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§70. Introduction

Let Z7 be the elementary abelian 2-group. In [7] Mitchell and Priddy
have shown that stably BZ? contains some copies of spectra M(n)=
e,BZ? as a direct summand, where e, € Z,GL,(F,) is the Steinberg idem-
potent. It is also shown that there is an equivalence of spectra M(n)~
L(n)\V L(n—1), where L(n)=23""Sp*"S°/Sp*~*S°. In [5], Kuhn has shown
that there is a split exact sequence

—>L(n)—>L(n—1)—>- - - —>L(0)=S"

extending the Kahn-Priddy theorem [4] and solved the Whitehead con-
jecture.

In [9], the author determined the structure of the stable homotopy
group {BZ%, BZ7} and the composition formula. Let M, ,(F,) be the set
of (n, m)-matrices. Then there are inclusions of rings

Z,GL(F)—>Z.M,, (F)—>{BZ}, BZ}}—>[0BZ}, QBZ}]

where QBZ?=Q>3~BZ% is the infinite loop space.

In this paper, studying the structure of those rings we shall show the
following. The Steinberg idempotent e, € Z,GL,(F,) is decomposed as
e,=a,+b, in the bigger rings and a,, b, are primitive in {BZ%}, BZ}}.
We determine the structure of {M(n), M(m)} and {L(n), L(m)}. Finally
we give a simple proof of the theorem of Kuhn.

§ 1. Steinberg idempotents and matrix algebra

Let R be the ring of 2-adic integers Z, or the prime field F,. Let
M, .(F,) be the set of all (n, m)-matrices over F,. We denote by RM, .(F)
the free R-module generated by elements of M, ,.(F,) with the relation
0-matrix=0. There is an obvious pairing
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RM’n,m(F;) ® RMm,Z(F;)‘_)RMn,l(FZ)'

In particular, RM, ,(F,) is a ring and RM, ,(F,) is a left RM, ,(F,) and
right RM,, .(F,)-module.

Given a subset S of M, ,.(F,), we denote > ,.s4 by S. If Sisa
subset of X, CGL,(F,), then >, .s(—1)*"“4 is denoted by S. Let B,
and U, be the Borel subgroup and the unipotent subgroup of GL,.(F),
respectively. Then the Steinberg idempotents are defined [7] by

enzﬁnjn/[GLn(FZ): Un] € ZZGLn(FZ)
¢,=3,B,/[GL,(F): U, € Z,GL,(F,).
Now we fix some notations. Let C,=(, ---,n) and C;=(1, ---,1)

e 3, be the cyclic permutations, and let 7,={C, ---,C,} and T, =
{C{, + -+, CL}. Given a vector b=(b,, - --,b,_) e F3~', let

1 b,
Ro®=| 0.0 | |=(E.b)eM, W (F) and
1 bn—l

b -b,

1 b
L®=| . o :( )eMn,n_l(zz).

0. E.,
1

Let R, ;={R,_i(B)}rerp-1 and L,={L,(0)};crp-1. R,_(0) and L,(0) are
denoted by J,_, and I, respectively.

In the following, the congruence mod 2, a=» mod 2, is denoted
simply by a=b. The following observation is useful. Let ¢: F{—M, ,.(F;)
be an affine map. Then Im(¢)=0 if and only if the associated linear map
of ¢ is not a monomorphism.

Lemma 1.1. (i) J, e,=J, T.e.=e, J,_.T., n=1.
Gy (LJ,T,+JT,..L,.)e,=e, n=1. Here RM, (F,) stands
for the zero ring if n=0 or m=0.

