vector r[e], the first assertion is obvious. Letf=Jx,, ... ,,,n e G,. Then 
(L.(f)r. I re)e= IT1:.i:a.n telX;) which is, by (5.3), equal to 

exp {- .I:f=1 .e(x1)µ(X,)}. 

We can rewrite it as 

exp {-L .e(f(m))µ(dm)}, 

Combining the lemma with the result in Section 4, we get a B-direct 
system (L,, H,,jle) of cyclic unitary representations of (G,, il 0). Here jl• 
is given by (4.5). We denote the resulting representation of (G<x>, i,) by 
(L,,, H,,). Note that r = = je(r ,) is a cyclic vector for L,, and (L,,(f)r = Ir=) 
=<P,,(f) forfe G(X). 

Theorem 3. Let (G;);ez be a countable family of countable groups and 
G be its free product. Assume that the cardinality of I is in.finite. Then 
the unitary representation (L,,, H,,) of G<x> is irreducible. Moreover if µ 1 and 
µ2 are different finite measures on (X, fJB), then L,,, and L,,, are inequivalent. 

Proof It follows from Theorem 1 that each Le, is an irreducible 
representation of G and hence Le is an irreducible representation of G, 
for every ~ e B. Therefore L,, is irreducible by Lemma 4.1. If µ 1*µ 2, 

then there exists Ee fJB such that µi(E)*µlE). Let fin G(X) such that 
f(E)={x} where x*e and f(X-E)={e}; Then <P"1(f)*<P,,,(f). This 
implies that L,,, and L,,, are inequivalent. 
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From now on, we consider the case of Gcxi where G is the free 
product of (Gt)i;;;;;;;r such that all G; are finite groups of the same order s 
with q=(r- l)(s-1):2:2. Let (Le, He) be the canonical representation of 
G studied in Section 3. Let ~={X 1, • • ·, Xn} in B. By Theorem 2 H. 
(see (5.4)) can be written as a direct sum of two closed invariant subspaces 
Hg and Hl- Here 

(5.8) Hg= (8) Hf, and H;=tB (8) H:; 
l~i~n l~i~n 

where (ei, · · ·, en) runs through {0, l}n- (0, · · ·, 0). We denote by Lg the 
restriction of L. to Hg. Put 

(5.9) 

If µ(~)<2- 1 ln(q), thenq- 112<tt<l for l<i<n and hence Hg is a non­
trivial irreducible subspace of H. (see Theorem 2). 

Lemma 5.2. Let~. rJ e B such that ~<rJ- Thenjv. maps Hg into H~ 
and consequently (Lg, Hg,jv.) yields a subdirect system of (L., H 0,jv 0). 

Proof It is enough to consider the case when µ(~) <2- 1 In (q). 
Write~={Xi, --·,Xn}. ThenrJisofthe form rJ={XtJ; l<i<n, l<j5:. 
ni} where xi= U1:.J;.n, xi 1 (a disjoint union) for l 5:.i5:.n. Put tij= 
exp {-µ(Xij)}, HM=®1;;;1;;;n, He,1, rv i=®1;;;1;;;n, r[e] E H~,i and L~,iCx)= 
®1;.j;.n, LtJx) for XE G. Then ti= to•'• tin,• H~ = ®1;.i;.n H~,i· r~= 
®1;;.i;a.n r ~,i and Lii~.(JX1,··· ,,,J) = ®1;;.i;a.n L~,;(xi). Define the G-equivariant 
isometry jv,t of He, into Hv,, by putting jv,iCLi,(x)r[e])=L~,;(x)rv,t (cf. 
Lemma 3.8). Then we find that j~.=®i;;;i;.nj~,,- Since µ("f))<µ(~)<2- 1 

ln(q), it follows that q- 112<t,J<l and q- 112 <t,<l. Applying Lemma 
3.8, we conclude that jvjHf.) lies in H~,, for each i. Here H~,,= 
® 1;.;1;,;n, Hfw This yields thatjv.(Hn is contained in H~. 

Theorem 4. Let (X, f!J, µ) be a measure space with a finite measureµ. 
Assume that there exists~ e B such that µ(~)<2- 1 ln(q). Then the unitary 
representation (L~, Hi) of G<xi de.fined by the direct system (Lg, Hg,jv.) of 
unitary representations of the direct system (G., i~.) is irreducible. In 
particular if (X, f!J, µ) is a nonatomic Lebesgue space, then L~ is irreducible. 

