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Torus Embeddings and de Rham Complexes

Masa-Nori Ishida

Introduction

An n-dimensional normal algebraic variety is said to be a torus
embedding or a toric variety if it has an effective regular action of the
split algebraic torus of dimension n. In [I1] and [IO], we studied reduced
closed subschemes of a torus embedding which are partial unions of the
orbits of the torus action, which we call foric polyhedra in this paper. In
[I1] we gave dualizing complexes of affine toric polyhedra consisting of
coherent sheaves, and as a corollary we gave criteria for the schemes to
be Gorenstein or Cohen-Macaulay.

In this paper, we study the algebraic de Rham complexes of toric
polyhedra. Then, we generalize the notion of toric polyhedra and define
semi-toroidal varieties which are the varieties with singularities locally
isomorphic to those of toric polyhedra in the étale topology. For the
motivation to consider such varieties, see also the introduction of [IO].
Although the results in [I1] are local, the complex constructed in [I1] is
generalized for semi-toroidal varieties with a good filtration, and we will
show that it is a dualizing complex in a global sense.

By using this dualizing complex, we define the de Rham complex %
of a semi-toroidal variety X with filtration. Our de Rham complex con-
sists of coherent sheaves and is a generalization of that of Danilov [Da],
which is defined for normal varieties with toroidal singularities. For an
arbitrary C-scheme of finite type, du Bois [dB] defined a de Rham complex
in a derived category by using the simplicial resolution of the scheme
introduced by Deligne in his mixed Hodge theory [Del]. We show that
our de Rham complex is equal to du Bois’s for these varieties. In partic-
ular, if X is complete, the natural spectral sequence E?'?=H(X, o=
H?*Y(X, C) degenerates at the E,-terms and converges to the Hodge
filteration.

Notation. For subsets 4, B of a set .S, we denote 4\B={a e 4; a ¢ B}.
If S is an additive group, then we denote A+ B={a+b;ae 4, be B}.
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The tensor products of modules are taken over Z if the coefficient
ring is not specified.

Rings are always commutative rings with unity.

For a ring R, and for complexes A" and B" of R-modules, Hom ,(B",
A") denotes the double complex whose (i, j)-component is Hom (B 7, 4%)
and d¥(f)=d% of and d}(f)=(—1)""*fodz?~* for f € Homz(B?, A?).
For a double complex D" of ‘R-modules bounded below in both indices,
the associated single complex D’ is the complex defined by D*=3P,, ;_,D*!
and d*(x)=d¥!(x)4(—1)*d%(x) for x e D*,

We denote by Homjy(B’, A") the associated single complex of
Homg(B", A7) in case it is well-defined.

“We write a triangle of objects in a derived category as if it is an exact
sequence

0—>A—>B—>C—0.

For the properties of triangles, see [RD, Chap. I].

§1. Fans and complexes

Let N be a free Z-module of rank r >0, and let M be its dual Z-
module. The natural pairing { , >: M X N—Z is extended to the bilinear
form ( , >: My X Ny—R where Mp,=MQ®R and N,=NRQR.

Definition 1.1. A nonempty subset ¢ of Ny is said to be a rational
polyhedral cone if there exists a finite subset {n,, - - -, n,} of N such that
c=Rm+ - - - +Rpn,, where Ry={c € R; c>0}. ¢ is said to be a strongly
convex rational polyhedral cone (s.c.r.p. cone for short) if, furthermore, it
satisfies the condition ¢N(—0g)={0}, where —g={—a;aeos}. For a
rational polyhedral cone ¢ C Ng, we denote by int ¢ the interior of ¢ in
the linear space ¢+(—0¢). A subset p of a rational polyhedral cone ¢ is
said to be a face of ¢ and we denote p < if there exists an element x of
M, such that {x, a) >0 for every a € ¢ and p is equal to {a € a; {x, a) =0}.

Let ¢ be an s.c.r.p. cone. Then ¢ itself and 0={0} are faces of o,
and every face of ¢ is also an s.c.r.p. cone.

Definition 1.2. A set X of s.c.r.p. cones of Ny is said to be a fan if

(I) oel and p<gimply pe 2, and

(2) o,7eXand p=cNrimply p<oc and p<r.
A fan 3 is said to be complete if it is a finite set and the union |3 |=\,cz0
is equal to Nj.

Let = be an s.c.r.p. cone. Then the set I'(z) of the faces of 7 is a
fan of Np.

From now on in this section, X is always a fan of Np,.
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Definition 1.3. For a subset @ of 3, we say

() Disstar closedif ce @,z e ¥ and <7 imply r € @,

(2) O isstar openif r e @ and ¢ <z imply ¢ € @, and

(3) @ is locally star closed if ¢, p € @ and 0 <7<p imply 7 € D.

Let @ be a locally star closed subset of . Then, for elements o,
z € X, we denote )

O(o<)={red; o<z}, O<p)={red;c<p} and
D(o|p)={r e D; s << p}.

It is clear by definition that 3(s <) is star closed, X(<p) is star open and
(o |p) is locally star closed in 3, respectively, for any o, p € 3.

For a rational polyhedral cone g, we set g-={x € Mp; {x, a)=0 for
every a € g}, N[o]=N/(NN(c+(—0))) and Msl=MNe*. Then Nio]
and M{o] are mutually dual free Z-modules of rank codim ¢ =r—dim g.
Hence, if we set Z(¢) = A" M|o], then Z(s) is a free Z-module of rank
one. Here we understand Z(¢)=Z if codim ¢ =0.

For a locally star closed subset @ of X and for an integer p, we set
O(p)={o € @; codimg=p}. For g e X(p)and r ¢ 3(p—1) with ¢ <7, the
isomorphism

Qose: Z(0)—>Z(z)

is defined as follows. Let #, be an element of N such that the homomor-
phism { , n)y: M—Z is zero on M[z] and maps M[s]NzY onto Z,=
{ce Z; ¢>0}, where ¢V is the dual cone {x e My; {(x,a)>0 for every
a e z}. Then we define g, (m A - - - Amy)={my, nym N\ - - - Am, for m,
€ Mo} and m,, - --,m, e M[z]. This definition is independent of the
choice of n,.

Lemma 1.4 ([I1, Lemma 1.4]). For any elements o€ 3(p) and p €
2(p—2) with ¢ < p, there exist exactly two elements ¢ € X(p—1) with ¢<
t<p. If we let them ¢, and ©,, then the equality q.;,° Qe+ Teyso © 9oy, =0
holds.

Let % be an abelian category such that its objects are either additive
groups or sheaves of additive groups on a topological space. We also
regard a fan 3 as a category by defining that only morphisms between
cones are inculsion maps. For a covariant functor F: 2—% and for a
locally star closed subset @ C 2, we define a complex C*(@, F) of objects
of ¥ as follows. For each integer p, we set

C@, F)= @ ) F(0)®Z(0).
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The component of the coboundary homomorphism d?: C*(®, F)—
C?+{(@, F) with respect to the direct summands F(¢)®2Z(0) and F(r)QZ(z)
associated to ¢ € #(—p) and 7 ¢ @(—p— 1), respectively, is defined to be
the zero map if ¢ is not a face of = and to be F(i,,,)®q,,. if o<z where
i, is the inclusion map. Then by Lemma 1.4, we know d?*'0d?=0 for
every p, and C'(®, F) is a complex. It is clear by definition that C?(@, F)
=0 for p<—r or p>0.

We also define similar complexes for contravariant functors. We set
Z(0)* =Homy(Z(d), Z) for every ¢ ¢ 2, and we define

g5, =(=1""(q, . )*: Z(z)*—>Z(a)*.

Then, for a contravariant functor F:Y-—%, we define the complex
C'(®, F) by

C*(®, F) = “@(p) F(o)®Z(0)*

and by defining the coboundary homomorphism d: C?(@, F)—C?*{(®, F)
so that its component with respect to e @(p) and ce @(p-+1) is
F(i,,)®q%, if 6 < and is zero otherwise. In this case, C?(®, F)=0 for
p<0orp>r.

We define complexes for one other case which we use later. Let ¥
be a subset of 22=23x2. We say ¥ is locally skew closed if 7,<7<7;
and ¢,<0<g, imply (z,0) € ¥ for any (r,,0,) and (z,, 0,) in 2% Let
F: 3*% be a double functor which is covariant for the first variable and
contravariant for the second. Then, for a locally skew closed subset
¥ 2? we define a double complex C*(¥, F) by

CrU, F)= & F(z, 0)®Z(z/o),
(2, 0)E¥ (=D,
where (i, j)={(z, 0) € ¥; codim z =i, codim ¢=j} and Z(zr/o)=Z(r)®
Z(o)*. The coboundary homomorphisms d-¢: C>4¥, F)—C?**+4¥, F)
and d2-%: C»Y(¥', F)—C#* (¥, F) are defined similarly as in the cases of
covariant functors and contravariant functors, respectively. We denote
by C'(¥, F) the associated single complex of this double complex.
Namely,
C¥,F)= @ C»Y(¥,F),
prg=¢

and, for integers p, q, p’, ¢’ with p+g=14¢ and p’+q’=£¢+1, the compo-
nent of the homomorphism d¢: CH¥, F)—C**Y(¥', F) with respect to the
direct summands C?%¥, F) and C*"Y(¥, F) is equal to d??if g=g¢q’, is
equal to (—1)?d2 ¢ if p=p’ and is zero otherwise.
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For nonnegative integers s, ¢, we define Z, , to be the functor with
the constant value Z from 2*** which we regard covariant for the first s
variables and contravariant for the last ¢ variables.

For a star closed subset @2, we set §® ={(, g) € §*; 0 <7}. Then
@@ is a locally skew closed subset of X% Hence we can consider the
double complex C*(9®, Z, )). Since C?4D?, Z, )= P r,01¢c 00(-p,0 2(T/0)
and codim r<codim ¢ for every (z, o) € @@, we know C»4 PP, Z, )=0
unless —h< p< —d, d<q<h and p+q >0, where A=ht @ =max {i; O(i)
#¢} and is called the height of @ and d=min {i; O(/)+¢}. Since Z(c/o)
=Z for every ¢ € 2, we know C(0®, Z, )=P,coZ=2Z° We denote
by 1: Z—CYP™, Z, ) the diagonal homomorphism to the direct sum of

Z’s.

