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Introduction

In this paper, we shall study the Poincaré series of the ring of invari-
ants of nXn matrices under the simultaneous adjoint action of GL(n).
This ring of invariants was studied by Procesi [3] and others. If n=2,
it is well known that the ring of invariants of two generic matrices X and
Y is a polynomial ring generated by 5 algebraically independent invariants

tr (X)), tr(X?), tr(Y), tr(Y?), tr(XY),
and hence the Poincaré series is
1/ —=s)(1—s)(1—1t)(1 —t¥)(1 —st). (See [1]).

However if n>3, the ring of invariants is not polynomial ring. The
Poincaré series of the ring of invariants for generic nXn matrices is
related with the following generating function F(¢) of a linear diophantine
equations defined by

F(t)= ¥ h(r)r",

where A(r) is the number of nX#n matrices /=(/;;) e M(n, N) with the
property:

General “reciprocity theorems” of the generating function of a linear
diophantine equations is established by Stanley ([4], [5], [7]). We shall
give simple proofs of some Stanley’s results in [5].

By using a combinatorial method, we shall calculate the Poincaré
series of the ring of invariants of two 4 X 4 generic matrices.

Received October 20, 1985.
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Notations

N: the set of non-negative integers.

Z: the set of integers.

Q: the set of rational numbers.

C: the set of complex numbers.

M(r,n, Z): the set of r X n matrices with Z-coefficients.

M(n, R): the set of n X n matrices over a ring R.

For a=(a,, - - -, a,) and b=(b,, - - -, b,), a<b means that a,<b,, 1 <i<n.
For I=(l,)) e M(n, R), |l|=> .5 Li;

For an integer /, [=(l, ..., ) e Z™.

For x=(x,, - - -, x,,) € C*, |x|<<1 means that |x,|<1, 1<i<n.
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1. Stanley’s combinatorial reciprocity theorems
y

Let us consider a finite system of linear inhomogeneous diophantine
equations (=L.D.E. system)

E(x): ayx,+ - V‘a,x,=b,

E'r(x): a71x1+ e +arnxn=br'

Let A=(a;;), Ae M(r,n, Z), and b=(b,, ---,b,) e Z. We denote by
(4, b) for the I.D.E. system above.

For an n tuple I=(l, ---,1,) e Z", we denote by E(4, b, ) the set
of all solutions m=(m,, - - -, m,) e Z", m>1, to the I.D.E. system (4, b).
Forl=(, ---,1,)e Z" let

F(4,b,x)= >, x™, X=X, e, X,
meE(4,b,0)

Then Fy(A4, b, x) is a rational function in n variables x,, - - -, x,. Let
a; be the i-th column vector of the matrix 4. Lete, - - -, &, be coordinate
functions on C7, and write, for [ e Z7,

51:“45 l':(lla "'717)'

Let (4, b) be an L.D.E. system. Forl=(l, ---,1,)e Z", let G(X, &)
be the rational function in variables e, - - -, ¢,, Xy, - - -, X, given by



Invariant Theory of Matrices 261

T (e%x,) e

N C ) e ———

i, ©) [T ey
IfI=(0, - --,0), we write G(x, ¢) for G,(x, ¢).

Lemma 1.1. Suppose |x,|<1, ---,|x,|<1. Then

1 r dey- - -de

F(A, b, x =(__) fjc; o) e der

¢ ) 2/ —1 (%, €) e

where the j-th integral from inside is taken over the counterclockwise unit
circle in the complex ¢ ;-plane.