Proof By assumption, (Lg, Hg,jv.) is a nontrivial subdirect system 
of (L1;,H.,jv 0). For each ~eB satisfying µ(~)<2- 1 ln(q),Lg is an 
irreducible unitary representation by Theorem 2. Hence by Lemma 4.1 
Li is irreducible. · 

In what follows, we shall give an another construction of the 
irreducible representation equivalent ot L~. Let ~ = {X1, ••• , Xn} and t, = 
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exp {-µ(X;)} for 1 <i<n. Let (Ili,, Yc'i) be the cyclic unitary represen­
tations of G defined by 1/f't, (see (3.16)). Put £'.=® 1;;;,;;;;,n.Yt't, and 
Il.(f,,,, ... ,,,J=® 1;;;,;;;;,nlltlxt). Then (Ile,£'.) is a cyclic unitary represen­
tation of G. with cyclic vector u.=® 1;;;,;;;;,no[e] such that (Il,if)u., u.).= 
1/f' p(f) for f e G Ii where 1/f' µ is a function on G<X) defined by 

(5.10) 1/f'µ(f)=exp {-t £'(f(w))µ(dw)}. 

Using the results in Section 4, we get a E-direct system (II.,£'., k~.) of 
cyclic unitary representations of (G., i~.)- Here k~. is an G.-equivariant 
isometry of £'. into £'~ defined by k~.(Il.(f)u.)=Il/i~.(f))u~. The 
resulting representation of G<x) is denoted by (IIµ, Ye'µ). Suppose that e e E 
such that µ(e)<2- 1 ln(q). Put £'g=® 1;;;,;;;;,n.Yt'f, and denote the restriction 
of II. to .Yt'g by Ilg. Then by Theorem 2' Ilg is irreducible. We notice 
that II~ is equivalent to Lf where q- 112<t<l and hence Ilg is equivalent 
to Lg for each ~ e E. As in Lemma 5.2, we obtain that k~.(.Yt'g) is con­
tained in £'~ for e <r;. Therefore we get a subdirect system (Ilg, .Yt'g, k~.) 
of (II.,£'., k~.). We denote by (II:,£':) the representation of G(X) 
defined by (Ilg, £'i, k~.)- From the argument above, we have 

Theroem 4'. Under the same assumption as in Theorem 4, II: is an 
irreducible unitary representation of G<x) equivalent to L:. 

The construction of the representations IIµ and II: leads to the fol­
lowing remarkable fact. 

Theorem 5. Let (X, f!l, µ) be a nonatomic Lebesgue space. Then Ye'µ 
=£': and Ilµ=Il~ is equivalent to L:. 

Proof Since IIµ is a cyclic unitary representation of G<Xl with cyclic 
vector Uoo=k.(u.) for any e EE, we have only to show uoo E £':. Let e= 
{X1, ... ,Xn}andput t;=exp{-µ(X;)} for l<i<n. Define uge.Yt'g by 
ug=® 1;;;,;;;;,nuf, and d{~)= Ili;;;,;;;;,nd(t;) where ui=limn-oo IIXnll-'Xn in Yc't 
with q- 112 <t::;;: 1 and d(t) is given by {3.22). By the assumption of the 
theorem, we can select a sequence {em; m> 1} in E satisfying ~m <em+i 
for m>l and µ(~m)---+0 as m---+oo. Put um=kem(d(~m)ug,,.). Then 
{um; m>l} is a sequence in£': such that lluoo-umll2=1-d(~m)2. Since 
d(t) is monotone increasing, we have d(~)?:d(exp {-µ(~)W and con­
sequently l-d(~)2<1 -d{exp{-µ(e)})2". Since d(t)=l+O((t-1)2) as 
t---+I, we conclude that d(em)---+I and hence !!uoo-umll---+0 as m---+oo. This 
means that U 00 E £'~. 

Corollary 6. Let (X, f!l, µ,) (i= 1, 2) be nonatomic Lebesgue spaces 
such that µ1=/=µ2• Then Ilµ, and IIµ. are inequivalent. 
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Proof If µ1 * µ2, then we find that lJf ,,1 * lJf ,,., as in Theorem 3. 
Since Il,,, (i= 1, 2) are cyclic unitary representations defined by lf!,,,, it 
follows that Il ,,1 and Il ,,. are inequivalent. 

Let a be an invertible bi-measurable transformation of a finite 
measure space (X, 8i, µ). Then a induces an automorphism of G<xi by 
•J((J))=f(a- 1((1))) where/ e G<xi and (J) e X. We get new representations 
of G<xi by setting "L,,(f)=L,,(·f) and •Il,,(f)=Il,,(•f). Let µ0<1 be the 
measure on (X, P-6) such thatµ o a(E)= µ(a(E)) for Ee 8i. Since tf>,,(·f)= 
tf> ,, •• (f) (resp. lJf ,,(1) = lJf ,, •• (!)), it follows that • L,, and L,, .• (resp. • Il,, and 
Il ,, •• ) are equivalent. This yields the following theorem. 

Theorem 7. Let a be a measure-preserving, invertible bi-measurable 
transformation on a.finite measure space (X, P-6, µ). 

( i) If G is the free product of (Gt)ter such that the cardinality of I is 
infinite, then • L,, and L,, are equivalent. 

(ii) If G is an r family of finite groups of the same order s with q = 
(r- l)(s-1)>2, and if (X, 8i, µ) is a nonatomic Lebesgue space, then •fl,, 

and Il,, are equivalent. 
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