Lemma 1.5. Let 7 be an s.c.r.p. cone, and let 3 =1"(r), i.e. the set of
the faces of n. Then, for any nonempty star closed subset ® 2%, the se-
quence of finitely generated free Z-modules

2 do dh—l
0—>Z—>CAP?, Z, )—> - - —>CHD?, Z, )—>0

is exact, where h=ht @.

Proof. In the proof, we denote this sequence by A°. In order to
see that 4" is a complex, it is sufficient to show that (d°. 2)(1)=0. Since
CH(D?, Z, ) =D psg=1 Pe,ycow (- p,qp Z(z/0), We have to show that each
component of (d°0 2)(1) in Z(z/o) is zero. Let a be a generator of Z(o).
Then b=q,,{a) is a generator of Z(z). Let a* e Z(o)* and b* e Z(z)* be
the generators dual to a and b, respectively. Then the components of
A(1) at Z(g/o) and Z(z/r) are a®a* and b®b*, respectively. Hence the
component of (d°c A)(1) at Z(z/o) is equal to gq,,(@)Qa* +(—1)*b@q ¥, (b*)
=b®a*+(—1)**"b@a*=0. Thus A4 is a complex. Let d=codim .
We define a decreasing filtration {F?} on 4" by F?(4")=4A", for p<d, and
FrA) =@, C (@™, Z,))) for p>d. Then Gri(4)=F*(4)/F**(4)
is equal to zero for p<(d, is equal to the sequence

0

d-1 d!
>0 Z——>Z(n|z)—>0

for p=d and is equal to D, ¢o( C.(2(0<), Z,,)QZ(o)* for p>d. The
homomorphism d-!, in the case p=d, is the identity since it is obtained
by 4. The sequence in the case p>d is equal to P, o) C ([ (zlo]), Z,,9),
where z{g] is the image of 7 in N[o]g=Ngz/(c+(—0c)). - Note that z[g] is
an s.c.r.p. cone in N{o]p. It is also exact since I'(x[¢]) is homologically
trivial for ¢#x by [I1, Prop. 2.3]. Hence the E,-terms of the spectral



116 M.-N. Ishida

sequence associated to this filtration are all zero. This implies that all
the cohomologies of the complex 4" vanish. , q.e.d.

The following lemma is essentially due to the contractibility of convex
sets (cf. [TE, Chap. 1, § 3] and [Dem, § 4, Prop. 6]).

Lemma 1.6. Assume 3 is finite and nC|2\x-+(—=r) is a rational
polyhedral cone of codimension d>0. Then, for the star closed subset
O={g e X; oNint z=£¢} of X, we have

H{(C'(®, Z, ) =0 for i#—d and H-4C'@, Z, )} =Z(x).

In other words, C(®, Z, ) is naturally quasi-isomorphic to Z(z)[d]. In
particular,

”GLS; (_ 1)dima=(_ 1)7’ a;ﬁ (___ l)codima_:(__ ])T—d.

Proof. By replacing 2 by the fan {¢Nx; 0 e 2}, we may assume
|2|=nr. For ¢e @), we have M[s]=M][x] and Z(s)=Z(x). Hence
C D, Z, ) =PreoyZ(0)=Z(x)*D. Let e: C"4D, Z, ,)—>Z(x) be the
trace homomorphism. We denote by C'(@, Z, ;) the augmented complex

oo 0-—C(D, Z, )~ - - > CUD, Z,,))——>Z(7)—>0—- - -.

It is sufficient to show the cohomologies of this complex to vanish, which
we prove by induction on rank N and the number of elements in @. If
d >0, then by replacing N by its submodule NN (z+(— 7)), we can reduce
it to the case of lower rank. Hence we assume dim z=r. Since the
assertion is obvious if r=0, we assume r >0. Set p={("), 0.

Assume 5 ¢ @. Then, there exist ¢, = € @ such that ¢NzNint 7=¢.
Hence there exists a rational hyperplane H such that, if we denote the
two open half spaces with the common boundary H by H, and H_, we
have ¢Nint rC H, and zNint r H_ as well as the fact that H contains
no element of @. Then we get the exact sequence

0~>é'(¢0’ Zl,o)"")é'(@w Zl,0)®6.(¢—7 ZI,O)——>6.(@7 Zl,o)_‘>0

of complexes, where @, ={ceP;cNH,#*¢}, D_={oe®; s NH_+¢}
and O,={o e @; o N H=¢}. Since both @, and @_ have less elements
than @ we know that the second complex of the exact sequence is exact
by induction assumption. Since {pN H; pe 2} is a fan of H, the first
complex is also exact by assumption for the case N has lower rank. Thus
C'(@, Z,,) is also exact. ,

Next, assume 7 € @ and ==0. In this case, by replacing every cone
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in @ by its image in N[y]lp=Ng/(y+(—7)), we are reduced to the case of
lower rank. Hence it is exact by induction assumption.

Finally, assume 0 e @. In this case, we have r=N, and &=2J3.
Since clearly H"(C"(Z, Z,,))=D0, it is sufficient to show HYC'(Z,, Z, )
=0 for i > —r, where ¥, =23\{0}. We can show this similarly as in the
case 7 ¢ @, by taking a general rational hyperplane H. q.e.d.

§ 2. Normal semigroup rings and Danilov’s de Rham complex

In this section, we fix an s.c.r.p. cone = in Ny and we set X =1"(n),
i.e. the set of all faces of z.

Let k be an arbitrary field, and let S be the semigroup ring k[M N V],
where n¥ C My, is the dual cone of z. We denote by e(m) the element of
S which corresponds to me MNzxV. Then S=@,cxn.vke(m), and
e(m)e(m’)=e(m-+m’) for m,m’ e MNzV. For asubset U of MN=xV, we
denote k[U]=@Pncrke(m). Here note that k[U] does not necessarily con-
tain k in our notation. The subset U is said to be an ideal if a e U and
be MNzV imply a+be U. If Uis an ideal, then k[U] is an ideal of the
ring S. For the complement E =(M NzY)\U, we identify k[E] with the
quotient ring S/k[U]. In particular, for a face ¢ of =, P(¢)=k[M N (zV\c1)]
is a prime ideal of S, and k[M Nz N ¢*] is the quotient ring S/P(c). We
denote kK[M N7V Not] by A(s) or S[e] according as whether we regard it
as an S-module or a ring, respectively. The ring S[o] is an affine ring
which has same quotient field as k[M[¢]]. Since rank M[s]=codim ¢, we
know dim S[e]=i for ¢ € 2(i).

Let {1, ---,7,} be the set of one-dimensional faces of z=. Let J be
the ideal P(r)N --- NP )=k[MNint zV] of S. We set

04(—log J)={a & Der, (S); a(J)CJ},

where Der,(S) is the set of k-derivations from S to itself. For each ele-
ment n of N, the k-derivation d, which is defined by §,(e(mm)) = (m, n)e(m)
for every m e M N =V is clearly an element of O4(—log J). By [IO, Prop.
1.12], this correspondence n—d, induces an isomorphism of S-modules
S®N ~0O4(—log J). Let 2'(logJ) be the dual S-module

Homy(04(—log J), S).

By the above isomorphism, we also have an isomorphism SQM ~ 2'(log J).
It is natural to denote by de(m)/e(m) the element of 2'(log J) which cor-
responds to 1®m € SQM by this isomorphism. For a Z-basis {m,, - - -,

m,} of M, 2'(log J) is the free S-module with the basis {de(m,)/e(m,), -
de(m,)e(m,)}. For each integer p, we set 27(log J)=A70'(log J) Clearly,
2°(log J)=.S and Q2*(log J)=0 for p<0 or p>r.



118 M.-N. Ishida

The k-algebra S has a natural M-grading. Namely, we set deg(e(m))
=m for every me MNzV. By defining deg(de(m)/e(m))=0 for every
m e M, the S-module 2?(log J) also has an M-grading for every p. Since
27(log J) is naturally isomorphic to S® 4? M, its component £27(log J)(m)
of degree m is equal to ke(m)QA?M if m is in M NV and is zero other-

wise.
Danilov’s S-module (% is given as an S-submodule of 27(log J).

For each element m e M N =V, the intersection p(m)=n\m" is a face of
7, where mt={a € Np; {m, a)=0}. As we see easily,

pm~+my=p(m) N p(m') for m,m" e MN=V.
Now, we set

2%

lI

M@ . ke(m)® A* M[p(m))C 2%(log J).

Since M[p(m)]C M[p(m+m'")] for any m, m’ e MN =V, we have
e(m’)(ke(m)® A? M{p(m)]) Cke(m+m’)R A2 M[p(m+ n?)).

This implies % is an S-submodule of 22(log J). Note that Danilov [Da]
denotes this module simply by 2%, but, in this paper, we denote it by £2%
to avoid confusion. For each integer p, the exterior derivative

d: 2%(log J)—> 0% (log J)

is defined to be the k-linear homomorphism with d(e(m)@(m, A - - - Am,))
=e(mOQmAmA - - - A\m,) for any elements m, m,, - --,mye M. disa
differential operator of rank one which preserves the M-grading. Since
m e M[p(m)] for every me MN =V, we have d((2)c P2+ for every p.
Since d*=0 is clear, we get a complex

~ d ~ d d «
Jo=( —0—>5- 250 5. 0 50— )

for which Danilov showed the following ‘“Poincaré lemma”.

Proposition 2.1 ([Da]). Assume dim r is equal to r=dim Ny and the
characteristic of k is equal to zero. Then the isomorphism k=~ S(0) defined
by a—ae(0) induces the exact sequence

d ~ d d ~
0—>k—>S—h— . . . —05——0.

