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The Space of Eisenstein Series in the Case of GL:

Hideo Shimizu

Introduction

It is known in the classical cases and also expected to be true in
general that every antomorphic form orthogonal to cusp forms is a linear
combination of Eisenstein series. Among the classical and recent references
are Hecke [6], Kloosterman [8], Gundlach [4], Maass [11], Roelcke [13],
Shimizu [14], Shimura [15]. [6], [8], [4] and [14] treat holomorphic cases,
while [11] and [13] treat real analytic cases. [15] proves the most general
results known so far for Hilbert modular groups (it discusses also the case
of half-integral weights).

In this note we consider the group GL, over an arbitrary number
field, to show that the assertion in the biginning is valid for automorphic
forms on that group which are eigenfunctions of bi-invariant differential
operators; here we understand that ‘a linear combination’ of Eisenstein
series includes a process of taking derivatives or residues with respect to a
parameter.

We do not try to make our exposition self-contained. In fact, the
automorphic representation theory and the fundamental property of
Eisenstein series (analytic continuation etc.) are assumed. As to the first
subject the basic reference is Jacquet-Langlands [7]. As to the second
subject there are many references: Langlands [10], Harish-Chandra [5],
Kubota {9], Gelbart-Jacquet [3], Arthur [1], Shimura [15].

This note is based on the lecture given at Nagoya University, De-
cember 1984. The author wishes to express his thanks to the Mathematics
Department of Nagoya University for giving him an opportunity of
discussing this topic.

§ 1. Automorphic forms

1. Throughout this note F denotes an algebraic number field of
finite degree. Let G be the group GL, viewed as an algebraic group over
F so that Gp=GL,(F). Let P be the set of all places of F and P, (resp.
P_) the set of all finite (resp. infinite) places in P. For ve P we write
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586 H. Shimizu

simply G, for G, = GL,(F,) where F, is the completion of F with respect
to v. If K, is a standard maximal compact subgroup of G,, the adelized
group G, of G is by definition the restricted direct product of G, for v in

P with respect to K,.

The groups K, can be defined as follows. Let o be the ring of inte-
gers in F and o, the closure of 0 in F, forvin P,. If v is in P;, we set
K,=GLyo,). If visin P,, K, is the orthogonal or unitary group of
degree 2 according as v is real or imaginary.

2. Definition of the Hecke algebra associated with G. For v in P,,
let o, be the space of all C-valued, locally constant and compactly sup-
ported functions on G, (a function is said to be locally constant, if it is
constant on a neighborhood of each point). For vin P,, let 57, be the
space of all C-valued, compactly supported C* functions f such that the
system of functions

{g—>f(kg)lk e K.} U{g—>f(gh)k € K.}

on G, spans a finite-dimensional space. In either case, #, forms a C-
algebra, the multiplication being the convolution

ffi(g) = f _ F(eD S,

Here dh is a Haar measure on G,. 27, is called the Hecke algebra on G,.

Let us fix a certain notation. Let f be a function on an abstract
group G and % an element in G. The right (resp. left) translate p(%)f (resp.
AW [) of fis a function

(o)) (&)=1(gh)
(resp. AW f)(@)=/f(n""g))

on G. H being a subgroup of G, we say that f is right H-finite, if
{p(h)f|h e H} spans a finite-dimensional space. Left H-finiteness is defined
similarly.

Let K be a compact group. For a finite-dimensional irreducible
representation ¢ of K, we set

&,(k)=(dim o) tr g(k7) (k e K).

A function on K of the form £é=3 &, (where ¢ runs through a finite set
of distinct irreducible representations of K) is called elementary idem-
potent. Infact, it is an idempotent with respect to the convolution product
on K, i.e. &x&=¢. This follows from the orthogonality relations of matrix
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entries of irreducible representations. If D,, D, are finite sets of distinct
irreducible representations of K such that D,C D, and if

61:‘ Z Eva 52:: Z an
o€D1 o€Dg
then we have &*&,=§&x& =§&,.
Assume that K is a compact subgroup in a topological group G. For
continuous functions f and & on G and K, respectively, we put

eef(e)=|_&t)rtkg)ak.
fxE(g)= f Sk ek,

where dk is a Haar measure on K with the total volume 1. It is easy to
see that fis right (resp. left) K-finite if and only if there exists an elementary
idempotent & on K such that fx&=f (resp. &éxf=f).

Now let v be in P, and f an element in J#,. Since f'is locally constant
and compactly supported, we can find an open subgroup H, of K, such
that fis constant on the cosets of H,. In particular f is both right and
left K,-finite. Note that the same property of fis implied in the definition
ifveP,.

For v in P,, denote by f? the characteristic function of K,; it belongs
to J#,, since K, is open and compact. Let

f’:@veP‘f@

be the restricted tensor product of s#, for v in P with respect to {fJ|v e P,}.
It is the set of all linear combinations of &,f, such that f, e 5#, for all
ve Pand f,=f? for almost all v. An element f=@Q,f, may be identified
with a function

J@=Il./g)  (g=(8.) e GY

on G, so that ## may be viewed as a function space on G,. We call s#°
the Hecke algebra on G,.

Put K=[],.pK,- An irreducible representation ¢ of K is a tensor
product of irreducible representations ¢, of K, for ve P. Then we have

§E=1,¢..(k)  (keK).

It follows that, if & is an elementary idempotent of K, then £xfand fx§&
belong to s for all fin 2.
Let ¢ be a continuous function on G, and fin 5. We set
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oNete) = olan)fan

dh being a Haar measure on G,. The integral above converges, since f is
compactly supported. If & is an elementary idempotent of K, we often
write p(&)p =&, where £(k)=£&(k~") for k ¢ K.

3. Definition of automorphic forms on G,. Let 5 be a character of
A*[F*, i.e. a Grossencharacter of F. An automorphic form (with a
character 5) is a continuous function ¢ on G, satisfying the following
conditions.

(1) ¢T28)=1(Dp(e) (7 € Gr, z€ A%, g € G.

(ii) ¢ is right K-finite.

(iii) For every elementary idempotent £ of K, the space {o(&/)e|f

€ s} is finite-dimensional.
(iv) For every compact subset C of G, there exist real constants M,

N such that
(59| v

for all a e A% with |a|,=1and ge C.
The space of all automorphic forms (with a character ) is denoted by
o (7).

Let R, be the set of all positive real numbers. Identify # ¢ R, with
an element g=(g,) in 4% such that g,=1(ve P,), g,=t (ve P.). Put
A'={a e A%||al,=1}; then we have 4*=A"XR,.

Let w be a compact subset of 4, o' a comapct subset of 4' and c a
positive real number. Let © be the set of all elements in G, of the form

1 x\fa O
Z(o 1)(0 1)"
such that z e 4%, x € w, a € A%, |a|,=c¢, the projection of a to 4" is in ',
and ke K. ©is called Siegel domain. Tt is well known that there exists
a Siegel domain & such that G,=G,©&. Hence the condition (iv) above
gives an estimation of || on a Siegel domain. We say that a left G-
invariant and 4*-finite function ¢ on G, is slowly increasing, if it satisfies

@iv).

For an automorphic form ¢, we set

wo-[ (D) o
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¢ is called cusp form if ¢*(g)=0 for all g in G,. The space of all cusp
forms in /() is denoted by o7 ().

4. In the following we collect some results on automorphic forms,
supplying a proof whenever it is convenient for our purpose.

Let G, and G,, be the finite and infinite part of G,, respectively;
namely

G,={geGjg,=1 forallve P},
G.={geG/g,=1 forallve P,}.