Proof. (i) is an easy calculation, and we prove (ii). Note that
L, B =B, I,.. LetCeT,,, beanon trivial element, then as observed
above, J,CB,.,I,.,=0 and hence
JnTn-x»IL_ni»an=JnTn+1B—n+1[n+15JnB-n+1In+1'

Let B,,, > B=(b, ). In the summation J.B, I3, we may assume
that b, ,.,=0 for 1<i<{n+1. Then dividing the summation according
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to b, ,.,=0 or 1, we have
JnTn+1En+lenEen+Z JnBIn+1jm

where the summation is taken over all B such that b, ,,,=0. Similarly
we see that J,_,T,B,3,=J,_.B,5, by (i), and easily we have J,_,B,5,=
B, J, .2, ThenL,B, J, .5,=B,IJ, 5. Butthisisjust the latter
term of the above equation. This completes the proof.

Lemma 1.2. Let m<n—2. Then e,F,M, . (F)=F,M,, .F)e,=O0.

Proof. For a matrix B e B, we write B= ((l) %,), where B’ e B, _,;

a, a,
and b e F3~'. Let A:( ) eM,  (F), a;e FP. Let A’_—_( ), then we
a, a,
4
have BA= (411;;3;4 > If m<n—2, then the affine map f(b)=a,+bA4’ has

a non trivial kernel. Hence e,d=B,5,4=0 and eanﬂn,m(Fz) =0. The
rest is similar.

Lemma 1.3. (i) e,F,M, ,_(F)=L,e,_ ,F,GL,_(F).
(11) FzMn—l,n(Fz e,=F,GL,_/(F, en—l‘]n—lfn'

Proof. (i) Let Be B, and A e M, ,_(F). Then BA:(a‘;:ZfI)

and if A’ is singular, then as in the proof of the above lemma, we have

B,A=0, LetX,=U (1 5 )Ci be the coset decomposition. Then
= n -1

| _ x(b) )
ad=2.5, ( Sn_)cﬂ =2 (B'T(CiA)’
where B’ e B,_,, Te X, , and x(b)=bT(C,A)Y +constant vector. Then
we see that e,d=> L,e,_,(C,4)’, where (C,4)’ is non singular. Hence
e,Ae L,e, F,GL, (F,). On the other hand, for any H € GL,_,(F,), itis
easy to see that Ie, .H ¢ e,F,M,,_(F,). This completes the proof of
(i). The proof of (ii) is similar using Lemma 1.1, (i).
In particular we have

Lemma 14. e, ,=L,e,_,.
Corollary 1.5. e le,_=e,L.e,_,ande,_J, e,=e,_J, T.e..

For the Steinberg idempotent ¢, we have similar results. Replace
e, L, I, J, and T, with e, R,_,, J,_,, I,., and T, respectively in the
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above formulae, and convert the direction of the composition, then all
lemmas in this section hold for e,. For example

Lemma 1.6. (i) e l,=e,T.I,=T.1¢,_,.
(ll) e;L(Tr,LInR—n—l+RnT7/z+11n+1)Ee;r

§ 2. Splitting of the Steinberg idempotent
We denote e l,e,_, e Z,M, ,_(F,) and e,J,e,,, ¢ Zzﬂn,n+l(F2) by 2,
and ¢,, respectively. Similarly @, and ¢, for e/l e, _, and e.J e’ ,,.

Theorem 2.1. Letn=2. ¢,0,,,and d,c,_, are orthogonal idempotents
in F,M, (F) and €,=0,3,,,+0,0,_,. Similarly ¢,3,,, and 8,0, _, are

orthogonal idempotents in F,M, wa(Fy) and e, =a,0,, ., + om0, _;.

Proof. Letd,=e,L,e,_,and 5,=e,J,T,,€,.,. Then by Corollary
1.5, 9,=0, and ¢,=G,. Now
Gnan+1+andn—156n5n+l+énan-l
=eanTn+1en+1En+1en+enl_‘nen—1Jn—1Tnen
Een(']nj?'n+1‘E7'L+1 +Ean»1Tn)enEen

by Lemma 1.1. Note that 9,,,0,=0 and ¢,_,6,=0 by Lemma 1.2. Hence
6,0,4+; and 0,0,_, are orthogonal idempotents. Similarly for e, and this

completes the proof.