Proof. For m=(m,, ---,m,) e Z", consider the integral
1 1
J‘ .. I [T e®™e"dy, - - - dp,, g, =exp 2nv — 1 @,
0 0

Then this integral equals 1 or 0 according as Am=2> or not. Therefore
we have;

1 1
Fy(4, b, x)= ZZIL L . 'L H (ex,)™e ™ dp; - - - dp,

1 1
:J‘o-..J'o Gl(x7 s)dgol...dpr
(1 IIG dey- - -de,
(2m/—1> i) E1v v & '

Suppose that |x,|>1, ---,|x,|>1. Then changing the variables
g—>e; ",

1 T de,+ - -de

F, (A, —b, 1/x)= _1n—1(_ﬁﬂ_) IJG x, o) Bers - -de,

1-1 /.X) ( ) 2n_m Z( 6) e e,

where 1=(1, ..., 1)e 2", 1/x=(1/x,, -- -, 1/x,) and the j-th integral is
taken over the clockwise circle |¢,|=1. Therefore we have the following

Theorem 1.1. Tuaking the integrals over the counterclockwise (resp.
clockwise) unit circles, let Hfx) (resp. H (x)) be the rational function in
Xy, + - vy X, defined by, in |x,|<1, - - -, |x,|<1 (resp. |x,|>1, -« -, |%,|>1),

f. . I G,(x, o) T er
61. .

&

Then F(A, b, x) and F,_ (A, —b, 1/x) are related by
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Fl(As b, x)=(— I)n_T‘FL—l(A: —b, l/x)

if and only if H(x)=H_(x).
For an LD.E. system (4, b), we denote by d(A4) the number of
variables appearing in (4, b) minus the rank of 4. If
F(4, b, x)=(—1)*“F(A4, —b, 1/x),
we say that (4, b) has the R-poroperty.
Lemma 1.2. (A, b) has the R-property if and only if, for any le Z™,
F(4, b+ Al x)=(—1)*“F,_ (4, —b—Al, 1/x).
Proof. It follows from the definition of F,(4, b, x) that

F/(A, b, x)=x'FyA, b— Al, x)
and
F,_(4, —b, 1/x)=x'F(4, —b+Al, 1/x).

Then the proof follows immediately.

For an LLD.E. system, pick an integer k, lgkgh. We consider a
new L.D.E. system (4’,5"), A’ e M(r,n, Z), b’ ¢ Z", defined as follows:
b'=(bk), - - -, bk),),

Ei(x)=0=>b(k),,
EY(x)=ay,E\(X) — a,, E(x)= b(k),= ay,b,— a,;b,,

E (x)=a,,E(x)—a,E,(x)= b(k),=a,;b,— a;b,.

We call (4, b’) the k-eliminated system of (4, b), and denote by
(A(k), b(k)) the k-eliminated system (4, b’).

For an integer i, let C, (resp. —C,) denote the counterclockwise
(resp. clockwise) unit circle in the complex e,-plane. We fix ¢, - - -, &,
(le;|=1,2<i<r) and consider G(x,¢) as a function in x=(x, - - -, x,,)
and ¢;. The integral

G, %, x|<1, 1<i<n,
C1

b
&

can be computed by the residue theorem of the complex function theory

1
=T Jou G(x, ¢) %: Res,,_G(x, e)/el—l—-; Res,,.,G(x, ¢)/e,
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where > is taken over all poles. 2 in |¢,]<1.
If, |x|>1, similarly we have:

where 3 is taken over all poies 2 of G(x, &) in || >1.

Theorem 1.2. Let (4, b) be an LD.E. system. Let R(x) and R_(x)
be rational function in n variables x defined by

RE)=[ o] (Res,usGlr, )fe o,
Cq Cr Epe v &y
and
Rw(x)zj .. J (Res,,_..G(x, 5)/51)M,
~C3 —Cr [ R

Suppose that the following conditions hold:

(1) R(x)=R.(x),

(2) for any integer k satisfying a,,<<0, the k-eliminated system
(A(k), b(k)) has the R-property.

Then (A, b) has the R-property.

Proof. Let 2 be a pole of the function G(x,¢), |x|<1. Then2isa
root of the equation in e,:

1—¢ft. . . g2x, =0, for some k such that «,,<<0.

ie., A=(e§*. - . g%=x,) =19 for some fixed choice of the —a,,-th root.
A direct computation shows that the residue of G(x,¢) at g,=2 is,
under the assumption |x|<(1, given by
—bi/a1k

Res,,_,G(x, &)fe,= — "% G(y, e/),

Ay

where G(y, ¢) denotes the function obtained from by the replacement a,,
b—a(k),, b(k), and y,=x; »i/owx,, 1<i<n.

