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The Space of Eisenstein Series in the Case of GL2 

Hideo Shimizu 

Introduction 

It is known in the classical cases and also expected to be true in 
general that every automorphic form orthogonal to cusp forms is a linear 
combination of Eisenstein series. Among the classical and recent references 
are Hecke [6], Kloosterman [8], Gundlach [4], Maass [11], Roelcke [13], 
Shimizu [14], Shimura [15]. [6], [8], [4] and [14] treat holomorphic cases, 
while [11] and [13] treat real analytic cases. [15] proves the most general 
results known so far for Hilbert modular groups (it discusses also the case 
of half-integral weights). 

In this note we consider the group GL2 over an arbitrary number 
field, to show that the assertion in the biginning is valid for automorphic 
forms on that group which are eigenfunctions of bi-invariant differential 
operators; here we understand that 'a linear combination' of Eisenstein 
series includes a process of taking derivatives or residues with respect to a 
parameter. 

We do not try to make our exposition self-contained. In fact, the 
automorphic representation theory and the fundamental property of 
Eisenstein series (analytic continuation etc.) are assumed. As to the first 
subject the basic reference is Jacquet-Langlands [7]. As to the second 
subject there are many references: Langlands [10], Harish-Chandra [5], 
Kubota [9], Gelbart-Jacquet [3], Arthur [l], Shimura [15]. 

This note is based on the lecture given at Nagoya University, De­
cember 1984. The author wishes to express his thanks to the Mathematics 
Department of Nagoya University for giving him an opportunity of 
discussing this topic. 

§ 1. Automorphic forms 

1. Throughout this note F denotes an algebraic number field of 
finite degree. Let G be the group GL2 viewed as an algebraic group over 
F so that GF=GLz(F). Let P be the set of all places of F and P J (resp. 
P 00 ) the set of all finite (resp. infinite) places in P. For v E P we write 
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simply G. for GF.=GLz(F.) where F. is the completion of F with respect 
to v. If K. is a standard maximal compact subgroup of G., the adelized 
group GA of G is by definition the restricted direct product of G. for v in 
P with respect to K •. 

The groups K. can be defined as follows. Let o be the ring of inte­
gers in F and o. the closure of o in F. for v in P 1 . If v is in P 1, we set 
K.=GLz(o.). If v is in P oo, K. is the orthogonal or unitary group of 
degree 2 according as vis real or imaginary. 

2. Definition of the Hecke algebra associated with G. For v in P 1, 

let£'. be the space of all C-valued, locally constant and compactly sup­
ported functions on G. (a function is said to be locally constant, if it is 
constant on a neighborhood of each point). For v in P 00 , let£'. be the 
space of all C-valued, compactly supported C 00 functions f such that the 
system of functions 

{g~ f(kg)\ k E K.} U {g~ f(gk)\ k E K.} 

on G. spans a finite-dimensional space. In either case, £'. forms a C­
algebra, the multiplication being the convolution 

J,*J;(g) =f f,(gh)f;(h- 1)dh. 
a. 

Here dh is a Haar measure on G •. £'. is called the Hecke algebra on G •. 
Let us fix a certain notation. Let f be a function on an abstract 

group G and h an element in G. The right (resp. left) translate p(h)f (resp. 
l(h)f) off is a function 

(p(h)f)(g)=f(gh) 

(resp. (l(h)f)(g)= f(h- 1g)) 

on G. H being a subgroup of G, we say that f is right H-finite, if 
{p(h)f\h e H} spans a finite-dimensional space. Left H-finiteness is defined 
similarly. 

Let K be a compact group. For a finite-dimensional irreducible 
representation a of K, we set 

l;u{k)=(dim a) tr a(k- 1) (k EK). 

A function on K of the form/;=~!;. (where a runs through a finite set 
of distinct irreducible representations of K) is called elementary idem­
potent. In fact, it is an idempotent with respect to the convolution product 
on K, i.e. !;*!;=!;. This follows from the orthogonality relations of matrix 
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entries of irreducible representations. If D1, D2 are finite sets of distinct 
irreducible representations of K such that D1 CD 2 and if 

then we have ~1*~z=~2*~1=~1-
Assume that K is a compact subgroup in a topological group G. For 

continuous functions f and ~ on G and K, respectively, we put 

~*f(g)= L ~ck- 1)f(kg)dk, 

f *~(g)= f Kf(gk)~(k- 1)dk, 

where dk is a Haar measure on K with the total volume 1. It is easy to 
see thatf is right (resp. left) K-finite if and only if there exists an elementary 
idempotent~ on K such thatf *~=f (resp. ~*f=f). 

Now let v be in P 1 and fan element in ;;If v· Since f is locally constant 
and compactly supported, we can find an open subgroup H. of K. such 
that f is constant on the cosets of H.. In particular f is both right and 
left K.-finite. Note that the same property off is implied in the definition 
if V E p 00 • 

For v in P 1 , denote by Ji the characteristic function of K.; it belongs 
to£., since K. is open and compact. Let 

be the restricted tensor product of£. for v in P with respect to {Ji! v e P 1 }. 

It is the set of all linear combinations of ©vf. such that fv e £. for all 
v e P andfv=fifor almost all v. An elementf=©.fv may be identified 
with a function 

on GA so that ;;If may be viewed as a function space on GA- We call ;;If 
the Hecke algebra on GA. 

Put K = n V EPKv. An irreducible representation (J of K is a tensor 
product of irreducible representations a. of K. for v e P. Then we have 

(k EK). 

It follows that, if ~ is an elementary idempotent of K, then ~ * f and f * ~ 
belong to ;;If for all fin ;;If. 

Let <p be a continuous function on GA andf in ;;If. We set 
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p(f)<p(g) =f <p(gh)f(h)dh, 
GA 

dh being a Haar measure on GA· The integral above converges, since f is 
compactly supported. If ~ is an elementary idempotent of K, we often 
write p(~)<p=<p*{. where ~(k)=~(k- 1) fork e K. 

3. Definition of automorphic forms on GA- Let r; be a character of 
Ax/ Fx, i.e. a Grossencharacter of F. An automorphic form (with a 
character r;) is a continuous function <p on GA satisfying the following 
conditions. 

( i) <p(rzg)=r;(z)<p(g) (re GF, z e AX, g e GA). 
(ii) <pis right K-finite. 
(iii) For every elementary idempotent~ of K, the space {p(~*f)<plf 

e .n"} is finite-dimensional. 
(iv) For every compact subset C of GA, there exist real constants M, 

Nsuch that 

for all a e Ax with lalA::?: 1 and g e C. 
The space of all automorphic forms (with a character r;) is denoted by 
d(r;). 

Let R+ be the set of all positive real numbers. Identify t e R+ with 
an element g=(gv) in Ax such that gv=l (ve P 1), gv=t (ve P00 ). Put 
A 1 ={a e AxllalA= 1}; then we have Ax=A'XR+. 

Let w be a compact subset of A, w' a comapct subset of A' and c a 
positive real number. Let @5 be the set of all elements in GA of the form 

such that z e Ax, x e w, a e AX, lalA>c, the projection of a to A1 is in w1, 
and k e K. @5 is called Siegel domain. It is well known that there exists 
a Siegel domain @5 such that GA=GF@5. Hence the condition (iv) above 
gives an estimation of l'Pl on a Siegel domain. We say that a left GF­
invariant and AX-finite function <p on GA is slowly increasing, if it satisfies 
(iv). 

For an automorphic form <p, we set 
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<p is called cusp form if cp0(g) = 0 for all g in GA· The space of all cusp 
forms in d(r;) is denoted by do(r;). 

4. In the following we collect some results on automorphic forms, 
supplying a proof whenever it is convenient for our purpose. 

Let G 1 and G = be the finite and infinite part of GA, respectively; 
namely 

G1={g E GA\gv= l for all VE p oo}, 

G=={g E GA\gv= 1 for all VE P1}-

Lemma 1. For every <p in A(r;), there exists an element f in ;It such 
that <p = p (f)<p. 

Proof Since <pis right K-finite, there exists an elementary idempotent 
1; of K such that p(i;)<p=<p*f=<p-V=p(i;*ff)<p is finite-dimensional by the 
definition of automorphic forms. 

