On the Stable Hurewicz Image of Stunted Quaternionic Projective Spaces

M. C. Crabb, K. H. Knapp and K. Morisugi

§ 0. Introduction

Let HP^n $(0 \le n \le \infty)$ be the quaternionic *n*-dimensional projective space. We denote the stunted projective space HP^n/HP^{m-1} by HP^n_m $(1 \le m \le n \le \infty)$. For a space X with a base point, $\pi^s_*(X)$ means the stable homotopy groups of the space X.

Let

$$h: \pi_{4n}^s(HP_m^{\infty}) \longrightarrow H_{4n}(HP_m^{\infty}; Z) \cong Z$$

be the stable Hurewicz homomorphism. Let $h_{n,m}$ be the index of the subgroup Image h in $H_{4n}(HP_m^{\infty})$. Our main interest in this paper is in the following problem.

Problem 1. Determine the number $h_{n,m}$.

Notice that the above problem can be stated as follows.

Problem 2. Determine the stable order of the attaching map $\varphi_{n,m}$ of the top cell in the space HP_m^n .

Therefore the e-invariants of the map $\varphi_{n,m}$ give a lower bound $h_{n,m}^A$, say, for $h_{n,m}$, that is, $h_{n,m}^A$ divides $h_{n,m}$.

There is a folk-lore conjecture which asserts that this lower bound $h_{n,m}^{4}$ is actually equal to the number $h_{n,m}$. For the case m=1, the conjecture was verified by several authors [12] [13] [14], and the case m=2 is treated in [7].

Let CP^{∞} be the infinite dimensional complex projective space. Using the transfer map $t: HP^{\infty} \to CP^{\infty}$ it is easy to see that the odd-primary component of the number $h_{n,m}$ can be determined from the solution of the similar problem for the complex projective space. And the complex case is treated in [4] [5]. So in this paper we consider only the 2-primary

component of $h_{n,m}$. In fact this paper is an outgrowth of the third author's attempt to apply the methods which were used in [5] to the quaternion case.

Roughly speaking our main theorem of this paper can be stated as follows.

Theorem. If n is sufficiently large compared with m, then the number $h_{n,m}^{A}$ is equal to the number $h_{n,m}$.

The most fundamental difference between the complex case and the quaternionic is that the complex numbers have a commutative multiplication but not the quaternions. Nevertheless they have many similar algebraic properties.

This paper is organized as follows. In Section 1 we give explicit algebraic conditions on the spherical elements in $H_{4n}(HP_m^{\infty})$. In Section 2 we see that these algebraic conditions are periodic; and this periodicity is realized geometrically in Section 4. The conditions are reformulated in Section 3 in terms of KO-theory and Adams operations. Section 4 is an application of the theorem of Mahowald about the sphere of origin of the image of J in the stable homotopy groups of spheres. In Section 5 we state and prove our main theorem (Theorem 5.5).

The third author thanks M. Imaoka for valuable conversations with him.

§ 1. The algebraic conditions

Let $j: HP^{\infty} \to HP_{m}^{\infty}$ be the canonical collapsing map. We denote the modulo torsion index of $j_{*}: \pi_{4n}^{s}(HP^{\infty}) \to \pi_{4n}^{s}(HP_{m}^{\infty})$ by d(n, m), where $n \ge m$ ≥ 1 . Let $h_{n,m}$ be the modulo torsion index of the stable Hurewicz homomorphism $h: \pi_{4n}^{s}(HP_{m}^{\infty}) \to H_{4n}(HP_{m}^{\infty})$. Then clearly we have

$$h_{n,m}\cdot d(n,m)=h_{n,1}.$$

As is well-known, $h_{n,1} = (2n)!/a(n)$ [12] [13] [14], where a(n) = 1 if n is even and = 2 if n is odd. So in order to determine the number $h_{n,m}$ it is enough to determine the number d(n, m). In this section we shall give an upper bound for the number d(n, m).

Let $\widetilde{KO}_*(X)$ (resp. $\widetilde{KO}^*(X)$) be the reduced real K-homology (resp. cohomology) of a based space X. Recall that

$$H^*(HP^{\infty}; Z) \cong Z[[x^H]],$$

 $\tilde{H}_*(HP^{\infty}; Z) \cong Z\{\beta_1^H, \beta_2^H, \beta_2^H, \cdots\},$

$$KO^*(HP^{\infty}) \cong \widetilde{KO}^*(S^0)[[x]],$$

 $\widetilde{KO}_*(HP^{\infty}) \cong \widetilde{KO}_*(S^0)\{\beta_1, \beta_2, \beta_3, \cdots\},$

where $x^H \in H^4(HP^\infty; Z)$ is the first symplectic Pontrjagin class of the canonical quaternionic line bundle ξ over HP^∞ , $\beta_i^H \in H_{4i}(HP^\infty; Z)$ is the dual of $(x^H)^i$, $x \in KO^4(HP^\infty)$ is the KO-theoretic first Pontrjagin class of the bundle ξ and $\beta_i \in KO_{4i}(HP^\infty)$ is the dual of $x^i \in KO^{4i}(HP^\infty)$.

Let $ph_n: KO^{4*}(HP^{\infty}) \to H^{4n}(HP^{\infty}; Q)$ be the 4n-th component of the Pontrjagin character ph. In order to describe $ph_n(x^s)$ explicitly we need a certain numerical function.