To compute F(4, b, x) we can replace ¢;, 2<j<r, with ¢~ (p. 230,
[5]) in the following integral

Then the integral above is, up to the factor — x;!/*#/q,, replaced with
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FCAR), b(k), )= (mlf‘f)f Gy, o e

Cr [T >
On the other hand, if |x|>1, all poles of G(x, ¢) are of the form
l=(€'21”‘ e s;"kxk)‘”“”c.

Therefore we can apply the same computation. Then our assumptions
(1), (2), and Theorem 1.1 imply that (A4, b) has the R-property.

We now suppose that the first equation of an I.D.E. system (4, b)
has the R-property. Then by Proposition 10.3 in [5],

Res,,_,G(x, e)/e;=Res,,_..G(x, e)/e;=0.
thus R(x)=R._(x). Therefore in this case, we have the following

Theorem 1.3. Let (A, b) be an I.D.E. system. Suppose that the first
equation aux,-+ - -ta,x,=b, of (4,b) has the R-property as an I.D.E.
system with one equation and, for any k satisfying a,, <0, the k-eliminated
system (A(k), b(k)) has the R-property. Then (A, b) has the R-property.

The next proposition gives a simple criterion to have the R-property.

Proposition 1.1. Let (A, b) be an IL.D.E. system with r equations.
Suppose the following inequalities hold:

Zaﬂ<_bj+zajili<z i 1<ji<Lr, |

where > ;_a, (resp. >, a;) denotes the sum of all (J,i)-entries of A
satisfying a,; <0 (resp. >0).
Then, for l e Z™,

FL(Aa b9 x)_—_(-— l)d(A)FL—l(A’ ba I/X)

Proof. We may assume that /=0 by Lemma 1.2. If r=1, the
assertion is true by Proposition 10.4 in [5]. We proceed by induction on
r. Forany k, 1<k<n, it is easy to show that

Z_: a(k)ji<'_b(k)j<z a(k)jia ‘ 1<j<Lr.
Then by Theorem 1.3, (4, b) has the R-property.

Propesition 1.2. Let (A4, b) be an I.D.E. system. Suppose that (4, b)
has a solution s=(s, - - -, 5,) e Q" I,—1<s,<I, and (A4, 0) has a positive
solution. Then
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Fy(4, b, x)=(—1)*"PF,_(4, —b, 1/x), e Z™.

Proof. We may assume that /=0 by Lemma 1.2. Then it follows
from the assumption that (4, b) satisfies the condition in Proposition 1.1.
Hence (4, b) has the R-property.

Proposition 1.3 (Proposition 8.3. [5]). Suppose an I.D.E. system
(4, 0) has a solution .

x=(x17 Tt xn)’ X1>0, tt 'xg>07 xg+1<0, ] xn<0~

Then, FL(A, 0, x)=(— l)d(A)Fl—l(Aa 0, l/x),
where [=(, ---,0, 1, ..., 1).
4 n—-g

Proof. By the assumption we have:

ZI aii— Z” ajizoa - Z” aji+ Z aﬂZO: lg.] Srs
1<i<g g+1<isn 1<iLg g+1<i<n
where >’ (resp. > ) denotes the sum of all terms >0 (resp. <0). Hence
if A+#(0), we have: >,_ a,<0<3;, ay,.
Then by Proposition 1.1, (4, 0) has the R-property. If A=(0), it is
obvious that (4, 0) has the R-property.

We shall need the following

Proposition 1.4 (13.3 Corollary [7]). If 1e E(4,0,0), F(4, 0, x)
satisfies the following functional equation:

‘F()(Aa 99 1/x)=(—— l)d(A)xE)(Aa Q’ X).

§ 2. The ring of invariant of a semisimple group

Let G be a connected semisimple linear algebraic group, V,, 1 <i</,
vector spaces over the complex number field C and p,: G—GL(}V’) rational
representations of G. Let C[V] denote the polynomial ring over the
vector space V:=@, V.