If he 1;*£*1;, then p(h)Vc V. We denote by p(h) the endomorphism 
of V induced by p(h). Now there exists a sequence Un} of compactly 
supported continuous functions on GA with the following _properties. 

1) supp fn converges to the unit element l of GA• · 
2) fn~O, 

3) f fndg= 1, 
GA 

4) fn can be written as fn(g)=f~(g 1)f~'(g=), where f~ is a locally 
constant function on G1 and/~ is a c= function on G=. 

For any continuous function <p on GA• p(fn)<fa converges to <p uni­
formly on a compact set. Especially, if p(i;)<p=<p, then p(hn)</i converges 
to <p for hn =/;*fn*f;. We see that there exists an element h in/;*£*!; such 
that p(h) is as close as we wish to the identity transformation of V so that 
det p(h)=faO. Let I::"~o a,Xi be the characteristic polynomial of p(h). Then 

f a-1 "-'m hi = - o L..li~1 ai 

(hi =h* ... *h (i times)) belongs to!;*£*.; and p(f)= I. Put <pn =p(hn)<p 
E V; then p(f)<pn =<pn- Letting n-'>-oo, we have p(f)<p=<p. q.e.d. 

Let g be the Lie algebra of G00 , '1/(gc) the universal envelopping 
algebra of g(8)C and :!Z' the center of '1/(gc)- For a c= function <p on G= 
(or on GA, regarded as a function of g 00 ) and for XE g, we put 
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d 
p(X)<p(g)=dt<p(g exp tX)\i=o, 

d 
).(X)<p(g)=dt<p(exp (-tX)g)\i=o· 

It is well known that p (resp. ).) can be extended to a homomorphism of 
%'(gc) onto the algebra of left (resp. right) invariant differential operators 
on the space of C 00 functions on G00 • If Z e :!Z', then p(Z) is bi-invariant, 
i.e. commuting with right and left translations. 

Lemma 2. Every <p in A(7J) is :!£-finite; namely {p(Z)<p\Z e :!Z'} is a 
finite-dimensional space. 

Proof Lett; be an elementary idempotent of K such that p(f;)<p=<p. 
Since p(Z) commutes with right translations, we have p(f;)p(Z)<p = p(Z)p(f;)<p 
= p(Z)<p. By Lemma 1 there exists a fin ;It such that p(f)<p = <p, then we 
have 

p(Z)<p(g) = p(Z) f <p(gh)f(h)dh 

= f <p(gh)J.(Z)f(h)dh = p(J.(Z)f)<p(g). 

Evidently ).(Z)f e ;It. Hence {p(Z)<p \ Z e :!Z'} is contained in p(f;*;/t)<p, 
and the latter space is finite-dimensional. q.e.d. 

5. p(:!Z') can be described as follows. G00 is the direct product of Gv 
for v e P 00 and G v = G Lz(R) or G Lz( C) according as v is real or complex. 
If Bv is the Lie algebra of Gv and :!Z'v the center of %'(Bvc), then 

Hence it is enough to consider the action of :!Z' component-wise. 
1) The case of real v. Let gt2 denote the Lie algebra of 2 by 2 

matrices. The Lie algebra of GR= GLz(R) is identified with gtz(R) and 
gtz(R)0C=gfz(C). Put 

and define an element D in %'(g[z(R)c) by 

The center :!Z' R of %'(gfz(R)c) is a polynomial ring over C generated by J 
and D. 
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The action of J is obvious. To express p(D), put 

n(x)=(l x), a(y)=(Y ~ ), k(O)=( c?se sine) 
0 1 0 Y I - Sill 0 COS 0 

and write g e GR, <let g >0, as 

g=zn(x)a(y1' 2)k(0) 

With these coordinates, we have 

(z>O, y>O). 

(1.1) ( az az) az 
p(D)=2y 2 -+- -2y-. ax2 ay2 axae 
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2) The case of imaginary v. The Lie algebra of Gc=GLz(C) is 
identified with g[z(C) regarded as a real Lie algebra. We have 

where X = X® 1 is identified with (X, X) for Xe g[z( C). From the em­
beddings i1 : X---+(X, 0) and i2 : X---+(0, X) we obtain the isomorphisms i1 

and i2 of %'(g[z(C)) into %'(g[z(C)EBgfz(C)). Then the isomorphism 

%'(gfz( C)j@%'(gfz( C) )~%'(gfz( C) EBgfz( C)) 

is induced by X® Y---+ii(X)iz( Y)(X, Ye %'(g[z( C)). Identifying the both 
sides by this isomorphism, we get 

p(X®l)= p(ii(X)) = _l_ p(X)-_!_p(iX), 
2 2 

. 1 - i .-
p(I®X)= p(12(X))= - p(X) +-p(1X), 

2 2 

for Xe g[z( C), since 

(X, O)=_l_(x, X)-_!_(ix, -iX), 
2 2 

1 - i .- . 
(0, X)=-(X, X)+-(1X, -1X). 

2 2 

Hence 

1 d i d . 
p(X®l)So(g)=--So (g exp tX)M---So(g exp tzX)i-o, 

2 ~ 2 ~ 
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l d - i d .-
p(I®X)cp(g)=2dtcp(g exp tX),= 0 + 2 dtcp(g exp tzX),=o• 

or regarding t as a complex variable, we have 

p(X®l)cp(g)=i_cp(g exp tX),=o, 
at 

a -
p(I®X)cp(g)= alcp(g exp tX)t=O· 

The center :?Z e of '7/(g[z(C)e) is a polynomial ring over C generated 
by J(8)1, D®l, l®J, 1(8:)D. !Let B (resp. N) be the group of upper tri­
angular (resp. unipotent) matrices in G. Let R be a complete system of 
representatives of Be\Ge in Ge and write g E Ge as 

g=znah, n=n(x), a=a(y11 2) 

with z, x, y e C, h e R (here we set y112 = exp (¼logy), taking a certain 
branch oflog y). Then it follows from the bi-invariance of p(D®l) that 

p(D®l)cp(g) = p(h) (p(D®l)cp)(zna) 

= p(D® 1 )(p(h)cp )(zna). 

Put U=(~ ~). We have 

p(X 1® I )p(h) cp(zna) = i_cp(zna(y 112)a(e')h)i= 0 = 2y i_cp(g ), 
ai ay 

p(U®I)p(h)cp(zna)=p (Ad (a)U®l)p(ah)cp(zn) 

= i_ cp(zn(x)n(yt)ah),=o = y~cp(g ), 
at ax 

because Ad (a)U=aUa- 1=yU. 
Suppose that the representatives in R are taken from SU (2). We 

have 

x~ = (2U-X3) 2 =4U 2 + X~-2( ux3 + x3 U) 

=4U 2 +x:-4ux3-2X1 
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Note further that 

p((U-X 3)@l)= ~ p(U-X 3)- ~ p(i(U-X~)) 

=l_p(U-X 3)-_!_p(i(X 2 - U)) 
2 2 

=p(l®U)-l_p(X 3)-_!_p(iX 2). 

2 2 

We finally obtain 

(1.2) p(D®l)SD(g)= [2(y i_)2 -2yi_ +2yi_(y a_)]SD(g) 
ay ay ax ax 

-yi_ [p(X3)+ ip(iX 2)]p(h)SD(zna), 
ax 

where, by definition, 

d 
p(Xa)p(h )SD(zna) = a(P(znak(t )h) i-o, 

p(iX 2)p(h)SD(zna)= ! SD(znaw0k(t)w; 1h\-o 

with w0 = (~ 6). Especially, if \Dis left N 0 -invariant, then 

(1.3) 

A similar expression is valid for p(l®D). 

593 

Let v E P 00 • If v is real (resp. imaginary), denote by Dv (resp. n:,n:') 
anelement®wEPoozW in :!Z=®wuoo:!ZW such that Zw=l (w=;t=v), Zv=D 
(resp. D®l, l®D). 

