
Advanced Studies in Pure Mathematics 11, 1987 
Commutative Algebra and Combinatorics 
pp. 111-145 

Torus Embeddings and de Rham Complexes 

Masa-Nori Ishida 

Introduction 

An n-dimensional normal algebraic variety is said to be a torus 
embedding or a toric variety if it has an effective regular action of the 
split algebraic torus of dimension n. In [111 and [101, we studied reduced 
closed subschemes of a torus embedding which are partial unions of the 
orbits of the torus action, which we call toric polyhedra in this paper. In 
[111 we gave dualizing complexes of affine toric polyhedra consisting of 
coherent sheaves, and as a corollary we gave criteria for the schemes to 
be Gorenstein or Cohen-Macaulay. 

In this paper, we study the algebraic de Rham complexes of toric 
polyhedra. Then, we generalize the notion of toric polyhedra and define 
semi-toroidal varieties which are the varieties with singularities locally 
isomorphic to those of toric polyhedra in the etale topology. For the 
motivation to consider such varieties, see also the introduction of [IO]. 
Although the results in (111 are local, the complex constructed in [11] is 
generalized for semi-toroidal varieties with a good filtration, and we will 
show that it is a dualizing complex in a global sense. 

By using this dualizing complex, we define the de Rham complex Q'x 
of a semi-toroidal variety X with filtration. Our de Rham complex con­
sists of coherent sheaves and is a generalization of that of Danilov [Da], 
which is defined for normal varieties with toroidal singularities. For an 
arbitrary C-scheme of finite type, du Bois [dB] defined a de Rham complex 
in a derived category by using the simplicial resolution of the scheme 
introduced by Deligne in his mixed Hodge theory [Del]. We show that 
our de Rham complex is equal to du Bois's for these varieties. In partic­
ular, if Xis complete, the natural spectral sequence Ef·q =Hq(X, Q'.{-) =} 
Hp+q(X, C) degenerates at the E1-terms and converges to the Hodge 
filteration. 

Notation. For subsets A, B of a set S, we denote A\B={a e A; a~ B}. 
If Sis an additive group, then we denote A+B={a+b; a e A, be B}. 
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The tensor products of modules are taken over Z if the coefficient 
ring is not specified. 

Rings are always commutative rings with unity. 
For a ring R, and for complexes A" and B" of R-modules, HomR(B", 

A") denotes the double complex whose (i,j)-component is HomR(B·J, Ai) 
and df· 1(f)=d~ of and d~·1(f)=(-1) 1+1f o di 1• 1 forf e HomR(B· 1, A'). 
For a double complex D"" of R-modules bounded below in both indices, 
the associated single complex n· is the complex defined by nn = tBt+J=nD'·1 

and dn(x)=df.J(x)+(- l)·d~·1(x) for x e D··1• 

We denote by Hom~z(B", A') the associated single complex of 
HomR(B", A") in case it is well-defined. 

· We write a triangle of objects in a derived category as if it is an exact 
sequence 

o~A~B~c~o. 

For the properties of triangles, see .[RD, Chap. I]. 

§ 1. Fans and complexes 

Let N be a free Z-module of rank r >0, and let M be its dual Z­
module. The natural pairing < , ) : MX N-z is extended to the bilinear 
form< , ): MBXNB-R where MB=M®R and NB=N@R. 

Definition 1.1. A nonempty subset <1 of NB is said to be a rational 
polyhedral cone if there exists a finite subset {ni, . · • , n,} of N such that 
<1=Ron1+ ···+Ron., where R0 ={c e R; c >0}. <1 is said to be a strongly 
convex rational polyhedral cone (s.c.r.p. cone for short) if, furthermore, it 
satisfies the condition <1 n (-<1)={0}, where -<1={-a; a e <1}. For a 
rational polyhedral cone <1CNB, we denote by int <1 the interior of <1 in 
the linear space <1+(-<1). A subset p of a rational polyhedral cone <1 is 
said to be a face of <1 and we denote p-< a if there exists an element x of 
MB such that (x, a) >0 for every a e <1 and p is equal to {a e <1; · (x, a) =0}. 

Let <1 be an s.c.r.p. cone. Then <1 itself and 0={0} are faces of <1, 
and every face of <1 is also an s.c.r.p. cone. 

Definition 1.2. A set 2 of s.c.r.p. cones of NB is said to be a fan if 
(1) <1 e 2 and p-<<1 imply p e 2, and 
(2) <1, !' E £ and p=<Tn!' imply p-<<1 and p-<!'. 

A fan 2 is said to be complete ifit is a finite set and the union 121=Uue:i: <1 
is equal to NB· 

Let 1r: be an s.c.r.p. cone. Then the set I'(1r:) of the faces of 1r: is a 
fan of NB. 

From now on in this section, 2 is always a fan of NB. 
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Definition 1.3. For a subset <b of 2, we say 
(1) <bis star closed if a e <b, t" e 2 and a--<t" imply 'r' e <b, 
(2) <b is star open if 'r' e <b and a-< 'r' imply a e <b, and 
(3) <bis locally star closed if a, p e f/> and a-<t"-<p imply 'r' e <b. 
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Let f[) be a locally star closed subset of 2. Then, for elements a, 
t" e 2, we denote · 

f/>(a-<)={'r' e <b; a-<'r'}, f/>(-<p)={t' e f/>; t"-<p} and 

f/>(alp)={t" e f/>; a-<t"-<p}. 

It is clear by definition that 2(a-<) is star closed, 2(-<p) is star open and 
2(a Ip) is locally star closed in 2, respectively, for any a, p e 2. 

For a rational polyhedral cone a, we set a.L={x e MR; (x, a) =0 for 
every a ea}, N[a] =N/(Nn (a+(-a))) and M[a] =Mn a.L. Then N[a] 
and M[a] are mutually dual free Z-modulesofrankcodima=r-dima. 
Hence, ifwe set Z(a)=A•odlmuM[a], then Z(a) is a free Z-module of rank 
one. Here we understand Z(ct)=Z if codima=0. 

For a locally star closed subset f[) of 2 and for an integer p, we set 
f/>(p)={a e i/J; codima=p}. For a e 2(p) and t' e 2(p-1) with a-<'r', the 
isomorphism 

is defined as follows. Let n1 be an element of N such that the homomor­
phism ( , n1): M-z is zero on M[t"] and maps M[a]nt'v onto Z0 = 
{c e Z; c>0}, where t'v is the dual cone {x e MR; (x, a)>0 for every 
a et'}. Then we define qu1,(m1 /\ • • • /\mp)=(m 10 n1)m 2 /\ ···/\mp for m1 

e M[a] and m2, • • ·, mP e M[t"]. This definition is independent of the 
choice of n1• 

Lemma 1.4 ([Il, Lemma 1.4]). For any elements <1 e 2(p) and p e 
2(p-2) with a-<p, there exist exactly two elements t" e 2(p- l) with a-< 
t"-<p. If we let them t"1 and 'r'z, then the equality q,1,P o qu1,, +q,.,p o qu1,. =0 
holds. 

Let ~ be an abelian category such that its objects are either additive 
groups or sheaves of additive groups on a topological space. We also 
regard a fan 2 as a category by defining that only morphisms between 
cones are inculsion maps. For a covariant functor F: 2-~ and for a 
locally star closed subset f/>c2, we define a complex C"(f/>, F) of objects 
of~ as follows. For each integer p, we set 

CP(f/>, F) = EB F(a)©Z(a). 
uE!l>(-p) 
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The component of the coboundary homomorphism dP: CP(</J, F)­
CP+1(</J, F) with respect to the direct summands F{u)®Z(u) and F(i-)®Z(i-) 
associated to q e </J(-p) and i- e </J(-p-1), respectively, is defined to be 
the zero map if a is not a face of i- and to be F(i, 1,)@q,1• if a-<i- where 
i, 1, is the inclusion map. Then by Lemma 1.4, we know dP+1 o dP=O for 
every p, and C'(</J, F) is a complex. It is clear by definition that CP(</J, F) 
=0 for p<-r or p>O. 

We also define similar complexes for contravariant functors. We set 
Z{u)*=Homz(Z(u), Z) for every a e I, and we define 

qt,=(- l)co,Uma(q,1,)*: Z(i-)*~Z(u)*. 

Then, for a contravariant functor F: I-~. we define the complex 
C'(</J, F) by 

CP(</J, F)= EB F(u)®Z(u)* 
aElll(p) 

and by defining the coboundary homomorphism d: CP(</J, F)-CP+ 1(</J, F) 
so that its component with respect to i- e </J(p) and a e </J(p + 1) is 
F(i;,1,)®qt, if a-<i- and is zero otherwise. In this case, CP(</J, F)=O for 
p<O or p>r. 

We define complexes for one other case which we use later. Let lff 
be a subset of I 2 =IXI. We say lff is locally skew closed if i-1 -<i--<i- 2 

and a2 -<a-<a 1 imply (i-, a) E lff for any (i-1, u1) and (i-2, u2) in I2. Let 
F: I 2-~ be a double functor which is covariant for the first variable and 
contravariant for the second. Then, for a locally skew closed subset 
lf!cI2, we define a double complex C"(lff, F) by 

CM(lff, F)= EB F(i-, u)®Z(i-/u), 
(•,•) E F(-p,q) 

where lff(i,j)={(i-, a) e lff; codim i-=i, codim a=j} and Z(i-/a)=Z(i-)® 
Z(u)*. The coboundary homomorphisms df•q: CM(lff, F)-+-CP+l,q(lff, F) 
and df•q: CM(lff, F)-cp,q+ 1(lff, F) are defined similarly as in the cases of 
covariant functors and contravariant functors, respectively. We denote 
by C'(lff, F) the associated single complex of this double complex. 
Namely, 

C'(lff, F)= EB CM(lff, F), 
p+q=t 

and, for integersp, q,p', q' withp+q=t and p'+q'=t+l, the compo­
nent of the homomorphism d': C'(lff, F)-c 1+1(lff, F) with respect to the 
direct summands CM(lff, F) and CP',q'(lff, F) is equal to df•q if q=q', is 
equal to (- l)Pdf•q if p=p' and is zero otherwise. 
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For nonnegative integers s, t, we define z.,t to be the functor with 
the constant value Z from .r• +i which we regard covariant for the first s 
variables and contravariant for the last t variables. 

For a star closed subset ifJcI, we set if)<2>={('r, q) e ifJ2 ; q-<'t'}. Then 
if)<2> is a locally skew closed subset of I 2• Hence we can consider the 
double complex C"(<P<2>, Z 1,i). Since CM(ifJ<2>, Z 1,i)=fB<,,a>e•12><-p,q>Z(t"/q) 
and codim t"<codim q for every ('t', q) e <P<2>, we know CP•q(<P<2>, Z 1, 1)=0 
unless -h~p<-d, d<q<h andp+q>O, where h=ht <P=max{i; <P(i) 
*~} and is called the height of <P and d=min {i; <P(i)-:f::.~}. Since Z(q/q) 
=Z for every q e I, we know C0(<P<2>, Z 1, 1)=fBauZ=z•. We denote 
by l: z-c 0(<P<2>, Z 1,i) the diagonal homomorphism to the direct sum of 
Z's. 