The cone = is said to be nonsingular if n=Rn,+ - -+ Ry, for a Z-
basis {n;, - - -, n,} of N and for an integer 0<<¢t<r. If r is nonsingular,
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then S is a regular ring and §% is equal to the S-module of the regular
p-forms on the nonsingular affine scheme Spec(S). Actually, if we set
zy=e(my), ---, z, =e(m,) for the basis {m, ---,m} of M dual to
{ny, ---,n}, then 7 is the free S-module with the basis {dz,, - - -, dz}.
For general z, 2 is equal to the S-module of regular p-forms on the com-
plement of the singular locus of Spec (S) (see [Da, Chap. I, § 4]).

Now, let & be a star closed subset of X=1I"(x). We set I(P)=
Meeo P(o), and denote the quotient ring S/I(®) by B(®). Since I(P) is a
semiprime ideal, B(®) has no nilpotent element. We define the de Rham
complex ﬁ;w) for the ring B(gp) as follows. Since

1@)=KMN @\ o))

and Q%(log J) is a free S-module with a basis consisting of homogeneous
elements of degree 0, the homogeneous part of degree m of I(9)2%(log J)
is equal to Q%(log JYm)=ke(m)QAM if m is in #\(U,co0t) and is
equal to zero otherwise. We set

D50y =(Q%+1(@)2%(log J))/I(9)23(log J).

Then (3%,,,(m) is equal to F5(m) =ke(m)QA*M [om)]if mezVN(U,eo0b)
and 3%, =0 otherwise. Since m e 7V N (U,co0") implies o(m) € @ and
rank M{g]=codim ¢ for every ¢ € X, we know that A* M[s]=0 for every
ce® if p>h=ht®. Thus f)gm=0 for p>h. On the other hand, we
have £%,,=B(®) easily by definition. Let & be another star closed
subset of 3 with @’ C®. Then, since I(@)I(P’), there exists a natural
surjection $32,—0% 4.

For each element 7 € 2, 2(y<)={0 ¢ 2'; <o} is a star closed subset
of 3. Since I(3(3<))=P(y), we have B(3(y<))=S[y]. On the other
hand, since N[y]=N/NN(n+(—7) and Mly] are mutually dual Z-
modules, we have kK[My] N z[n]V]=k[M NzVNyn']. Hence the ring S[y]
is also defined by A[M[y] N =ly}V] for the pair (N[y], a[y]) similarly as we
defined S for (¥, z). Danilov’s S[y}-module ng defined for S[y] is equal
to

ke(m)® A* Mzl[elnl(m)),
meMLplnalnlY
where plyl(m)=axly] Nm* for m e M), and Myllp]={m e M[y]; {m, @)
=0 for every a ¢ p} for p € I'(z[y]). Since, clearly y<p(m) and p[7](m)=
p(m)ly] for m e MylN aly]¥ and since Mpllplyll=MIp] for p e I'(x) with
7= p, we have
Pp= @ | ke(m)® 4> Mo(m)].

meMNzY Ny
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Thus we have the following proposition which shows the compatibility of
the notation.

Proposition 2.2. For each element y e X and for each integer p, there
exists a natural isomorphism

~ 5,
QD=5 <

Since the exterior derivative d: 2—02+' preserves the M-grading,
this induces a differential operator d: ﬁg(m—)ﬁg@}), and we get a complex
Q};m. Since the homogeneous part Oy, (m) of this complex of degree
m e M, is equal to Qy(m) if m e MN (z¥ N(U,e00Y), and is equal to the
zero complex otherwise, we have the following proposition by Proposition
2.1.

Proposition 2.3. If dim z=r and char k=0, then the sequence

d d d «
0——)k—-——)B(®)——)QIB(¢)—“> te —>Q%(¢)"—‘—)O
is exact, where h=ht @.

We are going to give another description of the B(®)-module 2%,
for each integer p. Actually, it turns out to be the Grothendieck dual of
the complex which consists of modules of logarithmic differential forms
and Poincaré residue maps.

We understand the symbol 4 to be the covariant functor from X to
the category of S-modules defined by A(s)=S/P(¢) forevery ¢ ¢ 2. Let
A? be the contravariant functor from X to the category of additive groups
defined by AP(¢)=A?M[c¢]. For elements o, z € X with ¢ <z, the homo-
morphism A(g)—A(r) is the natural surjection and the homomorphism
AP M[z]}— A* M[g] is induced by the inclusion M[z]C M[s). We define the
double functor AR A? from 2* to the category of S-modules by AR A?(z, o)
=A(t)®A?M[s]. This functor is covariant for the first variable and con-
travariant for the second. For a star closed subset @ of 3, we denote
O® ={(z,0) € *; 0 <7} as in the previous section. Then @*® is locally
skew closed, and we get the double complex C*(0®, AR A?). Since

CHI(D?, AR AP) = &) A(D)RA* M[elQZ(z/o),
(z,0) €O 2 (~1,)
this component is not zero only for i,j with —A<i< —d, d<j<h, and
i+j>0, where A=ht® and d=codim =. Hence, the component
CHDD, AR A®) of the associated single complex C'(@®, AR A?) is zero
unless 0<4<h—d.
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h

-h -d

Since Z(p/y)=Z for every 5 € X, we have
CUDD, ARA)= P A()RA*M[y].
7€0

We define the B(@)-homomorphism «?(®): F5.,4,—CU(P?, ARA?) as
follows: For each ye @, we have X(»<)C®. Hence there exists a
natural surjection 0%, —% ;(,«,. By Proposition 2.2, we have 93 s, <,
~@0z.. and this is contained in 0% (log J[z]) =S[7lQ 47 M[y], where
J[n]lCS[y] is the ideal defined similarly as JCS. Since S[p]=4(y), we
get the composed homomorphism 3%, — A()R A7 M[y]. We define v?(®)
to be the homomorphism (% —CY@®, AQA?)=@,c0 AR A* M[y]
which induces this homomorphism for each 7 € @.

Proposition 2.4. Let @ be a star closed subset of 2, and let p be an
integer. Then we have

HI(C'(@®, AQA)=0  for i=0,

and the homomorphism w*(®) gives an isomorphism

~

2% 0, = HY(C (P, AR A7)).

Proof. Note that w?(®@) and every homomorphism in the complex
C(D®, AR A?)) preserve the grading of the modules. In the proof, we
denote by L(m)" the component of degree m of the sequence

0—> 08,020 (@O, AR A7),

for each m e M. It is sufficient to show the exactness of L(m)" for every
meM. Ifmisnotin Mz, then this is true, since all the components
of L(m)" are zero. We assume m e M xV, and we set p=p(m). Then
D30y (m) =ke(m)QA* M[p] if pe ® and (%,,(m)=0 otherwise. On the
other hand, since C»H(PP, AQA)=P ., ycow (s, AD)RA*M[s] and
A(z)(m)=ke(m) if  <p and A(z)(m)=0 otherwise, we have

C(0%, AR AP) M) =ke(mM)QC™(D(<p)?, Z, K A7).
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This is also zero if p is notin @. Hence we may assume p ¢ . We are
going to show that L(m)" is a complex. Since A?M[p]C A*M]q] if
o< p, we know that ke(m)QC'(H(<p)®, Z, (@A?) contains the complex
ke(m)QA* M[plQC(P(<p)*®, Z,,,). Since the second complex makes an
exact sequence from 0% ,.(m) =ke(m)® A* M[p] by Lemma 1.5, d°o w?(®)
is zero at degree m and the sequence L(m) is a complex. We define a
decreasing filtration F on L(m)" by FYL(m))= L(m)" for ¢<d’, and
F(Lm))=@P s, C*I(D?, AQAP)(m) for g>d’, where d’=codim p,
similarly as in the proof of Lemma 1.5. Then, we have Gri(L(m)")=0
for g <d’,

Gri(L(m))=(- - - =>0—ke(m)@ A* M[p]
—ke(m)QA* M[p]®Z(p/0)—0—>- - ) for g=d’
and

Gr%(L(m)‘)-—,m@(q) ke(m)@A*M[alRC (3( |p), Z,,)  for ¢>d’.

Similarly as in the proof of Lemma 1.5, all the cohomologies of these
complexes vanish and L(m)" is also exact. g.e.d.

This proposition means that the B(®)-module Qg(m is quasi-isomor-
phic to C'(@®, AR 4?).

Let £2Y(A4): 3—{S-modules} be the covariant functor defined by
2 (A) o) =A(e)@Hom,(A*M]o], Z). For elements ¢, 7 € ¥ with o<z,
the homomorphism £)(A)(0)—£2,/(4)(z) is the tensor product of the
natural homomorphisms A(¢)—A(z) and

Hom(A?M[s], Z)——>Hom (A M|z], Z).

Let @ be a star closed subset of X. By this covariant functor 2/(4),
we get a complex C(9, £,/(4)). For an integer d, and for an element
o € O(d), we give an identification

A4~ M[o]=Hom,(A* Mis], Z)RZ(s)
by the perfect pairing
A4 Mol X A M[o]—>Z(c) = A°M[0]

sending (x, ¥) to x A y. Hence for each integer i, we have

CH@, 25( )= D , Ae)@Hom(A*M[o), Z)RZ(0)

D(~
= @ Slol®47**Mlo]

s ED(—1)

= @ L5i7(og o))
cEP(—1)
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It is easy to see that the (g, z)-component of the homomorphism

d: @ Sol®4 " ?*Mlgl—> @ S[tlQA -2 M]z]
sED(—1) T€P(—1-1)
is given by my A\ - - Am_;_;_,—>{my, npymy N\ - - - Am_,_, if ¢<rz, where
n, is an element of N which is used in the definition of ¢,,, in Section 1.
We call this homomorphism 257,;7(log J[o])—25{7*~*(log J[z]) the Poincaré
residue map. The (o, t)-component is the zero homomorphism, if ¢ is not
a face of z.

Proposition 2.5. Let @ be a star closed subset of 3. Then there
exists a natural isomorphism

CH(P", AQA?)=Homy ) (C'(D, 2;(A4)), C(D, 2y(A)))
of double complexes.

Proof. For integers i, j, we have
CHO, A/ (A)= D
c€D

) A(T)QRZ(7)
and
C D, Q) (A)= e@( ; A(0)@Hom,(A* M[a], Z)RZ(0).