6. We fix a non-trivial character ,J,, of A/ F. 

If \D E d(r;) and g E GA, then 

X~\D( (t ~)g) 
in a function on A invariant under the translations X-+x+e (e E F). 
Therefore it has a Fourier expansion of the form 
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g,( (b ng) = ftF C(tx, g )t(txX), 

c(a, g)= L/Fg,( (b ng )t(-ax)dx, 

where dx is a Haar measure of A such that the total volume of A/Fis 1. 
Obviously 

c(O,g)=g, 0(g), c(a,g)=c(l, (g ~)g) 

so that, putting Wig)= c(l, g ), we have 

(a=;i:=O) 

It is evident that the mappings g,-g, 0 and g,-W'P commute with the right 
translations. 

The constant term g,0 of the Fourier expansion plays a principal role 
in our investigation. g,0 is ~-finite, since g, is so (Lemma 2), and it is left 
NA-invariant, where N is the group of upper unipotent matrices. Let A 
be the group of diagonal matrices in G. Then we have GA=NAAAK. Fix 
a place v in P 00 and identify a(et) for t e Fv with an element in AA such 
that the v-component is a(et) and all the other components are 1. For 
k e Kand a e AA with av= 1, we consider a function 

u(t) =g, 0(a(et)ak). 

If v is real, then 

(1.4) p(Dv)g,0(a(et)ak)= [_!_(i-)2 -i-]u(t). 
2 at at 

If vis imaginary, write t=-r+i0 with 1:, (} e R; then we have 

(1.5) p(D~)g,0(a(et)ak) 

=- - -4-- - -21 --2 - u(t), 1 [( a )2 a ( a )2 
·( a ) a ] 

s a1: a1: a0 a1: a0 
p(D':)g,0( a( et)ak) 

= _!_ [(_i__)z _4__§_ - (_i__)2 + 2i (-1_-2) _i__] u(t ). 
s a1: a1: a0 a1: a0 

Recall that g,0 is ~-finite and right K-finite. The above equalities imply 
that, if we put 
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(resp. ( :T r-4 :T) 
for real (resp. imaginary) v, then Lnu (n=O, 1, 2, · · ·) span a finite di­
mensional space V. 

Letf(x) be the characteristic polynomial of Lon V. It is easy to see 
that every solution of the differential equation f(L)u=O is a finite linear 
combination of \ePtl(Re t)"' (p e C, me Z, m2:0) as a function of Re t. 

Lemma 3. cp0 is left AA-finite. 

Proof. cp0 is left (AA n K)-finite, since it is right K-finite (if n e NA, 
a e AA, k e K, ao e AA n K, then cp0(aonak)=cp0(aaok)). For Ve p oo, put 

It follows from the preceding remark that 

(a e AA, k e K) 

is, as a function of x and y, a finite linear combination of xPyq (log x)m X 
(logy)n (p, q e C, m, n e Z, m, n>O). Therefore, cp0 is left A;-finite. 
Since A.= A; (A. n K.) for V e p 00 and A Al AF (A An K)Aoo is a finite group, 
our assertion follows. q.e.d. 

Denote by\ \. the normalized valuation of F.(v e P) and put 

(x e A). 

We write occasionally a(x)=\x\A. 

Theorem 1. For every cp in d(r;) and g in GA, cp0( (~ ~)g) is, as a 

function of x and y in Ax, a finite linear combination of a(xy- 1) 112µ(x)1,1(y) X 
(log a(xy- 1))m, where me Z~O andµ, 1,1 are quasi-characters of Ax;px such 
that µ1,1 = r;; in other words we have an expression of the form 

with certain functions f P•m· 

Proof. Put 



5% H. Shimizu 

We identity a positive real number t with an element in Ax such that the 
v-component is t for any v e P 00 and all the other components are 1. Then, 
putting 

we have AA=A~XA;!;. cp0(ak)(a e AA, k e K) is, as a function on A;!;, a 
linear combination of 

(p, q e C, m, n e Z, >O) 

(cf. the proof of Lemma 3). By Lemma 3, if it is regarded as a function 
on A~, it is (A~/ Fx)-finite and hence is a linear combination of 

where X1 and X2 are characters of A~Fx. Noting that cp0(zg)=1)(Z)cp0(g) 
for z e Ax, we get our assertion for g=k. Evidently, k may be replaced 
by any element in GA. q.e.d. 

7. For every cp in d(1)), the space {p(Z)cp\Z e ~} is finite~dimensional 
by Lemma 2. Hence Z-.p(Z)cp defines a homomorphism of~ into the 
endomorphism algebra of this space, whose kernel is an ideal of finite co­
dimension. a being any such ideal of ~. we set 

d(1J, a)={cp e d(7J)\p(Z)cp=0 for Zea}. 

Then d(1J) is a union of d(1J, a) if a runs through all ideals of~ of finite 
codimension. Let do(1), a) be the space of all cusp forms in d(1J, a). 

Theorem 2. For every elementary idempotent !; of K, the space 

p(!;)Ao(1), a)={cp e do{7J, a)\p(!;)cp=cp} 

is finite-dimensional. 

The theorem asserts that the cusp forms of a given 'type' make up a 
finite-dimensional space. cf. [7, Proposition 10.8], [5, Theorem l]. 

We say that a Ax-finite and left GF-invariant function cp on GA is 
rapidly decreasing, if for every compact subset C of GA and for every 
N>O, there exists a M>O such that 
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It is known (cf. [7, § 10], [5, § 4]) that every cusp form is rapidly decreasing 
so that if cp1 e do(r;) and cp2 e d(r;), then \cp1cp2 \ is bounded on GA- Hence 
the inner product 

can be defined for cp1, cp2 e d(r;) whenever either one of cp1, cp2 is a cusp 
form. 

Lemma 4. Put 

d,(r;, a)={cp e d(r;, a)\(cp, cp0)=0for all cp0 e do(r;, a)}; 

then we have 

Proof Let ,; be an elementary idempotent of K. For cp e d(r;) and 
cp0 e do(r;), we have (p(,;)cp, cp0)=(cp, p(,;)cp0) and hence (p(~)cp, (I-p(~))cp 0) 

=(cp, p(~)(l-p(,;))cp 0)=0. Let {cp1, • • ·, 'Pn} be an orthonormal basis of 
p(,;)do(r;, a). If cp is in p(,;)d(r;, a), then 

is orthogonal to p(~)do(r;, a). Consequently, it is also orthogonal to 

do(r;, a)=p(,;)do(r;, a)+(l-p(,;))do(r;, a). 

This proves that 

p(,;)d(r;, a)cp(,;)du(r;, a)+dh;, a) 

and, since d(r;, a) is a union of p(,;)d(r;, a) for all ,;, 

That the sum above is direct is obvious. q.e.d. 

The Hecke algebra £ is made to act on d(r;) by cp-+p(f;cp (f e £, 
cp e d(r;)). do(r;) is then a £-invariant subspace. 
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Theorem 3. Regard do(r;) as a representation space of .?R. Then 
do(r1) is a direct sum of irreducible subspaces, on each of which the repre­
sentation of .?R is admissible. Moreover, the multiplicity of every irreducible 
representation of .?R in do(r1) is at most 1. 

cf. [7, Proposition 10.9], [2]. As for the multiplicity one theorem, cf. 
[7, Proposition 11.1.1], [12]. 

§ 2. Induced representations 

8. In this section we quote from [3, 7] several results needed later. 
Let (µ, 1J) be a pair of quasi-characters of Ax;px, Let f!I(µ, 1J) be the 
space of continuous functions <p on GA satisfying the following conditions. 

(i) <p((~ ;)g)=l: [µ(a)1J(b)<p(g) for a, be Ax, x e A, g e GA. 

(ii) <p is right K-finite. 
Let 1r(µ, 1J) denote the representation of .?R on f!I(µ, 1J) defined by the right 
translation p. 

A space analogous to the above can be defined locally; namely, 
(µ., IJv) being a pair of quasi-characters of F: for v e P, let PA(µ., 1J,,) be 
the space of continuous functions <p on G,, such that 

. ((a x) ) I a 111
2 x (1) <p O b g = b ,, µv(a)1Jv(a)<p(g) for a, be F,,, x e F., g e G., 

(ii) <p is right K0 -finite. 
We then obtain a representation 1r(µ., 1J.) of .?R,, on f!I(µ., 1J,,) in the same 
way. 