Theorem 2.2. There are isomorphisms as vector spaces
0, ln—m|=2
Fyo,}, m=n+1
Fz{anan+1}®F2{anon—l}a m=nz=2
Fz{an}, m=n—1

eanﬂn,m(Fz e, =

and elFZMl,l(FZ)el = F{0,0:}.

Proof. The case of [n—m|=2 is clear from Lemma 1.2. Itis known
[7] that the Steinberg module F,GL,(F,e, is projective and absolutely
irreducible as GL,(F,)-module. Therefore e,F,GL,(Fy)e,=Fy{e,}. Then
we have dim e,F,M, ,_,(F)e,_,=dime,F,M, ,,,(F)e,,, =1 by Lemma 1.3.
By Lemma 1.4, 3,=L,e,_,=0 and ¢,=e,J,T,,,70 by Lemma 1.1. This
shows the cases m=n-41. Finally let S, be the submodule of Fzﬂn,n(Fz)
spanned by all singular matrices. Then F,M, ,(F,)=F,GL(F)®S, as the
both side GL,(F,)-module. From the above argument we easily see that
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dim e,S,e,=1 and hence dim e,F,M, (F)e,=2. Now 9,,,6,%0 and
onan +1-ri—0’ fOI' an +lanan +lE(en +1 '—Gn+lan +2)an +1 Ean+1-/i—-0' Then the case
n=m is clear from Theorem 2.1.

Corollary 2.3. The idempotents ¢,9,,, and 8,0,_, € F,M, (F,) are
primitive.

Now consider the reduction p: ZAZMn,n(FZ)—»FZMn,n(Fz). Then as is
well known [1], there are lifting idempotents. Therefore from Theorem
2.1 and Corollary 2.3, we have

Corollary 2.4. There are orthogonal primitive idempotents a,, b, e
Z,M, (F,) such that e,=a,+b,, a,=0,3,,, mod 2, and b,=0,0,_, mod 2.

Remark 1. Above results hold clearly for e,F,M, ,(F,)e, replacing
9., o, With 9., a,.

Remark 2. Lemma 1.2 holds for Z, coefficient. For enfzﬂn,m(Fz)
is a direct summand of Z,M, .(F,). Therefore ,,,3,=0 and ¢,0,,,=0
in Z, coefficient. Moreover using the lifting of idempotents [1], we see
that Theorem 2.2 holds for Z, coefficient.

Remark 3. In the (non reduced) semigroup ring RM, ,.(F,), the O-
matrix 0 is a central idempotent. Hence in RM,, (F,), e, splits as a sum
of three primitive idempotents for n>=2. For n=1, we have ¢,=E =
(E,—0)+0 is an orthogonal decomposition. We define RM, (F,) =
RHom (F,, 0)=R with basis ¢,, and RM,,(F,)=RHom(0, F,)=R with
basis 9,. Then 8,6,=0 and we have a decomposition e,=g¢,3,+ 39,0, in
ZAZMM(FZ). Thus Theorem 2.1 holds for n=1 and

22M1,1(F) = Zz{glaz}@22{81ao}-

§ 3. Splitting spectra and infinite loop spaces

Let Y be a 2-local spectrum of finite type, and let £2~Y be the asso-
ciated infinite loop space. Let {Y, Y} be the stable homotopy ring. The
unstable homotopy set [£2°Y, £2°Y] is an abelian group with the composi-
tion product which satisfies the condition of a ring structure except the left
distribution law. There is a natural “ring” homomorphism j: {Y, Y}—
[2°Y, 2°Y]. Let Y be a suspension spectrum of a 2-local space X. Then
=Y = QX by definition and denoting {Y, Y} by {X, X}, we see that

JH{X, X}—[0X, 0X]

is @ monomorphism.
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We call an element e e {¥, Y} an idempotent mod 2 if e’=e mod 2.
For an element fe [2=Y, 2°Y], let f, € End (7,(2°Y))=End (z5(Y)). An
element fe[Q~Y, QY] is called a n,-idempotent mod 2 if fi=f, in
End (z,(2°Y)).