We denote by C[V],, d=(d,, .- -, d;) e N, the vector space of poly-
nomials with degree d,, - - -, d;, with respect to V,, ---, V;. This gives an
N'i-graded structure of C[V']¢

ClVl= @ ClVl

Let R denote the ring of invariants of C[¥]. Since C[V], is a G-invariant
subspace of C[V'], R has the structure of an N'-graded algebra
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R=@ R, R,=RNC[Vl].
deN?
For d=(d, - --,d)) e Z*, let us write x?=x%...x%. The Poincaré

series of R is defined by

F(R, x)= 3 dim R,x%.

dENE

As well known, F(R, x) is a rational function in / variables x=(x;, « - -, X;)
and R is a Gorenstein ring by a theorem of Hochster-Roberts [2]. By
Stanley’s theorem [6], this is equivalent to say that F(R, x) satisfies the
following functional equation

F(R, x)=(—1)*x*F(R, 1/x),

where d =dim Rand a e Z°.

Let K be a maximal compact subgroup of G and T a maximal torus
of K. Let «;, --+, @ be roots of K with respect to T"and W the Weyl
group of K. Considering a root as a function on T, let D(g) be the
function on T defined by

G@)=(1—a(2): - -(I—a,(8)).

Then by Molien-Weyl formula [9], we have

. _ 1 D(g)
() F(R’x)_|W| r ] det (1—x,g) LS

where dg is the Haar-measure on T.
Let us consider a special case.

Theorem 2.1. Let p, be the adjoint representation of G and V,=
Lie G, 1<i<<l. Then, if | >2, F(R, x) satisfies the following functional
equation

F(R9 .X)'——:(—- l)dxaF(R’ I/X),
where d =dim V —dim G, a=dim G.
Proof. Let R(x,, - - -, x,) be the function defined by

R(x;, - -+, x)=(1—x)""TF(R, x).
Then, by (x),

R(la Xps =ty xl): 1 f dg
[W| Jr [] det(1—x,2)
122
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By Lemma 1.1, | W|R(1, x,, - - -, x;) is the generating function of solutions
for an LD.E. system (4, 0). Since G is semisimple,

1eE(4,0,0).

Therefore by Proposition 1.4, R(1, x,, - - -, x;) satisfies: for some r ¢ N,
R, x, o, x)=(—=D"(x; -+ x,)" ¥ R(1, 1/x,, -+, 1/x;), and hence
a=dim G. It follows from the following proposition that d=dim V —
dim G.

Proposition 2.1. If/>2, dim R=dim V' —dim G.

Proof. For ve ¥V, G, denotes the isotropy subgroup of G. Then one
sees easily that min. dim G,=0, and we have:

dim R=dim ¥V —max. dim G,
=dim ¥V —dim G+ min. dim G,
=dim ¥V —dim G.

Specializing x,, 1< i</, with a variable 7, we consider R as an N-
graded algebra:

R= @ R,.

meN
The Poincaré series in one variable ¢ is defined by

F(R, t)= 37 dim R, t™

meN
Letf, - - -, f., m=dim R, be a homogeneous system of parameters of R.
Since R is a Cohen-Macaulay ring, R is a free module over C[f;, - - -, f.l-
Let ¢y, - - -, ¢, be a homogeneous system of generators of this module:

Then

tdeg{ﬂj
F(R, t):'ﬁ%ftd_egﬂ)"'

It follows from the functional equation of F(R, ) that
dim G= (deg f;— 1)_% > deg gy
J 1

Let us consider the Laurent expansion of F(R, t) at x=1:
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a b
(= ==

F(R, t)=

Then the coefficients a, b are given by

a=__r
[T degf;
and

b r> (deg f,—1)—23 degg,
2 [] deg f;

Thus a and b are related by dim G=2b/a.