We write an element gin G, as g=g,g.. with g, € G,, g.. € G...

Lemma 1. For every ¢ in A(y), there exists an element f in S such
that o=p (f)p.

Proof. Since ¢ is right K-finite, there exists an elementary idempotent
& of K such that p(&)p=0pxE=¢. V=p(&x#)p is finite-dimensional by the
definition of automorphic forms.

If 1 e &x5x&, then p(A)VC V. We denote by p(h) the endomorphism
of V induced by p(h). Now there exists a sequence {f,} of compactly
supported continuous functions on G, with the following nroperties.

1) suppf, converges to the unit element 1 of G, -

2) f,=0,

3) LAJ’ndg: L

4) f, can be written as f,(g)=11(g,) /. (g.), where f, is a locally
constant function on G, and f7/ is a C* function on G...

For any continuous function ¢ on G,, p(f,)¢ converges to ¢ uni-
formly on a compact set. Especially, if o(&)¢=¢, then p(h,)¢ converges
to ¢ for h,=£&xf,x&. We see that there exists an element £ in &xs#x& such
that p(h) is as close as we wish to the identity transformation of ¥ so that
det p(h)=£0. Let > 7 ,a,X" be the characteristic polynomial of g(%). Then

f=—a7' > a

(At =hx- - - xh (i times)) belongs to &x#x& and p(f)=1. Put ¢, =p(h,)p
e V; then p(f)p,=¢,. Letting n— o0, we have p(f)p=0¢. q.e.d.

Let g be the Lie algebra of G., %(g.) the universal envelopping
algebra of g®C and & the center of %(gy). For a C~ function ¢ on G,,
(or on G4, regarded as a function of g..) and for X ¢ g, we put
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a

o(X)p(g)= yr

(g exp tX)].—o,

HX0p(8) =2 p(exp (= 08

It is well known that p (resp. 1) can be extended to a homomorphism of
%(gc) onto the algebra of left (resp. right) invariant differential operators
on the space of C* functions on G... If Ze &, then p(Z) is bi-invariant,
i.e. commuting with right and left translations.

Lemma 2. Every ¢ in A(y) is Z-finite; namely {o(Z)p|Z e £} is a
finite-dimensional space.

Proof. Let & be an elementary idempotent of K such that p(§)p=¢.
Since p(Z) commutes with right translations, we have o(§)p(Z)p = p(Z)p(&)p
=p(Z)p. By Lemma 1 there exists a fin 5# such that p(f)p=¢, then we
have

o2xol&)=p(@)[olehf (yan
=[ eten@)rtin=pa2)100).

Evidently A(Z)f e o#. Hence {p(Z)p|Z e Z} is contained in p(§x#)p,
and the latter space is finite-dimensional. q.e.d.

5. p(Z) can be described as follows. G, is the direct product of G,
for ve P, and G,=GLy(R) or GL,(C) according as v is real or complex.
If g, is the Lie algebra of G, and &, the center of %(g,¢), then

gz@veﬂngv'

Hence it is enough to consider the action of & component-wise.

1) The case of real v. Let gl, denote the Lie algebra of 2 by 2
matrices. The Lie algebra of Gr=GL,(R) is identified with gl,(R) and
gLR®C=gl(C). Put

(10 (1 0 (01 (01
=0 1) x=(o 1) ¥=(t o) ¥=(_10)

and define an element D in #(gl,(R)) by
D=}(X1+X1—X}).

The center & 5 of %(gl,(R)¢) is a polynomial ring over C generated by J
and D.
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The action of J is obvious. To express p(D), put

w=( 7 ao=(F L) ko=(_5=] )

and write g € G, det g0, as
g=zn(x)a(y'"k@  (z>0, y>0).
With these coordinates, we have

oxt 9yt 0x00

2) The case of imaginary v. The Lie algebra of Go=GL,(C) is
identified with gl,(C) regarded as a real Lie algebra. We have

gh(CRC=gl(CDgly(C),
where X=X®1I is identified with (X, X) for X e g[,(C). From the em-
beddings i,: X—(X, 0) and i,: X—(0, X) we obtain the isomorphisms i
and 7, of (gl (C)) into % (gl,(C)Pgl,(C)). Then the isomorphism
%(Gl(CRAU(GLAC)—>U(gly(CIDgl(C))

is induced by X@Y—i,(X)i(Y)(X, Y e %(gl,(C)). Identifying the both
sides by this isomorphism, we get

PX®D = p(i(X) = - (X) — (),
o1®X) =p((X) = - o)+ —-p(i).
for X e gl,(C), since
(X, 0= (X, H)— (X, i),
0. )= (X, )+ (X, —iX).
Hence

i d ,
p(X®1)so(g)=—;——jt—so(g exp 1X),-q— -~ p(g exp 11X,



592 H. Shimizu
H(1®X)p(e) =~ o (g exp 1,0+ L L (g exp 1),
2 dt 2 dt
or regarding ¢ as a complex variable, we have
p(X®Np(e)=Lo(g exp 1X),-
p(I@X)ple)="2-4(g exp 13,0

The center %, of %(gl,(C)¢) is a polynomial ring over C generated
by J®1, D1, 1QJ, 1QD. |Let B (resp. N) be the group of upper tri-
angular (resp. unipotent) matrices in G. Let R be a complete system of
representatives of B;\ G in G and write g € G, as

g=znah, n=n(x), a=a(y'"*)

with z, x, ye C, he R (here we set y/*=exp (} log y), taking a certain
branch of log y). Then it follows from the bi-invariance of p(D®1) that

p(P&De(g) = p(h) (o(DRDp)(zna)
= o(DR1)(o(h)p)(zna).

Put U= (8 (1)) We have

P(X1®1)P(h)90(zna)=%?(Zﬂa(yl/z)a(et)h)mo=2y %go(g),

p(UD)p(h)p(zna)=p (Ad (a) U p(ah)p(zn)

=%so(zn(x)n(yz)ah)m:yaﬁ);go(g),

because Ad (a)U=aUa"*=yU.
Suppose that the representatives in R are taken from SU(2). We
have

X1=QU— X, =4U+ X2 —2AUX,+ X,U)
=40+ X2 —AUX,—2X,

(since X,U— UX,= X)), and

D=}(X1+X3—X)=1X1—X,+2U(U—Xy).
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Note further that

p((U—Xa)®1)=%p(U—Xa)—%p(l’(U—Xa))

1 i .
—2—P(U— X:)— ‘Z“P(I(Xz -0))

=p(1®U)——p(X) — -o(iXy).
We finally obtain
3\ ) a(_d
12 DRI =[2( _) 29 49 ~( _)]
(1.2) o(D@1)p(g) yay yay+ e b o(g)
—yj—x [o(X,) + ip(iX)]o(h)p(zna),
where, by definition,

pXDolp(ana) = o(znak(t)h).-.,

pX)p()pzna) = p(anam et

with w,= (? (1)) Especially, if ¢ is left N -invariant, then
7\ 0

(1.3) p(D®Np(g)=2]( y—) —ry—|(g).
oy oy

A similar expression is valid for p(1QD).
Let ve P,. If vis real (resp. imaginary), denote by D, (resp. D,,D)
an element @, ep Z, it Z=Qyep %, such that Z,=1 (w+£v), Z,=D

(resp. D®1, 1®D).

6. We fix a non-trivial character +» of A/F.

If o e (7)) and g € G4, then
1 x
({0 1)e)

in a function on A invariant under the translations x—x-+¢& (€ € F).
Therefore it has a Fourier expansion of the form
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o((5 1)) =5, cle e

cle, 8)= J‘A/FSD(((I) T)g)\[f(—ax)dx,

where dx is a Haar measure of 4 such that the total volume of A/Fis 1.