Ifµ. and IJv denote the v-components of µ and IJ, respectively, then 
µ. and 1J,, are unramified for almost all v. For such a v, there exists a 
function <p~ in f!I(µ., 1J0 ) such that <p~= 1 on K,,. We see that 

where the right hand side is the restricted tensor product with respect to 
{<p~}. Also it is evident that 

p(f)<p =@. e pp(f.)<p. 

iff=@f. e .?R and <p=@rp. e f!I(µ, 1J) (note that p(fi)<p~=<p~,fi being the 
same as in no. 2). In this sense the representation 1r(µ, 1J) of .?R is the 
tensor product of the representations 1r(µ0 , v,,) of .?R •. 

For <p1 e f!I(µ, 1J) and <p2 e f!l(p,· 1, p· 1) we set 

(<pi, <p2)=f <pirh(k)dk=f <pi<:{!z(g)dg, 
K BA\GA 
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dg being a right invariant mesaure on BA\ GA- It defines a non-degenerate 
pairing on !JlJ(µ, v) X f!J(p-1, P- 1) and we have 

for/ e Jlt", where 11:1=11:(µ, v), 11:2 =11:(p-1, v 1). 

Put w=(-~ 6)· Write µv- 1 =\ \AX withs e C and a character X of 

Ax;px_ Assuming that Res> 1, define an operator M(A, µ) on f!J(µ, v) by 

It is easy to see that M(.:l, µ) maps f!J(.:l, µ) into !JlJ(v, µ). Further­
more we have 

M(µ, v)11:1(/)=11:2(f)M(µ, v) 

for/ E Jlt", 11:1=11:(µ, v), 11:2=11:(v, µ) and 

(M(µ, v)<p1, <;02)=(<;01, M(v1, p- 1)<;02) 

for Soi E f!J(µ, v), <;02 E f!J(v-1, p- 1). 

9. We recall a few facts on the zeta functions of local fields. Let V 
be a vector space of finite dimension over F.. Let .9'( V) denote the space 
ofSchwartz-Bruhat functions on V (if v e P 1 , it consists of all locally con­
stant and compactly supported functions on V; if v e P 00 , it consists of all 
rapidly decreasing functions on V). 

Let/ be in .9'(F.), X a quasi-character of F;; ands e C. We set 

Z(f, X, s)=J f(t)X(t)\t\;dxt. 
pX 

V 

If X is a character, the integral converges for Re s>O. There exists an 
Euler factor L (s, X) such that Z(f, X, s)/L(s, X) is continued to an entire 
function for all/ in .9'(F.). Fixing a character ,Jr of F., we obtain a func­
tional equation 

Z(j, x-1, 1-s) 
L(l-s, x-1) 

s(s X ·'·) Z(f, X, s) 
' ' 'I' L(s, X) ' 

where s(s, X, ,Jr) is an exponential function of s and 

j(x)= f F f(y),Jr(xy)dy. 
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L(s, X) is explicitly known. 
(1) veP 1 

H. Shimizu 

L(s, X)= nl-X(m.)\m.\t)-1 if X is unramified, 
otherwise. 

Here m. is a prime element of F •. 
(2) Ve p® 

If vis real and X(x)=\x\' (sgn x)"' with re C, m=O, 1, then 

L(s, X)=it'-cs+r+mJ12 r( s+;+m )· 

If vis imaginary and X(x)=\x\~x"'xn with re C, m, n e Z, mn=O, then 

L(s, X)=2(21t')-C•+r+m+nlI'(s+r+m+n). 

Let X(x) = TI .x.(x.) be a quasi-character of Ax/ px and ,fr(x) = 
11.t.Cx.) a character of A/F. Put 

L(s, X)= IlvePL(s, x.), 

e(s, X)= TivePe(s, X., ,fr.). 

Then L(s, X) can be analytically continued to the whole s-plane and satis­
fies the following functional equation. 

L(s, X)=e(s, X)L(l-s, x-1). 

10. For (/) e Y(F. X F.) and g e G., put 

µ.(detg)\de!g\!/2 f x(/)((0, t)g)µ.11;;-1(t)\t\.dxt. 
L(l, µ;v;;-) Fv 

The right hand side may be written as 

µ. (detg)\ det g\!/2 Z(J,,cgJ<P• µ.11;;-1, 1)/L(l, µ.11;;-1) 

withfit)=(/)((0, t)) and p(g)(/)(x, y)=(f)((x, y)g). In this form it makes 
sense for all µ., 11 •. 

Lemma 5. Let (/) be an element in Y(F. X F.) such that the functions 
p(k)(f)(k e K.) span a.finite-dimensional space. Then cp( ; µ., 11., (/)) belongs 
to f!A(µ., 11.). Conversely, assume that µ.11;;-1 =\ \tX with a character X of F; 
ands e C , Re s > -1 ; then, for every <p in f!A(µ., 11.), there exists a (/) in 
Y(F. X F.) such that <p = cp( ; µ., 11., (/)). 

Proof. The first assertion is obvious if the integral defining 
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9'.)( ; µ., v., ifJ) converges. It holds in general by analytic continuation. 
To prove the second assertion, we first assume that v e P 1 • For a 

given 9', define ifJ as follows: 

ifJ(x, y) = µ;;1 ( det g )9'.)(g) 

if (x, y)=(O, l)g forge GL2(o.) and equals O otherwise. It is easy to see 
that the function ifJ has a required property. 

Next assume that v e P.,, is real. Write µ.JJ;;1(t) =It I~ (sgn t)m with 
s e C, m=O, 1. Let 9'n(n e Z) be an element in PA(µ., JJ.) such that 
9'n(gk(O))=ein89'n(g) for g e G., k(O) e S0(2). Since {9'nln=m (mod 2)} 
forms a basis of PA(µ., 1J0 ), it is enough to prove the assertion for each 9'n· 
Put 

then 

ifJ((x, y)k(O)) = etneifJ(x, y). 

By a simple calc;ulation we see that 9'.)( ; µ., v., ifJ) is a constant multiple 
of 9'n• 

Finally assume that v e P.,, is imaginary. Write 

µ.l);;l(t) = (t n•-(a +b)/2t ap 

withs e C, a, be Z, >0, ab=O. We note that SU(2) acts on PA(µ., v.) 
by the right translation. Denoting by Pn the n-th symmetric tensor repre­
sentation of SU(2), let PA(µ., v., Pn) be the space of all elements 9' in 
PA(µ., v.) such that the representation of SU(2) in a linear span of p(k)9'.)(k e 
SU(2)) decomposes into a direct sum of Pn· It is known that Pn occurs 
in PA(µ., v.) with a multiplicity ~ 1 so that the above subspace is irre­
ducible. Further we have 

PA(µ., JJ.) = EB PA(µ., IJv, Pn). 
n:il;a+b,n=a+b(2) 

Put 

for n=a+b+2m (me Z, >O). We can show that 9'.)( ; µ., v., ifJ) is a 
non-zero element in PA(µ, JJ., Pn). Since the mapping ifl-'Hp( ; µ., v., ifJ) 
from Y'(F.XF.) into PA(µ., JJ.) commutes with the action of SU(2), our 
assertion follows. q.e.d. 
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11. Let M(µ., JJ0 ) be the mapping from PA(µ., JJ0 ) to PA(JJ., µ.) defined 
by 

The integral converges for Re s > 0 in the notation of Lemma 5. Let <b be 
the Fourier transform of tJ) in Y(F. X F.) with respect to the pairing 
<(x, y), (.x', y'))='lfr.(yx' -xy'): 

<b(x, y)= fJ @(x', y')'lfr.,(yx' -xy')dx'dy'. 