Lemma 1.5. Let TC be an s.c.r.p. cone, and let I=I'(TC), i.e. the set of 
the faces of TC. Then, for any nonempty star closed subset <PcI, these­
quence of finitely generated free Z-modules 

is exact, where h=ht <P. 

Proof In the proof, we denote this sequence by A'. In order to 
see that A' is a complex, it is sufficient to show that (d0 o 1)(1)=0. Since 
C1(ifJ<2>, Z 1, 1)=fBp+q=l fB<,,a>u<••<-P,q>Z('t'/q), we have to show that each 
component of (d0 o l)(l) in Z('t'/q) is zero. Let a be a generator of Z(q), 
Then b=qa 1,(a) is a generator of Z('t'). Let a* e Z(q)* and b* e Z('t')* be 
the generators dual to a and b, respectively. Then the components of 
l(l) at Z(q/q) and Z('t'/t") are a®a* and b®b*, respectively. Hence the 
component of (d0 o l)(l) at Z(t"/q) is equal to qa1,(a)®a*+(- l)Pb®q;'ia(b*) 
=b®a*+(-l)p+qb®a*=O. Thus A is a complex. Let d=codimTC. 
We define a decreasing filtration {P} on A' by FP(A')=A·, for p~d, and 
FP(A")=ff)J;,epCi,J(<P<2>, Z1,1) for p>d. Then Grt(A')=P(A')/FP+ 1(A') 
is equal to zero for p < d, is equal to the sequence 

d·l dO 
· · · ---'>-0---'>-Z---'>-Z(TC/TC)---'>-0---'>-· · · 

for p=d and is equal to fBarnp> C,(I(q-<), Z1, 0)®Z(a)* for p>d. The 
homomorphism d· 1, in the case p=d, is the identity since it is obtained 
by l. The sequence in the case p>d is equal to fBaocP> C'(I'(TC(q]), Z1, 0), 

where TC[a] is the image of TC in N[alii=NR/(q+(-q)). Note that TC(q] is 
an s.c.r.p. cone in N[a]R. It is also exact since I'(TC[a]) is homologically 
trivial for q=/=-TC by [11, Prop. 2.3]. Hence the £ 2-terms of the spectral 
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sequence associated to this filtration are all zero. 
the cohomologies of the complex A" vanish. 

This. implies that all 
q.e.d. 

The following lemma is essentially due to the contractibility of convex 
sets (cf. [TE, Chap. 1, § 3] and [Dem, § 4, Prop. 61). 

Lemma 1.6. Assume 2 is finite and ;rCJ2I tr+(-n) is a rational 
polyhedral cone of codimension d > 0. Then, for the star closed subset 
(P={a e 2; an int ;r::f:q>} of 2, we have 

Hi(C(qj, Z1,0))=0 for i=t-d and H-rL(C(qj, Z1,0))=Z(tr). 

In other words, C"(qj, z1, 0) is naturally quasi-isomorphic to Z(tr)[d]. In 
particular, 

~ (-l)dlm•=(-1)' ~ (-l)codlmo=(-1)'-d,, 
•E• •E• 

Proof By replacing 2 by the fan {an ;r; a e 2}, we may assume 
12l=tr. For a e (l)(d), we have M[a]=M[;r] and Z(a)=Z(;r). Hence 
c-a(qj, Z 1,0)=E8,,ucrLiZ(a)=Z(tr)•<ai. Let e: c-rl(qj, Z1, 0)-Z(tr) be the 
trace homomorphism. We denote by C"((P, z1, 0) the augmented complex 

· · · -o~C-'((P, Z1, 0)- • • · - c-rL(qj, Z1, 0)~Z(tr)~o- · · ·. 

It is sufficient to show the cohomologies of this complex to vanish, which 
we prove by induction on rank N and the number of elements in (P. If 
d>O, then by replacing Nby its submodule Nn (tr+(-;r)), we can reduce 
it to the case of lower rank. Hence we assume dim tr=r. Since the 
assertion is obvious if r=O, we assume r>O. Set 7J=n.ua, 

Assume 7J ~ (!). Then, there exist a, 't' e qj such that an't'nint tr=q>. 
Hence there exists a rational hyperplane H such that, if we denote the 
two open half spaces with the common boundary H by H+ and H_, we 
have an int tr CH+ and 't' n int 11:cH_ as well as the fact that H contains 
no element of (P. Then we get the exact sequence 

o~c·(qj 0, Z1,o)~c·(qj +• Z1,0)E8C"(qj _, Z1,o)~C"(qj, Z1,o)~O 

of complexes, where (P+={a e qj; anH+=t9>}, (P_={a e qj; anH_::f:q>} 
and (P0 ={a e (P; anH=tq>}. Since both qj+ and qj_ have less elements 
than qj we know that the second complex of the exact sequence is exact 
by induction assumption. Since {p n H; p e 2} is a fan of H, the first 
complex is also exact by assumption for the case N has lower rank. Thus 
C"(qj, Z1, 0) is also exact. 

Next, assume 7J e qj and 7]::f:O. In this case, by replacing every cone 
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in([) by its image in N[rJ]R=NR/(11+(-11)), we are reduced to the case of 
lower rank. Hence it is exact by induction assumption. 

Finally, assume O e ([). In this case, we have 11:=NR and ([)=2. 
Since clearly H-'(C"(I, z1,0)) =0, it is sufficient to show Ht(C"(I +> Z1, 0)) 

=0 for i>-r, where 2+=2\{0}. We can show this similarly as in the 
case 1J 1$ ([), by taking a general rational hyperplane H. q.e.d; 

§ 2. Normal semigroup rings and Danilov's de Rham complex 

In this section, we fix an s.c.r.p. cone 11: in NR and we set 2=I'(rr), 
i.e. the set of all faces of 11:. 

Let k be an arbitrary field, and let S be the semigroup ring k[Mn 11:v], 
where 11:vcMR is the dual cone of 11:. We denote by e(m) the element of 
s which corresponds to m E Mnrrv. Then S=tfJmunr•ke(m), and 
e(m)e(m')=e(m+m') form, m' e Mn 11:v. For a subset U of Mn 11:v, we 
denote k[U]=tfJmeuke(m). Here note that k[U] does not necessarily con­
tain k in our notation. The subset U is said to be an ideal if a e U and 
be Mnrrv imply a+b e U. If Uis an ideal, then k[U] is an ideal of the 
ring S. For the complement E =(Mn 11:v)\U, we identify k[E] with the 
quotient ring S/k[U]. In particular, for a face <1 of 11:, P(O')=k[Mn (11:v\ql.)] 
is a prime ideal of S, and k[Mn 11:v n qJ.] is the quotient ring S/P(O'). We 
denote k[Mn 11:v n qJ.] by A(q) or S[q] according as whether we regard it 
as an S-module or a ring, respectively. The ring S[O'] is an affine ring 
which has same quotient field as k[M[O']]. Since rank M[O'] =codim O', we 
know dim S[O']=i for O' e I(i). 

Let {r1, · · ·, r.} be the set of one-dimensional faces of 11:. Let J be 
the ideal P(r1) n • • • n P(r.)=k[Mn int 71:V] of s. We set 

Bs(-log J)={a e Derk (S); a(J)cJ}, 

where DeriS) is the set of k-derivations from S to itself. For each ele­
ment n of N, the k-derivation on which is defined by on(e(m))=(m, n)e(m) 
for every m e M n 11: v is clearly an element of e 8 ( - log J). By [IO, Prop. 
1.12], this correspondence n~on induces an isomorphism of S-modules 
S ®N::::: e 8 ( - log J). Let .Q1(1og J) be the dual S-module 

Homs(Bs(-logJ), S). 

By the above isomorphism, we also have an isomorphism S®M::::: .Q1(log J). 
It is natural to denote by de(m)/e(m) the element of .Q1(log J) which cor­
responds to l®m e S®Mby this isomorphism. For a Z-basis {m1, •• • , 

m,} of M, .Q1(log J) is the free S-module with the basis {de(m1)/e(m1), •• ·, 

de(m,)e(m,)}. For each integer p, we set .QP(log J}=A?.Q1(log J). Clearly, 
.Q0(log J)=S and .QP(log J)=O for p<O or p>r. 
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The k-algebra S has a natural M-grading. Namely, we set deg(e(m)) 
=m for every me Mn 1rv. By defining deg(de(m)/e(m))=O for every 
m e M, the S-module !}P(log J) also has an M-grading for every p. Since 
!}P(log J) is naturally isomorphic to S®AP M, its component !}P(log J)(m) 
of degree mis equal to ke(m)®AP M if m is in Mn 1rv and is zero other­
wise. 

Danilov's S-module ii7s is given as an S-submodule of !}P(log J). 
For each element me Mn 1rv, the intersection p(m)=1r n mJ. is a face of 
1r, where m.L={a e NB; (m, a)=O}. As we see easily, 

p(m+m')=p(m) n p(m') 

Now, we set 

ii1s= EB ke(m)®APM[p(m)]cDWogJ). 
m.E.M nnv 

Since M[p(m)]cM[p(m+m')] for any m, m' e Mn 1rv, we have 

e(m')(ke(m)®APM[p(m)])cke(m+m')®APM[p(m+m')]. 

This implies ii1s is an S-submodule of Dt(log J). Note that Danilov [Da] 
denotes this module simply by D's, but, in this paper, we denote it by iit 
to avoid confusion. For each integer p, the exterior derivative 

d: Dt(log J)~t.W 1(log J) 

is defined to be the k-linear homomorphism with d(e(m)®(m 1 /\ ···/\mp)) 
=e(m)®(m/\m 1 /\ ···/\mp) for any elements m, m1, • • ·, mP e M. dis a 
differential operator of rank one which preserves the M-grading. Since 
me M[p(m)] for every me Mn 1rv, we have d(Q1s)cfi1s+1 for every p. 
Since d2 =0 is clear, we get a complex 

for which Danilov showed the following "Poincare lemma". 

Proposition 2.1 ([Dal). Assume dim 1r is equal to r = dim NB and the 
characteristic of k is equal to zero. Then the isomorphism k~ S(O) defined 
by ai-+ae(O) induces the exact sequence 

o~k~s~ii1~ . .. ~ii~~o. 