Since Homg ,,(A4(c), A(z)) is equal to A(z) if (z, 0) € @@ and is zero other-
wise for any g, ¢ € @, the (i, j)-component of both sides are equal. We
see easily that this identification gives the isomorphism of double com-
plexes. g.e.d.

The complex C*'(@, 2y(A4)) is equal to the complex K" in [I1] shifted
r places to the left. Hence by [I1, Th. 3.3], we have the following.

Proposition 2.6. For every star closed subset @ of X, C'(®, 2y(A)) is
a dualizing complex of the ring B(®).

For the definition of the dualizing complexes, see [RD, Chap. V].
Note that this is only a local property of the complex C'(®, £2y(4)). In
Section 5, we will see that this complex is a dualizing complex in a global
sense.

Theorem 2.7. Let @ be a star closed subset of X, and let p be an
integer. Then, the coherent sheaf 2% ., and the complex C'(@, £)/(A)) are
mutually dual with respect to the dualizing complex C(@, 2y (A)).

Proof. By Propositions 2.4 and 2.5, it is sufficient to show that the
natural homomorphism
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g0t Homyz o) (C(D, 27(4)), C'(D, 2¢(4))
—>R Homj,)(C(D, 2;/(4)), C(D, 2/(4))

is an isomorphism in the derived category. Since each C*(®, 2)/(4)) is a
direct sum of B(®)-modules of type 4(¢)Q2Z*, it is reduced to proving the
following lemma.

Lemma 2.8. Let @ be a star closed subset of 2, and let ¢ be an ele-
ment of @. Then the natural homomorphism

&, Homy,(A(0), C'(D, 2¢(2, A)))——>RHomj,,(A(0), C(P, 2/(Z, )
is an isomorphism.

Proof. We have to recall the injective resolution of the dualizing
complex in the category of M-graded B(®)-modules which we used in [I1,
§4]. We define a covariant functor

I, I'(m)—>(B(®)-modules)

by I,(z)=Hom,(B;'B(D), k) if r € @, and I,(zr)=0 otherwise, where B, is
the set of M-homogeneous elements of B(®) not in the prime ideal P(r)/
I(®), and Hom, (B[ 'B(®), k) is the submodule of Hom, (B 'B(®), k) gen-
erated by M-homogeneous homomorphisms. (See [I1, §4].) Then the
complex C'(@, I,) is equal to I" in [I1, § 4] shifted r places to the left. The
results in [I1, § 4] say that there exists a natural homomorphism 2y(4)|,
—1,|, of the functors restricted to @, and the induced homomorphism

C(@, A/(A)—>C'(D,1,)

is a quasi-isomorphism (see [I1, Proposition 4.8]). Furthermore, since
I(7) is injective in the category of M-graded B(@)-modules by [I1, Lemma
4.5] for every ¢, and since A(s) is a finitely generated M-graded B(®D)-
module, we know that the complex Homg,,(4(s), C'(@, I,)) represents
RHomy,,(A(c), C'(@, 2¢(4))) in the derived category. Since

Homy ,)(4(0), Hom,(B'B(D), k))=BQQk(A(0)B% BZ'B(D), k)

is equal to Hom, (B '4(0), k) if z>~¢ and is zero otherwise, and since
A(0)=B(P(¢ <)), we have Homy)(4(0), C'(D, [p))=C (D0 <), Ly, )-
On the other hand, since Homy,,(4(c¢), A(z)) is equal to A(7) if <7 and is
zero otherwise, we have Homy,,(4(0), C'(@, 2y (A))) = C(D(c <), 2¢(A)).
Since the homomorphism C'(@(s <), 2y (4)—C (D6 <), I, ) is a quasi-
isomorphism by [I1], the homomorphism e, is an isomorphism in the
derived category. g.e.d.
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Let @ be a star closed subset of . We denote by min @ the set of
minimal elements of 3. Since {P(s); ¢ € min @} is the set of minimal
prime divisors of the semiprime ideal /(®), and since each S[¢]=.S/P(s) is
a normal ring, the normalization B(®) of B(®) is equal t0 P, cmin 0. S[0]-
Let 1: B(@)— B(®) be the natural injective homomorphism. For A=ht @,
we set &'={g e @: codimg<<h}. We will use the following lemma in
Section 5.

Lemma 2.9. In the above notation, A induces an isomorphism I(D’)/
(D) > P, ¢ oy 0] of ideals of B(D) and B(D).

Proof. Since

1@)=HMN G\ e9] and I@)=KMNE\L) o]

we have I(@)/I(D)=kIMN(U,co, int (z¥ Not))], where int (zV N at) is
the interior of 7V Mg+ in the linear space g+.

For each ¢ € @(h) and each m ¢ MNint(zVNgt), the annihilator of
e(m) e B(®) is equal to P(0)/I(D), since ®(h)Cmin @. Hence the projected
image of k[M Nint (zV N¢L)] in the direct summand S[z] of B(®) is equal
to zero if r#¢ while it is equal to the ideal J[g]=k[M[s]N int z[a]V]
of S[o] if 7=0. Hence the image of I(@")/I(®) is equal to the ideal
®Pocowm Jo] of B(D). g.e.d.

§ 3. Toric polyhedra

In this section, we fix a field k of an arbitrary characteristic.

As in the previous section, let N be a free Z-module of rank r >0,
and let M be the dual Z-module. For each fan X of N, we denote by
Z(N, 3) or simply Z(2) the Ty-embedding over k associated to the fan 3
which is defined in [TE, Chap. 1] or [MO, Chap. 1], where T}, is the alge-
braic torus Spec(k[M]). If ¥=I'(x) for an s.c.r.p. cone x, then Z(2) is
equal to the affine T-embedding U(N, =)=Spec (k[M N=V]). We denote
by orb (N, #) the closed subvariety of U(N, r) defined by the ideal P(x)=
KIMN(zV\zt)]. orb (N, n)is a Ty-orbit of U(N, x) under the action of
Ty. We might abbreviate U(N, x) and orb (N, z) as U(x) and orb (z),
respectively. For a general X, the T,-embedding Z(2) has the covering
{U(a); o € 2} by T-invariant affine open sets. We denote by V(N, 2, o)
the reduced subvariety which is the closure in Z(ZX) of the locally closed
subvariety orb (¢) of Z(2). When N and X are obvious, we abbreviate it
as V(2,a) or V(s). For each element pe 3, we set J[p]l={olp]; g ¢
2(p=<)}. Then Xpl is a fan of N[p],, and we have the following:
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Lemma 3.1 (MO, Th. 4.2, (ii)]). For any pe 2, we have natural
identifications Tyr,;=o0rb (¢) and Z(Nlpl, Zlp))=V (N, 2, p).

Let N’ be another free Z-module of finite rank, and let 3, 37 be fans
of Ny and N%, respectively. Then each homomorphism A: N'— N induces
the homomorphism Ty—Ty of the algebraic tori. This morphism is
extended to a morphism of the torus embeddings Z(N’, X)—Z(N, ) if
and only if, for each element ¢ of 3", there exists  in 2 with Ag(e)C<
[MO, Th. 4.1], where hp: Ni— Nz is the coefficient extension of 4. Al-
though 7 is assumed to have a finite cokernel in [MO)], we see easily that
this condition is not necessary. If this condition is satisfied, we denote by
o(h, N’/N, 2’/ the morphism of torus embeddings. This might also be
abbreviated as o(h, 2’/2), p(h, N’'/N) or ¢(h).

In the above case, for each element 7 € X, we denote by 27 the set of
elements ¢ of 2’ such that 7 is the minimal element of 2 with /z(c)Cr~.
27 is a locally star closed subset of 2. For an element ¢ € 27, the restric-
tion of o(4, 3/2) induces the morphism V(N’, 27, 6)—V(N, 2, 7). It is
easy to see that this is equal to the morphism

o(h, 2'[0)/2[z]): Z(N'[0), 2'[6))—>Z(NI[z], 2Tz])

for the naturally induced homomorphism %: N’[¢]—N[z] with respect to
the identification in Lemma 3.1.

The morphism ¢k, 3'/3): Z(2)—Z(2) is proper if and only if, for
every ¢ € 3, the set {o € 2”: hg(0) C ¢} is finite and the union of its elements
is equal to Az'(z) [MO, Th. 4.4]. Assume @(h, 2’/2) is proper. Then, if
we set N =h(N")C N and 2" ={N%N<z; r e 2}, then the homomorphism
o(h, N’/N, 2’[3) is decomposed as (', N'[N, 2"/ X)o o(W’, N'|N”,
2'/3"), where h': N”"—N and h"”’: N'—>N"" are the natural injection and
surjection, respectively.  This is nothing but the Stein factorization [EGA
II1, 4.3] of the proper morphism ¢(/, 2’/2). In particular, ¢(h, 37/2),0 ;5
=043, if and only if 4 is surjective.

Let X, 37 be two fans of Np. We say 2/ is a subdivision of X, if
(1) for every ¢ € 3’ there exists r € 3 with ¢Cr, and (2) for every z ¢ X,
the set {g € 37; 0 Cr} is finite and the union of the elements is equal to z.
In other words, 2" is a subdivision of 2 if and only if the birational
morphism ¢(3'/2)=0¢(1y, 2'/3): Z(2)—Z(2) is defined and is proper.

For a locally Noetherian scheme X, we denote by D, (X) the derived
category of the category of complexes of ¢ y-modules bounded below with
coherent cohomologies.

Theorem 3.2. Let h: N'—N be a surjective homomorphism, and let
3" and 3 be fans of Nz and Ny, respectively. If o(h, N’|N, 2'/2) is well-
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defined and is proper, then we have Rp(h, 2'|3)40 (s =0z s, in the derived
category D, (Z(2).