Obviously

o0, 9)=¢e). el )=c(1, (§ )g) (@0

so that, putting W, (g)=c(l, g), we have

so(((l) ’f)g) = 9o°(g)+aé‘;.x Ww((g‘ ?)g)«[r(ozx).

It is evident that the mappings ¢—¢° and ¢— W, commute with the right

translations.

The constant term ¢° of the Fourier expansion plays a principal role
in our investigation. ¢° is Z-finite, since ¢ is so (Lemma 2), and it is left

N -invariant, where N is the group of upper unipotent matrices.

Let 4

be the group of diagonal matrices in G. Then we have G,=N,4,K. Fix
a place v in P,, and identify a(ef) for ¢ e F, with an element in 4, such

that the v-component is a(e’) and all the other components are 1.

ke Kand ae A, with a,=1, we consider a function

u(t)=¢ale’)ak).

If v is real, then

(1.4) oL a(eat)=[ (2 ) — 2 Juto).

If v is imaginary, write f=r-if with z, § € R; then we have
(L.5)  p(D)e(alet)ak)
=1 [(i)2_4 9 _ <_a,)2 _2i(i_2>i] ")
8 L\ oz ot a0 or a0
o(D))pale’)ak)

-HE -G ) oo

For

Recall that ¢° is Z-finite and right K-finite. The above equalities imply

that, if we put
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2 2
L-L(2Y-2  (rep. (2 )42
2 \ot ot ot ot
for real (resp. imaginary) v, then L™u (n=0, 1, 2, --.) span a finite di-
mensional space V.
Let f(x) be the characteristic polynomial of L on V. It is easy to see

that every solution of the differential equation f(L)u=0 is a finite linear
combination of |e®*|(Re t)" (p € C, m e Z, m=0) as a function of Re .

Lemma 3. ¢° is left A finite.
Proof. ¢° is left (4, K)-finite, since it is right K-finite (if # € N,,
ae Ay kek, a e A4NK, then ¢*(anak)=¢%aa,k)). Forve P, put
. x 0
A ={<o y) € A,|x>0, y>0}.

It follows from the preceding remark that

‘DO(C)C 2)“") (ae Ay keK)

is, as a function of x and y, a finite linear combination of x?y? (log x)™X
(log )" (p, g€ C, m, ne Z, m, nz=0). Therefore, ¢° is left A7-finite.
Since 4,=A4;} (4,NK,) for ve P, and 4,/4,(4,N K)A,, is a finite group,
our assertion follows. g.e.d.

Denote by | |, the normalized valuation of F,(v ¢ P) and put
llx\AZHvePlxvlv (XGA).

We write occasionally a(x)==|x],.

Theorem 1. For every ¢ in (y) and g in Gy, go“((g g)))g) is, as a

Sunction of x and y in A%, a finite linear combination of c(xy~")"*u(x)w(») X
(log a(xy=9)™, where m € Zz=0 and p, v are quasi-characters of A*|F* such
that py=ny; in other words we have an expression of the form

A((§ 3)g)=, 2 e () (og aCey™ N (o)

with certain functions f,,,.

Proof. Put
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A= {(6'a) < 4

We identity a positive real number ¢ with an element in 4% such that the
v-component is ¢ for any v e P,, and all the other components are 1. Then,

putting
+ _[(t. O
4:={(¢ 1)

we have A,=AY X A5, ¢%ak)(ae Ay, k e K) is, as a function on 43, a
linear combination of

EAVETAN =1}

tl’ tZ € R+}’

tPte (log t)™ (log 1,)" (p,qeC,m,ne Z, =20)

(cf. the proof of Lemma 3). By Lemma 3, if it is regarded as a function
on A, it is (44/F*)-finite and hence is a linear combination of

Xi(a)Xy(as),

where X, and X, are characters of 4,/F*. Noting that ¢°(zg)=7(2)¢"(g)
for z e A%, we get our assertion for g=k. Evidently, k¥ may be replaced

by any element in G,. q.e.d.

7. Forevery ¢ in 2/(), the space {o(Z)p|Z e %} is finite-dimensional
by Lemma 2. Hence Z—>p(Z)p defines a homomorphism of % into the
endomorphism algebra of this space, whose kernel is an ideal of finite co-
dimension. qa being any such ideal of &, we set

(1, W)={p e Z(n)|p(Z)p=0 for Z ¢ a}.

Then «/(y) is a union of &/(y, a) if a runs through all ideals of & of finite
codimension. Let 2/ (3, a) be the space of all cusp forms in 2/(z, a).

Theorem 2. For every elementary idempotent & of K, the space
p() A, a)={p e Ay, D) p(§)p=¢}
is finite-dimensional.

The theorem asserts that the cusp forms of a given ‘type’ make up a
finite-dimensional space. cf. [7, Proposition 10.8], [5, Theorem 1].

We say that a 4*-finite and left G-invariant function ¢ on G, is
rapidly decreasing, if for every compact subset C of G, and for every
N>0, there exists a M >0 such that
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o((§ 9)e|=miamr  @ealalzlge 0.

It is known (cf. [7, § 10], [5, § 4]) that every cusp form is rapidly decreasing
so that if ¢, e &7(y) and ¢, € &(y), then |¢,p,| is bounded on G,. Hence
the inner product

(@n so2>=j ol )p@)de
AXGF\G4

can be defined for ¢,, ¢, € /() whenever either one of ¢,, ¢, is a cusp
form.

Lemma 4. Put
A, )={p € L (9, D(p, p)=0for all p, ¢ (9, O)};
then we have
A (1, @)=L, )DL (7, ).

Proof. Let & be an elementary idempotent of K. For ¢ ¢ #/(y) and

@, € (), we have (&), )= (o, p(§)p,) and hence (o(&)p, (1 —p(£))p,)
=(p, p(&)(1 —p(&))ep)=0. Let{gp,, ---, ¢,} be an orthonormal basis of
0&) Ly, a). If ¢ is in p(£)L(y, a), then

«lf——‘so—-iZZ;(% P:)P;
is orthogonal to p(§).7,(p, a). Consequently, it is also orthogonal to
A (1, @)=p(&)Z (0, ©)+(1 —p())Z (7, ).
This proves that
p(&)sZ (g, @) Cp(8) (9, @)+ (n, @)
and, since .2/(), a) is a union of p(£)(y, a) for all &,
A (0, )= (n, )+ (7, a).
That the sum above is direct is obvious. q.e.d.

The Hecke algebra 57 is made to act on /() by o—p(fl¢ (f € 7,
o e (n). &y is then a #-invariant subspace.
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Theorem 3. Regard </ () as a representation space of #. Then
() is a direct sum of irreducible subspaces, on each of which the repre-
sentation of H# is admissible. Moreover, the multiplicity of every irreducible
representation of A in of (n) is at most 1.

cf. [7, Proposition 10.9], [2]. As for the multiplicity one theorem, cf.
[7, Proposition 11.1.1}, [12].

§ 2. Induced representations

8. In this section we quote from [3, 7] several results needed later.
Let (1, v) be a pair of quasi-characters of 4*/F*. Let %(u, v) be the
space of continuous functions ¢ on G, satisfying the following conditions.

. a x a [?
i) gp((o b)g): Bl waw(B)p(g) fora, be A%, x e A, g e Gy

(i) ¢ is right K-finite.
Let z(y, v) denote the representation of # on #(y, v) defined by the right
translation p.