Definition 1.1 [17] (Central factorial numbers of the second kind). Define numbers M(n, s) by the following equation;

$$(e^t+e^{-t}-2)^s=\sum_{n\geq 1}\frac{(2s)!}{(2n)!}M(n,s)t^{2n}.$$

Lemma 1.2. [17]

1) (Recursive formula)

$$M(n, 1) = 1$$
 if $n \ge 1$ and $M(1, s) = 0$ if $s > 1$,
 $M(n, s) = M(n-1, s-1) + s^2 M(n-1, s)$.

In particular, M(n, s) is an integer.

2)
$$\frac{(2s)!}{2}M(n,s) = \sum_{i=0}^{s} (-1)^{i} {2s \choose i} (s-i)^{2n}.$$

3)
$$(2s-1)! M(n,s) = s^{2n-1} + \sum_{i=1}^{s-1} (-1)^i \left\{ {2s-1 \choose i} - {2s-1 \choose i-1} \right\} (s-i)^{2n-1}$$

Definition 1.3.

$$d^{A}(n, m) = \operatorname{g.c.d}_{s \ge m} \left\{ \frac{(2s)! M(n, s)}{a(n)a(n-s)} \right\}.$$

Making use of the integrality of the Pontrjagin character we have the following proposition.

Proposition 1.4. For $n \ge m \ge 1$, the integer d(n, m) is a divisor of the integer $d^{4}(n, m)$.

Proof. From the definition 1.1 and a well-known formula for ph(x) we have

$$ph_n(x^s) = \frac{(2s)!}{(2n)!}M(n,s)(x^H)^n.$$

Since the canonical collapsing map $j\colon HP^\infty\to HP_m^\infty$ induces monomorphisms in both KO-cohomology and ordinary cohomology, using above facts and the integrality of the Pontrjagin character it is easy to see that if $\lambda\beta_n^H\in H_{4n}(HP_m^\infty;Z)$ comes from $\pi_{4n}^s(HP_m^\infty)$ through the Hurewicz homomorphism then the integer λ must satisfy the following divisibility condition:

for any
$$s \ge m$$
, $\lambda \frac{(2s)!}{(2n)!} M(n, s) \in a(n-s)Z$.

Therefore, setting $\lambda = h_{n,m} = h_{n,1}/d(n,m)$, we see that for any $s \ge m$ the number

$$\frac{(2s)! M(n,s)}{a(n)a(n-s) \cdot d(n,m)}$$

must be an integer. In other words the integer $d^{A}(n, m)$ is a multiple of the integer d(n, m).

Remark. From the proof of Proposition 1.4, the *e*-invariant of the attaching map of the top cell in HP_m^n is easily obtained.

§ 2. Some properties of the integer $d^{A}(n, m)$

In this section we shall study some properties of the integer $d^{A}(n, m)$. As mentioned in Introduction, we are only interested in the 2-primary component. We use the following notation.

Definition 2.1.

$$d_2^A(n, m) = \nu_2(d^A(n, m)),$$

 $d_2(n, m) = \nu_2(d(n, m)),$

where $\nu_2(i)$ is the exponent of 2 in the prime decomposition of an integer i.

Lemma 2.2. For any
$$n > m \ge 1$$
, $d_2^A(n, m) \le 2n - 3$.

Proof. From the definition of $d^{A}(n, m)$ it is obvious that

$$d_2^A(n, m) \le d_2^A(n, m+1) \le \cdots \le d_2^A(n, n-1) \le d_2^A(n, n).$$

From 1) of Lemma 1.2, we have

$$M(n, n-1) = (n-1)n(2n-1)/6.$$

So

$$d_{2}^{A}(n, n-1) = \min \left\{ \nu_{2} \left(\frac{(2n-2)! M(n, n-1)}{a(n)a(1)} \right), \ \nu_{2} \left(\frac{(2n)!}{a(n)} \right) \right\}$$

$$= \min \left\{ \nu_{2} \left(\frac{(2n)! (n-1)}{a(n)24} \right), \ \nu_{2} \left(\frac{(2n)!}{a(n)} \right) \right\}$$

$$= \begin{cases} \nu_{2} \left(\frac{(2n)!}{a(n)} \right) & \text{if } n \equiv 1 \mod 8, \\ \nu_{2} \left(\frac{(2n)!}{a(n)} \right) + \nu_{2}(n-1) - 3 & \text{if } n \not\equiv 1 \mod 8. \end{cases}$$

Let $\alpha(i)$ be the number of 1's in the 2-adic expansion of an integer i. Then, as is well-known,

$$\nu_2(k!) = k - \alpha(k).$$

Then using the above formula it is easy to see that for any $n > m \ge 1$, $d_2^A(n, m) \le 2n - 3$.

Let b be a non-negative integer. We denote the number $\max \{2, 2^{b-3}\}$ by t(b).

Lemma 2.3. If $b \le 2n-1$, then for any $s \ge 1$

$$\frac{(2s)! M(n,s)}{a(n)a(n-s)} \equiv \frac{(2s)! M(n+t(b),s)}{a(n+t(b)) \ a(n+t(b)-s)} \bmod 2^b.$$

Proof. Note that

$$\frac{(2s)! M(m,s)}{a(n)a(n-s)} = \left(\frac{2s}{a(n)a(n-s)}\right) (2s-1)! M(n,s)$$

and that 2s/(a(n)a(n-s)) is an integer. Since $b \le 2n-1$, using the formula 3) of Lemma 1.2 and the fact that $(\text{odd})^{2t(b)} \equiv 1 \mod 2^b$, we have the desired result.