Given ee{Y, Y}, the telescope of the sequence Y5y ... is denoted
by eY. Similarly for f e [2~Y, 2~Y], the telescope of the sequence £2°Y

-{:.Q“’Y—/i- - - is denoted by fQ2=Y. There are natural mép_s ot Y—eY

and V,: Q°Y—f02~Y. Let
E,.=¢.Ngi_o: Y—>eYV(1—€)Y

and )
=, Xy _ ;1 QY fQ2°Y X (1 - f)2~Y.

Proposition 3.1. Let e € {Y, Y} be an idempotent mod 2. Then

(i) &.: Y—eY V(1 —e)Y is a homotopy equivalence.

(i) Let e e {Y, Y} such that & =e mod 2. Then there is a homotopy
equivalence 2: eY —e'Y.

Proposition 3.2. Let fe[Q2°Y,2°Y] be a rn,-idempotent mod 2.
Then

(1) 75,1 Y —f2°Y X(1—)Q>Y is a homotopy equivalence.

(i) Letf’ e[Q~Y, 2°Y] such that f,,=f}, mod 2.
Then there is a homotopy equivalence 2: fQ°Y —f'QY.

Proof of Propositions. Since e*=e mod 2, e, is an idempotent in
End (z5(Y)®Z,) and also in End (z5(Y) % Z,). Then

(Y ® Z,=e(rS(Y)®Z) and z5(eY)* Z,=e(x(Y)* Z)

and similarly for 1 —e. Therefore &,.81,, and &,.x 1, are isomorphisms.
Hence &,. is an isomorphism and (i) is proved. Now if ¢’=e mod 2, then
we have a homotopy equivalence &,.: Y—e’Y\/(1—¢')Y and using &, and
&, we can define a natural map 1: eY—¢’Y in an obvious way, and as
above we easily see that 4,.: z5(eY)—r5(e’Y) is an isomorphism. This
shows (ii). Proof of the latter Proposition is similar.

Now we recall the structure of the stable homotopy group
{BZ3, BZ7}. Let V be a subgroup of Z3 and let f: ¥—Z2 be a homo-
morphism. Define an element u, ; € {BZ%, BZT} by the composition

B,
Bz B2 g7n

where 7 is the transfer of the covering BV —BZ? and ¢ denotes the sus-
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pension functor. In the sequel, ¢(Bf) is denoted simply by /. Then in [9]
followings are shown.

Theorem 3.3, There is an isomorphism
{(BZ3;, BZpY=®Z{uy )
where the sum is taken over all (V, f), f #0.

Theorem 3.4, Let VCZ3 and W CZ7 be subgroups and let f: V—
Z7" and g: W-—Z% be homomorphisms. Let

U=fW)CV and [Zp: f(V)W]=25
Then

Uy, Uy =2y 4.
Now we have an inclusion of rings
i: Z,M,,.(F)—>{BZ}, BZ})

defined by i(f)=uzp ;. Itis clear that i is compatible with compositions.
In [9] we have also shown the following

Lemma 3.5. A primitive idempotent in Zzﬂn,n(Fz) is primitive in
{BZ3, BZ3}.

Now we recall the Mitchell-Priddy splitting. For n>2, the spectrum
e,BZ? is denoted by M(n). We put M(1)=BZ,\ S°=e,((BZ,),). For
n=2, let a,, b, e ZAZM,M(FZ) be idempotents in Corollary 2.4. By the
remark of Section 2, we may define a,, b, € Z,M, (F,)C{(BZ,),, (BZ)).}-
Define spectra M,(n)=a,BZ} and M,(n)=>b,BZ? for n=2, and M, (1)=
a,(BZ,,) and M, (1)=5b,(BZ,,). Then we have

Theorem 3.6. The spectra M ,(n) and M,(n) are indecomposable and
there is a stable splitting

M@y =M, )\ M,rn), n=1.