A space analogous to the above can be defined locally; namely,
(1> v,) being a pair of quasi-characters of F for v e P, let #(y,, v,) be
the space of continuous functions ¢ on G, such that

. a x a |2
(i) 50((0 b)g>=);|v t(@v(@)p(g) fora, be F}, xeF, geG,,

(i) ¢ is right K -finite.
We then obtain a representation z(u,, v,) of 5, on #(y,, v,) in the same
way.

If ., and v, denote the v-components of ¢ and v, respectively, then
#, and v, are unramified for almost all v. For such a v, there exists a
function ¢} in #(y,, v,) such that ¢{=1 on K,. We see that

'@(#3 I") = ®v€ P'@(ﬂw Vv)'

where the right hand side is the restricted tensor product with respect to
{9},  Also it is evident that

o(Neo=Q, ¢ ro(fo)py

iff=Qf, e # and p=Qp, € #(u, v) (note that p(fDe=¢), f, being the
same as in no. 2). In this sense the representation x(y, y) of o is the
tensor product of the representations z(g,, v,) of H#,.

For ¢, € #(u, v) and ¢, ¢ Z(z™", 57') we set

(@5 goz)=j ¢1¢z<k>dk=j 0i8)dg,
K BA\GA
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dg being a right invariant mesaure on B,\G,. It defines a non-degenerate
pairing on Z(y, v) X #(z"", 5~') and we have

(771(./{)%, ﬂz(f)ﬂoz):(SDla SDZ)

for f e o, where z,=x=(y, v), 7,=n(z"", 57").
Put w= (_(1) (1)) Write s™'=| |3X with s € C and a character X of
AX[F*. Assuming that Re s>>1, define an operator M(2, y) on %(y, v) by

MQ, /J)Sﬁ(g):Lga(w ((1) ’f)g)dx.

It is easy to see that M(2, p) maps #(2, p) into #(y, o). Further-
more we have

M(p, V)my(f)=m(IM (g, v)
for f e A, my=n(y, v), my=xn(, p) and
(M (g, V)p1> ) =(p1, M, 27 )py)
for o, € By, v), g, € BG, o).

9. We recall a few facts on the zeta functions of local fields. Let V
be a vector space of finite dimension over F,. Let (V) denote the space
of Schwartz-Bruhat functions on ¥ (if v e P,, it consists of all locally con-
stant and compactly supported functions on V; if v e P,, it consists of all

rapidly decreasing functions on V).
Let f be in ¥(F,), X a quasi-character of F} and s e C. We set

2 9= fonojas

If % is a character, the integral converges for Re s>>0. There exists an
Euler factor L (s, X) such that Z(f, X, s)/L(s, X) is continued to an entire
function for all f'in &(F,). Fixing a character + of F,, we obtain a func-
tional equation

Z(f; X—ls 1'—S) =E(S, X, \b’) Z(f: Xa S)

L(1 =5, 179 L(s, %)

where &(s, X, ) is an exponential function of s and

Feo={ o).
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L(s, X) is explicitly known.
1) vep,
sy —1 : . .
L(s, X)= {(1 —Xa,)| @, ) if £ is \'Jnrarmﬁed,
1 otherwise.

Here w, is a prime element of F,.
2 velP,
If v is real and X(x)=|x|" (sgn x)™ with r e C, m=0, 1, then

L(s, X)Zn—(s+r+m)/2r<w)_
2

If v is imaginary and X(x)=|x[;x™x" with r € C, m, n € Z, mn=0, then
L(s, X)=2Q2z) C*m*™* " [ (s+r+m-n).

Let X(x)=[],X,(x,) be a quasi-character of A*/F* and +(x)=
I o¥(x,) a character of 4/F. Put

L(S, X): HvePL(s’ Xv)s
e(s, X)———‘ HvePE(sa Xys '\!”v)

Then L(s, X) can be analytically continued to the whole s-plane and satis-
fies the following functional equation.

L(s, N)=e(s, )L —s, X7Y).

10. For @ e #S(F,X F,) and g ¢ G,, put

. _ @t DIl [ 0 gyumei()d
(3 o v O)= £ TEEOVEEIE [ 0(0, Doz Ottt

The right hand side may be written as
o (det g)|det g Z(f,(5y0> v DIL(L, prov7)

with f5,(t)=0((0, 1)) and p(g)P(x, »)=D((x, y)g). In this form it makes
sense for all y,, v,.

Lemma 5. Let @ be an element in S (F, X F,) such that the functions
o(k) D (k e K,) span a finite-dimensional space. Then ¢( ; pt,, v,, D) belongs
to By, v,). Conversely, assume that p,v;*=| |JX with a character X of F¥
and s e C , Re s> —1; then, for every ¢ in B(u,, v,), there exists a @ in
S (F, X F,) such that g=o( ; p,, v,, O).

Proof. The first assertion is obvious if the integral defining
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o( 5 por vy» @) converges. It holds in general by analytic continuation.
To prove the second assertion, we first assume that ve P,. Fora
given ¢, define @ as follows:

O(x, y)=p;" (det g)o(g)

if (x, »)=(0, g for g e GLy(0,) and equals 0 otherwise. It is easy to see
that the function @ has a required property.

Next assume that ve P, is real. Write p,u;'(t)==|t] (sgn t)™ with
seC, m=0, 1. Let ¢,(ne Z) be an element in %H(y,, v,) such that
0.(gk(@) =e"¢,(g) for ge G,, k() e SOQ2). Since {p,|n=m (mod 2)}
forms a basis of #(y,, v,), it is enough to prove the assertion for each ¢,.
Put

D(x, y)=e~ "1 (x+i (sgn n)y)'*!;
then
D((x, Yk(B))=e"D(x, y).

By a simple calculation we see that ¢( ; p,, v,, @) is a constant multiple

of ¢,.
Finally assume that v ¢ P, is imaginary. Write

Loy (t)=(t7) @ ap

withse C,a,be Z, =0, ab=0. We note that SU(2) acts on #(y,, v,)
by the right translation. Denoting by p, the n-th symmetric tensor repre-
sentation of SU(2), let #(u,, v,, p,) be the space of all elements ¢ in
% (., v,) such that the representation of SU(2) in a linear span of p(k)p(k €
SU(2)) decomposes into a direct sum of p,. Itis known that p, occurs
in %(y,, v,) with a multiplicity <1 so that the above subspace is irre-
ducible. Further we have

'@(‘um yv): C_B '@(‘uv’ Vys 40")

nza+b,n=a+b(2)
Put
@(x, y):_e—h(zi+ yg‘/)yb +mJ—)a +m

for n=a-+b+2m(me Z, =0). We can show that o( ; g, v,, D) is a
non-zero element in #(y, v,, p,). Since the mapping @—( ; py, vy D)
from S(F, X F,) into %(u,, v,) commutes with the action of SU(2), our
assertion follows. g.e.d.
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11. Let M(y,,v,) be the mapping from %{y,, v,) to B(v,, u,) defined
by

M vdo(e)= [ o((g 7)e)a

The integral converges for Re s>>0 in the notation of Lemma 5. Let @ be
the Fourier transform of @ in %(F, X F,) with respect to the pairing

{(x, ), &, )= (yx’ —x)'):
d(x, y>=” B, Y o9 — 3y ) dy

Assuming that —1<{Re s<1 in the notation of Lemma 5, consider
o( 5 v to @) as well as o( 5 for v,y D). We are going to see that if
(5 for Vo P)=0 for @ e L (F, X F,), then ¢( ; v,, p,, ©)=0 also so that

R(ﬂw Vv): SD( 5 ,uva Yos Q))'—)ﬁv”v(_l)go( 5 Vys /—lv’ éj)

is a well defined mapping from %#(u,, v,) into Z(v,, p,).
Observe that B,wN, is dense in G, and hence an element in %(y,, v,)

is determined by its values at w(é T) (x e F,). It is easy to see that, for
M>0,

f!ztugM 43((0’ ) W(é 36))#””;1(0\ tod*t .
=”{I]“0§M@(ty, tz)ﬂvugl(t)]tlvdxt}«[fv(z—-xy)dydz.