The cone 1r is said to be nonsingular if 1r=Ron1 + ···+Roni for a Z­
basis {nu · · ·, nr} of N and for an integer O<t<r. If 1r is nonsingular, 



Torus Embeddings and de Rham Complexes 119 

then S is a regular ring and ii~ is equal to the S-module of the regular 
p-forms on the nonsingular affine scheme Spec (S). Actually, if we set 
z1 = e(m1), • • ·, Zr = e(mr) for the basis {m1, • • ·, mr} of M dual to 
{n1, • • ·, nr}, then ii~ is the free S-module with the basis {dz0 • • ·, dzr}· 
For general .,., ii~ is equal to the S-module of regular p-forms on the com­
plement of the singular locus of Spec (S) (see [Da, Chap. I, § 4]). 

Now, let <b be a star closed subset of I=I'(.,.). We set /(<b)= 
n,,0 P(o-), and denote the quotient ring S//(<b) by B(<b). Since /(<b) is a 
semiprime ideal, B(<b) has no nilpotent element. We define the de Rham 
complex ii~<•> for the ring B((b) as follows. Since 

I(<P)=k[Mn ('lrV\(U o-1-))] 
•Efl 

and .Q~(log J) is a free S-module with a basis consisting of homogeneous 
elements of degree 0, the homogeneous part of degree m of /(<b).Q~(log J) 
is equal to .Q~(log J)(m) =ke(m)@AP M if m is in .,.v\(U,, u a.L) and is 
equal to zero otherwise. We set 

fi'li<•> = (Q~ + I( '1>).Q~(log J))/ /( <b)OWog J). 

Then ii'lic.lm) is equal to Q~(m)=ke(m)@AP M[p(m)] if me .,.v n (U.e•o-.l) 
and iiic•> =0 otherwise. Since me .,.v n (U. 0 0-.t) implies p(m) e <b and 
rankM[o-]=codimo-for every o-e I, we know that APM[o-]=0 for every 
o-e <b if p>h=ht<b. Thus fific•>=0 for p>h. On the other hand, we 
have Q'Ji<•> = B( <b) easily by definition. Let <b' be another star closed 
subset of I with <b'c<b. Then, since l(<b)cl(<b'), there exists a natural 
surjection iiic•>-iific•·>· 

For each element r; e 2, .l'(7J-<)={o-e I; r;-<o-} is a star closed subset 
of 2. Since /(I(r;-<))=P(r;), we have B(I(r;-<))=S[r;]. On the other 
hand, since N[r;] = N/Nn (r;+(-r;)) and M[r;] are mutually dual Z­
modules, we have k[M[7)] n .,.[r;]v] =k[M n 1r:v n r;.L]. Hence the ring S[r;] 
is also defined by k[M[r;] n .,.[r;]V] for the pair (N[r;], .,.[r;]) similarly as we 
defined S for (N, 'Ir). Danilov's S[7J]-module ii~c~J defined for S[r;] is equal 
to 

where p[r;](m)='lr[r;] nm.t form e M[r;], and M[r;][p]={m e M[r;]; (m, a) 
=0 for every a e p} for p e I'(1r:[r;]). Since, clearly r;-<p(m) and p[r;](m)= 
p(m)[r;] form e M[r;] n 'lr[r;]v and since M[r;][p[r;]] =M[p] for p eI'('lr) with 
r;-<p, we have 
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Thus we have the following proposition which shows the compatibility of 
the notation. 

Proposition 2.2. For each element r; E J; and for each integer p, there 
exists a natural isomorphism 

Since the exterior derivative d: iJ~-iJ~+i preserves the M-grading, 
this induces a differential operator d: Q~<0l-+Q~<iJ, and we get a complex 
Q~<0l. Since the homogeneous part Q~<0i(m) of this complex of degree 
me M, is equal to Q~(m) if me Mn (n-v n (U.e 0 aJ.)), and is equal to the 
zero complex otherwise, we have the following proposition by Proposition 
2.1. 

Proposition 2.3. If dim n-=r and char k=O, then the sequence 

0------+k------+ B ( (/j)~ Q1< 0) ~ • • • ~ i'Jt< 0) ------+0 

is exact, where h=ht (/j_ 

We are going to give another description of the B((/j)-module i'Jtc0 J 

for each integer p. Actually, it turns out to be the Grothendieck dual of 
the complex which consists of modules of logarithmic differential forms 
and Poincare residue maps. 

We understand the symbol A to be the covariant functor from 1: to 
the category of S-modules defined by A(a)=S/P(a) for every a E J:. Let 
AP be the contravariant functor from 1: to the category of additive groups 
defined by AP(a)=APM[a]. For elements a, -r E J; with a--<-r, the homo­
morphism A(a)-+A(r) is the natural surjection and the homomorphism 
APM[-r]-+APM[a] is induced by the inclusion M[-r]CM[a]. We define the 
double functor A®AP from J:2 to the category of S-modules by A®AP(r, a) 
=A(-r)®AP M[a]. This functor is covariant for the first variable and con­
travariant for the second. For a star closed subset (/j of 1:, we denote 
<Jj<2l={(-r, a) e (/j2 ; a--<-r} as in the previous section. Then (/j<2J is locally 
skew closed, and we get the double complex C'"((/j<2i, A®AP). Since 

ci, 1((/j<2i, A®AP) = EB A(-r)®AP M[a]®Z(-r/a), 
(-r-,a) E q,c2J (-i,j) 

this component is not zero only for i,j with -h~i ~ -d, d <j <h, and 
i + j > 0, where h = ht (/j and d=codim n-. Hence, the component 
Ct((/j<2l, A®AP) of the associated single complex C'(<Jj<2l, A®AP) is zero 
unless 0~£<h-d. 
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Since Z(rJlr1)=Zfor every 1J e I, we have 

C0(t// 2)' A®AP) = EB A(11)®AP M[1)]. 
~e• 

We define the B((l))-homomorphism a,P((l)): .Q~<•>-c 0((1)<2>, A®AP) as 
follows: For each 1J e (/), we have I(11-<)C(l). Hence there exists a 
natural surjection .Q~<•>-.o~<:E<,-<>>· By Proposition 2.2, we have .Q~(}:c,-<>> 
::::: .O~c,J and this is contained in .Q~c,JClog J[1j]) = S[11]®AP M[1J], where 
J[1j]cS[1J] is the ideal defined similarly as JCS. Since S[1J]=A(11), we 
get the composed homomorphism .Q~<•>-A(11)@AP M[1J]. We define a,P((l)) 
to be the homomorphism .Q~<•>-C0((1)<2>, A®AP)=EB~e•A(11)®AP M[1j] 
which induces this homomorphism for each 1J e (I). 

Proposition 2.4. Let (I) be a star closed subset of I, and let p be an 
integer. Then we have 

for i:;t=O, 

and the homomorphism a,P((l)) gives an isomorphism 

.Q~<•>:::::H0(C"((l)<2>, A@AP)). 

Proof Note that a,P((l)) and every homomorphism in the complex 
C"((l)<2>, A®AP)) preserve the grading of the modules. In the proof, we 
denote by L(m)" the component of degree m of the sequence 

for each me M. It is sufficient to show the exactness of L(m)" for every 
me M. If mis not in Mn i.v, then this is true, since all the components 
of L(m)" are zero. We assume me Mn i.v, and we set p=p(m). Then 
.Q~,.,(m)=ke(m)@APM[p] if p e (I) and .Q~,.,(m)=O otherwise. On the 
other hand, since C 1• 1((1)<2>, A@AP)=ffi<,,•>u<»c-t,ilA(T)®APM[a] and 
A(T)(m)=ke(m) if T-<p and A(T)(m)=O otherwise, we have 

C""((l)<2>, A®AP)(m)=ke(m)®C .. ((l)(-<p)<2>, Z 1, 0®AP). 
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This is also zero if p is not in !J). Hence we may assume p e !J). We are 
going to show that L(m)" is a complex. Since APM[p]CAPM[a] if 
a-<p, we know that ke(m)(g)C"(tP(-<p)<2l, Z 1, 0&;)AP) contains the complex 
ke(m)&;)AP M[p]&;)C"(!J)( -<p)<2>, Z 1, 1). Since the second complex makes an 
exact sequence from {jfwrn(m) =ke(m)&;)AP M[p] by Lemma 1.5, d 0 o wP(!J)) 
is zero at degree m and the sequence L(m)" is a complex. We define a 
decreasing filtration F on L(m)" by P(L(m)") = L(m)" for q < d', and 
P(L(m)")=EBr~q ci,J(!J)<2J, A&;)AP)(m) for q>d', where d'=codim p, 
similarly as in the proof of Lemma 1.5. Then, we have Grj,(L(m)")=O 

for q <d', 

and 

Grj.(L(m)") = ( · · . -+O-+ke(m)&;)AP M[p] 

-+ke(m)&;)AP M[p]0Z(p/ p)-+0-+ · · ·) 

Grj,(L(m)")= EB ke(m)&;)APM[a]&;)C"(S(alp), Z1,0) 
aE<l>(q) 

for q =d' 

for q>d'. 

Similarly as in the proof of Lemma 1.5, all the cohomologies of these 
complexes vanish and L(m)" is also exact. q.e.d. 

This proposition means that the B(!J))-module Q1Jc<1>J is quasi-isomor­
phic to C"(!J)<2>, A(g}AP). 

Let fJ/(A): 2-+{S-modules} be the covariant functor defined by 
Qf (A)(a) =A(a)&;)Homz(AP M[a], Z). For elements a, r- e S with a-< r-, 
the homomorphism Qf(A)(a)-+Qf(A)(r-) is the tensor product of the 
natural homomorphisms A(a)-+A(r-) and 

Homz(AP M[a], Z)----+HOmz(AP M[r-], Z). 

Let !J) be a star closed subset of S. By this covariant functor Qf(A), 
we get a complex C"(!J), Qf (A)). For an integer d, and for an element 
a e !J)(d), we give an identification 

Ad·PM[a]=Homz(APM[a], Z)0Z(a) 

by the perfect pairing 

Ad-p M[a] xAv M[a]----+Z(a)=AdM[a] 

sending (x, y) to x I\ y. Hence for each integer i, we have 

Ci(!J), Qf (A))= EB A(a)&;)Homz(AP M[a], Z)&;)Z(a) 
a E<l>(-i) 

= EB S[a]&;)A·i-p M[a] 
aE<l>(-i) 

= EB f2s{;/(Iog J[a]). 
aE<l>(-i) 
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It is easy to see that the (a, ?")-component of the homomorphism 

d: EB S[a]®A-i-PM[a]~ EB S[?']®A-£-t-PM[?'] 
oea>(-i) ,ea>(-i-1) 
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is given by mJ\ · · · /\m_t-i-p-+(m 1, n1)m 2 /\ • • • /\m_t-p if a--<.?", where 
n1 is an element of N which is used in the definition of q.1, in Section I. 
We call this homomorphism .Q8[,;l(log J[a])-+!Js{,:i1-P(Iog J[?"]) the Poincare 
residue map. The (a, ?')-component is the zero homomorphism, if a is not 
a face of?'. 