Proof. If h is an isomorphism, or equivalently if ¢(h, 2’/3) is a
birational morphism, this follows from the results of [TE, Chap. 1, § 3.
We consider the general case. If we take a submodule N® of N’ which
is mapped isomorphically to N by 4, then we get the decomposition N/ =
NOPN® for NO=Ker (h). Let X, be the fan of N which is isomor-
phic to 2 by A, and let X, be an arbitrary complete fan of N§). Then we
have Z(N’, 3\ X 3)=Z(N®, Z)XZ(N®, ;) and Z(N®, 3,)~Z(N, %),
where X, X2, ={oXr;0e 2, e} Since Z(N®, X)) is a complete
torus embedding, H(Z(N®, 3), Oz, 5,)=0 for i >0 by [Da, Cor. 7.4].
Hence, by the base change theorem, we have Rop(h, 2, X 2,/ 2), 045, 5=
Oz Let 3 be a common subdivision of 3’ and 3, X3, Then, since
o1y, 3 /~Z") and (1, 3/13,x2%,) are birational morphisms, we have
Ro(ly, 21240250 = Oz¢sy and  Ro(ly, 2/2, X 2)40z5) = Oz(sixz)-
Thus

Ro(h, £')2)40 ¢z =R, 2’| 3), Ro(1yr 3134055,
=Rop(h, 2/2),0, s,
:R¢(h’ 2 X 22/2)*R‘P(1N'7 ZN'/ZH X 235075
ZRSD(h’ ZIXEZ/Z)*@Z(X1X22)
=045 - qee.d.
Corollary 3.3. Let 2 be a fan of Ny, and let 3’ be a subdivision of 2.

Then for each element o € 3’, we have Ro(2'[3) 0y 5:,5, =0y (5,5, Where
G is the minimal element of X with ¢ C&.

Proof. In view of Lemma 3.1, the morphism V(3 o)~V (2, )
obtained as the restriction of ¢(3’/2) to ¥(2’, ¢) is equal to

o(h, 2'[0)/Z[6]): Z(N[o], 2'[e)—>Z(NIa], Z[5])

for the natural surjection #: N{s]—>N[é]. Hence the corollary follows
from the above theorem. q.e.d.

We denote by D(2) the reduced Weil divisor Z(X\Ty. If X=I'(n)
for an s.c.r.p. cone «, then D(X)==Spec (S/J) for the ideal J in Section 2.
We define the 0, y,-module £%;,(log D(2)) to be 0,;,®M. This is the
globalization of £%(log J) in Section 2, and is a free @ ;;,-module of rank r.
For each ¢ ¢ X, we denote by D(Z, ¢) the reduce divisor ¥(2, ¢)\orb (¢)
of the torus embedding V(Z, ¢). Then 2% s ,,(log D(Z, 6))=0ps,,QM]o]
is a free 0y (;,,,-module of rank codim ¢.
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For an integer p, a covariant functor 2y(%, 0): 2—{0,s,-module} is
defined by 2)(2, 0)(0)=0y(s,,,QHomy(A*M]e], Z). Similarly as in Sec-
tion 2, we have 2)(2, O}0)RZ(0) =2%8,,,(log D(2, 0)) for d=codim .

Proposition 3.4. Let 3 be a fan of Ng, and let 3’ be a subdivision of
2. Then, there exists a natural isomorphism

Rp(27]2),C'(2, Q/(27, 0)=C'(Z, 2/ (Z, 0))
in the derived category D, (Z(2)).
Proof. Since CH(Z", 2/(2", 0) =D, ez~ 0y0r (5,0 ®Z(0), We get

Rp(Z|5),CHZ", QY 0) =p(3|2),CHI', QY(Z", 0))
= @ ) Oy (z,nQZ(0)
¢€X(—1)
by Corollary 3.3, where & is the unique minimal element of X with ¢ Cg.
Recall that for a subset @ of a fan 2 and for an integer i/, we denote
O(i)={c € @; codim g=i}. In particular, dim V(Z, ¢) =i for o e @(Q).
We define the homomorphism
@D Opiz,n®@Z(@)—> D Op(z,s®Z(z)
€I’/ (—1) T€X(—1)
as follows. Let (g, 7) be in 2/(—i) X X(—i). If 6=z, then Z(0)=Z(7),
since codim g=codim z=—i and Ml[g]l=MJz]. We define the (g, 7)-
component of this homomorphism to be the identity if =7 and to be
zero otherwise. Then, as we see easily, we get a homomorphism

I @ 2)C " QY O)—>C' (S, QY (2, 0)

of complexes. We define a decreasing filtration {F?},., on the complex
A" =¢(27[2),C" (27, 2/ (27, 0)) by
FdYy= &  Oris,ns

o€ X/ (=1)
codim & +¢<0

as well as {G%,c, on the complex B"'=C'(2, 2Y(2, ©)) by GAB)=B"*if
i>q and G%(B*)=0 for i <{q. Then the homomorphism f* preserves these
filtrations and the induced homomorphism Gri(4)—Gri(B’) is equal to
the natural homomorphism
D Oz, n@C(27, Z,,)—> e@ Oz, 9@Z(@)]—4]
€3 (~q

€3 (~q)

which is induced by the homomorphisms
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C'(21, Z, 0)—>Z(7)[codim 7]

in Lemma 1.6. Hence this is a quasi-isomorphism by the same lemma.
Thus the homomorphism f* is a quasi-isomorphism. q.e.d.

The functor Q;/(2, ©) is abbreviated as 2y(0) if the fan X is clear
from the context.

Definition 3.5. For a star closed subset @ of a fan 2, we denote by
Y(®) the reduced subscheme (_J, ., V(o) of Z(2), and we call it the foric
polyhedron associated to @.

Let Y(®) be the toric polyhedron associated to @ X. Then we see
easily that Y(®) has the open covering {¥(®@) N U(x); = € @}, and each
Y(@®)NU(x) is equal to Spec(B(@NI'(zx))) where B(@NI'(z)) is the
quotient ring of S =k[M N =V] defined in Section 2.

By Proposition 2.6, C'(@, 2y(0)) is the (local) dualizing complex of
the toric polyhedron Y(®).

Lemma 3.6. Let @ be a star closed subset of 2, and let L’ be a finite
complex of coherent Oy 4 -modules. Assume that each L* is decomposed as
a direct sum of free Oy ,-modules for ¢ € @. Then the natural homomor-
phism

Homy, o (L', €@, 2(O)—>RHom;, , (L, C'(®, 27(0))

is an isomorphism in the derived category. Furthermore, if we regard
C(D, 27(0)) as a subcomplex of C' (X, 2y(0)), then the natural homomor-
phism

Homs, , (L', C@, Q/(O)—>Hom;,, , (L', C'(, 2(0)
is an isomorphism.

Proof. By the standard spectral sequence, the first assertion is
reduced to showing that the natural homomorphism

Homy, , Oy C @, Q(O)—>RH o, (Orierr C'(@, 25(0)

is an isomorphism for every ¢ € @. This is true by Lemma 2.8. The
second assertion follows from the fact that

Hom, o Orars Op)=Homy,  (Ora)» Ops)

if 0, 7 € @, and Hom, ,  (Oyy, Op)=0if r € 2\ and o € D. q.e.d.
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We denote @@ ={(c, ¢) € @*; 0 <z} for a star closed subset @ of 5.
The double functor 0Q A?: 2*—{0,(s,-modules} is defined by 0R A?(z, o)
=0y,@4*M][s]. This functor is covariant for the first variable and
contravariant for the second. It is the globalization of the functor A® A?
in Section 2. 'We get the double complex C*(9®, OR A7) and the single
complex C*(@®, OR A?) associated to it.

By globalizing Proposition 2.5, we have the following.

Proposition 3.7. Let @ be a star closed subset of 2. Then, for each
integer p, we have

CH (@, 0R A7) =Hon,, , (C'(@, 2}(0), C'(@, A(O))).

Let 37 be a subdivision of X, @ a star closed subset of X and @' =
{0 e ;5 ed}. We define the homomorphism

Bt puHom,, , (C(@, 2Y(0)), C'(@, (O
> Homy, , (94 C (@, 2)(0)), C'(D, %))

of double complexes as follows. Since ¢, 0y, =0, for ¢ € @, we have

pronq, , (C~H@', QY(O), CH@', QY(0))
= O] 0V(§)®APM[C]®Z(5/C)

(8,0 €D (2 (—~1,7)
and
Homa, , (pxC @', QY(O)), CHO, 2Y(O))
= @® Oy (QA* M[9]Q Z(z /7).

T€0(~1),7€0'())
7<r

If £ =7 and { =), then we have Z(z/y)=Z(£/C), since dim é=dim r= —i.
Then the ((§,{), (¢, p))-component of S/ is defined to be the identity.
Otherwise, the component of 5“7 is defined to be zero. Then we see that
this is a homomorphism of double complexes.

Proposition 3.8. Let the notation be as above. Then, the homomor-
phism

pstony, , (C'(@, QY(O), C'@, DY)
> Homy, , (01 C'( @', GO, C'(®, 2(0))

of the associated single complexes obtained from B is a quasi-isomorphism.

Proof. Let the first complex be K' and the second L'. We define
decreasing filtrations F and G on K" and L', respectively, as follows. For
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each integer g, FA(K") is defined to be the sum of 0, ;A2 M[LIQRZ(E/C)
for &, ¢ e @ with {<¢ and codim { —codim £>¢, and G%(L’)is the sum
of 0y (@A MR Z(z/7) for € @, y € @’ with »C ¢ and codim yp—codim ¢
>¢q. Then, these filtrations are compatible with the homomorphisms.
By considering the associated graded complexes, we reduce the problem
to showing that the homomorphism

C'(EUp=<), Z,,)Q0y QA M[y]—> 0y (@ A M 3] @ Z(z/p)[codim 7]

is a quasi-isomorphism for all z € @ and » € @’ with yCz, where X/(y<)
={6e3’; y<€ and E=<z}. By the quotient map

Nr—>N[ylg=Ng/(p+(—17),

3’(y<) is in natural one to one correspondence with {o € 3”; p Nint ]
#+¢}, where 3" ={p e 2'[y]; pC[y]} and z[y] is the image of z in N[yg.
Since z[y] is a rational polyhedral cone and z[y]=|2"’|, the homomorphism
is quasi-isomorphic by Lemma 1.6. g.e.d.

In Section 5, we will see that C*(@, 2y/(0)) is a dualizing complex in
a global sense. In particular, C*(@’, 2y(0)) is equal to the twisted inverse
image ¢'C (9, £2y/(0)) and Proposition 3.8 gives an explicit description of
the relative duality [RD, Chap. VII, Cor. 3.4] in our special case.