Proposition 2.4. For any n and m such that $n \ge m \ge 1$, we have

$$d_2^A(n,m) \leq m^2 - 1.$$

For the proof of Proposition 2.4 we need the following Lemma 2.5. We postpone its proof until Section 3. In this section we assume Lemma 2.5.

Lemma 2.5. For any $n > m \ge 1$,

$$d_2^A(n, m+1) - d_2^A(n, m) \leq 2m+1.$$

Proof of Proposition 2.4.

$$d_{2}^{A}(n, m) - d_{2}^{A}(n, 1)$$

$$= (d_{2}^{A}(n, m) - d_{2}^{A}(n, m-1)) + (d_{2}^{A}(n, m-1) - d_{2}^{A}(n, m-2)) + \cdots$$

$$+ (d_{2}^{A}(n, 3) - d_{2}^{A}(n, 2)) + (d_{2}^{A}(n, 2) - d_{2}^{A}(n, 1))$$

$$\leq 2m - 1 + 2m - 3 + \cdots + 3 = m^{2} - 1.$$

Since $d^A(n, 1) = 1$, so $d_2^A(n, 1) = 0$. Therefore we have the desired result. q.e.d.

Corollary 2.6.

- i) If $d_2^A(n, m) \ge b$ then $d_2^A(n+t(b), m) \ge b$.
- ii) If $d_2^A(n, m) = b$ then $d_2^A(n+t(b+1), m) = b$.
- iii) For an integer m fixed, if we regard the integer $d_2^A(n, m)$ as the function of n, then the function $d_2^A(n, m)$ is periodic.

Proof. i) and ii) are obvious from Lemmas 2.2-2.3. iii) From Proposition 2.4 we see that the function $d_2^A(n, m)$ is bounded above. Therefore the function $d_2^A(n, m)$ has a maximum b_0 . Then put $D(m) = t(b_0)$. From i) and ii) it is easy to see that D(m) is a period.

Let D(m) be the number cited above, that is,

$$D(m) = t(\max_{n \geq m} (d_2^A(n, m))).$$

By direct verification we have:

Examples.

$$D(2)=2$$
. $D(3)=16$.

Remark. The smallest period, p(m) say, is a divisor of D(m). For example, p(3) = 8. In later sections we show that the period D(m) can be realized geometrically.

§ 3. A geometrical interpretation of $d^{A}(n, m)$

In this section we shall give a geometrical interpretation of the number $d^A(n, m)$ in terms of KO-theory and the Adams operation. Throughout this section KO-theory is localized at (2).

Proposition 3.1. Let σ_n be an arbitrary generator of the free part of $\pi_{4n}^s(HP^\infty)$. Then

$$h(\sigma_n) = \frac{(2n)!}{a(n)} \beta_n^H,$$

$$h^{KO}(\sigma_n) = \sum_{s \ge 1} \frac{(2s)! M(n, s)}{a(n)a(n-s)} \beta_s,$$

where h is the ordinary Hurewicz homomorphism, $h^{KO}_{\mathbf{I}}$ is the KO-Hurewicz homomorphism and we identify $\widetilde{KO}_{4(n-s)}(S^0)$ with the integers Z.

Proof. The first assertion is well-known [12] [13] [14]. The second assertion is obtained using the first and methods like those in the proof of Proposition 1.4. q.e.d.

As an immediate corollary we have

Proposition 3.2. Let $j: HP^{\infty} \to HP_{m}^{\infty}$ be the canonical collapsing map. Then

$$j_*h^{KO}(\sigma_n) = \sum_{s \ge m} \frac{(2s)! M(n,s)}{a(n)a(n-s)} \beta_s.$$

Note that the right hand side of the above equation in Proposition 3.2 can be rewritten as $d^A(n, m)x_{n,m}^{KO}$ for some $\widetilde{x_{n,m}^{KO}} \in \widetilde{KO}_{4n}(HP_m^{\infty})$. Since $\widetilde{KO}_{4n}(HP_m^{\infty})$ is torsion free, the element $x_{n,m}^{KO}$ is uniquely determined.

Lemma 3.3. Let Ψ^3 : $\widetilde{KO}_{4n}(HP_m^{\infty}) \to \widetilde{KO}_{4n}(HP_m^{\infty})$ be the stable Adams operation. $(KO_*($) is localized at (2).) Then kernel (Ψ^3-1) is isomorphic to $Z_{(2)}$ and generated by the element $x_{n,m}^{KO}$ defined above.

Proof. As is well-known, rank (kernel (Ψ^3-1)) is equal to the rank of $H_{4n}(HP_m^\infty)$. So kernel (Ψ^3-1) has a single generator. As $d^A(n,m)x_{n,m}^{KO}$ is spherical, $d^A(n,m)x_{n,m}^{KO}$ belongs to kernel (Ψ^3-1) . On the other hand, from the definition of $d^A(n,m)$, $x_{n,m}^{KO}$ cannot be divisible in $KO_{4n}(HP_m^\infty)$. Since $KO_{4n}(HP_m^\infty)$ is torsion free, $x_{n,m}^{KO}$ must be a generator of kernel (Ψ^3-1) .

Though Lemma 3.3 gives us an interpretation of the number $d^4(n, m)$, this is inconvenient, because Ker (Ψ^3-1) is not a homology theory. Therefore we prefer to use the following theory.