Proposition 2.5. Let if) be a star closed subset of J:. Then there 
exists a natural isomorphism 

of double complexes. 

Proof For integers i,j, we have 

Ct(<'f), .Qt(A))= EB A(?')®Z(?') 
oe!l>(-i) 

and 

c- 1(w, .Qt(A))= EB A(a)®Homz(AP M[a], Z)®Z(a). 
oea>(j) 

Since Home<a>,(A(a), A(?')) is equal to A(?') if(?", a) e if)<2l and is zero other­
wise for any a, ?' e if), the (i,j)-component of both sides are equal. We 
see easily that this identification gives the isomorphism of double · com­
plexes. q.e.d. 

The complex C(<'f), .Qt(A)) is equal to the complex K" in [II] shifted 
r places to the left. Hence by [II, Th. 3.3], we have the following. 

Proposition 2.6. For every star closed subset if) of J:, C(<'f), .Qt(A)) is 
a dualizing complex of the ring B(W). 

For the definition of the dualizing complexes, see [RD, Chap. V]. 
Note that this is only a local property of the complex C(if), .Qt(A)). In 
Section 5, we will see that this complex is a dualizing complex in a global 
sense. 

Theorem 2.7. Let if) be a star closed subset of J:, and let p be an 
integer. Then, the coherent sheaf !Jt<a>> and the complex C"(if), .Qt(A)) are 
mutually dual with respect to the dualizing complex C(if), .Qt(A)). 

Proof By Propositions 2.4 and 2.5, it is sufficient to show that the 
natural homomorphism 
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elf): Hom~<rlli(C'(<P, Q1(A)), C'(<P, Qd"(A))) 

--*R Hom;crlli(C'(<P, Qt(A)), C'(<P, Qt(A))) 

is an isomorphism in the derived category. Since each Ci(q.i, Q1(A)) is a 
direct sum of B(<P)-modules of type A(a)®Z', it is reduced to proving the 
following lemma. 

Lemma 2.8. Let <P be a star closed subset of J:, and let a be an ele­
ment of <P. Then the natural homomorphism 

is an isomorphism. 

Proof We have to recall the injective resolution of the dualizing 
complex in the category of M-graded B(<P)-modules which we used in [11, 
§ 4]. We define a covariant functor 

Ill): I'(rr)--*(B(<P)-modules) 

by I,p(-r)=Homk(B; 1B(<P), k) if -r E <P, and I,p(-r)=O otherwise, where B, is 
the set of M-homogeneous elements of B(<P) not in the prime ideal P(-r)/ 
I(<P), and HomiB; 1B(<P), k) is the submodule of Homk(B;'B(<P), k) gen­
erated by M-homogeneous homomorphisms. (See [11, § 4].) Then the 
complex C'(<P, Jlf)) is equal tor in [11, § 4] shifted r places to the left. The 
results in [11, § 4] say that there exists a natural homomorphism Qd"(A)\lf) 
-+llf) lrll of the functors restricted to <P, and the induced homomorphism 

is a quasi-isomorphism (see [II, Proposition 4.8]). Furthermore, since 
I/-r) is injective in the category of M-graded B(<P)-modules by [11, Lemma 
4.5] for every -r, and since A(a) is a finitely generated M-graded B(<P)­
module, we know that the complex HomB<lf)i(A(a), C'(<P, lqi)) represents 
RHomBclf)/A(a), C'(<P, Qd"(A))) in the derived category. Since 

HomBcrlli(A(a), Hom/B;'B(<P), k))=Homk(A(a)@ B; 1B(<P), k) 
B(lf)) 

is equal to HomiB; 1A(a), k) if -r>-a and is zero otherwise, and since 
A(a)=B(<P(a-<)), we have HomBcrtJ/A(a), C'(<P, lqi))=C'(<P(a-<), lwC•-<J)­
On the other hand, since HomBclf)/A(a), A(-r)) is equal to A(-r) if a-<-r and is 
zero otherwise, we have HomBclf)iCA(a), C'(<P, Qd"(A)))=C'(<P(a-<), Q/(A)). 
Since the homomorphism C'(<P(a-<), Qd"(A))-+C'(<P(a-<), 11/)c•-<l) is a quasi­
isomorphism by [11 ], the homomorphism c" is an isomorphism in the 
derived category. q.e.d. 
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Let <I) be a star closed subset of I. We denote by min <I) the set of 
minimal elements of I. Since {P(o); a e min <I)} is the set of minimal 
prime divisors of the semiprime ideal /(<I)), and since each S[a] = S/P(a) is 
a normal ring, the normalization .B(<.I)) of B(<.I)) is equal to EB,emin fl S[a]. 
Let ,'.l: B(<.1))-+.B(<.I)) be the natural injective homomorphism. For h=ht<.I), 
we set <I)'= {a e <I): codim a<h}. We will use the following lemma in 
Section 5. 

Lemma 2.9. In the above notation, A induces an isomorphism J(<.I)')/ 
l(d'>)-+EB,uch,J[a] of ideals of B(<.I)) and .B(<.I)). 

Proof Since 

l(</))=k[Mn(irY\U q.L)] and [(</)')=k[Mn(irY\ u q.l)], 
oe• ae•' 

we have J(<.l)')/I(<.l))=k[Mn (U,efl(h) int (irY n q.l))], where int (irV n q.L) is 
the interior of ir v n a.L in the linear space a.L. 

For each a e <.l)(h) and each me Mn int (irv n a.L), the annihilator of 
e(m) e B(<.I)) is equal to P(a)/J(<.I)), since <.l)(h)cmin <I). Hence the projected 
image of k[Mn int (irv n a.L)] in the direct summand S[-r] of .B(<.I)) is equal 
to zero if -r-=/=-a while it is equal to the ideal J[a]=k[M[a]nintir[a]V] 
of S[a] if -r=a. Hence the image of J(<.l)')/J(<.I)) is equal to the ideal 
EB,efl(hl J[a] of .B(<.I)). q.e.d. 

§ 3. Torie polyhedra 

In this section, we fix a field k of an arbitrary characteristic. 
As in the previous section, let N be a free Z-module of rank r ~O, 

and let M be the dual Z-module. For each fan I of NR, we denote by 
Z(N, I) or simply Z(I) the TN-embedding over k associated to the fan I 
which is defined in [TE, Chap. 1] or [MO, Chap. 1], where TN is the alge­
braic torus Spec(k[M]). If l'=I'(ir) for an s.c.r.p. cone ir, then Z(I) is 
equal to the affine TN-embedding U(N, ir)=Spec(k[Mnirv]). We denote 
by orb (N, ir) the closed subvariety of U(N, ir) defined by the ideal P(ir)= 
k[Mn (irY\ir.L)]. orb (N, ir) is a TN-orbit of U(N, ir) under the action of 
TN. We might abbreviate U(N, ir) and orb (N, ir) as U(ir) and orb (ir), 
respectively. For a general I, the TN-embedding Z(I) has the covering 
{U(a); a e I} by TN-invariant affine open sets. We denote by V(N, I, a) 
the reduced subvariety which is the closure in Z(I) of the locally closed 
subvariety orb (a) of Z(I). When N and I are obvious, we abbreviate it 
as V(I, a) or V(a). For each element p e I, we set I[p]={a[p]; a e 
I(p-<)}. Then l'[pl is a fan of N[plR, and we have the following: 



126 M.-N. Ishida 

Lemma 3.1 ([MO, Th. 4.2, (iii)]). For any p e 2, we have natural 
identifications TN[pJ=orb (a) and Z(N[p], 2[p])= V(N, 2, p). 

Let N' be another free Z-module of finite rank, and let 2, 2' be fans 
of NR and N'i,., respectively. Then each homomorphism h: N'-N induces 
the homomorphism TN'-TN of the algebraic tori. This morphism is 
extended to a morphism of the torus embeddings Z(N', 2')-Z(N, 2) if 
and only if, for each element a of 2', there exists 't' in 2 with hR(a)C't' 
[MO, Th. 4.1], where hR: N'i,.-NR is the coefficient extension of h. Al­
though h is assumed to have a finite cokernel in [MO], we see easily that 
this condition is not necessary. If this condition is satisfied, we denote by 
<p(h, N'/N, 2'/2) the morphism of torus embeddings. This might also be 
abbreviated as <p(h, 2'/2), <p(h, N'/N) or <p(h). 

In the above case, for each element 't' e 2, we denote by 2; the set of 
elements a of 2' such that 't' is the minimal element of 2 with ha(a)C't'. 
2; is a locally star closed subset of 2'. For an element a e 2;, the restric­
tion of <p(h, 2'/2) induces the morphism V(N', 2', a)-V(N, 2, 't'). It is 
easy to see that this is equal to the morphism 

<p(h, 2'[a]/2['t']): Z(N'[a], 2'[a])--+Z(N['t'], 2[!']) 

for the naturally induced homomorphism Ii.: N'[a]-N['t'] with respect to 
the identification in Lemma 3.1. 

The morphism <p(h, 2'/2): Z(2')-Z(2) is proper if and only if, for 
every 't' e 2, the set {a e 2': hR(a)C't'} is finite and the union of its elements 
is equal to h1/('t') [MO, Th. 4.4]. Assume <p(h, 2'/2) is proper. Then, if 
we set N"=h(N')cN and 2"={N~n't'; -re 2}, then the homomorphism 
<p(h, N'/N, 2'/2) is decomposed as <p(h', N"/N, 2"/2)o<p(h", N'/N", 
2'/2"), where h': N"-N and h": N'-N" are the natural injection and 
surjection, respectively. This is nothing but the Stein factorization [EGA 
III, 4.3Jofthe proper morphism <p(h, 2'/2). In particular, <p(h, 2'/2)*0z<x'> 
=0z<x> if and only if his surjective. 

Let 2, 2' be two fans of NR. We say 2' is a subdivision of 2, if 
(1) for every a e 2', there exists -re 2 with aC't', and (2) for every 't' e 2, 
the set { a e 2'; a c 't'} is finite and the union of the elements is equal to -r. 
In other words, 2' is a subdivision of 2 if and only if the birational 
morphism <p(2'/2)=<p(lN, 2'/2): Z(2')-Z(2) is defined and is proper. 

For a locally Noetherian scheme X, we denote by D.;0h(X) the derived 
category of the category of complexes of (!} x-modules bounded below with 
coherent cohomologies. 