Assuming that -1 <Re s<I in the notation of Lemma 5, consider 
cp( ; JJ.,, µ., <b) as well as cp( ; µ., JJv, @). We are going to see that if 
cp( ; µ., JJ.,, ([)) = 0 for tJ) e Y(F., X F.,), then cp( ; JJ.,, µ.,, <b) = 0 also so that 

is a well defined mapping from PA(µ.,, JJ0 ) into PA(JJ.,, µ.,). 
Observe that B.,wN., is dense in G., and hence an element in PA(µ., JJ.,) 

is determined by its values at w(b n (x e F.,). It is easy to see that, for 

M>O, 

J &((o, t)w(b I))µ.,JJ;\t)itl.,dxt 
ltlv:.M · 

=JJ{J @(ty, tz)µ.,JJ;1(t)\f\vdXt}+vez-xy)dydz, 
ltl,:.M 

If cp(g; µ.,, JJv, ([))=0 for all g e G.,, the right hand side can be written as 

ff{J tJ)(ty, tz)µ.,JJ;1(t)\t\.dxt}+.(z-xy)dydz. 
ltlv>M 

If v e P 1 , tJ)(x, y) has a compact support and if v e P 00 , then 

\@(x, y)\<const. (!xi!+ 1)-1(\y\~+ 1)-1• 

It follows that the above integral tends to O if M->;oo. 
By virtue of the functional equation of a local zeta function, it can be 

shown that 

M(µ., JJ.) L(O, µ 0 v;1) R(µ ) 
1 1 ., JJ., 

L(I, µ.,JJ; )e(O, µ.JJ; , '1/r.) 
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ifO<Res<L Note that, for -l<Res<l, 

R(J.Jv, µv)R(µv, J.Jv)=id. 

In view of the above equalities, we infer that the both R(µv, J.Jv) and 
M(µv, J.Jv) can be analytically continued to all µv, J.Jv and R(µv, J.Jv) is holo­
morphic for Re s > -1. 

Suppose that, for v e P 1 , µv and J.Jv are unramified and the conductor 
of ,fF v is Ov· Let So~ (resp. sa~) be the unique element in f!J(µv, J.Jv) (resp. 
PJ(J.Jv, µv)) whose restriction to Kv is identically 1. If <l> is the characteristic 
function of Ov X Ov, we have & = <l> and 

f <l>((O, t))µvJ.J;;-1(t)\t\vdX t 
FX 

V 

=f µvJ.J;;-1(t)\ t\vdXt 
•v 
~ 

= I: µvJ.J;;-1(mvr1 W'v \~ 
n=O 

=L(l, µVJ.J;;-1). 

Hence So( ; µv, J.Jv, <!>)=So~; by definition we see that R(µv, J.Jv)So~ = sa~­
Now, letµ, J.J be quasi-characters of Ax;px_ Let R(µ, J.J) be the map­

ping from f!J(µ, J.J) to f!J(J.J, µ) defined as a tensor product of R(µv, J.Jv) for 
VE P: 

for So=®vSov e B(µ, J.J). This definition makes sense because of the preced­
ing remark. We have then 

and 

Theorem 4. Write µ=\ \¾2X1, J.J=\ \::i'12X2 with s e C and characters 
X1, X2 of Ax;px, Then M(µ, J.J) can be analytically continued to a mero­
morphic Junction on the whole s-plane and satisfies the functional equation 
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In the region Re s > -1, it has a pole only at (µ, v) = (I l:f2X, I \A112X), where 
X is a character of Ax/ px. 

The last assertion follows from the known property of L(s, X). 

12. The notation being the same as in no. 8, consider, as before, 
PJ(µv, vv) as a representation space of J/f'v. 

(1) For v E P 1 , PJ(µv, vv) is reducible if and only if µvv;;-1 = \ Iv or \ \;;-1 

([7, Theorem 3.3]). 
(2) For a real v in P =' PJ(µv, vv) is reducible if and only if there 

exists a p e Z, p=f:.O such that µvv;;-1(x)=xP sgn x (x e F;) ([7, Theorem 
5.11]). 

(3) For an imaginary v in P =, PJ(µv, vv) is reducible if and only if 
there exist p, q e Z, pq>O such that µvv;;-1(x)=xpxq (x e F;) ([7, Lemma 
6.1]). 

In either case, if f!J(µv, vv) is reducible, f!J(µv, vv) has the only one 
irreducible subspace, which is denoted by 86 iµv, vv) or PJ,(µv, vv) according 
as its dimension is finite or infinite. 

Lemma 6. Write µvv;;-1 = \ l~X with s e C and a character X of F;. If 
Re s>O and /JJ(µv, Vv) is reducible, then R(µv, vv) maps PJ(µv, vv) onto 
!1J ivv, µv), and its kernel is PJ,(µv, J.iv)-

Proof It is enough to prove that R(µv, vv) or M(µv, vv) has non­
trivial image of finite dimension. Let ifJ e Y(Fv X Fv) and write <p = 
<p( ; µv, Vv, i/J) for simplicity. We have 

M(µv, J.iv)<p(g) 

= µv (detg)\d~;g1~2 f f X i/J((o, f)w(l X)g)µv].l;;-l(f)ltlvdX{dX. 
L(l, µvVv ) Fv Fv O I 

The integral on the right hand side equals 

If v e P 1 , we have µvv;;-1 =\ Iv by (1). Then(*) is written as 

ldetgl;;-1f f i/J(t, u)dtdu 
Fv Fv 

so that the image of M(µv, vv) is generated by a single function 

g---+µv (det g) \ det g\;;-112• 
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If v is real, we have µ;v;;1(t)=tP sgn t by (2), where p e Z, >O. 
Writing 

g=(~ ~), (t, u)=(x,y)g- 1 =(detg)- 1(xd-yc, -xb+ya), 

we see that ( *) equals 

(detg) 1-P\detg\;; 1f f <fJ(x,y)(yc-xd)P- 1dxdy. 
Fv Fv 

Hence the image of M(µv, vv) is generated by 

Vv ( det g) \ det g \:/2 P( c, d), 

where P( c, d) is a homogeneous polynomial of degree p - l. 
If vis imagenary, we have µvv;;1(t)=tPfq by (3), where p, q e Z, >O. 

The proof proceeds in the same way as in the real case. The image of 
M(µv, vv) is generated by 

Vv (detg)\ detg\:/ 2P(c, d)Q(c, d), 

where P(c, d) and Q(c, d) are homogeneous polynomials of degree p-1 
and q-1, respectively. 

§ 3. Eisenstein series 

13. Letµ and v be quasi-characters of Ax;px and <p an element in 
~(µ, v). A function on GA of the form 

E(<p, g)= I; rp(rg) 
rEBp\Gp 

is called Eisenstein series. We often denote by E(<p) the function g-. 

E(<p, g). 
We set o(g)=\aJa2\A for 

Lemma 7. µ, v and <p being as above, write \µv- 1(x)\=\x\A (x e Ax) 
with a e R. If a> l, then the Eisenstein series E(<p, g) is uniformly con­
vergent on every compact subset of GA-

Proof We first assert that there exists an element fin :If such that 
p(f)<p=<p- Since a function in ~(µ, v) is determined by its restriction to 
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K, p(~)f!J(µ, ll) is finite-dimensional for every elementary idempotent~ of 
K. Therefore, the above assertion follows as in Lemma I. 

Let C0 be any compact subset of GA- Let C1 be the support off and 
M the maximum of Ill- If g e C0 and r e Gp, then 

\sa(rg)i~f \sa(rgh)f(h)\dh 
GA 

=f lsa(rh)f(g- 1h)\dh 
GA 

with C= C0C1• Since C is compact, the number m of elements r in Gp 
such that re n C-=i= 0 is finite. We can show that there exist positive con­
stants c1, c2, c3 such that 

o(g)~C1, C2:,;;ldetglA<C3 

for all g E GpC. Then we have 

rE~\GJ )sa(rh)\ dh 

~mf lcp(h)ldh 
BF\GFC 

the above integral converges if a> I. q.e.d. 