Let $bo_*()$ be the (-1)-connected cover of $\widetilde{KO}_*()$ and $bspin_*()$ be its 2-connected cover. As is well-known [11] the operation $\Psi^3-1:\widetilde{KO}_*()$

 $\rightarrow \widetilde{KO}_*($) can be uniquely lifted as

$$\Psi^3-1:bo_*() \longrightarrow bspin_*().$$

We denote the fibre theory of this Adams operation by $A_*()$. So there is a long exact sequence:

$$\cdots \longrightarrow bspin_{i+1}() \longrightarrow A_i() \xrightarrow{d_*} bo_i() \xrightarrow{\Psi^3-1} bspin_i() \longrightarrow \cdots$$

There is a Thom map $T: A_*(X) \to \widetilde{H}_*(X; Z_{(2)})$ which factors the Hurewicz map and the generator of $A_0(S^0) \cong Z_{(2)}$ defines the Hurewicz map $h^A: \pi_*^s(X) \to A_*(X)$ factoring the KO-theory Hurewicz map. Thus Lemma 3.3 implies:

Lemma 3.4. The integer $d^A(n, m)$ is the modulo torsion index of j_* ; $A_{4n}(HP^{\infty}) \rightarrow A_{4n}(HP^{\infty}_m)$.

Proof. Recall that there are canonical isomorphisms: $bo_{4n}(HP^{\infty}) \cong \widetilde{KO}_{4n}(HP^n)$, $bo_{4n}(HP^m) \cong \widetilde{KO}_{4n}(HP^n)$, $bspin_{4n}(HP^{\infty}) \cong \widetilde{KO}_{4n}(HP^{n-1})$ and $bspin_{4n}(HP^m) \cong \widetilde{KO}_{4n}(HP^{n-1})$ and that these isomorphisms are compatible with Adams operations. Note that $h^4(\sigma_n)$ is a generator of the free part of $A_{4n}(HP^{\infty}) \cong Z_{(2)} + \text{Torsion}$. Therefore from Lemma 3.3 and the definition of A-theory, Lemma 3.4 follows.

Now we shall prove Lemma 2.5. We need:

Lemma 3.5. For any $m \ge 1$, there is a stable self map g of HP^{∞} , such that

$$g_*(\beta_n^H) = 2^{2m+1}(4^{n-m}-1)\beta_n^H$$

where $g_*: H_{4n}(HP^{\infty}; Z) \rightarrow H_{4n}(HP^{\infty}; Z)$ is the homomorphism induced by g.

Proof. From Theorem 1 in [13], there is a stable map f(0, s): $HP^{\infty} \to HP^{\infty}$ such that

$$f(0,s)_*\beta_n^H = a(s-1) \left(\sum_{i=0}^s (-1)^i \binom{2s}{i} (s-i)^{2n} \right) \beta_n^H.$$

Let g=f(0,2)-8 (4^{m-1}-1) id, where id is the identity map. Then the map g has the desired property. q.e.d.

Proof of Lemma 2.5. Consider the following commutative diagram:

$$S^{4m} \longrightarrow HP_{m}^{\infty} \xrightarrow{j_{m}} HP_{m+1}^{\infty} \xrightarrow{\partial} S^{4m+1}$$

$$\downarrow g_{1} \qquad \downarrow g \qquad \qquad \downarrow \Sigma g_{1}$$

$$S^{4m} \longrightarrow HP_{m}^{\infty} \xrightarrow{j_{m}} HP_{m+1}^{\infty} \xrightarrow{\partial} S^{4m+2},$$

where the horizontal sequences are cofibrations, g is the map in Lemma 3.5 and g_1 is induced from g. By Lemma 3.5 g_1 is null homotopic. Let $x_{n,m} \in A_{4n}(HP_m^{\infty})$ be an arbitrary generator of the free part of $A_{4n}(HP_m^{\infty}) \cong Z_{(2)} + \text{Torsion}$. Then applying $A_{4n}(\cdot)$ to the above diagram we have that through the homomorphism j_{m^*} the element $g_*x_{n,m+1}$ comes from some multiple of $x_{n,m}$ up to torsion. It is clear that the modulo torsion index of g_* in A-theory is the same as that in ordinary homology. Thus the modulo torsion index of j_{m^*} divides the modulo torsion index of g_* . Combining these facts and Lemma 3.4, we see that the integer $d^A(n, m+1)/d^A(n, m)$ is a divisor of $2^{2m+1}(4^{n-m}-1)$. This completes the proof of Lemma 2.5.

§ 4. The unstable Adams periodicity.

In [9] or [10] Mahowald determined the sphere of origin of the image of J in the stable homotopy groups of spheres. In this section we apply this result.

The following theorem is due to Mahowald [9] [10].

Theorem 4.1. Let b be an integer such that $b \ge 1$. Let $t(b) = \max(2, 2^{b-3})$. Let e be 0, 2, 1 or 0 according as b = 0, 1, 2 or $3 \mod 4$. Then for any $k \ge 1$, there is an unstable map $f_{k,b} : S^{4kt(b)+2b+e} \to S^{2b+e+1}$ such that the order of $f_{k,b}$ is 2^b , $f_{k,b}$ represents stably an element of order 2^b in the image of J in the (4kt(b)-1)-stem.