Theorem 3.2. Let h: N'-N be a surjective homomorphism, and let 
2' and 2 be fans of N'i,_ and NR, respectively. If <p(h, N'/N, 2'/2) is well-
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defined and is proper, then we have R<p(h, 2'/:S)*(!)z<x'> =0zm in the derived 
category D:C,iZ(S)). · 

Proof If h is an isomorphism, or equivalently if <p(h, 2' / S) is a 
birational morphism, this follows from the results of [TE, Chap. 1, § 3]. 
We consider the general case. If we take a submodule N<2i of N' which 
is mapped isomorphically to N by h, then we get the decomposition N' = 
N<1JtBN<2i for N<1'=Ker(h). Let 2 2 be the fan of Nl/t' which is isomor­
phic to 2 by h, and let 2 1 be an arbitrary complete fan of N<fi'. Then we 
have Z(N', 2 1 X2 2)=Z(N< 1i, 2 1)XZ(N< 2i, 2 2) and Z(N<2i, 2 2)~Z(N, 2), 
where 2 1 x2 2 ={0-X-r; o-e 2 1,-. e 2 2}. · Since Z(N<1>, 2 1) is a complete 
torus embedding, H'(Z(N<IJ, 2 1), 0zcNw,x,>)=O for i>O by [Da, Cor. 7.4]. 
Hence, by th~ base change theorem, we have R<p(h, 2 1x2 2/2)*(!)z<x,xx.>= 
0zcxi· Let 2 be a common subdivision of 2' and 2 1 x2 2. Then, since 
<p(lN,, 2/2') and <p(lN,, 2/2 1 x2 2) are birational morphisms, we have 
R<p(lN'• 2/2')*(!)z<i'i = 0zcn and R<p(lN,, 2/21 X 22)*0zci'> = 0zcx,xx,i· 
Thus 

R<p(h, 2'/2)*(!}Z(X')=R<p(h, 2'/2)*R<p(lN'• 2/2')*0zci'J 

=R<p(h, 2/2)*(!)Z(i') 

=R<p(h, 2 1X2 2/2)*R<p(lN'• 2/2 1X2 2)*0z<i'> 

=R<p(h, 21 X 22/ 2)*(!) Z(X1XX0) 

q.e.d. 

Corollary 3.3. Let 2 be a fan of N R• and let 2' be a subdivision of 2. 
Then for each element o-e 2', we have R<p(2'/2)*(!)v<x',qJ =(!)vex,,,, where 
u is the minimal element of 2 with o-Cu. 

Proof In view of Lemma 3.1, the morphism V(2', o-)-+V(2, u) 
obtained as the restriction of <p(2'/2) to V(2', o-) is equal to 

<p(h, 2'[o-]/2[u]): Z(N[o-], 2'[o-])~Z(N[u], 2[u]) 

for the natural surjection h: N[o-]-+N[u]. Hence the corollary follows 
from the above theorem. q.e.d. 

We denote by D(2) the reduced Weil divisor Z(2)\TN. If 2 =I'(11:) 
for an s.c.r.p. cone 11:, then D(2)=Spec(S/J) for the ideal Jin Section 2. 
We define the (!)zm-module !J~m,(logD(S)) to be 0zm®M. This is the 
globalization of Q1(log J) in Section 2, and is a free (!) zcz,-module of rank r. 
For each o-e 2, we denote by D(2, o-) the reduce divisor V(2, o-)\orb (o-) 
of the torus embedding V(2, o-). Then Q~<x,q,(logD(2, o-))=(!)vcx,qi®M[o-] 
is a free 0vcx ,q,-module of rank codim o-. 
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For an integer p, a covariant functor QiCI, 0): 2-{0z<zJ-module} is 
defined by Qi(2, 0)(a)=0v<z,./8)Homz(APM[a], Z). Similarly as in Sec­
tion 2, we have Qi(2, 0)(a)®Z(a)=f2t,Li(log D(2, a)) for d=codim a. 

Proposition 3.4. Let 2 be a fan of N R, and let 2' be a subdivision of 
2. Then, there exists a natural isomorphism 

in the derived category D;-0 h(Z(2)). 

Proof Since Ci(2', Q'o'(2', 0))=ffi•EZ'<-iJ0v<z',•l®Z(a), we get 

Rcp(2'/2)*Ci(2', Q'o'(2', 0))=cp(2'/2)*Ci(2', Q'o'(2', 0)) 

= ffi 0m,,J®Z(a) 
•EZ'(-i) 

by Corollary 3.3, where a is the unique minimal element of 2 with a Ca. 
Recall that for a subset <JJ of a fan 2 and for an integer i, we denote 
<JJ(i)={a e <JJ; codim a=i}. In particular, dim V(2, a)= i for a e <JJ(i). 
We define the homomorphism 

ffi 0v<z,•J®Z(a)~ ffi 0v<z,,J®Z('r) 
aEZ'(-i) ,EZ(-i) 

as follows. Let (a, i-) be in 2'(-i)X2(-i). If a=i-, then Z(a)=Z(i-), 
since codima=codimi-=-i and M[a]=M{i-]. We define the (a,i-)­
component of this homomorphism to be the identity if a=i- and to be 
zero otherwise. Then, as we see easily, we get a homomorphism 

of complexes. We define a decreasing filtration {P}qEZ on the complex 
A'=cp(S'/2)*C'(2', Q'o'(S', 0)) by 

Fq(Ai)= ® 0v<z,,), 
aEZ'(-i) 

codima+q~O 

as well as {Gq}qEZ on the complex B'=C'(2, Q'o'(S, 0)) by Gq(Bi)=Bi if 
i>q and Gq(Bi)=O for i<q. Then the homomorphism!' preserves these 
filtrations and the induced homomorphism Gr'J,(A')-Grb(B") is equal to 
the natural homomorphism 

which is induced by the homomorphisms 
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in Lemma 1.6. Hence this is a quasi-isomorphism by the same lemma. 
Thus the homomorphism/" is a quasi-isomorphism. q.e.d. 

The functor Q'1(2, 0) is abbreviated as {J';(0) if the fan 2 is clear 
from the context. 

Definition 3.5. For a star closed subset </J of a fan 2, we denote by 
Y(</J) the reduced subscheme U,e(I) V(a) of Z(2), and we call it the toric 
polyhedron associated to </J. 

Let Y(</J) be the toric polyhedron associated to </Jc2. Then we see 
easily that Y(</J) has the open covering { Y(</J) n U(ir); n e </J}, and each 
Y(</J) n U(ir) is equal to Spec (B(</J n I'(ir))) where B(</J n I'(ir)) is the 
quotient ring of S = k[ Mn ir VJ defined in Section 2. 

By Proposition 2.6, C"(</J, Q;j(0)) is the (local) dualizing complex of 
the toric polyhedron Y(</J). 

Lemma 3.6. Let </J be a star closed subset of 2, and let L" be a.finite 
complex of coherent (!JY<IJJJ-modules. Assume that each Dis decomposed as 
a direct sum of free 0v<ul-modules for a E </J. Then the natural homomor­
phism 

is an isomorphism in the derived category. Furthermore, if we regard 
C"(</J, Q;j(0)) as a subcomplex of C-(2, Q/(0)), then the natural homomor­
phism 

..Ytom~ (L", C(</J, Q;j(0))~..Ytom~ (L", C-(2, Q/(0))) 
Y(IJJ) Z(I) 

is an isomorphism. 

Proof By the standard spectral sequence, the first assertion is 
reduced to showing that the natural homomorphism 

..Yfom~ (0v(u), C"(</J, Q;j(0))~R..Ytom~ (0v(u), C"(</J, Q;j(0)) 
Y(<I>) Y(<I>) 

is an isomorphism for every a e </J. This is true by Lemma 2.8. The 
second assertion follows from the fact that 

if a, 1: E </J, and ..Yfom, (0v<u), 0v<,))=O if 7: E 2\</J and a E </J. q.e.d. 
Z(I) 
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We denote (JJ<2) ={(r, a) e ([)2 ; a-<r} for a star closed subset ([J of 2. 
The double functor 0®AP: 2:2-+{ 0 zcn-modules} is defined by 0®AP(r, a) 
=0vc,)®AP M[a]. This functor is covariant for the first variable and 
contravariant for the second. It is the globalization of the functor A®AP 
in Section 2. We get the double complex C .. (([J<2l, 0®AP) and the single 
complex C(([J<2), 0®AP) associated to it. 

By globalizing Proposition 2.5, we have the following. 

Proposition 3.7. Let ([J be a star closed subset of 2. Then, for each 
integer p, we have 

Let J;' be a subdivision of J:, ([J a star closed subset of 2 and ([J' = 
{a e 2'; a e ([J}. We define the homomorphism 

~: cp*Yf'om,Y(IP')(C(([J', !21(0)), C(([J', Q';;'(0))) 

~£om, (cp*C"(([J', QpV(0)), C"(([J, Q';;'(0))) 
Y((l>) 

of double complexes as follows. Since cp*0v<al =0v<•) for a E ([J', we have 

cp*Yf'om,Y(IP'/C-i(([J', !21(0)), Ci(([J', Q';;'(0))) 

EB 0vm®AP M[(:]®Z(.;/,) 
(< ,C) E IP'"' ( -i,j) 

and 

If ~=rand ,='1}, then we have Z(r/'l})=Z(.;/,), since dim .;=dim r= -i. 
Then the ((.;, ,), (r, '1)))-component of ~i,j is defined to be the identity. 
Otherwise, the component of ~t, 1 is defined to be zero. Then we see that 
this is a homomorphism of double complexes. 

Proposition 3.8. Let the notation be as above. Then, the homomor­
phism 

cp*Yf'om;Y(IP/C(([J', f21(0)), C"(([J', Q';;'(0))) 

~£om; (cp*C(([J', !21(0)), C"(([J, Q';;'(0))) Y(IP) 

of the associated single complexes obtained from ~ is a quasi-isomorphism. 

Proof Let the first complex be K" and the second L". We define 
decreasing filtrations F and G on K" and L", respectively, as follows. For 
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each integer q, P(K') is defined to be the sum of (!}vm®AP M[C]®Z($/C) 
for $,Ce!'!>' with C-<$ ahdcodimC-codim~>q,andGq(L')is the sum 
of (!}vc,)®AP M[rJ]®Z(T/1)) for!' e !'I>, 7J e !'I>' with 7JC!' and codim 7J-codim t' 
>q. Then, these :filtrations are compatible with the homomorphisms. 
By considering the associated graded complexes, we reduce the problem 
to showing that the homomorphism 

is a quasi-isomorphism for all !' e !'I> and 7J e !'I>' with 7JCt', where 2:(1)-<) 
={$ e 2'; 1)-<$ and~=!'}. By the quotient map 

Na~N[1J]a=Naf(1J+(-7J)), 

2:(1)-<) is in natural one to one correspondence with {p e 2;'; p n int !'(7]] 
:;t= sb}, where 2" = {p e 2'[7]]; p C !'(7]]} and !'(7]] is the image of -. in N[7J]a, 
Since !'(7]] is a rational polyhedral cone and !'(7]] = J 2" I, the homomorphism 
is quasi-isomorphic by Lemma 1.6. q.e.d. 