Proof. Since e,=a,-+b, (orthogonal decomposition), M (n)~ M (1)
\ M,(n) is clear. The indecomposability of M ,(n) and M,(n) follows from
Corollary 2.3 and Lemma 3.5.

In [7], it is shown that there are spectra L(n), n=0, L(0)=S°, L(1)=
BZ,, and a splitting M(n)~L(n)\/ L(n—1), n=1. In[9] we have shown
that the splitting of BZ? by indecomposable spectra is essentially unique.
Thus we have
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Corollary 3.7. L(n), n=0, is indecomposable and M ,(n)y~L(n) and
M (ny=Ln—1).

§ 4. Equivariant stable cohomotopy

Let G be a finite group. For G-space X and Y, {X,, Y.}, denotes
the stable G-homotopy group, where X, is the based G-space with the
disjoint base point. Let H be a subgroup of G, and let N(H) be the
normalizer of H. N(H)/H is denoted by W(H). Then the Segal-tom
Dieck and Hauschild theorems are stated as follows.

Theorem 4.1 ([2], [3]). Lex X be a finite CW-complex with the trivial
G-action. Then there are isomorphisms
E: g;)) {XH EW(H)+}W(H)_'_>{X+3 SO}G
and
ZH: {X+, EW(H)+}W(H)"—){X+9 BW(H)+}

where the sum is taken over the conjugacy classes of subgroups of G and
EW(H) is a free contractible W{(H)-space.

Using the above theorem, we show an equivariant version of the
Barratt-Quillen theorem. Let £ be a G-space. By a (G, E)-covering over

X, we mean a pair of G-maps (p,f)=(X&X LE), where p: ¥>Xis a
finite covering. Let (X Iy ’LE) be another pair. We call (p,f) and
(7, f") equivalent if there is an equivalence of coverings ¢: ¥—X’ such
that f’¢ ~, f. The set of equivalence classes of (G, E)-coverings over X'
is denoted by Cy(X, E). By the disjoint sum, C,(X, E) is an abelian
monoid. If E=x or G={e}, Cx(X, E) is denoted by Cy(X) or C(X, E)
respectively. Given a pair (p, f) we define a stable G-map w(p, f) by the
composition
X% Y p
where ¢ is the equivariant transfer [8]. Then we have a homomorphism
o: Co(X, E)—>{X,, E.}6.
Then the following is shown in [9].
Lemma 4.2. There are isomorphisms of monoids

é: (];[) Cr (X, EW(H))—>Co(X)
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Ant Cyn(X, EW(H))—>C(X, BW(H))

and the following diagram is commutative;

ColX) <11 Crem(X, EWCEY) 2, 11 . BW ()
e g
(X0 S T (X BWCE) =TT 06, BICH).),

Let h and #’ be monoid valued contravariant homotopy functor on
the category of CW-complexes. We suppose that 4’ is represented by a
grouplike H-space. A natural homomorphism +: A—A’ is called a group
completion (in the sense of Segal) if the following universal property
holds. For any grouplike H-space B and a natural homomorphism
7:h—[ , B],, there is a unique natural homomorphism 7’: #’—[ , B],
such that 7»=7. Then by a result of [3], we immediately obtain the
following

Theorem 4.3. In the diagram of Lemma 4.2, every vertical maps are
group completions as functors on X.

Now by the Segal-tom Dieck isomorphism, we identify {X,, S, with
@®{X,, BW(H),}, when X is finite. We call the summand {X,, BG.}
corresponding to H={e} the free part of {X,, S°%,. Let G’ be another
finite group and let

7: {X,, S%e—>{X,, 5%,

be a natural transformation of functors on X. We call 7 admissible if 7
preserves the free part, ie., 7({X,, BG.})C{X,, BG}. Then we may
consider 7 ¢ [Q(BG,), Q(BG’)]. Moreover if there is a relation among
admissible natural transformations, then it gives the same relation in
[Q(BG.), Q(BG)].