§ 3. The Poincaré series of two generic n X n matrices

In this section, we shall study the invariant ring in the following
situation:

G=GL(n,C), Vi=V,=Mn,C), V=V®V,
p.,=the adjoint representation of GL(n, C), 1<i<2.
Let us denote by X, (resp. Y;,), 1 <i, j <n, the coordinate functions

on V, (resp. V,) with respect to the canonical basis of M(n, C). Let X
and Y be nXn generic matrices defined by

X=(xij)> Y=(yij)~

The Poincaré series of R is, in this case, the formal power series in
two variables:

F(s, t)= > dim R;s%t%, d=(d,, d,).

deN?2
By Molien-Weyl formula, F(s, t) (ls|<<1 and |¢|]<{1) equals
Lf ""f*&d o d
o) I PR IO Y0 R

where 4= ,,,(e;,—¢,), e;=exp 2z4/ — 1 ¢,, 4 is the complex conjugate of
4 and

f(x)= B (I—xee5").
The functional equation of F(s, ¢) is given by

F(1/s, 1/t)=(—=1)"*"(st)"F(s, 1).
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For a finite sequence A=(4,, - - -, 2,) of nonnegative integers, the
weight of 2 is the sum of all terms of 2 and is denoted by |2]

A partition is a sequence 1=(4,, - - -, 4,) of nonnegative integers in
nonincreasing order 4,>>.-.>2,.

We denote by Y, the set of all partitions with n terms:

Y,:={A=Q,, - - -, 4,): 4 Is a partition}.

For a partition 1, let s, denote the Schur function. For partitions 2, g, v
in Y, let ¢, denote the nonnegative integer defined by

S8, =2, €S,
v
Proposition 3,1.

dim R;= MZ_:d > (e d=(d,, d,).
lel=da

Proof. Let A be the ring of symmetric polynomials in n independent
variables with Z-coefficients. Let ( , ) be a scalar product defined by

1 1 _ ~
= [ o[ few - eeen - - e ddp, g,

g,=exp 2/ —1¢), 1<i<n.

Then the Schur function s, form an orthonormal basis of A with
respect to this scalar product. By (x*) and the Cauchy identity

1
“I.w—x”:;:y sxg, e, x'n.)Sp(yl’ ce V)
[[ A=xp) T

Y

It follows that
F(s, t)=73, (5:5,, 5;:5,)s ¥z
Aopt
=37 37 (¢35, n,
e

)

Thus we obtain the desired result.

Consider the function P(s, t)=(1—s)"F(s, ). Then P(s, t) is a
rational function holomorphic in {(s, £): |s{<<1, |#|<1}. We set F(¢)=
P(1,t).

Proposition 3.2. Let E(r) be the subset of M(n, C) defined by
E(ry={l=(;;) e M(n, N): |l|=r and for all i, 1 <i<n, 3 1;;=31,}.
7 7
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Then we have

F(t)=STh(r)t",  where h(r)=4E(r).

Proof. From the definition of F(¢), it follows that

F(t)= j I doy- - -dp,

(] —-te,ej

luj Iﬂ(si>a’% cdpt™, o 1=(1,)).

j .[ ( zw i 1, if leE, =
Il ) = 0, . otherwise,

we obtain the desired result.

Since

We set E= JE(r). Let sym (n) be the symmetric group of n letters.
For ¢ € sym (n), let p, denote the permutation matrix corresponding to ¢
and e, denote the nX»n matrix obtained by replacing diagonal entries in
D, with zeros. - For i, 1<i<n, denote by e; the n X n matrix having 1 in
(i, i) entry and zeros in the others

Lemma 3.1. Any matrix in E can be written as an N—combmatzon of
e, 1<z<n and €, a¢ sym (n) : -

Proof. let g be a matnx in E. Take some nonnegative integers
my, - -+, m, such that g + > m.e, is an integer stochastic. matrix. Then
by Berkoff-Von Neumann theorem, g3 m,e, can be written as an N-
combination of permutation matrices. So we have

a-+t 2ame;=3 le+ Z Le,,

for suitable nonnegative integefs I, 1. v
Comparing the diagonal entries in the expression above, we see that
m, <[, for all 1<i<n. Hence we have

a= Z (li —mye;+ Z Le,.
(]
This shows that g is written as an N-combination of e, e,

A matrix g in E is called completely fundamental if whenever mg=
b+-c, for some positive integer m and b, ¢ ¢ E, then b=ra for some
nonnegative integer r, r<<m. Then the set of completely fundamental
elements of E consists of the following matrices:
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e; (1<i<n), e, (o e {cyclic permutations}— {e}, e is the unit in sym (n)),

Proposition 3.3.
(D) F(1/t)=—t"F(t).
(2) There is a polynomial R(t) with integer coefficients such that
F(t)= R®)
(-t T (A—t'h)

where g runs over all cyclic permutations (o =e) in sym (n).