Let M_b be the mod 2^b Moore spectrum, that is,

$$M_b = S^0 \cup_{2b} e^1.$$

We denote the inclusion from S^0 to M_b by i_0 and the projection from M_b to S^1 by π_0 . Let

$$\gamma(b) = \begin{cases}
7 & \text{if } b \leq 3, \\
2b+2 & \text{if } b \geq 4 \text{ and } b = 0 \text{ or } 3 \text{ mod } 4, \\
2b+3 & \text{if } b \geq 4 \text{ and } b = 2 \text{ mod } 4, \\
2b+4 & \text{if } b \geq 4 \text{ and } b = 1 \text{ mod } 4.
\end{cases}$$

Proposition 4.2. For any $b \ge 1$ and $k \ge 1$, there exists an unstable map ${}^kB_b \colon \Sigma^{4kt(b)+\gamma(b)}M_b \to \Sigma^{\gamma(b)}M_b$ such that $\pi_0 \circ {}^kB_b \circ i_0$ represents stably an ele-

ment of order 2^b in the image of J in the (4kt(b)-1) stem of the stable homotopy groups of spheres.

Proof. First we prove in case that $b \neq 1$ and $b \neq 3$. From Proposition 1.8 in [16] it is enough to show that the (unstable) Toda bracket [16] $\{2^b, \Sigma f_{k,b}, 2^b\}_1$ contains zero, where $f_{k,b}$ is the element in Theorem 4.1. By Corollary 3.7 in [16], the above bracket contains zero if $b \geq 2$. Now let b=1 or 3. Then it is known that there exists an unstable map $A_b: \Sigma^{15}M_b \to \Sigma^7 M_b$ such that $\pi_0 \circ A_b \circ i_0 = 2^{3-b}\Sigma \sigma'$, where σ' is a generator of $\pi_{14}(S^7)$. Using the structure of $\pi_{16}(S^8)$ ([16]), it is not hard to see that there is a choice of B_b of A_b such that stably $\pi_0 \circ B_b$ lies in the image of the J-map,

$$j_A: A^0(\Sigma^7 M_b) \longrightarrow \pi^0_s(\Sigma^7 M_b),$$

where j_A is a map obtained using the solution of the Adams conjecture. (See [5] or [6].) Since j_A commutes with unstable maps, we see that for any $k \ge 1$, $\pi_0 \circ B_b^k$ lies, stably, in the image of j_A . This implies that $\pi_0 \circ B_b^k \circ i_0$ stably represents an element of order 2^b in the image of J. So we may put ${}^kB_b = B_b^k$. This completes the proof. q.e.d.

The following lemma is well-known [1].

Lemma 4.3. Let $\alpha: \Sigma^{4kt(b)}M_b \to M_b$ be a stable map such that the Adams e-invariant of $\pi_0 \circ \alpha \circ i_0$ is 2^{-b} . Then $\alpha^*: \widetilde{KO}^*(M_b) \to \widetilde{KO}^*(\Sigma^{4kt(b)}M_b)$ is an isomorphism.

For this reason we call the map kB_b in Proposition 4.2 Adams periodicity. Combining Proposition 4.2 and Lemma 4.3, we have the following important fact.

Proposition 4.4. Let BSp be the classifying space of virtual symplectic vector bundles. Let $\lambda_i \in \pi_{4i}(BSp)$ be a generator. Then for $b \ge 1$ and $k \ge 1$, if $\gamma(b) \le 4n-1$ the following diagram commutes up to a unit of $\mathbb{Z}/2^b$:

Proof. Since $[\Sigma^{4n-1}M_b, BSp] \cong \widetilde{KO}^4(\Sigma^{4n-1}M_b) \cong \mathbb{Z}/2^b$ with generator

 $\pi_0^* \lambda_n$, using Proposition 4.2 and Lemma 4.3 we see that the above diagram commutes up to a unit. q.e.d.

Let $\tau\colon BSp\to \Omega^\infty \Sigma^\infty HP^\infty$ be the Becker-Segal splitting [3] [15]. We choose the splitting map and fix it. Then as a generator of the free part of $\pi_{4n}^s(HP^\infty)\cong \pi_{4n}(\Omega^\infty \Sigma^\infty HP^\infty)$ we can take $\tau_*\lambda_n$ [15]. From now on we denote this element in $\pi_{4n}^s(HP^\infty)$ by σ_n . Let $j_{k,b}$ be an element of order 2^b in the image of J in the (4kt(b)-1)-stem of the stable homotopy groups of spheres. Then we have:

Proposition 4.5.

- i) If $\gamma(b) \leq 4n-1$, then ${}^{k}B_{b}^{*}(\pi^{*}\sigma_{n}) = \pi^{*}\sigma_{n+kt(b)}$ up to a unit.
- ii) If $4n \ge 2b + e + 1$, then $\sigma_n \circ j_{k,b} = 0$ in $\pi^s_{4(n+kt(b))-1}(HP^{\infty})$, where e is the function of b in Theorem 4.1.

Proof. Obvious from the definition of the element of σ_n and Proposition 4.4.

As an easy corollary of the above proposition we have

Theorem 4.6. Let $j: HP^{\infty} \to HP_{m}^{\infty}$ be the canonical collapsing map. Let $n \ge m$ and b be a non-negative integer. If $j_*\sigma_n = 2^b y_{n,m}$ for some $y_{n,m} \in \pi_{4n}^s(HP_m^{\infty})$ and if $\gamma(b) \le 4n-1$, then for any $k \ge 1$, $j_*\sigma_{n+kt(b)} = 2^b y_{n+kt(b),m}$ for some $y_{n+kt(b),m} \in \pi_{4(n+kt(b))}^s(HP_m^{\infty})$. In particular, if the assumption holds when $b = d_2^A(n,m)$ then $d_2(n+kt(b),m) \ge b$.