In Section 5, we will see that C'(!'l>, fl;(((!})) is a dualizing complex in 
a global sense. In particular, C'(!'l>', {li(((!})) is equal to the twisted inverse 
image <p1C'(!'l>, fl;(((!})) and Proposition 3.8 gives an explicit description of 
the relative duality [RD, Chap. VII, Cor. 3.4] in our special case.· 

Let 2' be a subdivision of 2, and let <p=<p(2'/2): Z(2')-Z(2). For 
a star closed subset !'I> and for each integer p, there is a natural homomor­
phism <p*C'(!'l>', Qt((!}))-C'(!'l>, Qt((!})), where !'!>'={a e 2'; lie!'/>}. Actu­
ally, since 

and 

we can define the homomorphism similarly as in the proof of Proposition 
3.4. 

Let 2', !'I> and !'I>' be as above. For each integer p, we set 

{j1'(0) =£'D(C'(!'/)C2), (!}@AP)). 

Note that .Yfi(C'(!'/><2>, (!}®AP)) =0 for ii= 0 by Proposition 2.4. By Corol­
lary 3.3, R<p*iif..wi is represented by <p*C'(!'/)'<2l, (!}@AP). Furthermore, it 
is also represented by .Yt'om; (<p*C'(!'l>', Qt((!})), C'(!'l>, Q'i(((!}))) by Pro-

Y<0) 

positions 3.7 and 3.8. Since iif..c0 > is quasi-isomorphic to 

.Yt'om'i,Y(ID)(C'(!'l>, Qt((!})), C'(!'l>, Q'i(((!}))) 



132 M.-N. Ishida 

by Proposition 3.7, we get a homomorphism Q'f_,<qi)-+Rcp*Q'f_,wl in the 
derived category induced by the homomorphism cp*C((f)', flf((!)))-+ 
C'((f), Q'f ((!))). 

Lemma 3.9. Let J;' be a subdivision of 2, and let J; + =2\{0} and 
s: =2'\{0}. Let cp: Z(S')-+Z(J;) be the morphism as before. Then there 
exists a triangle 

0--+Q~<.s)--+Q'f_,<,.+l(f)Rcp*fJ~<.s')--+RcpJJ'f,<.s+l-~o 

in the derived category Dt 0iZ(S)) for each integer p. 

Proof We have a diagram 

of exact sequences of complexes. Since 

we have an exact sequence 

0--+cp*C'(S:, Q~((!)))--+cp*C(J;', Q~((!)))(f)C'(2+, D':((!))) 

--+C'(J;, D':((!)))--+0 

of complexes. By taking R.Yfom.~ ( , C(J;, Q;f((!)))) of this sequence, 
Z(.S) 

we get the triangle in the lemma in view of Propositions 3. 7 and 3.8 and 
Lemma 3.6. q.e.d. 

A fan J; of N R is said to be nonsingular if it consists of nonsingular 
cones. J; is nonsingular if and only if the toric variety Z(J;) is nonsingular 
[TE]. 

Proposition 3.10. Let J; be a nonsingular fan. Then ..n"°(C"(J;<2i, 
(!)®AP)) is canonically isomorphic to the sheaf Q~<.s) of regular p-forms on 
Z(S). 

Proof Since .Q~<.sJ =.Yf 0(C'(J;<2i, (!)QS>AP)), the proposition follows 
from the definition of .Q~ in Section 2. 

For general 2, we know the following. 

Proposition 3.11 ([Da, Proposition 4.3]). Let U =Z(S)\Sing (Z(J;)), 
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and let j: u-z(S) be the open immersion. Then we have Q~u:J=J*Q'f, 
for every integer p. 

Let X be an irreducible nonsingular variety, and let f: x-z(..l') be a 
morphism with f(X) n TN=/=</>. For U =Z(..l')\Sing (Z(..l')), let J: J- 1(U) 
- U be the restriction off Since J is a morphism between nonsingular 
varieties, there exists a natural homomorphism g: J * Q'f,-Q1}-,wJ for each 
p. 

Proposition 3.12. The above homomorphism g is extended uniquely to 
a homomorphism g: f*Q~u:)-Q~. Furthermore, these homomorphisms 
commute with the exterior derivations. 

Proof The uniqueness is clear, since Q~ is a locally free 0x-module 
and U is a dense open set. We have to show that, for every sections e 
I'(W, Q~(.E)) over an open subset W of Z(S), the pull-back u= f*(slwnu) E 

I'(f- 1(Wn U), Q~) is extended to an element of I'(f- 1(W), Q~). Since 
Q~ is locally free and X is nonsingular, it is sufficient to show that u is 
extended to the generic point of every irreducible divisor Y which intersects 
1- 1(W). Since TNC u, we may assume f(Y) n TN=</>. Let U(rr) be the 
minimal TN-invariant open subset of Z(..l') which intersectsf(Y), and let R 
be the local ring at the generic point of Yin X. If dim rr< 1, then U(rr) 
is nonsingular and the assertion is obvious. Hence we assume dim rr > 2. 
We get the homomorphism cp: k[Mn rrv]-R of rings. The condition 
f(X) n TN=!=</> implies that the generic point of Xis mapped into TN= 
Spec (k[M]). Hence, for the quotient field K of R, the homomorphism cp 
is extended to cp': k[M]-K. Since R is a discrete valuation ring, the 
composite map m,_,.u(cp'(e(m))) with the valuation u of R is a homomor­
phism from M to Z, and hence is equal to an element n0 in N. Since f(Y) 
does not intersect TN, we know n0=j:::.0. Let r=R 0n0 • Then since cp'(e(m)) 
ER form E Mnr1-, cp is decomposed as 

Hence for the open set G=J- 1(Wn U(rr)), G intersects Yand the restriction 
off to G is decomposed as 

f' }. 
G--+ U(r)--+ U(rr). 

Since Q~[•J C Q~CrJ is obvious from the definition of them in Section 2, the 
pull-back from tJt(,) to Qt.fer) is welldefined for .:!. On the other hand, f' 
has the pull-back of p-forms since U(r) is nonsingular. Hence the p-form 
u is extended to the generic point of Y which is contained in G. q .e.d. 
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By using Proposition 3.12, we can define the homomorphism 
g: f*QIJ,u»J----+Q'Ifr for every morphism f: X----+Y(!P) from a nonsingular 
irreducible variety X to a toric polyhedron Y(@) as follows. Let r; be the 
maximal element of@ withf(X)c V(r;). Since S(r;-<)C@, there exists a 
natural homomorphism u: Q1j,(q))----+ fJIJ,u: (~-<JJ· Recall that QIJ,m~-<D = 
Q¾,<sc~Jl by Proposition 2.2. Since f(X) intersects the torus TNc~J, the 
homomorphism v:j*Q¾,(sc~Jl----+D'Ifr is defined by Proposition 3.12. We 
define the homomorphism g:f*Q'fr<q;J----+D'Ifr to be the composite v o u. 

§ 4. du Bois's de Rham complexes for toric polyhedra 

In this section, all varieties and schemes are assumed to be defined 
over the complex number field C. 

du Bois [dB] constructed a de Rham complex {1~ for every separated 
C-scheme Y of finite type. {1~ is an object of the derived category 
Ddiff(Y) of the category Cdiff(Y) which is defined as follows. Each object 
of Cdiff(Y) is a triple (K', d, F) consisting of a complex (K', d) of d7r­
modules and a decreasing filteration Fon K' such that (1) K' is bounded 
below, (2) the filteration Fis biregular, i.e. for each component Ki of K', 
there exist integers m, n e Z such that pm Ki =Ki and pn Ki =0, (3) dis a 
differential operator of order at most one and preserves the filteration F, 
and (4) Gr;(d): Gr;(Ki)----+Gr;(Ki+1) is d7x-linear for any integersp and i. 

We review briefly the construction of du Bois's de Rham complex 
{1~. We take a smooth simplicial resolution a: Y.----+Y introduced by 
Deligne [Del]. In this case, Y. is taken so that each component Yn is 
nonsingular and the morphism an: Yn----+Y is proper and Ra*Cr.=Cr. 
Since each component Yn has the usual de Rham complex Q~n' we get 
the complex Q~. on Y. which consists of Q~n's. The complex {1~ is given 
as the direct image Ra*D~ •. It was shown in [dB], that this is independent 
of the choice of the simplicial resolution Y.. For each integer p, Gr;(Q~) 
is an element of D;0 h(Y) and is denoted by {111,. -

Now, let Y(@) be the toric polyhedron defined over k=C associated 
to a star closed subset @ of a fan S of NR. We defined the complex 
tJ~<q;J in Section 3. We know by Proposition 3.12, that for any morphism 
f: X----+ Y(!P) from a nonsingular variety X, there exists a natural homomor­
phism f * Q~(q;J----+Q~ of filtered complexes, where the filteration Fon the 
complex Q~<q)J is given by P(Qf,(q;J)=Qf,<q;J if p°";::::.q and P(Qf,<q;J)=O if 
p<q. Consequently, for a morphism a: X.----+Y(!P) from a simplicial 
variety X. consists of nonsingular varieties, we get the homomorphism 
tJ~u1n----+Ra*Q~. in the derived category Ddm(Y(@)). 

In this section, we assume that S is finite, i.e. consists of a finite 
number of s.c.r.p. cones. Hence the toric polyhedron Y(@) is of finite 
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type, and we can consider du Bois's de Rham complex Q~uPJ· The 
purpose of this section is to prove the following. 

Theorem 4.1. Let Y(@) be a toric polyhedron for a star closed subset 
@ of a.finite fan S, and let a: Y.-Y(@) be a simplicial resolution of Y(@). 
Then the natural homomorphism 

is an isomorphism in the derived category DdirrCY(@)). In other words, 
Q~(!P) is canonically isomorphic to du Bois's de Rham complex Q~<!PJ· 

Since the homomorphism 'If' preserve the filtrations, we get a homo­
morphism +P: Q!]r<!Pl-Ra*Q}<!PJ induced from 'If' for each integer p. In 
order to prove the theorem, it is sufficient to show the following proposi­
tion. 

Proposition 4.2. For each integer p, the homomorphism +P: Qf<!PJ­
Q!Jr<an is an isomorphism in D;-0 h(Y(@)). 

Proof The assertion is trivially true if @=</>. Thus we assume 
@=/=</>. We prove the proposition by induction on d=ht@( =dim Y(@)) 
and the number k of elements of @, where we do not fix N and S. If 
Y(@) is nonsingular, then both Q!]r<!Pl and Q!J,,(!PJ are equal to the ordinary 
sheaf Q!]r<!Pl of p-forms by Proposition 3.10 and [dB, Prop. 4.1], and 
hence +P is isomorphic. In particular, if k=l and @={ir}, then Y(@)= 
TN[•J is nonsingular, and +P is an isomorphism. Now, assume the pro­
position is true for O<d<h or d=h, l~k<n for integers h, n. It is 
sufficient to prove the proposition for the case ht@ =h and when the 
number of the elements in@ is equal ton. We devide the proof into two 
cases. The first is the case @ has a unique minimal element, i.e. @ = 
J:(p-<) for an element p e @, and the second is the case@ has at least two 
minimal elements. 