If o(g; s v, @)=0 for all g e G,, the right hand side can be written as

[[{] 0w, mpsiiase e —x)dvds.
1tlo>M
Ifve P,, O(x, y) has a compact support and if v e P, then

|2(x, y)|<const. (x [+ D7 (yE+D7

It follows that the above integral tends to 0 if M—>oco.
By virtue of the functional equation of a local zeta function, it can be
shown that

L, pyyh
M vy Yo) = it R s Yo
(bor 2= T o, it gyt 2
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if 0<Re s<1. Note that, for —1<<Re s<1,

R(ve, )Rty ) =id.

In view of the above equalities, we infer that the both R(y,,v,) and
M (y,, v,) can be analytically continued to all y,, v, and R(y,, v,) is holo-
morphic for Re s> —1.

Suppose that, for v e P, y, and v, are unramified and the conductor
of 4, is 0,. Let ¢J (resp. @) be the unique element in %(y,, v,) (resp.
B(v,, 1,)) Whose restriction to K, is identically 1. If @ is the characteristic
function of 0,X0,, we have ® =@ and

[ 2 ypproitaxs
=L pw ()| tldt

=2 poy (@) @y
=L(1, p,vyY).

Hence ¢( ; py, vy D)=0); by definition we see that R(y,, v,)pd=¢.

Now, let x4, v be quasi-characters of 4%/F*. Let R(y, v) be the map-
ping from %(y, v) to #(v, p) defined as a tensor product of R(u,, v,) for
ve P:

R(ﬂs v)‘/’ = ®0R(ﬂv’ vv)so'u

for o=Q,¢, € B(y, v). This definition makes sense because of the preced-
ing remark. We have then

LO, ™)
L(1, w10, ™)

= L, vp™)
=L ey )

My, v)= R(y, v)

and
R, Ry, v)=id, M@, My, v)=id.
Theorem 4. Write p=| [{*X,, v=| 3%, with s e C and characters

Xy %y of AX[F*. Then M(p,v) can be analytically continued to a mero-
morphic function on the whole s-plane and satisfies the functional equation

M@, My, v)=id.
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In the region Re s> —1, it has a pole only at (¢, v)=(| [{*4, | |2¥*X), where
X is a character of A*|F*.

The last assertion follows from the known property of L(s, X).

12. The notation being the same as in no. 8, consider, as before,
(., v,) as a representation space of ,.

(1) Forve P;, By, v,) is reducible if and only if pv;'=| |, or| |;*
([7, Theorem 3.3]).

(2) For a real v in P, #(y,, v,) is reducible if and only if there
exists a pe Z, p#0 such that g7 (x)=x?sgn x (x € FY) ([7, Theorem
5.11D).

(3) For an imaginary v in P., %#(u,, v,) is reducible if and only if
there exist p, g € Z, pg>0 such that p,v;'(x)=x?x? (x ¢ F}) ([7, Lemma
6.1]).

In either case, if #(u,, v,) is reducible, #(y,, »,) has the only one
irreducible subspace, which is denoted by # (v, v,) or % ,(u,, v,) according
as its dimension is finite or infinite.

Lemma 6. Write pv;'=| |JX with s € C and a character X of F}. If
Re s>0 and %(y,, v,) is reducible, then R(u,, v,) maps %(p,, v,) onto
B (Vo ), and its kernel is B,(ut,, v,).

Proof. It is enough to prove that R(y,, v,) or M(y,, v,) has non-
trivial image of finite dimension. Let @ e #(F,X F,) and write o=
o( 3 s vy, D) for simplicity. We have

Mgy, v )p(g)

-8 ofs ) Yot

The integral on the right hand side equals

) [ [ o0 ey (—naau.
Pyl P
If ve P,, we have p,v;"'=| |, by (1). Then (x) is written as
ldetg];lj J D(t, u)drdu
Fud Fy

so that the image of M(y,, v,) is generated by a single function

g—>u, (det g)|det g|; '/~
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If v is real, we have uv;'(f)=t?sgnt by (2), where pe Z, >0.
Writing

g=(Z 7). (. 0=(x, )" = (et ) (xd—yc, —xb-+ya)
we see that (x) equals
(det g)'~7|det g L* L D(x, Y)(yc—xd)?~dxdy.
Hence the image of M (y,, v,) is generated by

v, (det g)| detg[*P(c, d),

where P(c, d) is a homogeneous polynomial of degree p—1.

If v is imagenary, we have y,v;"(t)=1t?i? by (3), where p, g ¢ Z, >0.
The proof proceeds in the same way as in the real case. The image of
M(p,, v,) is generated by

v, (det g)| det g[;”P(c, d)Q(c, d),

where P(c, d) and Q(c, d) are homogeneous polynom1als of degree p—1
and g— 1, respectively.

§ 3. Eisenstein series

13. Let p and v be quasi-characters of 4*/F* and ¢ an element in
%(p, v). A function on G, of the form

E(p, g)=m§% o(r'g)

is called Eisenstein series. We often denote by E(p) the function g—

E(p, 8).
We set 6(g)=|a,/a,|4 for

g=nak, neN, a:(S‘[?)eAA, ke K.

Lemma 7. p, v and ¢ being as above, write |py™'(x)|=|x|3 (x ¢ 49)
witho e R. If 6>>1, then the Eisenstein series E(p, g) is uniformly con-
vergent on every compact subset of G .

Proof. We first assert that there exists an element f in 5 such that
o(p=¢. Since a function in #(y, v) is determined by its restriction to



606 H. Shimizu

K, p(8)%(y, v) is finite-dimensional for every elementary idempotent & of
K. Therefore, the above assertion follows as in Lemma 1.

Let C, be any compact subset of G,. Let C, be the support of f and
M the maximum of | f|. If g € C,and 7 € Gy, then

I IoTensmid
= letmsienian
< | |p(rm)dh

with C=C,C;. Since Cis compact, the number m of elements 7 in Gp
such that YCN Cs @ is finite. We can show that there exist positive con-
stants ¢;, ¢,, ¢, such that

ig)<e, CzﬁldetglAﬁca

for all g e G;,C. Then we have

5 | Jetwnian

r€Br\GrF

<m[ lpidn

én,lJ‘deJ‘l\/’F\Z\/'AdnJ‘DdXZJ‘E ¢((Z()x x(_)l)k> l ‘ZXZ‘ZIdxx’

where D={z ¢ A¥|,<|z|4,< ¢ }/F*, E={xe A" [x}i<ecc5"}/F*. Since

(3 2)e)| =leta) 1ztcixtiloto,
the above integral converges if ¢ > 1. qe.d.

It is obvious that E(p) is left G-invariant if it converges, and that
o—E(p) commutes with the action of 5# and 4*; namely

E(p, 78)=E(p, 8) (TeGp),
eNE@=E((Np)  (feH),
(2 E(p)=E(0o(2)p) (ze d49).