Note that if $n \ge m+1$, then the assumption that $\gamma(b) \le 4n-1$ is always satisfied (See Lemma 2.2.). As an application of the above theorem we have

Corollary 4.7. [7] $d_2(n, 2) = d_2^A(n, 2) = 3$ if n is even and = 1 if n is odd. Moreover $j_*\sigma_n$ is divisible by 2 in $\pi_{4n}^s(HP_2^\infty)$.

Proof. Easy computations in the spectral sequence:

$$H_*(HP_*^{\circ}; \pi_*^s(S^{\circ})) \Longrightarrow \pi_*^s(HP^{\circ})$$

tell us that $j_*(\sigma_2)$ is divisible by 8 in $\pi_8^s(HP_2^\infty)$ and $j_*(\sigma_3)$ is divisible by 2 in $\pi_{12}^s(HP_2^\infty)$. On the other hand by direct calculation it is easy to see that $d_2^4(n,2)=3$ if n is even and =1 if n odd. Therefore, applying Theorem 4.6 we have the desired results.

Remark. 1) Let $HP^{m-1} \rightarrow HP^{\infty} \rightarrow HP^{\infty}_{m} \xrightarrow{\partial} \Sigma HP^{m-1}$ be the cofibre sequence. If the assumption of Theorem 4.6 holds, that is, if $j_{*}\sigma_{n} = 2^{b}y_{n,m}$ for some $y_{n,m} \in \pi_{*n}^{s}(HP^{\infty}_{m})$ then there is an element

$$y_{n+kt(b),m}\in\pi^s_{4(n+kt(b))}(HP_m^\infty)$$

such that

$$j_*\sigma_{n+kt(b)} = 2^b y_{n+kt(b),m},$$

and

$$\partial y_{n+kt(b),m} \in \langle \partial y_{n,m}, 2^b, j_{k,b} \rangle$$

where $\langle , , \rangle$ is the (stable) Toda bracket. (Cf. [7]).

2) From computations of the above spectral sequence unless $n=14 \mod 16$, we can show that $d_2(n,2)=d_2^A(n,3)$, where $d_2^A(n,3)=3$ if n is odd, =4 if $n=0 \mod 4$, =5 if $n=2 \mod 8$ and 7 if $n=-2 \mod 8$. The difficulty in the case that $n=14 \mod 16$ is that we do not know whether $j_*\sigma_{14}$ is divisible by 2^7 in $\pi_{56}^s(HP_3^\infty)$ or not. In other cases $j_*\sigma_n$ is divisible by $2^{d_2^A(n,3)}$.

§ 5. The canonical Adams periodicity

In this section we shall show that there is a stable Adams periodicity map which has a certain nice property and using this Adams periodicity obtain our main theorem.

Proposition 5.1. Let $b \ge 1$ and $k \ge 1$. Let ${}^k \tilde{B}_b \colon \Sigma^{4kt(b)-1} M_b \to M_b$ be any stable Adams periodicity map. Let $\sigma_n \in \pi^s_{4n}(HP^\infty)$ be the generator of the free part which is obtained by the Becker-Segal splitting. Then for any $b \ge 1$ and $k \ge 1$, if $4n \ge 2b + e + 1$, there exists an element $\sigma'_{n+kt(b)} \in \pi^s_{4(n+kt(b))}(HP^\infty)$ such that $\sigma'_{n+kt(b)}$ is a generator of the free part of the 2-component of $\pi^s_{4(n+kt(b))}(HP^\infty)$ and $\sigma_n \circ \pi_0 \circ {}^k \tilde{B}_b = \sigma'_{n+kt(b)} \circ \pi_0$, where e is the function of b stated in Theorem 4.1.

Proof. Since ${}^{k}\widetilde{B}_{b}$ is an Adams periodicity map, stably $\pi_{0} \circ {}^{k}\widetilde{B}_{b} \circ i_{0} = j_{k,b}$. So from Proposition 4.5,

$$\sigma_n \circ \pi_0 \circ {}^k \widetilde{B}_b \circ i_0 = \sigma_n \circ j_{n,k} = 0.$$

Therefore there is an element $\sigma'_{n+kt(t)} \in \pi^s_{4(n+kt(b))}(HP^{\infty})$ such that $\sigma_n \circ \pi_0 \circ \pi^s_0 \in \widetilde{B}_b = \sigma'_{n+kt(b)} \circ \pi_0$. Consider the induced homomorphism

$$\sigma'^{\,*}_{n+kt(b)}\colon \widecheck{KO}^{4}(HP^{\,\circ}) {\longrightarrow} \widecheck{KO}^{4}(S^{4(n+kt(b))}).$$

Let $\iota_i \in \widetilde{KO}^4(S^{4(i+1)})$ be a generator and $x \in \widetilde{KO}^4(HP^{\infty})$ be the first Pontriagin class (see § 1). Then

$$\pi_0^*(\sigma_{n+kt(b)}'(x)) = {}^k \tilde{B}_b^*(\pi_0^*(\sigma_n^*(x)))$$

$$= {}^k \tilde{B}_b^*(\pi_0^*(\iota_{n-1})) \quad \text{(By Proposition 3.1)}$$

$$= \pi_0^*(\iota_{n+kt(b)-1}). \quad \text{(By Lemma 4.3)}$$

This implies that $\sigma'_{n+kt(b)}$ is a generator of the free part of the 2-component of $\pi^s_{4(n+kt(b))}(HP^{\infty})$. q.e.d.