It is obvious that E(cp) is left Gp-invariant if it converges, and that 
cp---+E(cp) commutes with the action of :/f and Ax; namely 

E(cp, rg)=E(cp, g) 

p(f)E(cp) = E(p(f)cp) 

p(z)E(cp) = E(p(z)cp) 

Furthermore, we have 

ere Gp), 

(f E :/f), 

(z E Ax). 



and hence 
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E°(cp, g)= f A/FE (cp, (6 ng )dx 

=cp(g)+L(w(6 ~)g)dx. 
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If 7J= µ11 is a character, then E(cp) is orthogonal to do{7J)- In fact, 
we have 

(E(cp), cp0)=f E(cp, g)ip0(g)dg 
AXGF\GA 

=J ( I: cp(rg))ipo(g)dg 
Ax GF\GA rEBF\GF 

=f cp(g )ipo(g )dg 
AXBF\GA 

for cp0 E do{7J). 

14. Let cp e !!,1(µ, 11) ands e C. Put 

cp(s, g)=[cp(s)](g)=cp(g)o(g)•1 2 

For simplicity, write a=\ Lt- Then cp(s) belongs to !!,1(µa'12, 11a-•12). The 
basic property of the Eisenstein series can be resumed as follows. 

Theorem 5. Letµ, 11 be quasi-characters of Axf px and cp e !!,I(µ, 11). 
(1) E(cp(s)) can be analytically continued to a meromorphic function on 

the wholes-plane, whose pole occurs at most at the poles of M(µa' 12, 11a-•12). 
(2) The following functional equation holds. 

E(cp)=E(M(µ, 11)cp). 

(3) If M(µ, 11) is regular at (µ, 11), then E(cp) is slowly increasing so 
that it is an automorphic form on GA. To be more precise, let D be a com­
pact subset of the s-plane such that E(cp(s)) is regular on a neighborhood of 
D. Let C be a compact subset of GA. Then there exist M, N>O depending 
only on D and C such that 
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for all a e AX, a(a)>l, g e C ands e D. 

Concerning this theorem, we refer to the references in the introduc­
tion. Especially, as to (3), cf. [5, Chap. IV], [15, Appendix]. 

§ 4. Maass-Selberg relations 

15. We state the Maass-Selberg relations in Harish-Chandra [5] in 
an adelic form. The proof goes entirely in the same way. 

Theorem 6. Fix an infinite place v. For c~ functions cp, ,fr on GA• 
put 

if v is real and 

[cp, ,fr] =(p(D~)cp),fr-cp(p(Di),fr) 

if v is imaginary. Regard 

( e1 O ) a(et)= 0 e-t (t e Fv) 

as an element in GA such that the v-component equals the above and all the 
other components= l. Put 

</J(t, g)=\e-t\vcpo(a(et)g), 

'/Jf(t, g)=\e-t\vifro(a(et)g), 

for t e Fv, g e GA- Further, put 

J(cp, ,fr, t)=f f [d</J 1ft -</JdW](t, (a o)k)dadk 
K Al/FX dt dt O l 

if v is real and 

J(cp, ,fr, t)= - -'/ff -</J- -l-'/Jf T, k dadk f f [ 1 ( a</J - aw ) . a</J -J ( (a o) ) 
K A•/FX 2 a-r a-r ao o 1 

if v is imaginary. 
Let @5 be a Siegel domain as in no. 3 and @5(r) the set of all g in @5 with 
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o(g)>\e 2'\v· Let S(r) be the projection offi;(r) on D=AxGF\ GA and U(r) 
the projection of fi;(r) on Ax BF\ GA. 

Let cp, ,Jr e d(11). Then, for a sufficiently large r, we have 

(4.1) J [cp, ,Jr]dg+J [cp*, ,Jr*]dg-J(cp, ,Jr, r)=O. 
D-S(T) U(r) 

Here cp*=cp-cp0 and dg is a Haar measure on Ax\GA. 

Proof Note first that, if r is sufficiently large, rfl;(r) n fi;(r) * 0 
(re GF) implies re BF. Hence the natural projection of U(r) onto S(r) 
is injective. 

Assume for a moment that cp is a C 00 function on GA satisfying the 
conditions (i), (ii) in no. 3 and having a compact support modulo AXGF. 
We have then 

for all ,Jr e d(11). Divide the integral above into two integrals each being 
taken over S(r) and D-S(r), respectively. However, by the preceding 
remark, the first one can be integrated over U(r) instead of S(r). Write 

[cp, ,Jr]= [cpo, ,Jr]+ [cp*, ,fro]+ [cp*, ,Jr*]. 

J [cpo, ,Jr ]dg 
U(T) 

=JJA/FL(,/cp 0
, tl((b n(~ ?)k)\a\A 1dxadxdk 

=JJA(rl[cp 0
, ,Jr0l((~ ?)k)\aLidxadk 

=J [cpo, ,frO]dg. 
U(r) 

Similarly, we see that 

J [cp*, ,Jr0]dg=J [(cp*)°, ,Jr0]dg=0, 
U(r) U(r) 

since (cp*}° = 0. Hence 

J [cp, ,Jr]dg=J Lepo, ,Jro]dg+J [cp*' ,Jr*]dg. 
U(r) U(r) U(r) 
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Suppose that v is real ; then 

L(})(t, g)=e-i(1-2i_+L)sil(a(et)g) a12 at a12 

=e-t(l +2p(D.))sa0(a(e1)g) 

or 

p(D.)sa0(a(et)g)= .lei(L-1)(})(1, g). 
2 a12 

Consequently, we have 

However, the same equality holds also for imaginary v. 

To integrate [sa0, ,fr0] over U(r), observe that the measure dg on U(r) 
is written as dg=2q\e- 2i\.dtdadkdn for 

g=na(et)(~ ?)k (n e NA, a e A1, t e R, k e K), 

where q=[F.: R]. 
Assume v is real ; then 

The fact that the support of So is compact modulo AxGF implies that sa0(g) 
=0 for gas above if tis large enough. We see immediately 

f [sao, ,fro]dg= -J(sa, ,fr, r). 
U(r) 

Assume now vis imaginary. Let K0 denote the subgroup {a(e'9)\0 e R} 
of K. We have dk=d0dk, dk being a right invariant measure on K0 \K. 
Let f=r+i0(,r, 0 e R). A simple calculation shows that 

-7/f _(Jj_ d0 f b [ a2(}) _ a2w ] 
o a12 a12 

_ 1 a f2"[~1Jt-(Jjaw]d0-i a f2"a(})'iftd0. 
4 a. o a. a-r: 2 a-r: o ao 
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Hence 

(~, (~ ?)k)d~dkda 

= -J(cp, ,Jr, r). 

This concludes the first step of the proof. 
The proof of the theorem can be completed by an approximation 

process. Let cp be any element in d(1J). By Lemma 1, there exists af in 
:YI' such that p(f)cp=cp. Denote by C0 the support off, and let be w a 
compact subset of NA such that NA=NFw. Then we can find a sequence 
Cn (n= 1, 2, ···)of compact subsets of GA such that 

U (the interior of Cn)=GA. 
n 

Let f3n be the characteristic function of the image of Cn on Ax G F \GA and 
put 'Pn = p(f)(f3n'P ). Then 'Pn is a c~ function on GA satisfying the condi­
tions (i), (ii) in no. 3 and its support is contained in AxGFCnC01• We 
have cp~ = p(f)(f3ncp0) and hence cp; = p(f)(f3ncp*). 

Every compact subset C of GA is contained in Cn _1 for sufficiently 
large n. Then we have cpn=cp, cp~=cp0 and cp';=cp* on C. Therefore, if 
the integrals in the equality (4.1) are absolutely convergent, we obtain (4.1) 
by substituting 'Pn for cp and letting n-HXJ. Since D- S(r) is compact, we 
even have cpn=cp on D-S(r) if n is large. By the same reason we have 
J(cpn, ,Jr, r)=J(cp, ,fr, r). It is known that cp* is rapidly decreasing so that 
the second integral in (4.1) converges absolutely. q.e.d. 

16. Corollary. In the notation of Theorem 6, assume that there exists 
a complex number l such that 

p(D.),fr=A,fr 

if v is real and 

p(D~)cp = lcp, p(D:,'),fr=A,fr 

if v is imaginary. Then we have, for large r, 

J(cp, ,Jr, r)=O. 
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Proof Sinl-e l~, t]=[~*, t*]=O, the assertion follows from (4.1). 
q.e.d. 