Let 2’ be a subdivision of %, and let p=¢(2"/3): Z(2)—Z(%). For
a star closed subset @ and for each integer p, there is a natural homomor-
phism ¢, C' (@', 2;(0))—C (D, 2)(0)), where ¢'={c e 3'; 7 e }. Actu-
ally, since

0. C(?, 2J(0)= ea:(_?-z) Oy (z,»n®A™*"? M]a]

and
C(@, 2;(0)= eg—(B_ S Op(3,0QA7 " ?M(z]

we can define the homomorphism similarly as in the proof of Proposition

3.4.
Let 2’, @ and @ be as above. For each integer p, we set

2% 0= H(C'(DP, OR47)).

Note that #4(C"(0®, 0® A7)) =0 for i+ 0 by Proposition 2.4. By Corol-
lary 3.3, Rp,£% o, is represented by ¢,C(¢'®, 0®4?). Furthermore, it
is also represented by %om;ym(go*C‘((D’, 2(0)), C(D, 2Y(0))) by Pro-
positions 3.7 and 3.8. Since %, is quasi-isomorphic to

Homi , (C'@, (), C'(@, 2(O))
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by Proposition 3.7, we get a homomorphism 9% 4 — R, %% ,, in the
derived category induced by the homomorphism ¢,C(?’, 2)(0)—
C'(9, 2;(0)).

Lemma 3.9. Let X’ be a subdivision of X, and let 3, =3\{0} and
X =3"\{0}. Letp: Z(2")—Z(2) be the morphism as before. Then there
exists a triangle

O—*ggm——"[}'{mz+>®R¢*9~5(z'>——"R€D*Q~§”(z;)-'—>O
in the derived category D (Z(2)) for each integer p.
Proof. We have a diagram
09, C (", Y(O) — 94, C(Z's QY(O) —> 4,252, (log DEr]—0

0—> C'(2,, 2(O)—> C'(Z, 25(0) —> Q%:5,(log D(X))[r]—>0
of exact sequences of complexes. Since
058255 (log D(37) =27 %,(log D(2)=05,@A" "M,
we have an exact sequence
0—0,C' (2%, 2H(O)—>¢,C (2", 2;(O)DC(Z,, 2;(0)
—>C'(2, 2)(0)—>0

of complexes. By taking R%om;z(z)( , C'(Z, 2Y(0))) of this sequence,
we get the triangle in the lemma in view of Propositions 3.7 and 3.8 and
Lemma 3.6. q.ed.

A fan X of Ny is said to be nonsingular if it consists of nonsingular
cones. 2 is nonsingular if and only if the toric variety Z(2) is nonsingular
[TE].

Proposition 3.10. Let X be a nonsingular fan. Then #%(C'(X®,
OQAP)) is canonically isomorphic to the sheaf Q% s, of regular p-forms on

Z(3).

Proof. Since ‘Qg’i 5 =H%C'(2?®, 0®47)), the proposition follows
from the definition of £% in Section 2.

For general ¥, we know the following.

Proposition 3.11 ([Da, Proposition 4.3]). Let U=Z(2)\Sing(Z(2)),
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and let j: U—Z(2) be the open immersion. Then we have Q"'g( 5 =Jx5%
for every integer p.

Let X be an irreducible nonsingular variety, and let f: X —Z(2) be a
morphism with f(X)NTy+#¢. For U=Z(X)\Sing(Z(2)), let f: f~1(U)
—U be the restriction of f. Since f is a morphism between nonsingular
varieties, there exists a natural homomorphism g: f*Q%—0Q2_, ,, for each

p.

Proposition 3.12. The above homomorphism g is extended uniquely to
a homomorphism g: f*Q% . —0%. Furthermore, these homomorphisms
commute with the exterior derivations.

Proof. The uniqueness is clear, since 2% is a locally free @x-module
and U is a dense open set. We have to show that, for every section s €
I'(W, 3% ,) over an open subset W of Z(Z), the pull-back u=f*(s|yv) €
L'(f\wnu), 2%) is extended to an element of I'(f (W), 2%). Since
0% is locally free and X is nonsingular, it is sufficient to show that u is
extended to the generic point of every irreducible divisor Y which intersects
S \(W). Since T,C U, we may assume f(Y)NTy=¢. Let U(x) be the
minimal Ty-invariant open subset of Z(2) which intersects f(Y), and let R
be the local ring at the generic point of Yin X. If dim #<1, then U(xn)
is nonsingular and the assertion is obvious. Hence we assume dim z>2.
We get the homomorphism ¢: K\[M NzV]—R of rings. The condition
f(X)NTy#¢ implies that the generic point of X is mapped into Ty=
Spec (k[M]). Hence, for the quotient field K of R, the homomorphism ¢
is extended to ¢’: K[M]—K. Since R is a discrete valuation ring, the
composite map m—v(¢’(e(m))) with the valuation v of R is a homomor-
phism from M to Z, and hence is equal to an element n,in N. Since f(Y)
does not intersect Ty, we know n,=0. Let 7=Ryn,. Then since ¢’(e(m))

e Rfor me MN7+, ¢ is decomposed as

KM N 2V]=—>kMN7V]—>R.

Hence for the open set G=f"'(WN U(x)), G intersects ¥ and the restriction
of fto G is decomposed as
1 2
G—>UM)—>U(n).
Since ngcf)g[ﬂ is obvious from the definition of them in Section 2, the
pull-back from £% ., to £2%,,, is welldefined for 2. On the other hand, f”

has the pull-back of p-forms since U(7) is nonsingular. Hence the p-form
u is extended to the generic point of ¥ which is contained in G. q.e.d.
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By using Proposition 3.12, we can define the homomorphism
g: f*(% 45 —Q% for every morphism f: X—Y(®) from a nonsingular
irreducible variety X to a toric polyhedron Y(®) as follows. Let 5 be the
maximal element of @ with f(X )C V(77) Since 3(y<)C®, there exists a
natural homomorphism u: 0%, — Q% ;(,«, Recall that 92, =
.Qz(zm) by Proposition 2.2. Since S(X) intersects the torus Tyr,; the
homomorphism v: f* QZ@[”])-——»QX is defined by Proposition 3.12. We

define the homomorphism g: f*0% ,,—2% to be the composite v o u.

§4. du Bois’s de Rham complexes for toric polyhedra

In this section, all varieties and schemes are assumed to be defined
over the complex number field C.

du Bois [dB] constructed a de Rham complex £ for every separated
C-scheme Y of finite type. £% is an object of the derived category
Dy;e:(Y) of the category Cy;(Y) which is defined as follows. Each object
of Cy(Y) is a triple (K', d, F) consisting of a complex (K, d) of 0,-
modules and a decreasing filteration F on K" such that (1) K" is bounded
below, (2) the filteration F is biregular, i.e. for each component K* of K",
there exist integers m, n € Z such that F"K*=K"* and F"K*=0, (3) dis a
differential operator of order at most one and preserves the filteration F,
and (4) Gri(d): Gri(K9)—Gri(K**Y) is Ox-linear for any integers p and i.

We review briefly the construction of du Bois’s de Rham complex
£27. We take a smooth simplicial resolution «: Y —Y introduced by
Deligne [Del]. In this case, Y is taken so that each component Y, is
nonsingular and the morphism «,: Y,—Y is proper and Ra,Cy, =C}.
Since each component Y,, has the usual de Rham complex 2% , we get
the complex 23, on Y, which consists of 27, ’s. The complex 2% is given
as the direct image R, 2%.. It was shown in [dB], that this is independent
of the choice of the simplicial resolution Y,. For each integer p, Gr;(g})
is an element of Dg;,(Y) and is denoted by £%.

Now, let Y (@) be the toric polyhedron defined over k=C associated
to a star closed subset @ of a fan 3 of N,. We defined the complex
ﬁ}w) in Section 3. We know by Proposition 3.12, that for any morphism
fiX— Y(@) from a nonsingular variety X, there exists a natural homomor-
phism f* ‘QY(Q,——»QX of filtered complexes where the filteration F on the
complex 03, is given by FU(% ) =02, if p>q and FU(%,)=0 if
p<g. Consequently, for a morphism «: X —Y(®) from a simplicial
variety X, consists of nonsingular varieties, we get the homomorphism
Dy 0y—>Ra, 2. in the derived category Dy(Y(®)).

In this section, we assume that X is finite, i.e. consists of a finite
number of s.c.r.p. cones. Hence the toric polyhedron Y(®) is of finite
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type, and we can consider du Bois’s de Rham complex 2%, The
purpose of this section is to prove the following.

Theorem 4.1. Let Y(®) be a toric polyhedron for a star closed subset
@ of a finite fan 2, and let a: Y —Y (@) be a simplicial resolution of Y(®).
Then the natural homomorphism

LN Q.Y(o)'—‘)ROf*Q'Y.

is an isomorphism in the derived category Dg;(Y(®)). In other words,
8% oy is canonically isomorphic to du Bois’s de Rham complex Q% 4.

Since the homomorphism +» preserve the filtrations, we get a homo-
morphism ?: 9% ,—> Ra,.£2%, induced from + for each integer p. In
order to prove the theorem, it is sufficient to show the following proposi-
tion.

Proposition 4.2. For each integer p, the homomorphism ®: QN%,)—>
8% oy is an isomorphism in D, (Y (D)).

Proof. The assertion is trivially true if @=¢. Thus we assume
@=+¢. We prove the proposition by induction on d=ht @ (=dim Y(9P))
and the number k of elements of @, where we do not fix N and 3. If
Y(®) is nonsingular, then both .Q~§'}<,,) and 9% ,, are equal to the ordinary
sheaf 0% ,, of p-forms by Proposition 3.10 and [dB, Prop. 4.1], and
hence +* is isomorphic. In particular, if k=1 and @=/{z}, then Y(@)=
Tyi. is nonsingular, and +? is an isomorphism. Now, assume the pro-
position is true for 0<d<<h or d=h, 1<k<n for integers A, n. It is
sufficient to prove the proposition for the case ht ®=#h and when the
number of the elements in @ is equal to n. We devide the proof into two
cases. The first is the case @ has a unique minimal element, i.e. @=
Y(p=<) for an element p e @, and the second is the case @ has at least two
minimal elements.