Proof. (1) follows from the functional equatlon of F(s, 1), and
(2) follows from 3.7 Theorem [7}.

Example 1. If n=2, it follows from Proposmon 3. 3 that R(t)—l
and hence we have

1
(EnDTEDN

In this case, the Poincaré series is given by

F(it)=

. . 1
A—=s)1—=s)(1—1)(1—13)(1—st)

In fact, the fmg of invariants R is a polynomial 'rmg generated by 5
algebraically mdependent invariants tr(X), tr(X®), tr(Y), tr(YZ) tr(XY)
where tr denotes trace of a matrix (See [1], [8]).

F(s, t)=

Example 2. If n=3, one sees immediately that #(0)=1, h(l);—_ 3.and
h(2)=6. Hence F(t) is of the form

F(t)= 1 -+ 3¢+ 61"+ (higher terms).
Then by Proposition 3.3, R(t)=1—1° and so

’ 1428
F()=
=== )

In this case, tr(X ), tr(X?), tr(X®), tr(Y), tr(Y?), tr(Y?), tr(XY),
tr((XY)?), tr (X?Y), tr(XY?) are a homogeneous system of parameters of
the ring of invariants R. Denoting by C the subring of R generated by
these invariants, we have

R=C+tr(XYX*Y)C.
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The Poincaré series F(s, t) is given by

14-5%3

Fo =561y

where

0(s, 1)=(1 —s)(1—s2)(1—s*)(1 — 1)1 — £2)(1 — £°)(1 —st)
X (1 —s2)(1 —st2)(1 —s%%).

§4. The Poincaré series of the ring of invariants for n—4

As an application we shall determine the Poincaré series F(s, ¢) for
n=4. We shall need the following proposition in [8].

Proposition 4.1. Let f,, - - -, f,; be the invariants of R defined by

fi=tr(X), fi=tr(XY), fi=tr(XY), fi=tr(XY),
fi=t(Y), fi=tr(Y?), fi=tr(Y?), fi=tr(Y"),

fi=tr(XY), fo=t(X’Y?), f,=tr(XY?,

So=tr(X?Y), fi=tr(XY"), f,=tr(X*Y),

Jis=tr(XYXY), [fo=tr(XY’XY?, f,=tr(X*YX?Y).

Then these invariants f,, - - -, fi, are homogeneous system of parameters
of the ring of invariants R. Let C denote the subring of R generated by
these invariants f,, - - -, fis-

Theorem 4.1. If n=4, the Poincaré series F(s, t) is given by F(s, t)
= R(s, t)/O(s, t), where

(s, 1)=(1—s)(1 =) =51 —sH(1 —1)(1 1)
X (1 =31 — (1 —s2)(1 — 5221 —517)
X (1—s2)(1 —st3)(1 — st )1 — s (1 —s5*t?),

R(s, 1)=14s%°4+25% 34 53¢+ 52+ 555 L 5834 2524
45304553540 5%t - 25505 - 54 0 58t
255842555+ 2580 4 558 4 5516+ 25°¢ 7+ 257¢¢
42577 45T 5% T 5T 5% T 255 8 - 582 °
4598500 45010 51000 - 512412,

Proof. Let ¢, ---, ¢, be homogeneous generators of R over the
subring C. Let S(s, t) be the polynomial defined by
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S(s, t)=Z hijsitjs hij'—_#{sok: deg?’k:(iaj)}-

We shall prove that S(s, £)=R(s, t).
It follows from the functional equation of F(¢) that S(1, ¢) is a poly-
nomial of degree 12 of the form

S, t)=Z:aiti’ d;=0y_ys 0<iLlI2.