§ 5. Main theorems 

17. Let r; be a character of Ax;Fx as in no. 3. Let w be a homo­
morphism of :?l' into C. Consider the following subspaces of d (r;). 

d (r;, w)={~ E d(r;)\p(Z)~=w(Z)~ for Z E :?!'}, 

do(r;, w)=d(r;, w)ndo(r;), 

d 1(r;, w)={~ E d(r;, w)\(~, ~0)=0 for ~o E do(r;, w)}. 

By Lemma 4 d(r;, w) is the direct sum of do(r;, w) and di(r;, w). Our 
aim is to prove that di(r;, w) is generated by Eisenstein series or certain 
functions derived from them. 

Put w(Dv)=cv if vis real and w(D~)=c~, w(D':)=c': if vis imaginary. 
Let~ be any element in d(r;, w). Retaining the notation in no.6, we note 
that the function 

satisfies the following differential equations. 
Assume vis real; by (1.4) we have 

(5.1) 

A general solution of this equation is of the form aePt+beqt or (a+bt)ePt 
(p, q e C, a, b are constants) and the latter case occurs if and only if cv = 
-1/2. 

Assume vis imaginary. Since ~0 is right K-finite, u is a linear com­
bination of functions un such that un(t+i{})=einoun(t) with n E Z. Suppose 
that u itself has this property. Then we have (a/a0)u= inu and hence, by 
(1.5) 

~ [( a~ -2r-4+n 2+2n( a~ -2)]u=c~u, 

~ [( a~ -2r-4+n 2 -2n( a~ -2)]u=c':u 

or 
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! [ ( a: -2 r -4+n 2]u=(c~+c~')u, 

~ n(a: -2)u=(c~--ci)u. 
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We see that if the above equations have a non-zero solution, then the 
integer n has to satisfy 

(5.3) 

A general solution of the equations (5.2) is of the form aeP' +beq' or 
(a+ b1: )eP' and the latter case occurs if and only if c~ = ci = -1 /2. 

The above results may be resumed as 

Lemma 8. Let <p be in d(Y), cv). Then, in the notation of Theorem l, 
we have 

for x, ye AX, g e GA, where m=O, 1 andµ, v run through all quasi-charac­
ters of Ax;px such that µv=YJ· 

The term containing log a(xy- 1) occurs only if 

(5.4) c. = -1/2 or c~ = c~' = -1/2 for all u e P =· 

18. We fix any place u in P = and apply Corollary of Theorem 6 to 
<p e d(r;, cv) and ,fr e d(r;, cv'), assuming that 

according as u is real or imaginary. 
Let us introduce the following notation. Let X be a quasi-character 

of Ax;px, For x e F'{;, set 

X x -{x'(x>O) 
v( )- \x\'(x/\x\) 1 

if u is real. 
if u is imaginary, 

where s e C, I e Z. s and I will be denoted by s(X) and /(X), respectively. 
Further we set 

(f, g) = f Kf(k)g(k)dk 

for continuous functions f, g on K. 
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Let 

cp0( (~ ~)g) = I; a(xy- 1) 112µ(x)v(y) (log a(xy- 1))m ft,.11,(g), 

,tr0( (~ ~)g )= I; a(xy- 1) 112µ(x)v(y) (log a(xy- 1))mg,,.m(g) 

be the expression of cp0, ,tr0 as in Lemma 8. 
To calculate Jin Theorem 6, we assume that v is imaginary, for the 

real case is similar. Put t=i-+i0(-r, 0 e R) and q=[F.: R] as before. We 
have 

2J(cp, ,fr, i-)= I; (f,,.m, g .. n)(2qr+n 

X [(s-s' +2l)i-m+n+(m-n)i-m+n- 1]e<s+•'>•. 

Here we have put s=s(µv- 1), l=l(µv- 1), s'=s(Kl- 1) and the sum is taken 
over all m, n, µ, v, K, l such that m, n=0, 1, µv=Kl='fJ, the restriction of 
µK-1 to A1= 1 and l(µv- 1)=l(Kl- 1). 

Note that the left hand side is identically O for sufficiently large i-. In 
particular, the term with s+s' =0 must vanish identically, whence follows 
the equality 

Here K=p,- 1, l=V1. s=s(µv- 1), l=l(µv- 1) and the sum is taken over all 
pairs of quasi-characters µ, v such that µv = 'f/· 

If we interchange the role of cp, ,fr, the equality (5.5) turns to 

Combined with (5.5), it gives 

where, as before, K=p,- 1, l=V1. s=s(µv- 1), l=l(µv- 1) and (µ, v) runs 
over all pairs of quasi-characters such that µv='fJ· 

If v is real, we obtain the corresponding equality just putting I= 0. 

19. Let µ and v be quasi-characters of Ax/ px. A remark is neces­
sary about the eigenvalue of p(D.), p(D~) or p(D':) on f!,U(µ, v). Put s=s 
(µv- 1) and l=l(µv- 1). If vis real, then 

(5.7) p(D.)=½(s 2 - 1) id. 
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on !!J(µ, J.J). If vis imaginary, then 

(5.8) p(D~)= ~ (e1zr-1)id, p(D',:)= ( ( s;/r-1) id. 

on !!J(µ, J.J ). These formulas can be seen by the arguments in no. 17. 
Therefore, if(µ, J.J) is replaced by (;:;-1, µ- 1), then the eigenvalue c (resp. c', 
c'') of p(D.) (resp. p(D~), p(D'.:)) is replaced by c (resp, c", c'). 

20. We are going to prove that the space di(r;, w) is generated by 
Eisenstein series. First assume that the condition (5.4) is not satisfied for 
some v e P 00 • Let <p be in d 1(r;, w) and write <p as in Lemma 8. Then 
Jµ.,=0 for allµ, J.J, Write/µ.=/µ.o for simplicity. It is immediate to see 
that/µ. belongs to !!J(µ, J.J). Note that/µ. is an eigenfunction of p(D.) (or 
p(D~), p(D;,')) with the same eigenvalue as <p, if Jµ.:;t:O. 

It is convenient to assume always that, out of two pairs (µ, J.J) and 
(v, µ), (µ, J.J) is the one satisfying \µJ.J-'(x)\=a(x)"(x e Ax) with a>O. As­
sume further that(µ, J.J):;t:(a'12X, a- 112x) for all characters X of AX/Fx. For 
any element <j> of !!J(;:;-1, µ- 1), the Eisenstein series E(<j>) belongs to d(r;). 
Apply Corollary of Theorem 6 to <p and E(efJ). Since 

(5.6) implies 

for,ifs=l=0in the notation of (5.6) then Cv=-1/2 or c~=c;,'=-1/2 
by (5.7) and (5.8), which contradicts our assumption. Since <j> is arbitrary, 
we have 

Observe, for the same reason as above, that/µ.=0 if µ=J.J. 

21. An additional consideration is necessary if /µ. :;t: 0 for (µ, J.J) = 
(a112X, a- 112x), where X is a character of Ax/ Fx. In this case we must have 
r;=X 2 and c.=0, c~=c;,'=0 for all v e P00 • The function 

g ~ x ( det g) 

belongs to !!J(J.J, µ) and it is also an element of d(r;). We can apply 
Corollary of Theorem 6 to <p and X o det and obtain, by (5.6), 
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Lemma 9. µ and J.1 being as above, put 

Bl*(µ, J.1)={f e Bl(µ, J.1)1(/, X o det)=0}. 

Then we have 

Proof Denote by Uthe right hand side of the above equality. It is 
known that Bl,(µ., J.1.) is the subspace of all/ in Bl(µv, J.lv) such that 

f Kv f(k)X O det (k)dk= 0 

and it has the codimension 1 in Bl(µv, J.1.) (cf. [71). Let/. be an element 
in Bl(µv, J.10 ) such that 

BO(µv, J.lv) =CJ.+ BO,(µ., J.10 ). 

We may assume that/. is the characteristc function of Kv if x. is unrami­
fied. It is evident that, if f 0=®f., then 

BO(µ, J.l)=®v Bl(µv, J.lv)=C/0 + U. 

Since Uc&I*(µ, J.1) and (/ 0, X o det)=;t=0, we have U=BI*(µ, J.1). q.e.d. 