Case I. Since Y(@)=Z(S[p]), by replacing S by S[p], we may as­
sume @=S. Let S' be a nonsingular subdivision of S whose existence is 
guaranteed by [TE, Chap. 1, Th. Il]. Set S + =S\{O} and s: =S'\{O}. 
Then since ht S + =ht s: =h-1 and S' is nonsingular, the proposition is 
true for S+, s: and S' by the induction assumption. We get the diagram 
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of elements of D;0iY(S)). The first row of this diagram is a triangle by 
Proposition 3.9, and the second row is also a triangle by [dB, Prop. 4.11]. 
Since ,f/P and t"P are isomorphisms tP is also an isomorphism in the 
derived category. 

Case 2. Let p be a minimal element of i/J. Set '/ff =2(p-<), if)'= 
i/J\{p} and 'lff'='lff\{p}. Clearly, these are star closed subsets of S. We 
have Y('//f')= Y('/Jf) n Y(i/J') and Y(ifJ)= Y('//f) U Y(i/J'), and we get a se­
quence 

0----+C'(i/)< 2>' (!)@AP)----+C'(ip'<2>' (!)@AP)EBC('/Jf<2>' (!)@AP) 

----+C'('/Jf 1<2>' (!)@AP)----+0 

of complexes, which we see easily to be exact. On the other hand, by 
applying [dB, Th. 4.11] to the inclusion morphism Y(i/J')-Y(i/J) and the 
closed subscheme Y('//f)c Y(i/J), we get a triangle 

Similarly as in the first case, we see that tP: ii?c,>-fl?c,> is isomorphic, 
since the number of elements in i/J', '/ff and '/ff' are smaller than n and the 
proposition is true for them by the induction assumption. q.e.d. 

In [S], Steenbrink defined an algebraic singularity (X, x) over C to be 
a du Bois singularity if the natural homomorphism (!)x,,,-fl°x,,, is a quasi­
isomorphism. iitc,i =(!)Y<dl> for a toric polyhedron Y(i/J) by the definition 
of iitc,, in Section 2. Hence we have the following. 

Corollary 4.3. Every toric polyhedron defined over C has only du Bois 
singularities. In particular, toric singularities are du Bois singularities. 

§ 5; Semi-toroidal varieties and the dualizing complexes 

Let k be a field of an arbitrary characteristic. In this section, we 
assume all schemes and morphisms among them are defined over k. 

A pair (X, U) of a scheme X locally of finite type and its open sub­
scheme U is said to be a toroidal embedding if, for each point x e X, there 
exist a torus embedding Z(x) with a torus T(x) defined over k, a scheme 
R(x) and etale morphisms t,,: R(x)-Z(x) and cp.,: R(x)-X such that 
t; 1(T(x))=cp; 1(U) and x e cp,,(R(x)). This definition is equivalent to 
that of [TE, Chap. II, § l] by [A]. Let (X, U) be a toroidal embedding and 
let D be the reduced divisor X\U. We define an {!}x-module E>x(-logD) 
by I'(V, E>x(-logD))={a: (!)v-(!)v; a e Der((!)v) and a(f(D)Jv)C.f(D)Jv} 
for each open set VcX, where f(D) is the ideal of (!)x defining D. We 
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call a morphism/: X'-X of toroidal embeddings (X', U'), (X, U) toroidal 
et ale morphism if it is etale and J- 1( U) = U'. Let /: X' -x be a toroidal 
etale morphism and let D=X\U and D'=X'\U'. Then, there exists a 
natural identification/*E>x(-log D)=E>x,(-log D'). 

Lemma 5.1. In the above notation, the (() x-module e x(-log D) is a 
locally free sheaf Its rank at each point x of Xis equal to the dimension 
of X at x. 

Proof Note that (R(x), ,J,,;1(T(x))) in the definition of the toroidal 
embeddings is also a toroidal embedding and tx and <px are toroidal etale 
morphisms. Since E>z<xl-log D(x)) is a free (()x-module of rank dim Z(x) 
for D(x) =Z(x)\T(x), we know that ex( -log D) is a locally free (() x­
module of the same rank at x. q.e.d. 

We define Q1c(log D)=J'l'om, (E>x(-log D), (()x) and Q~(log D)= 
X 

APQ1c(log D) for each integer p. 
Let Y = Y((J)) be the toric polyhedron defined for a star closed subset 

(J) of a fan 2 of N R· The k-scheme Y has a natural increasing fl.Iteration 
{Yi} defined by 

Yi= LJ V(a) 
•E(l)(,o;i) 

where (J)( <i) = U}-o (J)(j). Since dim V(a) =i for a E (J)(i), Yi is a closed 
subscheme of Y of dimension i for every 0:S:::i ~dim Y. For each integer i, 
the locally closed subsheme s<iJ = Yi\Yi-i of Yis equal to Uae(l)(iJ orb (a) 
and hence is nonsingular of pure dimension i. We denote by Y(iJ the 
normalization of the closure of SCiJ in Y. Clearly, yciJ is equal to the 
disjoint union UaE(l)CiJ V(a). We denote by ACiJ the natural homomor­
phism y<iJ-Y. Hence by Lemma 3.1, the pair (YUJ, s<iJ) is a toroidal 
embedding of pure dimension i. Hence, for £Cil = yciJ\SCiJ = Uae(/)ciifl(a), 
the sheaf E)Y"'(-log E 1iJ) is a locally free (()y,o-module of rank i. Let p 
be an integer. Note that Ci((J), Qi((())) of the complex C((J), Qi((())) 
defined in Section 3 is equal to 

EB Qvl;;/(log D(a))=A~-i)Qytf,(Iog £Hl). 
uE(l)(-i) 

Definition 5.2. A scheme X locally of finite type is said to be a semi­
toroidal variety if, for each point x E X, there exist a toric polyhedron 
Y(x), a scheme W(x) and etale morphisms tx: W(x)-Y(x) and <px: W(x) 
-x such that x e rpx(W(x)). We call it a filtered semi-toroidal variety if, 
furthermore, X has an increasing filtration {Xi} and rp;1(Xi)=,J,,; 1(Y(x)i) 
for each i and for the natural filtration { Y(x)J of the toric polyhedron 
Y(x). 
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Let X be a filtered semi-toroidal variety. For each integer i, let U<i> 
=Xi\X;_ 1 and let X<iJ be the normalization of the closure of U<i>. We 
know (X<i>, U<i>) is a toroidal embedding of pure dimension i since it is 
locally isomorphic to (YCi>, SCi>) for some toric polyhedron Y at each 
point of X. Hence for each integer p, we get a locally free @ x«,-module 
.Q~w(log D<i>) for the reduced divisor D<iJ =XCiJ\ u<i>. We define the 
complex '(f"(X, .Qi) of coherent @x-modules as follows. Let ef/i>: XCi)_*X 
be the natural homomorphism. For each integer i, we set 

'(fi(X, .Qi) =\b~-i> .Qxi :f,(log n<-iJ). 

Clearly we have <p;'6'i(X, .Qi) =t;Ci(<P(x), .Qi(@)) in the notation in 
Definition 5.2, where <P(x) is the star closed subset of a fan which defines 
the toric polyhedron Y(x). Since the homomorphism d: C\<P(x), .Qi(@)) 
-+Ci+l(<P(x), .Qi(@)) is defined naturally by the Poincare residue map for 
every x e X, we get a homomorphism d: '6'i(X, .Qi)-+'6'i+ 1(X, .Qi) such 
that <p;'6'"(X, .Qi)=t;C'(<P(x), .Qj(@)) at each point x e X by descent 
theory [SGAl]. Thus the complex '(f"(X, .Qi) is defined for each integer p. 

Remark 5.3. It is clear by definition that any toric polyhedron Y(<P) 
is a filtered semi-toroidal variety and the complex '(f"(Y(<P), .Qi) is equal 
to C"(<P, .Qj(@)). 

Let S be a scheme of finite type. We call a complex R" of (!) x-modules 
a global dualizing complex of S if R" represents the twisted inverse image 
fkk in the derived category Dt0 h(S), where fs: S-+Spec (k) is the structure 
morphism and k=@spec(kJ· Recall that, for a morphism f: S'-+S of 
schemes of finite type, the functor of twisted inverse image F: D:;,h(S)-+ 
D:;,h(S') is defined and, if f is proper, satisfies the relative duality [RD], 
(VJ. 

The global dualizing complex of a filtered semi-toroidal variety is 
explicitly given as a complex of coherent modules as follows. 

Theorem 5.4. Let X be a filtered semi-toroidal variety. Then '(f'(X, 
.Q'i/) is a global dualizing complex. 

Let S be a scheme of finite type. Then by [RD, Chap. VI], the 
twisted inverse image fkk is represented by a residual complex, which we 
denote by f1;;k as in [RD, Chap. IV] and is defined as follows. We take 
an open covering { S;} of S such that each S; has a closed immersion S;-+ 
P, to a nonsingular irreducible variety P;. The local chart f1;;ik on S, of 
the residual complex/1:;k is given by /1;;,k=Y'Pom~ (@s;, E'(wp;[n,])), where 

P; 
E'(A') is the Cousin complex of a complex A' [RD, Chap. III], n, =dim P, 
and Wp 1 =.Q'J}1• Then, for any two open sets S,, Sµ the restrictions 
/1;;,klsrnsµ and/1:;ils,nsµ are naturally isomorphic as complexes of @sinsµ-
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modules. By gluing the charts, we get the residual complex f1;;k which is 
a bounded complex of quasi-coherent injective (!) 8 -modules. Hence, in 
order to prove the theorem, it is sufficient to show that there exists a 
quasi-isomorphism ~'(X, {l/)-f:rk for the filtered semi-toroidal variety X. 

We have to recall the Cousin complex in more detail. 
Let P be a nonsingular irreducible variety of dimension n>O, and let 

2'[n] be invertible sheaf 2' shifted n places to the left as a complex. Then, 
there exists a natural injective resolution E'(2'[n]) of 2'[n] which is called 
the Cousin complex. It is a complex of the relative local cohomology 
sheaves 

· · · ~£Lp1z-p_,(2'[n])~£~::_ 1p-1/Z-p-•(2'[n])~ · · · 

where Zt={x E P; dim {x}-<i}. The complex E'(2'[n]) is obtained as 
the limit of an inductive system of complexes of coherent sheaves as 
follows. Let Y be the set of decreasing filterations I =(f', . · . , Jn+ 1) of 
(!JP by its ideals with the condition dim supp (@p/Ji)<i for every l<i:=;;; 
n+ 1. For I =(J', ... 'Jn+I) and K =(X1, ... 'xn+I) of Y, we define 
I<K if X 1CJ 1, •• ·, xn+ 1cJn+ 1• By this ordering, y becomes a 
directed set. For each/ =(J', ... , Jn +1), there exists a spectral sequence 

Ef,q(I) = <ffxtg;q(J-P /J 1-P, 2'[n]) 

=9<ffx1g;q((!)p/Jn+I, 2'[n]), 

where we understand Ji=Jn+t for i>n+l and Ji=(!JP for i:=;;;O. For 
q = 0, we have a complex 

dp,O 
~'(/, 2'[n])=(·. --Ef·o(I)~Er+'·o(I)_,,. .. ·). 