For a matrix 4, we mean by weight of 4 the summation of all entries

of A. Then one can easily obtain;
(1) all matrices with weight 3 which can not be written as a N-
combination of matrices with weight lower than 3 are 4,, - - ., 4,, where

0 0 0 0 0 0 1 0
o loo1o o oo o
A4=lo 0 0 1) “4=|o 0 o 1|
0 1 0 0 1 0 0 0
0 1 0 0] 0 1 0 0
000 1 001 0
4=l0 0 0 o] “4=|1 0 o of
100 0 0 0 0 o

A;="4;,, Ay="'4;, A='A,, A;='A,.

(2) all matrices with weight 4 which can not be written as a N-
combination of matrices with weight lower than 4 are B,, - - -, B,, where

0 1 0 0 01 00
001 0 000 1
B=lo 0 0o 1I© 2|1 0 o o)
1 0 0 0 0010
0 0 1 0]
000 1
B=lp 1 0 of
1 0 0 o

B,='B,, B;='B,, B;='B,.
Therefore F(t) is of the form |

 F@)= (148¢*4-6¢*4higher terms).

1
(A=) (d—22°
Then, by using the functional equation of F(¢), we obtain:

(xxx) S, £)=1412+46¢°+5¢*+6¢°+ 1015+ 617+ 5¢8+ 61741104112,
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We need the following

Lemma 4.1 (Proposition 5.1 [8]). R is generated by invariants of the
Sform ,

tr(XayeXxeosys), tr(X*YXeY:Xey?), tr(Y°XY°X:Y°X?),
0<a, a, -+, a,<3, and tr(XYX2Y2X*Y%).

We recall the Cayley-Hamilton theorem for »n X n-matrices:
Xv(l) - 'Xv(ﬂ)+; zu‘: Z 9u tr.(er(l) T 'Xa'(ux))
Xa(k+1)Xa(k+2) o 'Xd(n)=0,

for suitable qu,é Q and j-tuples u=(,, - - -, u;) such that 1 <u, <u, < - - -
<u,and u,+ .- +u;=k. Here ¢ ranges over all permutations on {1, 2,

..,n}.

Lemma 4.2. i
$) C hy=0, fi<2, j>4,
@ Chy=0, if i<4,j>T,
(3) hsséza h:uél, 'hssgl; h43§1,

' h44£2, h45S1’ h46£17 hssgz,
h75=0, he <1, B <2.

Proof. This follows from the Cayley-Hamilton theorem and Lemma
4.1. .

We continue the proof of Theoreni 4.1. By (x*x) and Lemma 4.2,
we have equalities in Lemma 4.2 (3) and A, =2, hy=1. Since h,,=h,
and h,,=h,,_, ,,_;, We obtain S(s, t)=R(s, t). ‘

References

[1]1 E. Formanek, P. Halpin and W.-C. W. Li, The Poincaré series of the ring
of 2 X 2 generic matrices, J. Algebra, 69 (1981), 105-112.

[2] M. Hochster and L. Roberts, Ring of invariants of reductive groups acting
on regular rings are Cohen-Macaulay, Adv. in Math., 13 (1974), 115-175.

[31 C. Procesi, The invariant theory of n X n matrices, Adv. in Math., 19
(1976), 306-381. ’

[4] R. Stanley, Linear homogeneous diophantine equations and magic labeling
of graphs, Duke Math. J., 40 (1973), 607-632.

[5] , Combinatorial reciprocity theorems, Adv. in Math., 14 (1974), 194-
253.

[6]1 ——, Hilbert functions of graded algebras, Adv. in Math., 28 (1978), 57-83.




Invariant Theory of Matrices 275

[7] ——, Combinatorics and commutative algebra, Progress in Math., 41
(1983).

[8]1 Y. Teranishi, The ring of invariants of matrices, Nagoya Math. J., 104
(1986), 149-161.

[9]1 H. Weyl, Zur Darstellungtheorie und Invarientenabzahlug der projectiven,
der Komplex und Drehungsgruppe, Ges. Abh. Bd III, 1-25.

Department of Mathematics
Faculty of Science

Nagoya University
Chikusa-ku, Nagoya 464
Japan