Case 1. Since Y(9)=Z(2[p]), by replacing X' by 2Z[p], we may as-
sume §=23. Let 3’ be a nonsingular subdivision of X' whose existence is
guaranteed by [TE, Chap. 1, Th. I1]. Set ¥, =2\{0} and 3’ =3"\{0}.
Then since ht Y, =ht 2/, =h—1 and 2’ is nonsingular, the proposition is
true for X', 3, and 2’ by the induction assumption. We get the diagram

0———>ﬁgm———>§§’,@ +)(-BR¢*Q~‘{,(;,)———>R¢*!§‘{,(M)———>O
l"l"p 1l/p 1!"Ilp

0—>2% 5——>2% 5 yORY4 % 5y —> R4 % (5,,—>0
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of elements of D7, (Y(Z2)). The first row of this diagram is a triangle by
Proposition 3.9, and the second row is also a triangle by [dB, Prop. 4.11].
Since '? and +"’? are isomorphisms +? is also an isomorphism in the
derived category.

Case 2. Let p be a minimal element of @. Set ¥'=23(p<), ¥'=
O\{p} and ¥'=¥\{p}. Clearly, these are star closed subsets of 3. We
have Y@)=Y@)NY (@) and Y(@)=YT)U Y(P), and we get a se-
quence

0—>C(09, 0RA7)—>C(D'?, 0QAP)BC'(T®, R A7)
—>C'@'®, 0R47)—0

of complexes, which we see easily to be exact. On the other hand, by
applying [dB, Th. 4.11] to the inclusion morphism Y(@)—Y(®) and the
closed subscheme Y (¥)C Y(®), we get a triangle

0 ? gg’(ﬁ) ? gzl”(ﬂ’)@_g_zll’(w) )gg(w’) >0.

Similarly as in the first case, we see that ?: f)g(m—»gﬂg,w) is isomorphic,
since the number of elements in @', ¥ and ¥’ are smaller than n and the
proposition is true for them by the induction assumption. q.e.d.

In [S], Steenbrink defined an algebraic singularity (X, x) over C to be
a du Bois singularity if the natural homomorphism 0, ,—£%, . is a quasi-
isomorphism. !52,((” =0y, for a toric polyhedron Y () by the definition
of 3%, in Section 2. Hence we have the following.

Corollary 4.3.  Every toric polyhedron defined over C has only du Bois
singularities. In particular, toric singularities are du Bois singularities.

§ 5. Semi-toroidal varieties and the dualizing complexes

Let k£ be a field of an arbitrary characteristic. In this section, we
assume all schemes and morphisms among them are defined over k.

A pair (X, U) of a scheme X locally of finite type and its open sub-
scheme U is said to be a toroidal embedding if, for each point x e X, there
exist a torus embedding Z(x) with a torus T(x) defined over k, a scheme
R(x) and étale morphisms +r,: R(x)—Z(x) and ¢,: R(x)—X such that
V7' (T(x)=¢;'(U) and x e ¢, (R(x)). This definition is equivalent to
that of [TE, Chap. 11, § 1] by [A]. Let (X, U) be a toroidal embedding and
let D be the reduced divisor X\U. We define an 0x-module @ ,(—log D)
by I'(V, @x(—log D)) ={a: 0,—0;; « & Der (0y) and a(F(D)|,) = A (D)|,}
for each open set V' C X, where #(D) is the ideal of ¢ defining D. We
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call a morphism f: X’—X of toroidal embeddings (X’, U"), (X, U) toroidal
étale morphism if it is étale and f~'(U)=U’. Let f* X'—X be a toroidal
étale morphism and let D=X\U and D’=X"\U’. Then, there exists a
natural identification f*@ z(—log D) =06 z.(—log D").

Lemma 5.1. In the above notation, the Oy-module ©(—log D) is a
locally free sheaf. Its rank at each point x of X is equal to the dimension
of X at x.

Proof. Note that (R(x), v; (T (x))) in the definition of the toroidal
embeddings is also a toroidal embedding and +», and ¢, are toroidal étale
morphisms. Since 6,,,(—1log D(x)) is a free @x-module of rank dim Z(x)
for D(x)=Z(x)\T(x), we know that O,(—log D) is a locally free 0-
module of the same rank at x. g.e.d.

We define ©Q%(log D)= om, (Ox(—log D), U5) and 22 (log D)=
A% (log D) for each integer p.

Let Y =7Y(®) be the toric polyhedron defined for a star closed subset
@ of a fan 3 of Np. The k-scheme Y has a natural increasing filteration
{Y,} defined by

Yi= U V(o
e (LKD)
where O(<i)=1Ji_, @(j). Since dim V(o)=ifor o € @(i), Y; is a closed
subscheme of Y of dimension i for every 0<{i<dim Y. For each integer i,
the locally closed subsheme S =Y,\Y,_; of Yis equal to _,co¢, 0orb (0)
and hence is nonsingular of pure dimension i. We denote by Y the
normalization of the closure of S in Y. Clearly, Y is equal to the
disjoint union [[,.4u ¥(6). We denote by 2 the natural homomor-
phism Y®—Y. Hence by Lemma 3.1, the pair (Y®, §®) is a toroidal
embedding of pure dimension i. Hence, for E® =Y "N\S® =], 4, D(0),
the sheaf @, (—log E®) is a locally free 0, ,-module of rank i. Let p
be an integer. Note that C¥®, £2;(¢)) of the complex C'(D, 2)(0))
defined in Section 3 is equal to '
g—D Q7-2(log D(e))=2"LQ7izh(log EC9).
GED(—1)

Definition 5.2. A scheme X locally of finite type is said to be a semi-
toroidal variety if, for each point x e X, there exist a toric polyhedron
Y(x), a scheme W(x) and étale morphisms ,: W(x)—Y(x) and g,: W(x)
— X such that x € ¢ (W(x)). We call it a filtered semi-toroidal variety if,
furthermore, X has an increasing filtration {X;} and ¢;'(X;)=+v;'(¥Y(x),)
for each i and for the natural filtration {¥(x),} of the toric polyhedron
Y(x).
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Let X be a filtered semi-toroidal variety. For each integer i, let U®
=X\X;_, and let X® be the normalization of the closure of U®. We
know (X®, U®) is a toroidal embedding of pure dimension I since it is
locally isomorphic to (Y@, §®) for some toric polyhedron Y at each
point of X. Hence for each integer p, we get a locally free Oy.;,-module
2%, (log D®) for the reduced divisor DO=XU®. We define the
complex €°(X, ©2)) of coherent 0,-modules as follows. Let ¢9: XO—X
be the natural homomorphism. For each integer i, we set

CHX, 2y)=¢i "2z} (log DY)

Clearly we have ¢}F%@UX, 2))=vFCYD(x), 2;(®) in the notation in
Definition 5.2, where @(x) is the star closed subset of a fan which defines
the toric polyhedron Y(x). Since the homomorphism d: C*(@(x), £;/(0))
—C" Y (D(x), 27(0)) is defined naturally by the Poincaré residue map for
every x € X, we get a homomorphism d: ¥%(X, 2))—%**'(X, 2) such
that ¥ (X, 2))=vF}C(D(x), 2)(0)) at each point x e X by descent
theory [SGA1]. Thus the complex ¢"(X, £2)) is defined for each integer p.

Remark 5.3. It is clear by definition that any toric polyhedron Y(®)
is a filtered semi-toroidal variety and the complex €"(Y(®), £)) is equal
to C(@, 2)(0)).

Let S be a scheme of finite type. We call a complex R of ¢ ,-modules
a global dualizing complex of S if R represents the twisted inverse image
fik in the derived category D.(S), where fy: S—Spec (k) is the structure
morphism and k=0, Recall that, for a morphism f: S-S of
schemes of finite type, the functor of twisted inverse image f*: D5, (S)—
D (S is defined and, if f is proper, satisfies the relative duality [RD],
V]

The global dualizing complex of a filtered semi-toroidal variety is
explicitly given as a complex of coherent modules as follows.

Theorem 5.4. Let X be a filtered semi-toroidal variety. Then €'(X,
V) is a global dualizing complex.

Let S be a scheme of finite type. Then by [RD, Chap. VI], the
twisted inverse image ftk is represented by a residual complex, which we
denote by f%k as in [RD, Chap. IV] and is defined as follows. We take
an open covering {S;} of S such that each S, has a closed immersion S,—
P, to a nonsingular irreducible variety P,. The local chart f%,k on S, of
the residual complex f%k is given by f§ k=35Fom, m(@Si’ E*(wp,[n])), where
E’(4") is the Cousin complex of a complex 4° [RD, Chap. III], n,=dim P,
and wp,=02%,. Then, for any two open sets S, S, the restrictions
Soiklsins, and 5 Kls;n s, are naturally isomorphic as complexes of Og,s,-
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modules. By gluing the charts, we get the residual complex f%k which is
a bounded complex of quasi-coherent injective @g-modules. Hence, in
order to prove the theorem, it is sufficient to show that there exists a
quasi-isomorphism €°(X, £2y)— f%k for the filtered semi-toroidal variety X.

We have to recall the Cousin complex in more detail.

Let P be a nonsingular irreducible variety of dimension n>>0, and let
Z[n] be invertible sheaf % shifted » places to the left as a complex. Then,
there exists a natural injective resolution E'(Z[n]) of #[n] which is called
the Cousin complex. It is a complex of the relative local cohomology

sheaves
o>y Lz, (L)Y, (L) - -

where Z,={x € P; dim {x}~<i}. The complex E'(Z[n]) is obtained as
the limit of an inductive system of complexes of coherent sheaves as
follows. Let & be the set of decreasing filterations I =(#?, . .., #**") of
@ by its ideals with the condition dim supp (0,/.#¢)<i for every 1<i<
n+1l. ForI=(s, -.-, ") and K=(A", ---, A ™) of &, we define
I<K if H#'Co, ..., ""CF . By this ordering, & becomes a
directed set. For each I=(#", ..., #™*"), there exists a spectral sequence

EPYl)= &ttt ?] 517, Zln))
SEUOp[ I, ZLln)),

where we understand #*=."*! for i >n-+1 and #*=0, for i<0. For
g =0, we have a complex

D50

TA, L) =(- - - —EP"D——>EP* D).