Furthermore, we have

E%p)=p+ M (g, v)p.
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In fact, since Gr=B; U BywNy, we have
l¢
E(p.g)=0(g)+2, 90<W (0 1>g)
$EF

and hence

2. 0=[,, 5 (o 1)g)e

=so(g)+L (w (é ’f)g)dx-

If »=pw is a character, then E(p) is orthogonal to &/ (3). In fact,
we have

E@.o)={ E@onle)

_ f ( 5 org)edg)dg

XGr\GA r€Br\GF

=J ©(8)p.(g)dg
AXBp\GA

=J so(g)f &y(ng)dndg=0
AXBFN A\GA Np\NA

for ¢, € o (y).
14. Letpe #(p,v)andse C. Put

o(s, )=lp(N&)=p(g)o(g)”* (g€ G-

For simplicity, write a=| |,. Then ¢(s) belongs to Z(ua’”?, va~**). The
basic property of the Eisenstein series can be resumed as follows.

Theorem 5. Let y, v be quasi-characters of A*|F* and ¢ € #(y, v).
(1)  E(¢(s)) can be analytically continued to a meromorphic function on

the whole s-plane, whose pole occurs at most at the poles of M (pa*”?, vo™*/).
(2) The following functional equation holds.

E(p)=E(M (g, v)p)-

() If M(y,v) is regular at (y,v), then E(p) is slowly increasing so
that it is an automorphic form on G,. To be more precise, let D be a com-
pact subset of the s-plane such that E(p(s)) is regular on a neighborhood of
D. Let C be a compact subset of G,. Then there exist M, N >0 depending
only on D and C such that
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(). (§ 7)) | < Mat@”
Jorallae A, a(a)=1,ge Cand s e D.
Concerning this theorem, we refer to the references in the introduc-
tion. Especially, as to (3), cf. [5, Chap. IV], [15, Appendix].
§ 4. Maass-Selberg relations

15. We state the Maass-Selberg relations in Harish-Chandra [5] in
an adelic form. The proof goes entirely in the same way.

Theorem 6. Fix an infinite place v. For C= functions ¢,  on G,
put

[e, ¥]=(o(D)o)r —e(p(D,)r)
if v is real and
lp, ¥1=(o(D)o)r —(p(D)¥)
if v is imaginary. Regard
ae)=(5 0)  er)

as an element in G, such that the v-component equals the above and all the
other components=1. Put

01, g)=|e"" | ,p(aleg),
¥, g)=je |,y (ale")g),
forteF,, ge G, Further, put

R RE LT

if v is real and

T, z):j f [i(i@ﬁ—miii)_f@?rK@ (“ 0>k>dadk
xJayrxL 2 \ o7 ar 00 01

if v is imaginary.
Let © be a Siegel domain as in no. 3 and S(r) the set of all g in © with
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a(g)=\e¥",. Let S(r) be the projection of &(r) on D= A*G,\G, and U(r)
the projection of ©(r) on A*B\G .
Let ¢, \r € (). Then, for a sufficiently large r, we have

I R S I R & B R AR
D -8(r) U(r)

Here o*=¢ —¢° and dg is a Haar measure on A*\G,.

Proof. Note first that, if r is sufficiently large, 1€(r) NE(r) =@
(7 e Gp) implies ¥ € B,. Hence the natural projection of U(r) onto S(r)
is injective.

Assume for a moment that ¢ is a C= function on G, satisfying the
conditions (i), (ii) in no. 3 and having a compact support modulo 4*G.

We have then
[ for 1dg=0
D
for all ¢ e &/(y). Divide the integral above into two integrals each being

taken over S(r) and D—S(r), respectively. However, by the preceding
remark, the first one can be integrated over U(r) instead of S(r). Write

[SD> ‘1/'] = [SDO, ‘l/'] -+ [SD*a \Vo] + [SD*: ‘!"*]

Putting A(r)={a e A*/F*| |a|,>|€""|,}, we have

IU(?‘) [SDO, \P]dg
=[Sl (o 3)(5 Ve
[, (s o
=, " vlde.
Similarly, we see that
[l vlde=] [*), vldg=o.
since (p*)’=0. Hence

[ lovide=[ 16 ve+| fo% vrlde
Ul(r) U(r) Ur)
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Suppose that v is real; then

-tf1_ __a__ 0 ). o ¢
7 ot p=e(1-22+ L )oatene)

=e"(1420(D,))p%ale’)g)

or

p(Dv)go°<a(ef>g>=§et(a‘"’—;—1)@@, 2).

Consequently, we have
6%, vlaep)=—le, [ 2 T oT-0 o [

However, the same equality holds also for imaginary v.

To integrate [¢°, 4°] over U(r), observe that the measure dg on U(r)
is written as dg=2q|e~*|,dtdadkdn for

g:na(e‘)(ﬁ ?)k (neNjaeAdA,teR kek),

where g=[F,: R].
Assume v is real; then

&0 g o dT _ [d@7_¢£gf_]_
dr* di* dtl dt dt

The fact that the support of ¢ is compact modulo 4*G implies that ¢°(g)
=0 for g as above if ¢ is large enough. We see immediately

[, o v Mg=—JG. v .

Assume now v is imaginary. Let K, denote the subgroup {a(e‘’)|6 e R}
of K. We have dk=dfdk, dk being a right invariant measure on K\ K.
Let t=7+i6(7, 0 € R). A simple calculation shows that

22 507 Ja
o L gr? ot’

:}__?_j [acb @W] do—1t 2 TPz,
4 97 ot ot 2 or Jo 00
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Hence
[ Jo e
- .[AI/Fx.[ .[ [4 6z'< @%%:) _%8 (Zfl”‘)]
( (0 1) )drdkda

= _'J(SD’ v, I‘).

This concludes the first step of the proof.

The proof of the theorem can be completed by an approximation
process. Let ¢ be any element in .7(y). By Lemma 1, there exists a fin
4 such that p(f)p=¢. Denote by C, the support of £, and let be w a
compact subset of N, such that N,=N,w. Then we can find a sequence
C, (n= 1,2, --.) of compact subsets of G, such that

0C,C,CC,,, (U (the interior of C,)=G,.

Let 8, be the characteristic function of the image of C, on 4*G;\G, and
put ¢, =p(f)(B.e). Then ¢, is a C= function on G, satisfying the condi-
tions (i), (i) in no. 3 and its support is contained in A*G,C,C;:. We
have ¢f = p(f)(B.¢") and hence ¢} = o()(B,9*).

Every compact subset C of G, is contained in C,_, for sufficiently
large n. 'Then we have ¢,=g, p)=¢° and p¥=¢* on C. Therefore, if
the integrals in the equality (4.1) are absolutely convergent, we obtain (4.1)
by substituting ¢, for ¢ and letting n—oo. Since D—S(r) is compact, we
even have ¢,=¢ on D—S(r) if n is large. By the same reason we have
J(@,, ¥, r)=J(p, ¥, r). Itis known that o* is rapidly decreasing so that
the second integral in (4.1) converges absolutely. g.e.d.

16. Corollary. In the notation of Theorem 6, assume that there exists
a complex number A such that

oD)p=2¢p, (D)=}
if v is real and

o(DYe=12p,  p(DY)1r=2
if v is imaginary. Then we have, for large r,

J(p, ¥, r)=0.
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Proof. Since [, ¥]=[p*, ¥*]=0, the assertion follows from (4.1).
q.e.d.

§5. Main theorems

17. Let 5 be a character of 4*/F* as in no.3. Let » be a homo-
morphism of £ into C. Consider the following subspaces of 7 ().

o (n, w)={p e L\ p(Z)p=w(Z)p forZe %},
A (9, 0©)=L (), ©) N (),
A (n, 0)={p € L(, w)|(p, p)=0 for ¢, € A (7, w)}.