Let $x_{n,m} \in A_{4n}(HP_m^{\infty})$ be a generator of the free part of $A_{4n}(HP_m^{\infty})$ $(x_{n,1} = h^A(\sigma_n))$ by Lemma 3.3), $d_*: A_*(HP_m^{\infty}) \to bo_*(HP_m^{\infty})$ be the natural homomorphism in the long exact sequence in Section 3 and $x_{n,m}^{KO} \in \widetilde{KO}_{4n}(HP_m^{\infty})$ be the element introduced in Section 3.

Lemma 5.2. Let $n \ge m \ge 1$.

- 1) $A_{4n}(HP_m^{\infty}) \cong Z_{(2)} + Z/2 + \cdots + Z/2.$
- 2) $d_*(x_{n,m}) = x_{n,m}^{KO}$ and $\partial x_{n,m}$ is independent of the choice of $x_{n,m}$ and of order $2^{d_2^A(n,m)}$, where we identify $bo_{4n}(HP_m^\infty)$ with $KO_{4n}(HP_m^n) \subset KO_{4n}(HP_m^\infty)$.
 - 3) $j_*h^A(\sigma_n) = 2^{d_2^A(n,m)} x_{n,m}$.

Proof. Note that $bspin_q(X) \cong Im \{ \widetilde{KO}_q(X^{(q-3)}) \to \widetilde{KO}_q(X^{(q-2)}) \}$ and $bo_q(X) \cong Im \{ KO_q(X^{(q)}) \to \widetilde{KO}_q(X^{(q+1)}) \}$, where $X^{(q)}$ is the q-th skeleton of a complex X. Now consider the following commutative diagram;

$$bspin_{4n+1}(HP^{\infty}) \longrightarrow A_{4n}(HP^{\infty}) \xrightarrow{d_{*}} bo_{4n}(HP^{\infty}) \xrightarrow{\Psi^{3}-1} bspin_{4n}(HP^{\infty})$$

$$\downarrow j_{*} \qquad \downarrow j_{*} \qquad$$

where all straight sequences are exact. Note that j_* : $bspin_{4n+1}(HP^{\infty}) \rightarrow b spin_{4n+1}(HP^{\infty}_m)$ and j_* : $bo_{4n}(HP^{\infty}) \rightarrow bo_{4n}(HP^{\infty}_m)$ are epic. Also remark that $bo_{4n-1}(HP^{\infty})$ and $bo_{4n-1}(HP^{m-1})$ are zero. Then by chasing the above diagram 1) and, 2) easily follow. In general, by Lemma 3.4, $j_*(h^4\sigma_n) = 2^{d_2^4(n,m)}x_{n,m} + torsion$. Using 1) and Corollary 4.7, 3) follows. q.e.d.

Let $\pi_s^l(X; \mathbb{Z}/2^b)$ be the stable cohomotopy theory with mod 2^b -coefficients, that is, $\pi_s^l(X; \mathbb{Z}/2^b) \cong \{X, \Sigma^l M_b\}$. Similarly let $A^l(X; \mathbb{Z}/2^b)$ be A-cohomology with mod 2^b -coefficients. Any Adams periodicity map

acts on $\pi_s^l(X; \mathbb{Z}/2^b)$ and $A^l(X; \mathbb{Z}/2^b)$ as an operator.

In [6] canonical stable periodicity operators ${}^{k}\widetilde{B}_{b}$ are constructed which have the following nice properties.

Theorem 5.3. [6] Let X be a finite complex. For any $b \ge 1$ and $k \ge 1$, there exists a stable Adams periodicity map ${}^k \tilde{B}_b \colon \Sigma^{4kt(b)} M_b \to M_b$ which has the following property. Assume $x \in kernel(h^A \colon \pi_s^l(X; \mathbb{Z}/2^b) \to A^l(X; \mathbb{Z}/2^b))$. If there exists an integer k such that $4kt(b) \ge \dim X - l + 3$ and $\Sigma^{4kt(b)-l}X$ is a triple suspension of some space, then ${}^k \tilde{B}_b(x) = 0$.

As an application of the above theorem we have

Theorem 5.4. Let n>m>1 and $b\ge 1$. If $d_2^A(n,m)\ge b$, then for any k such that $kt(b)\ge n-m+1$ there exists some generator $\sigma'_{n+kt(b)}(in$ the 2-component) of the free part of $\pi^s_{4(n+kt(b))}(HP^\infty)$ such that $j_*(\sigma'_{n+kt(b)})=2^b y$ for some $y\in\pi^s_{4(n+kt(b))}(HP^\infty_m)$, and in particular $d_2(n+kt(b),m)\ge b$, where $j\colon HP^\infty\to HP^\infty_m$ is the canonical collapsing map.

Proof. Let ξ be the canonical symplectic line bundle over HP^{n-m} . Let M be some multiple of J-order of ξ . Then as is well-known ([8] or [2]) the stunted quaternionic quasi projective space $Q_{M-m,n-m+1}$ is S-dual to HP_m^n . Also there is an S-duality map $S^1 \rightarrow M_b \wedge M_b$.