We give some examples. First let /: G’—>G be a homomorphism.
Any stable G-map is regarded as a stable G’-map via f. This gives a
stable (hence additive) natural transformation

f*: {X+? SO}G'—){X“ SO}G'-

Proposition 4.4. (i) f* is admissible if and only if fis a monomor-
phism.

(ii) Iffis an inclusion G'C G, then the stable map f* e {BG ., BG'}
is the transfer.

(iii) If f is an isomorphism, then f* =gBf ~'.
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Proof is easy from Theorem 4.3.
Next we consider the power operation. Let f: X,—S° be a stable
G-map. The smash product fAf: (X X X),—S° can be regarded as a

stable 22IG-map, where 3 sz is the wreath product. Let 4(G)CGXG

be the diagonal. Then Z,X G=Z,X 4(G)C 5, I G. Letd: X—X X Xbe

the diagonal map. Then we have a stable Z, X G-map (fAf)d: X,—S°,
and this defines a natural transformation

P: {X+a SO}G”"—_){XH SO}ZgXG'
For a finite G-covering p: ¥—X, pXxp: X X ¥ —>X X X is regarded as a
ZZJ‘G-covering. Restricting to d(X)C X X X, we have a Z, X G-covering
over X and thus we have a natural transformation
P’ Co(X)—>C (X)),
then the following lemma is easily verified from the property of transfers.
Lemma 4.5. The following diagram is commutative:
PI
Co(X)——C;,,6(X)

[O17] WBZaxG

{X+a SO}G‘_I;_){XH SO}Z;»XG'

Nowlet G=Z7"'. Let be Fy'andletR,_,(b) e M,_, .(F;). Then
we have a natural transformation

R, 0)*: {X ., $%zp-r—>{X,, 8% 5.
Both P and R, _,(b)* are not admissible, but we have
Lemma 4.6. >, R,_(b)*—P is admissible.
Proof. Define a natural transformation
0: {X,, §% g1} {X,, $% 31— (X, S

by 0({, y):P(zc—}: ¥)—P(x)—P(y). For a finite coverings, this is given
by 6(X, ¥)=X.X" [] X’- X, where X- X'=X x X’|d(X). Then we easily
see that @ is admissible. Consider the composition

Z Rp-a(b)*—
>

P "
9n: (X, BZIIC X, 5%, X, $%4255(X., BW(H).}
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where p; is the projection. To prove the lemma, it suffices to show that
qx=0 for all H+{e}. But by the above observation we see that g, is
additive, for

7:(x+3)=px (3] R, _,(b)*(x+y) —P(x+Y))
=pa(3; Ru_i(BY*(X)+ 33 R, _(b)*(») — P(x)— P(¥)+6(x, ¥))
ZQH(x)"}'QH(y)-

For a free Z7'-set S, we easily see that
S X S=free+ || R,_,(b)*(S)
b

as Zj=23""XZ, set. Hence this holds for finite coverings. Then g, =0
by Theorem 4.3.

§ 5. Structure of {L(n), L(im)} and the theorem of Kuhn

First we consider {M(n), M(m)}=e, {BZ}, BZT}e,. Let Mon(n, m)
CM, . (F,) be the set of all monomorphisms. For an 4 € Mon(n, m)
we have defined a stable map A* ¢ {BZ%, BZ"}. Therefore for any a €
Z,Mon(n, m) we can define a*, for example e}, e/*, 3% and 3,*. By
Proposition 4.4, e¥ =¢,, and e/*=e,.