By Lemma 4 </(3, ») is the direct sum of 2/(y, w) and o7,(, w). Our
aim is to prove that /,(y, ») is generated by Eisenstein series or certain
functions derived from them.

Put w(D,)=c, if v is real and w(D,)=c,, w(D.))=c} if v is imaginary.
Let ¢ be any element in </(3), w). Retaining the notation in no.6, we note
that the function

u(t) =py(a(e’)ak)

satisfies the following differential equations.
Assume v is real; by (1.4) we have

(3~ 2hrmse

A general solution of this equation is of the form ae? + be® or (a—+ bt)e
(p, q € C, a, b are constants) and the latter case occurs if and only if ¢,=
—1/2.

Assume v is imaginary. Since ¢° is right K-finite, u is a linear com-
bination of functions u, such that u,(¢+i6)=¢'"’u,(t) with n € Z. Suppose
that u itself has this property. Then we have (3/06)u=inu and hence, by

(L.5)

or
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]. a 2 2 /7 77
(5.2 ——[(—— ) —44n ]u=(c,,+cv)u,
4 L\ o7

1 ( i > r
—n{——2)u=(c,—c))u.
2 ot ( )

We see that if the above equations have a non-zero solution, then the
integer n has to satisfy

(5.3) n*—4(c;+cf + Dn*+4(c,—c))*=0.

A general solution of the equations (5.2) is of the form ae?* 4 be® or
(a+ br)e’ and the latter case occurs if and only if ¢}, =c/ = —1/2.
The above results may be resumed as

Lemma 8. Let ¢ be in o/(y, w). Then, in the notation of Theorem 1,
we have

(5 5)2) = I @t up(3) (08 aley™ N omnl®)

for x,y e A%, g € G4, where m=0, 1 and p, v run through all quasi-charac-
ters of AX[F* such that py=n1.
The term containing log a(xy~") occurs only if

(5.9) co=—1/2 or c,=c/=—1/2 forallveP,.

18. We fix any place v in P, and apply Corollary of Theorem 6 to
¢ € Ly, 0) and § € (3, '), assuming that

o'(D)=w(D,) or o' (D))=wD), oD)=wD)

according as v is real or imaginary.
Let us introduce the following notation. Let X be a quasi-character
of AX/F*. For x e FY, set

1,(x) = {x“(x>0) %f v is T‘eal. .
[x O/l x ) if v is imaginary,

where se C, [ e Z. s and [ will be denoted by s(X) and /(X), respectively.
Further we set

(&)= s

for continuous functions f, g on K.
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Let

(5 9)g) =T alrr) () (log aCey™ )" fone)

P((§ 5)g) =2 atom ) uen(3) (o8 ey ™)) "g un(e)

be the expression of ¢°, 4° as in Lemma 8.
To calculate J in Theorem 6, we assume that v is imaginary, for the

real case is similar. Put t=7-4i0(c, € R) and g=[F,: R} as before. We
have

2J(§0’ w’ T):Z (f,uv'm,’ g:ln)(zq)m+n
X[(S—S’+2l)2‘m+"+(m—l1)‘[m+"_1]8(3”'>’.

Here we have put s=s(uw™"), I=I(w™"), s’=s(x2"") and the sum is taken
over all m, n, p, v, &, 2 such that m, n=0, 1, w=rA=1, the restriction of
pet to A'=1and I(w~)=I1(x2"").

Note that the left hand side is identically O for sufficiently large z. In
particular, the term with s+s’=0 must vanish identically, whence follows

the equality

(5.5) Z (f,:wo, g+ +q Z [(f,:zm gen) — (f;w()s g.0]=0.

Here g=p"" 2=9"", s=s("), I=I(pv"") and the sum is taken over all
pairs of quasi-characters g, v such that p=7y.
If we interchange the role of ¢, v, the equality (5.5) turns to

Z (8eros f;wo) (=35+D+q Z [(gexs f;uzo) — (a0 fpyl)] =0.
Combined with (5.5), it gives
(5.6) 22 (S 8a) 8D+ 23 [(fars 8eto) — (Fwos &)1 =0,

where, as before, k=p"", 1=5"", s=s(w™), I=I1(w™") and (y, v) runs
over all pairs of quasi-characters such that gy=7y.

If v is real, we obtain the corresponding equality just putting /=0.

19. Let 1 and v be quasi-characters of 4%/F*. A remark is neces-
sary about the eigenvalue of p(D,), p(D,) or p(D}) on #(y, v). Put s=s
(Y and I=1(pv~"). If v is real, then

(5.7) o(Dy)=Hs*—1)id.
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on %(p, v). If vis imaginary, then

(58) D) _—_é.«s;fl)?q) id, D)= ((S;’)2~1) id.

on %(u,v). These formulas can be seen by the arguments in no. 17.
Therefore, if (1, v) is replaced by (57, g77), then the eigenvalue ¢ (resp. ¢/,
c'’)y of p(D,) (resp. p(D,), p(D))) is replaced by ¢ (resp, ¢”, ¢’).

20. We are going to prove that the space .7(y, w) is generated by
Eisenstein series. First assume that the condition (5.4) is not satisfied for
some ve P, Letg bein «7,(y, w) and write ¢ as in Lemma 8. Then
fu=0for all g, v. Write f,,=f,,, for simplicity. It is immediate to see
that f,, belongs to #(y, v). Note that f,, is an eigenfunction of p(D,) (or
o(D}), p(Dy))) with the same eigenvalue as o, if f,, 0.

It is convenient to assume always that, out of two pairs (u, v) and
(v, 1), (p, v) is the one satisfying |~ '(x)|=a(x)’(x € 4¥) with ¢20. As-
sume further that (g, v)=(a"*X, a~"/22) for all characters X of 4%/F*. For
any element ¢ of #(p~*, z~7), the Eisenstein series E(g) belongs to o7 (y).
Apply Corollary of Theorem 6 to ¢ and E(g). Since

=g+ MG, 1%,
(5.6) implies
(f,uya M(D-19 ﬁ_1)¢)—(ﬁpa ¢)=03

for, if s=/=0 in the notation of (5.6) then c¢,= —1/2 or ¢,=c)/=—1/2
by (5.7) and (5.8), which contradicts our assumption. - Since ¢ is arbitrary,
we have :

My ) frw=Fo
Observe, for the same reason as above, that f,,=0 if p=y.

21. An additional consideration is necessary if f,,50 for (g, v)=
(X, = *X), where X is a character of 4%/F*. In this case we must have
»p=X* and ¢,=0, c;=c;/=0 for all ve P,. The function

g—> X (det g) (ge Gy

belongs to Z(v, p) and it is also an element of /(y). We can apply
Corollary of Theorem 6 to ¢ and ¥ o det and obtain, by (5.6),

(fi» X o det)=0.
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Lemma 9. y and v being as above, put
B* (1, v)={f € B(w, v)|(f; X o det)=0}.
Then we have

B*(u, v)=§P§98(ﬂv, V)& ggg B(tws V)

Proof. Denote by U the right hand side of the above equality. It is
known that % (., v,) is the subspace of all fin #(y,, v,) such that

f FUO o det (k)dk =0

and it has the codimension 1 in %#(u,, v,) (cf. [7]). Let £, be an element
in %(u,, v,) such that

g(.uw Uv):Cf; +ggs(ﬂm Vv)'

We may assume that f, is the characteristc function of K, if X, is unrami-
fied. Itis evident that, if f°=@/f,, then

By, v)=Q, By, v,)=Cf°+U.
Since UC Z*(p, v) and (f°, X o det)==0, we have U=Z*(p, v). g.e.d.
It follows from Lemma 9 and Lemma 6 that
R(z, v)$=0

for ¢ € #*(u, v). Putting p(s)=g5°”, we see that R(ua’”, va~*/%)@(s) has
a zero at s=0. Therefore,

L(O, a1+s)
L(l, aHs)e(O’ a1+s)

M, v )(s)= R(uar'™, va~P)(s)

is regular at s=0, because L(0, «'**) has a pole of order 1 at the same
point. In conclusion, E(@)=E(#(s)),_, is defined for ¢ e Z*(y, v) even if
M(pa®’?, va~*/*) has a pole at s=0.