For each pair (7, K) with 7<K, we get a natural homomorphism {E2 (1)}
—{E»Y(K)} of spectral sequences. In particular, we have a homomor-
phism a;,x: D°(I, Ln))— 2D (K, Z[n]) of the complexes. Since P is non-
singular and % is invertible, % has depth n at each point of P. In
particular, for the shifted sheaf Z[n], we have &xt) (F, Z[n])=0 for a
coherent sheaf .# and an integer j with dim supp (#)-+,j<0. By the
diagram

ExBTN (I P A2, L[n])=0 0=¢&x2 (J 2] 7, LIn])

0—Ext2 (05 I 7, LIn)—>Ext (I 2 [ I177, Ln))—Exth i (O] F 77, Lln)
“?/K

0= Extf (Op| 72, LINN—>Exthy (2|77, LIn]y—>Exthy; (Op] 77, ZL1n])
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the homomorphism «;,, is injective. The Cousin complex E'(Z[n]) is
equal to the inductive limit

ind. lim 2°(I, Z[n)),
&
and is a resolution of Z[n] with respect to the natural homomorphism
F——>E"(FL[n])=ind. lim &x® (S I+, L),
&

It is known that E?(Z[n]) is isomorphic to P.cz_pz_,_, i(H-20,)
where 7,(G) is the constant sheaf G on the closure {x}~ of the point x and
zero outside, and the local cohomology H;?(0,) is isomorphic to the
injective hull of the residue field k(x) as an Oy ,module. In particular,
Hom (F, E*(Z[n]))=0 if dim supp (F)+ p<0.

By construction, there exists a natural inclusion homomorphism
D', Ln)—E ' (Z[n]) for each Ie ¥. Actually, if we use E(Z[n]) to
obtain the extension sheaves, for I=(#", - - ., #™*") we see easily that

Exth (I 7]I77, Lln))=Ker (Hom, (0 5/I' "7, E*(LIn]))
——>H omg (I [I1F, BV L)) C EN(Ln])

for every p. In particular, 9'(7, Z[n]) is a subcomplex of #Hom, (Op/.F"",
E'(Z[n)) since £+ C.#17? and E?(#[n)) is injective for each p.

Lemma 5.5. Let I=(Sf", ---, ") be in L. If ExBrUI?[F172,
L[n) =0 for any p, q with g0, then the inclusion

DU, Ln))——>Hom; (05| I+, E'(L[nD)
is a quasi-isomorphism.

Proof. Let A'=Hom, (0p/F ", E'(Z[n])). The complex A" hasa
decreasing filteration defined by

Fr(A)=Hom, (Op] 77, EX(ZIN)),
and the spectral sequence EDUI)=ExE:iU0p/F"+, Z[n])) is obtained

P
from this filtered complex. By assumption, the spectral sequence degen-
erates at the Ei-terms and E2°([)=&xt (0p/F*, L[n]) for every p.
Since the E,-terms are the cohomologies of @'(I, #[n]), the inclusion is a

quasi-isomorphism. g.e.d.

Let (S, U) be a toroidal embedding of pure dimension r, and let
J(D)C 0, be the ideal defining the reduced divisor D=S\U. The variety
S is Cohen-Macaulay by [Ho] and the dualizing sheaf wg is equal to
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F(D)2%(log D) by [TE, Chap. I, Th. 9 and Th. 14] or [MO, the remark
after Prop. 6.6]. In particular, if S—P is a closed immersion in a non-
singular irreducible variety P of dimension n, then there exists a natural
isomorphism

F(D)25(log D)[r]=&xt;7(Os, wplnl).

Assume that the filtered semi-toroidal variety X is embedded in a
nonsingular irreducible variety P of dimension n. We set £%=/4(X,_)
for i=1, - -+, n+1 and I(X)=(S%, - -, I%"), where £(X,)C 0O, is the
ideal defining X, CP. We understand X, =X for i >r =dim X, and hence
Itl=...=4%"=#(X). For the canonical invertible sheaf w,=07
on P, we consider the Cousin complex E'(wp[n]). By Lemma 2.9, #%/#%
is naturally isomorphic to ¢ #(D®), where #(D®) is the ideal of Oy
defining DO C X, By the relative duality for the finite morphism X
— P, we have

Ext) (I 5] I5, wpln) = Exty (F(DP), S(D)D5w(log DO)i]),
for every integer j. Since 2%,(log D?) is equal to the invertible sheaf
wxa(D®), we have

Ext] (I IG, wp[n])=0 for j==—i and

Exto (I 5l FE, wpln]) =¢Pwxw (D).
By Lemma 5.5, we have a natural quasi-isomorphism

2'(1(X), wpln]))——>Hom; (O, E'(wp[n]))
We easily see that the homomorphism
d: Ext (I I, wpln)——>Exti (I Ik, wplnl)
is equal to the Poincaré residue map. Hence 2°'(I(X), o, [n]) is equal to
(X, ).
In general case, we take an open covering X'= U X; so that each X is

embedded in a nonsingular irreducible variety P, of dimension n,. The

restriction €'(X, 2Y)|x, is equal to 2'(I(X)), wp,[n;]) and there exist a
natural injective quasi-isomorphism

(X)), wP;[”x])—‘—*%OWl;m(@Xp E'(wp,[m)).

Since the charts (X, #om,, (Ox,, E'(wp,[n]))) are naturally patched toge-
ther to the residual complex f%k, we get an injective quasi-isomorphism
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E(X, Q)—>f%k.
Thus we proved Theorem 5.4.

By Remark 5.3, we have the following.

Corollary 5.6. Let @ be a star closed subset a fan 3 of Ny as Section
3. Then C*(®, QY(0)) is the global dualizing complex of the toric polyhedron

Y(9).
§ 6. de Rham complexes on semi-toroidal varieties

In this section, we assume again k=C.
Let (X, {X.}) be a filtered semi-toroidal variety of dimension d >0.

Proposition 6.1. Let p be an integer. Then we have
Exte (€'(X, 2)), €' (X, 2)=0

for every nonzero integer i.

Proof. Since the assertion is a local property in the étale topology,
we are done by Theorem 2.7. q.e.d.

For each integer p, we set
73— 68, (€' (X, ), €K, O).
By the above proposition, the coherent sheaf Q% is equal to
R#om, (€'(X, Q). €'(X, 2)))

in the derived category Dz, (X). Clearly, 92 is a natural globalization of

coh

2% 4, in Section 2. Hence the exterior derivatives d: Qg(m—»[j%‘(‘;) are also
generalized for these sheaves and we get a complex

~ d ~ d d «
Q;,:(_)O Oy )Qi‘, > )de \O_))

We define the decreasing filteration on Q5 by F(Q2)=0% if p>¢ and
zero otherwise.

Let V be an irreducible nonsingular variety, and let f: V—X be a
morphism. Let i be the smallest integer with f(V)NX,;. Then, f factors
as ¢ o f” for a morphism f7: V—X® with f/(V)NU® ¢, where X,
¢ XP—X and UDCX™ are the same as those in the previous section.
Hence we have a natural homomorphism f*32— Q2 by Proposition 3.12
for each p which is compatible with the exterior derivatives similarly as
we saw it for toric polyhedra in Section 4. Let a: X —X be a simplicial
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resolution of X as in Section 4. Then, similarly as in Section 4, we get a
natural homomorphism

A ﬁ}———)Ra*Q}_

of filtered complexes. By our definition of &% and [dB], these two com-
plexes are compatible with pull-backs by étale morphisms. Hence by
Theorem 4.1, we get the following generalization.

Theorem 6.2. The complex (% is quasi-isomorphic to du Bois’s de
Rham complex Q% as filtered complexes.

As a consequence of [dB, Th. 4.5], we get the following:

Corollary 6.3. If the filtered semi-toroidal variety X is complete, then
there exists a spectral sequence

Ef’quq(Xa QN%)=>HP+‘I(X, C)

which degenerates at the E,-terms. Furthermore, the induced filtration on
H™(X, C) is equal to the Hodge filtration in the sense of [Del] for each
integer n.

Remark 6.4. Danilov [Da, Chap. IV] conjectured this assertion for
“toroidal varieties” which means, in our terminology, normal semi-toroidal
varieties. We still have some difficulties to generalize Corollary 6.3 to
semi-toroidal varieties without filtrations. However, since toroidal em-
beddings are normal filtered semi-toroidal varieties, this corollary implies
that Danilov’s conjecture is true for toroidal embeddings.

By definition, 9% and ¢'(X, ) are mutually dual with respect to
the global dualizing complex €°(X, £2y). Hence by the duality theory
[RD, Chap. VII], we have the following theorem.

Theorem 6.5. If X is complete, then HY(X, %) and R-I'(X, (X,
Q2Y)) are mutually dual finite dimensional C-vector spaces for every integer
q.

Remark 6.6. It seems easier to calculate R™I'(X, ¢'(X, £))) than
HYX, 22). Indeed, since #4X, 2))=¢2027%;7(log D-?) and ¢~ is a
finite morphism for every ¢, there exists a spectral sequence

Erm=H™X"%, Q3=b(log D")N=RUI'(X, (X, 2y)).

Note that 2%...,(log D) is a locally free sheaf on the toroidal embedding
(X, U™), Furthermore, it is known that any toroidal embedding (X, U)
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has a resolution f: ¥— X of singularities which locally in the étale topology
of X is an equivariant morphism of toric varieties. ~ For the divisor D=
X\U, the divisor D=f-'(D) is a normal crossing divisor and f*02%(log D)
= 0%(log D) for each integer p. By Theorem 3.2, we also have

Rf,2%(log D)= Q%(log D).

In particular, we have a natural isomorphism

H™(X, 0%(log D))= H™(X, 24(log D))

for each integer m.
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