Now consider the following commutative diagram;

$$\begin{split} & \{\varSigma^{4n-1}M_b, \ HP_m^{\circ}\} \xrightarrow{\qquad h^A} \{\varSigma^{4n-1}M_b, \ HP_m^{\circ} \land A\} \\ & & \, \big) \cong \\ & \{\varSigma^{4n-1}M_b, \ HP_m^n\} \xrightarrow{\qquad h^A} \{\varSigma^{4n-1}M_b, \ HP_m^n \land A\} \\ & & \, \big | \cong \\ & \big | (S\text{-dual}) \big | \qquad \big | \cong (S\text{-dual}) \\ & \{Q_{M-m,n-m+1}, \ \varSigma^{4(M-n)-1}M_b\} \xrightarrow{\qquad h^A} \{Q_{M-m,n-m+1}, \ \varSigma^{4(M-n)-1}M_b \land A\}, \end{split}$$

where homomorphisms in the vertical direction are all isomorphic. Let $z=j\circ\sigma_n\circ\pi_0\in\{\Sigma^{4n-1}M_b,\,HP_m^\infty\}$ and $x\in\{Q_{M-m,n-m+1},\,\Sigma^{4(M-n)-1}M_b\}$ be the element corresponding to z under the isomorphisms. Then the assumption that $d_2^A(n,m)\geq b$ and 3) of Lemma 5.2 imply that $h^A(z)=0$. Let $X=Q_{M-m,n-m+1}$ and l=4(M-n)-1. Then x belongs to the kernel of $h^A:\pi_s^I(X;Z/2^b)\to A^I(X;Z/2^b)$. It is easy to see that if $kt(b)\geq n+m+1$ then $4kt(b)\geq \dim^i X-l+3$. Since X is a Thom complex of a certain real 4(M-n)-1 dimensional vector bundle over HP^{n-m} , so from the obstruction theory X is a (4(M+m-2n)-1)-fold suspension of a space Y. Thus $\Sigma^{4kt(b)-1}X=\Sigma^{4(kt(b)-n+m)}Y$. Therefore, applying Theorem 5.3, we see that ${}^k \tilde{B}_b(x)=0$ and $z\circ {}^k \tilde{B}_b=0$. Using Proposition 5.1 it follows easily that

there exists an element $\sigma'_{n+kt(b)} \in \pi^s_{4(n+kt(b))}(HP^{\infty})$ such that $j \circ \sigma'_{n+kt(b)} \circ \pi_0$ This completes the proof of Theorem 5.4.

As a corollary we have the following theorem.

Theorem 5.5. Let $m \ge 1$. Then for any n such that $n \ge 2D(m) + m$, $d_2(n, m) = d_2^A(n, m)$, where D(m) is the integer mentioned in Corollary 2.6.

Proof. We may assume that $m \ge 2$. Under the assumption clearly there is an integer $k \ge 1$ such that $n-m+1 \le 2kD(m) \le 2n-2m$. Since D(m) is a period of $d_2^A(n, m)$, $d_2^A(n, m) = d_2^A(n - kD(m), m)$. Let $d_2^A(n, m)$ =b. Since kD(m)=klt(b) for some $l \ge 1$ and since $kD(m)\ge n-kD(m)-1$ m+1, by Theorem 5.4, we have the desired result. q.e.d.

References

- J. F. Adams, On the groups J(X)-IV, Topology, 5 (1966).
- M. F. Atiyah, Thom complexes, Proc. London Math. Soc., 11 (1961). J. C. Becker, Characteristic classes and K-theory, Lecture Notes in Math., [3] **428** (1978), 132–143.
- M. C. Crabb and K. H. Knapp, James numbers and codegree of vector bundles I, preprint.
- James numbers and codegree of vector bundles II, preprint.
 On Adams periodicity in stable homotopy, preprint.
- M. Imaoka and K. Morisugi, On the stable Hurewicz image of some stunted projective spaces, I, Publ. RIMS, Kyoto University, 20-4 (1984).
- I. M. James, The topology of Stiefel manifolds, London Math Soc. Lecture note series, 24 (1976).
- M. Mahowald, Descriptive homotopy of the elements in the image of the J-homomorphism, Proc. Tokyo conference on Manifolds 1973, 255–263.
- [10] -, The image of J in the EHP sequence, Ann. of Math., 116 (1982), 65-112.
- [11] P. May, E_{∞} -ring spaces and E_{∞} -ring spectra, Lecture Notes in Math., Springer 577 (1977).
- C. A. McGibbon, Self maps of projective spaces, Trans. Amer. Math. Soc., [12] 271 No. 1 (1982), 326-346.
- K. Morisugi, Stable self maps of the quaternionic (quasi-) projective spaces, Publ. RIMS, Kyoto University, 20-5 (1984).
- D. M. Segal, On the stable homotopy of quaternionic and complex projective spaces, Proc. Amer. Math. Soc., 25 (1970), 838-841.
- G. B. Segal, The stable homotopy of complex projective space, Quart. J. Math. Oxford (2), 24 (1973) 1-5.
- H. Toda, Composition methods in homotopy groups of spheres, Annals of Math. Studies, 49 (1962), Princeton Univ. Press.
- G. Walker, Estimates for the complex and quaternionic James numbers, Quart. J. Math. Oxford (2), 32 (1981) 467-489.

M. C. Crabb Department of Mathematics University of Aberdeen Aberdeen AB9 2TY Scotland

K. H. Knapp Fachbereich Mathematik Gesamthochschule Wuppertal 5600 Wuppertal 1 FRG

K. Morisugi Department of Mathematics University of Wakayama Wakayama 640 Japan