Now f,, is in #*(y, v) as we have seen. Taking ¢ —E(f,,) in place of
¢, we may assume f,,=0. Let ¢ be any element in %#*(y, v} and apply
Corollary of Theorem 6 to ¢ and E(¢). By (5.6) we have

(fvw ¢) == 0:

which implies that f,, is a constant multiple of Zodet. In view of the
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arguments in no. 20 and no. 22, we infer that there exists a certain linear
combination + of E(f,,) and X o det with X*=y such that ¢ —+ is a cusp
form.

22. Next assume that the condition (5.4) is satisfied for all ve P..
This time f,,, belongs to #(y, v).

Let ¢ be any element in (5", z~') and apply Corollary of Theorem
6 to ¢ and E(g). By (5.6) we have

(furs M@, g7+ (Lo $)=0
and hence
M({‘t’ v)f;lﬂ: —f;/.tl'

Now let ¢ be in #(y, v) and put
E'(@) =2 E@(s).-
s
for ¢(s)=gad*%.  Writing M (na®’?, va=*)¢(s)=$,(s)d~*"*, we have

(E"(P) =di [6()+ ()51, o
AY

_1 _1 1
=3 ¢logé 5 $:(0) log 6+ ¢1(0)

— 1= M(u, )91 108 3+ 0.
Observe that ¢,(s) belongs to Z(y, ) and so does ¢;(0). Especially, if,
p=v, we have M(y, v)= —1 so that
(E(#))'=¢ log o+ ¢:(0).

Replacing ¢ by ¢—2 >, E'(fu)— >, E'(fuu), We are led to the case
where f,,;=f,,,=0 for all g, ».

Assuming the above, let ¢ be any element in #(5~', z~'). Apply
Corollary of Theorem 6 to ¢ and E(g). Then (5.6) gives

(froor =M@, 27 +(fo s $)=0
and hence

M (1, ) frn= Fomr
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It follows that
SD - Zp,vE(f;wO)

is a cusp form, which has to vanish if ¢ € (3, w).

23. The preceding results can be resumed as follows.

Theorem 7. o/,(y, ) is generated by all functions of the form

E(9), ga;—E(ng(s))sxo and 7o det.

The functions of the second (resp. thrid) form appear if and only if
o(D,)=w(Dy)=w(Dy)=—1/2 (resp. 0)

forallveP,. ¢ andl can be arbitrary so long as the following conditions
are satisfied.:

() ¢ is an element of B(y, v), where (1, v) is a pair of quasi-characters
of A*[F* such that =1, (Z)p=w(Z)¢ (¢ € By, v), Z € Z)and|p'(x)|
a(x)’(x e A*) with ¢ =0.

(ii) X is a character of A*|F>* with X*=y.

@) If (u, v)={(a""X, &™), ¢ should be in B*(yu, v).

Remark. Let (g, v) be asin (iii). 2o det is the residue of E(g(s)) at
s=0 for an element ¢ in %(y, v) not in F*(y, v). We note also that X o det
is an element in #(v, 1) and E(X o det)=1X o det.

24, The holomorphic case. Assume that F is a totally real number
field. Let w be a homomorphism of & into C such that

o(Dy)=4m(m—2)

for all ve P, where m is a given positive integer. Let 5 be a character
of A*/F*, The homomorphism @ such that .&/(y, 0)={0} is uniquely
determined by m and 7.

It is well known that every holomorphic Hilbert modular form of
weight m is contained in |, #/(y, »). In the notation of no.5, put

o, (k(@)=¢e"™".

Let U be an open compact subgroup of G,. Let S, (3, U) be the space of
all p in o7 (5, w) such that
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(5.9) ok)o=0nk)o  (k, €K, detk,=1)
for allve P, and

(5.10) pdp=¢ (e ).

Then the sum of S,,(, U) for all  and U is essentially the space of holo-
morphic cusp forms of weight m. However, to define holomorphic forms
not necessarily cuspidal, we need some additional conditions. For in-
stance, we let H,(y, U) be the space of all ¢ in (3, w) satisfying (5.9) and
(5.10) such that f,,,=0 for all z, v in the notation of Lemma 8 and f,,,#0
only if

(5.11) Hovy (X)=x™"" (sgn x) (xeFY)

for all ve P,. Then the sum of H,(y, U) is the space of holomorphic
forms of weight m.

By Theorem 7, every element in H,(y, U) N &/(3, w) is a linear com-
bination of Eisenstein series. In this linear combination, the functions
E’(¢) do not appear by definition, also the functions X o det are excluded
by (5.9). Hence we obtain

Theorem 8. Let I be the set of all pairs (u, v) of quasi-characters of
AX|F* satisfying w=n and (5.11). Let %(p, v)V be the space of all right
U-invariant elements in %(u, v). Then, every element in H,(y, U) orthogonal
to cusp forms is a linear combination of Eisenstein series E(¢) such that

b e B, v)7, (u,v) e L
If m=1, we find in [14] another proof based on the ‘multiplicity one
theorem’.

25. Theorem 9. Every element in </(y) is a linear combination of a
cusp form and

%E@(S))s:o (n=0,1,2, ---)
s

Sfor certain functions ¢ in H(u, v) with p=n.
Proof. Consider the subspace of all ¢ in 7(z) satisfying

(p(Dv) - cv)NSD =0

or

(o(Dy) —cp) o= (p(D7) —¢&;)"p=0
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for all ve P, where N e Z,>0 and ¢,, ¢, ¢}/ e C. Denote this space for
a moment by V. If (, v) is such that

(5.12) o(Dy)=c, id. or p(D})=c}id.,
o(D)y=c} id. on #(y,v) forallve P,
then
dn
E. ()= p E(#(5)s=0 (9 & Z(p, v))

belongs to V, (here 0<<n<2N if (5.4) is satisfied and 0<<n <N otherwise).

Let ¢ be any element in V. Write ¢° as in Theorem 1. If f,,, 0
and m is the largest integer with this property, then f,,, € %(y, ») and
(2, v) has to satisfy (5.12).

First exclude the case where (5.4) is satisfied. Then it is easy to see
that m <N and that if f,,y_,=0for all 4, v, then p € Vy_,. Fixinga ve
P.,, apply Corollary of Theorem 6 to (o(D,)—c,)" ' (or (o(D;) —c))"¢)
and E(v) with an arbitrary ¢ in Z(v~", z7"). It yields

Mg, D) f 1 =(= D" "L e

However, if ¢,=c,=c] =0 for all v, we proceed as in no. 21; note that if
¢=12 o det, then

Ey 1(¢)=2"7"¢ (log )"+ 2 257 ¢f, (log 9)"

with f, € #(a'”, «~**). In any case it can be shown that ¢ —3 Ey_,(¢)
belongs to ¥, _, for a suitable choice of functions ¢.

The case where (5.4) is satisfied can be treated similarly. By the in-
duction on N we see that our assertion is true for the elements in V.
Since .2/ (x) is the sum of all subspaces like V, this completes the proof of
the theorem.
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