For each pair (/, K) with I <K, we get a natural homomorphism {Ef·q(J)} 
-{E~,q(K)} of spectral sequences. In particular, we have a homomor­
phism a11x: ~'(/, 2'[n])_,,.~·(K, 2'[n]) of the complexes. Since Pis non­
singular and 2' is invertible, 2' has depth n at each point of P. In 
particular, for the shifted sheaf 2'[n], we have <ffxt!Aff, 2'[n])=0 for a 
coherent sheaf ff and an integer j with dim supp (ff)+ j <O. By the 
diagram 
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the homomorphism a11x is injective. The Cousin complex E"(Sf[nJ) is 
equal to the inductive limit 

ind. lim !!)"(/, Sf[n]), 
9' 

and is a resolution of Sf[n] w•th respect to the natural homomorphism 

Sf~E-n(Sf[n])=ind. lim <ffxt0 (.fn/Jn+ 1, Sf). 
9' 

It is known that EP(Sf[n]) is isomorphic to ffi:ceZ-p\Z-p-i ix(H;;.:(0,)) 
where ix(G) is the constant sheaf G on the closure {x}- of the point x and 
zero outside, and the local cohomology H;;.:(0,,) is isomorphic to the 
injective hull of the residue field k(x) as an 0x,,,-module. In particular, 
.Yt'om.iff, EP(Sf[n]))=O if dim supp (ff)+ p<O. 

By construction, there exists a natural inclusion homomorphism 
!!)"(I, Sf[n])-E"(Sf[n]) for each I e Y:,. Actually, if we use E"(Sf[n]) to 
obtain the extension sheaves, for I =(J', ... , Jn+ 1) we see easily that 

<ffxt~P(J-P/J 1-P, Sf[n])=Ker (.Yt'om.p(0p/J 1-P, EP(Sf[n])) 

~.Yt'om.iJ-P/J 1-P, £P+1(Sf[n])))CEP(Sf[n]) 

for every p. In particular,!!)"(/, Sf[n]) is a subcomplex of .Yt'om~p(0p/Jn+1, 
E"(Sf[n])) since Jn+ 1 cJ 1-P and EP(Sf[n]) is injective for eachp. 

Lemma 5.5. Let I =(J', ... , Jn+ 1) be in Y:,. If <ffxt~;q(J-P/J 1-P, 
Sf[n]) =0 for any p, q with q =t=-0, then the inclusion 

is a quasi-isomorphism. 

Proof Let A"=.Yt'om~p(0p/Jn+1, E"(Sf[n])). The complex A" has a 
decreasing filteration defined by 

and the spectral sequence Ef•q(l):::}<ffxt~;q((!)P/Jn+1, Sf[n])) is obtained 
from this filtered complex. By assumption, the spectral sequence degen­
erates at the E2-terms and Ef·°{l)-:::::.<ffx~p(0p/Jn+1, Sf[n]) for every p. 
Since the E2-terms are the cohomologies of !!)"(I, Sf[n]), the inclusion is a 
quasi-isomorphism. q.e.d. 

Let (S, U) be a toroidal embedding of pure dimension r, and let 
J(D)C0 8 be the ideal defining the reduced divisor D=S\U. The variety 
S is Cohen-Macaulay by [Ho] and the dualizing sheaf (1)8 is equal to 
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.. f{D)Qs(log D) by [TE, Chap. I, Th. 9 and Th. 14] or [MO, the remark 
after Prop. 6.6]. In particular, if S---+P is a closed immersion in a non­
singular irreducible variety P of dimension n, then there exists a natural 
isomorphism 

Assume that the filtered semi-toroidal variety X is embedded in a 
nonsingular irreducible variety P of dimension n. We set f!r-=f(Xt_,) 
for i=l, · · ·, n+l and J(X)=(f:k-, · · ·, f'jf 1), where f(Xt)C0p is the 
ideal defining Xi c P. We understand Xi= X for i > r = dim X, and hence 
fi+ 1 = ... =f'it'=f(X). For the canonical invertible sheaf wp=Q'], 
on P, we consider the Cousin complex E'(wp[n]). By Lemma 2.9, f!r-/f!r-+1 

is naturally isomorphic to </>~)f(D<i)), where f(D<i)) is the ideal of 0xw 
defining D<iJ c x<iJ. By the relative duality for the finite morphism X<iJ 
---+P, we have 

for every integer j. Since Q'!i:,w(log Di) is equal to the invertible sheaf 
Wxm(D<il), we have 

6"xttp(f!r-/f!/ 1,wp[n])=O forj=t--i and 

6"xt;;,(f!r-/f!r-+1, Wp[n]) =</>~lmxw(D<il). 

By Lemma 5.5, we have a natural quasi-isomorphism 

We easily see that the homomorphism 

is equal to the Poincare residue map. Hence P)'(J(X), wp[n]) is equal to 
~·ex, t2t). 

In general case, we take an open covering X = U X, so that each X, is 
embedded in a nonsingular irreducible variety P, of dimension n,. The 
restriction ~·ex, Q'i()lx, is equal to P)'(J(X,), wp,(n,]) and there exist a 
natural injective quasi-isomorphism 

P)'(J(X,), Wp Jn,])~Jl'f om~p,(0 x,, E'(wp Jn,])). 

Since the charts (X,, Yfommp/0x,, E'(wp,(n,]))) are naturally patched toge­
ther to the residual complex/~k, we get an injective quasi-isomorphism 
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~-ex, Q't)~ fV,.k. 

Thus we proved Theorem 5.4. 

By Remark 5.3, we have the following. 

Corollary 5.6. Let <J) be a star closed subset a fan J; of NR as Section 
3. Then ce<J), a;:e(!))) is the global dualizing complex of the toric polyhedron 
Ye<J)). 

§ 6. de Rham complexes on semi-toroidal varieties 

In this section, we assume again k = C. 
Let ex, {Xi}) be a filtered semi-toroidal variety of dimension d>O. 

Proposition 6.1. Let p be an integer. Then we have 

i&'xt!/~·ex, Q'j), ~·ex, Qt))=O 

for every nonzero integer i. 

Proof Since the assertion is a local property in the etale topology, 
we are done by Theorem 2.7. q.e.d. 

For each integer p, we set 

Q~=i&'xt~xC~·ex, Q'j), ~·ex, Qt)). 

By the above proposition, the coherent sheaf Q~ is equal to 

RJRom~/~·ex, Qt), ~·ex, Q't)) 

in the derived category D:C,iX). Clearly, Q~ is a natural globalization of 
Q1jJ(i[J) in Section 2. Hence the exterior derivatives d: t.?tc<PJ-*i.?tUJ are also 
generalized for these sheaves and we get a complex 

- d - d d -Q"x=e· · ·-O~(!)x~Q:c~· · -~Q'.{,~O-· · ·). 

We define the decreasing filteration on Q"x by Pei.?~)=Q~ if p>q and 
zero otherwise. 

Let V be an irreducible nonsingular variety, and let f: v-x be a 
morphism. Let i be the smallest integer with fev) n Xi. Then, f factors 
as ef/iJ O f' for a morphism f': v-xctJ with f'ev) n UCiJ -=I=¢>, where XCiJ, 
¢,Ct): XCil-X and UCiJ cxctJ are the same as those in the previous section. 
Hence we have a natural homomorphism f* Q~-Qf, by Proposition 3.12 
for each p which is compatible with the exterior derivatives similarly as 
we saw it for toric polyhedra in Section 4. Let a: x.-x be a simplicial 
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resolution of X as in Section 4. Then, similarly as in Section 4, we get a 
natural homomorphism 

,fr : Q°x;~ Ra* Q°x;. 

of filtered complexes. By our definition of Q°x; and [dB], these two com­
plexes are compatible with pull-backs by etale morphisms. Hence by 
Theorem 4.1, we get the following generalization. 

Theorem 6.2. The complex Q°x; is quasi-isomorphic to du Bois's de 
Rham complex Q~ as filtered complexes. 

As a consequence of [dB, Th. 4.5], we get the following: 

Corollary 6.3. If the filtered semi-toroidal variety X is complete, then 
there exists a spectral sequence 

which degenerates at the E1-terms. Furthermore, the induced filtration on 
nnex, C) is equal to the Hodge filtration in the sense of [Del] for each 
integer n. 

Remark 6.4. Danilov [Da, Chap. IV] conjectured this assertion for 
"toroidal varieties" which means, in our terminology, normal semi-toroidal 
varieties. We still have some difficulties to generalize Corollary 6.3 to 
semi-toroidal varieties without filtrations. However, since toroidal em­
beddings are normal filtered semi-toroidal varieties, this corollary implies 
that Danilov's conjecture is true for toroidal embeddings. 

By definition, Q~ and ~·ex, Q'f) are mutually dual with respect to 
the global dualizing complex ~·ex, Q't). Hence by the duality theory 
[RD, Chap. VII], we have the following theorem. 

Theorem 6.5. If X is complete, then Hqex, Q~) and R-qrex, ~·ex, 
Q';)) are mutually dual finite dimensional C-vector spaces for every integer 
q. 

Remark 6.6. It seems easier to calculate R-qrex, ~·ex, O';)) than 
Hqex, Q~). Indeed, since ~'ex, Q';)=<p~-1>Q,.!,/(log n<-1>) and rp<-1> is a 
finite morphism for every .e, there exists a spectral sequence 

Ef•'"'=H'"'ex<- 1>, Q;f:f,(log n<-'))-~R'+'"'rex, ~·ex, Q';)). 

Note that Q~, .. ,elog n<n>) is a locally free sheaf on the toroidal embedding 
ex<n>, u<11>). Furthermore, it is known that any toroidal embedding ex, U) 
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has a resolution/: X--+ X of singularities which locally in the etale topology 
of Xis an equivariant morphism of toric varieties. For the divisor D= 
X\ U, the divisor 15 = J- 1(D) is a normal crossing divisor and/* .Q~(log D) 
=D:r(log 15) for each integer p. By Theorem 3.2, we also have 

Rf*Q~(log 15) = Q~(Iog D). 

In particular, we have a natural isomorphism 

for each integer m. 
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