It follows from Lemma 9 and Lemma 6 that 

R(µ, J.1)¢=0 

for¢ e Bl*(µ, J.1). Putting <p(s)=¢o'' 2, we see that R(µa'' 2, J.1a-•'2)¢(s) has 
a zero at s=0. Therefore, 

is regular at s=0, because L(0, a 1+•) has a pole of order 1 at the same 
point. In conclusion, E(¢)=E(¢(s)),=o is defined for¢ e Bl*(µ, J.1) even if 
M(µa•12, J.1a-•12) has a pole at s=0. 

Now J~. is in Bl*(µ, J.1) as we have seen. Taking <p-E(fµJ in place of 
<p, we may assume /µ,=0. Let ¢ be any element in Bl*(µ, J.1) and apply 
Corollary of Theorem 6 to <p and £(¢). By (5.6) we have 

(/.µ, ¢)=0, 

which implies that /.µ is a constant multiple of X o det. In view of the 
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arguments in no. 20 and no. 22, we infer that there exists a certain linear 
combination ,Jr of E(fµ,) and X o det with X2=7J such that rp-,Jr is a cusp 
form. 

22. Next assume that the condition (5A) is satisfied for all v e P 00 , 

This time/µ, 1 belongs to Bl(µ, J.1). 
Let <f, be any element in Bl(r;- 1, ir') and apply Corollary of Theorem 

6 to rp and E(<f,). By (5.6) we have 

(fµ,1, M(;:;-1, µ- 1)¢,)+(f,,µ1, <f,)=0 

and hence 

M(µ, J.1)/µ,1 = -f.µ1· 

Now let if, be in Bl(µ, l.l) and put 

E'(<f,)=_!j__E(<f,(s)) •• 0 
ds 

for <f,(s)=<f,os12• Writing M(µa s12, J.1a-•t2)¢,(s)=<f,i(s)o-•t2, we have 

(E'(<J,W= ! [<f,(s)+<J,i(s)o-•12],=o 

= _!_ <f, log o _ _!_ <f,1(0) logo+ <pi(O) 
2 2 

=_!_ [<f,-M(µ, l.l)<f,] log o+<fii(O). 
2 

Observe that <J,i(s) belongs to Bl(J.1, µ) and so does <pi(O). Especially, if, 
µ=v, we have M(µ, v)= -1 so that 

(E'(<f,)}°=<f, log o+<fii(O). 

Replacing rp by rp-2 I;µ,e. E'(fµ, 1)- I; E'(/µµ1), we are led to the case 
where/µ, 1=/,,µ 1=0 for allµ, v. 

Assuming the above, let if, be any element in Bl(iT 1, µ- 1). Apply 
Corollary of Theorem 6 to rp and E(<f,). Then (5.6) gives 

and hence 



618 H. Shimizu 

It follows that 

is a cusp form, which has to vanish if cp e dhJ, (l)). 

23. The preceding results can be resumed ~s follows. 

Theorem 7. di(r;, (L)) is generated by all functions of the form 

d 
E(<j>), dsE(<j>(s)),-o and X o det. 

The functions of the second (resp. thrid) form appear if and only if 

(l)(Dv)=(l)(D~)=(l)(D:,;)= -1/2 (resp. 0) 

for all v e P 00 • <P and X can be arbitrary so long as the following conditions 
are satisfied: 

(i) <P is an element of Bl(µ, l,I ), where (µ, l,I) is a pair of quasi-characters 
of Ax;px such that µl,1=1), p(Z)<P=(l)(Z)<P (<Pe 81(µ, ].I), Z e ~) andjµv- 1(x)j 
a(x)a(x e AX) with a>O. 

(ii) Xis a character of Ax;px with X2=r;. 
(iii) If(µ, l,I) = (a112X, a- 112x), <P should be in 81*(µ, l,I ). 

Remark. Let(µ, v) be as in (iii). X o det is the residue of E(<j>(s)) at 
s=O for an element rp in Bi(µ, v) not in 8'*(µ, v). We note also that X o det 
is an element in PJ(v, µ) and E(X o det)=X o det. 

24. The holomorphic case. Assume that Fis a totally real number 
field. Let (L) be a homomorphism of~ into C such that 

for all v e P 00 , where m is a given positive integer. Let r; be a character 
of Ax;px_ The homomorphism (L) such that .91('1), (L))=i={O} is uniquely 
determined by m and r;. 

It is well known that every holomorphic Hilbert modular form of 
weight mis contained in I::~ d(r;, (l)). In the notation of no.5, put 

Let Ube an open compact subgroup of G 1 . Let Sm(1J, U) be the space of 
all cp in do('l}, (l)) such that 



Eisenstein Series in the Case of GL2 619 

(5.9) (kv E Kv, det kv = 1) 

for all v e P= and 

(5.10) p(u)rp=<p (u E U). 

Then the sum of Sm(r;, U) for all r; and U is essentially the space of holo­
morphic cusp forms of weight m. However, to define holomorphic forms 
not necessarily cuspidal, we need some additional conditions. For in­
stance, we let Hm(r;, U) be the space of all <pin d(r;, w) satisfying (5.9) and 
(5.10) such thatfµ, 1=0 for allµ, v in the notation of Lemma 8 andfµ,o*O 
only if 

(5.11) µvv;;-1(x)=xm-l (sgn x) 

for all v e P =· Then the sum of Hm(r;, U) is the space of holomorphic 
forms of weight m. 

By Theorem 7, every element in Hm(r;, U) n d 1(r;, w) is a linear com­
bination of Eisenstein series. In this linear combination, the functions 
E'(</>) do not appear by definition, also the functions X o det are excluded 
by (5.9). Hence we obtain 

Theorem 8. Let I be the set of all pairs (µ, v) of quasi-characters of 
Ax;px satisfying µv=r; and (5.11). Let 88(µ, v)u be the space of all right 
U-invariant elements in 88(µ, v). Then, every element in H 11,(r;, U) orthogonal 
to cusp forms is a linear combination of Eisenstein series E(</>) such that 
</> E 88(µ, v)u, (µ, v) EI. 

If m= 1, we find in [14] another proof based on the 'multiplicity one 
theorem'. 

25. Theorem 9. Every element in d(r;) is a linear combination of a 
cusp form and 

(n=O, 1, 2, · · ·) 

for certain functions <p in 88(µ, v) with µv = r;. 

Proof Consider the subspace of all <p in d(r;) satisfying 

or 
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for all v e P 00 , where Ne Z,>O and cv, c;, c~' e C. Denote this space for 
a moment by VN. If(µ, ll) is such that 

(5.12) 

then 

p(Dv)=Cv id. 

p(D',;) = c',; id. 

or p(D~) = c; id., 

on !!J(µ, ll) for all v e P 00 , 

(<p E !!J(µ, ll)) 

belongs to Viv (here O<n <2N if (5.4) is satisfied and O<n <N otherwise). 
Let cp be any element in VN. Write cp0 as in Theorem 1. Iffµ,m=i=O 

and m is the largest integer with this property, then Jµ,m e !!J(µ, ll) and 
(µ, ll) has to satisfy (5.12). 

First exclude the case where (5.4) is satisfied. Then it is easy to see 
that m<N and that if /µ,N-i=O for allµ, ll, then cp e VN-i· Fixing ave 
P ®' apply Corollary of Theorem 6 to (p(Dv)-cv)N- 1cp (or (p(D;)-c;)N- 1cp) 
and E(,fr) with an arbitrary ,fr in !!J(,:;-1, p.-1). It yields 

M(µ, ll)/µ,N-l=(-I)N-lf.,µN-1· 

However, if cv = c~ = c': =0 for all v, we proceed as in no. 21; note that if 
<J>=X o det, then 

withfn e !!J(rx.112, a- 112). In any case it can be shown that cp- I: EN_1(</>) 
belongs to VN-i for a suitable choice of functions <J>. 

The case where (5.4) is satisfied can be treated similarly. By the in­
duction on N we see that our assertion is true for the elements in VN. 
Since d(TJ) is the sum of all subspaces like VN, this completes the proof of 
the theorem. 
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