Lemma 5.1. Suppose that m<n—2. Then
(Z,Mon (n, m))*e, =0 mod 2
and if m=n—1, then
(Z,Mon (n, n—1))*e,=2Z,GL,_(F)e,_(T.I)*.
Proof is clear.from the fact (4B)* =B*A4* and Lemmas 1.2 and 1.6.
Lemma 5.2. Let
0: e,2,M,, . (F)e,.,—>{M(n), M(m)}

be a homomorphism defined by 6(a)=ad,*. Then 8 is a monomorphism.

Proof. Note that e,xe, ,o,* =e,xe,_I¥e, =e,xe, (T, L)% Let
C,C'eT, If CsC’ then Im(CL) and Im(C’L) are different. Then
the lemma follows from Theorem 3.3.

Theorem 5.3. {M(n), M(m)} is a free Z:z—module with the following
basis. (i) 0 if m<n—3 or mz=n+2; (i) Zfo,_.0F} if m=n—2; (i)
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Zz{on_l, 3,,_}0‘,,_28,’,*, on-lana;*} l_'f m-_—n—l; (iV) 22{an0n—1, o'nan+la ana;*} l..f
m=n; (V) Z{0,.,} if m=n+1.

Proof. By Theorem 3.3 and Lemma 5.1, we have {M(n), M(m)}
enZ,M,, (F)e,®Im(f). Then the result follows from Lemma 5.2.

Recall that M(n)~L(n)\/ L(n—1). Then by the dimensional reason
we immediately obtain

Corollary 5.4. There are isomorphisms

{L(n), L(m)}=Z,, if m=norm=n—1

=0, otherwise.

A generator of {L(n), L(n—1)}=Z, is denoted by h,. Note that
h, N h,_;: L)/ L(n—1)—L(n—1)\/ L(n—2) is equivalent mod 2 to
ax: M(n)—~M(n—1).

Finally we give a proof of the Kuhn’s theorem [5]. A sequence

—>Xn+1iX ni- - . of stable maps of 2-local spectra is called (half stable)
split exact if d o d =0 and there are maps s: 2°X,—02~X, ., for all n such
that d,s,+5,d5=1 mod 2 in End (z,(2-X,))=End (z5(X,)) for all n.
Then the sequence

dy dx
(X )T (X)—> - -

is clearly split exact. Let u,=02"(d)os: 2°X,—02X, and v, =50 2=(d):
Q~X,—2~X,, then clearly u, and v, are n,-idempotent mod 2 and u,.+
v,»=1mod 2. Then by Proposition 3.2 we have 2°X, ~u,2"X, X v,2°X,,
and easily we see that v,Q2°X, ~u,_2°X,_,. In Section 3, we have
shown that the sequence

—>M(n+ D) Mm) "D M(—1)—>- - -
is (stable) split exact. Now the Kuhn’s theorem asserts the following.
Theorem 5.5. The sequence
ax ax

n+1

—>Mu+1)"S5Mm)—>Mn—1)—>- - . —>M(1)
is split exact.

Proof. Forany ace ZAzﬂn,m(Fz), we can define a natural transforma-
tion

a*: (X, 8% —>{X,, S%2p.
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The relations in Section 1 and Section 2 hold for a* as such natural
transformations. Define

sn—l=e;z*(Rn _P)en—l‘—en(R;Lk—l—P)e‘n—l: {X+a SO}Z;'—‘_—){X-H SO}Z;U

where P is the power operation. Put «,=a%;s, and B,=s,_,0,*. By

Lemma 4.6, s, is admissible and hence so are «, and S,, and s,¢€

[0(BZ2), Q(BZ%Y)]. To prove the theorem it suffices to show that

e+ Br=e,« mod 2 regarding «, and §, as maps in [Q(BZ},), Q(BZ},)

Now we show that for any reduced element x & {S?, $°%,; C{S%, S%;,
o, (X)+ B.(x)=e,(x) mod 2.

Note that ¢8,=e,T’I,e,_,. Then by Lemma 1.6, we have

at pr=e(Th L) RE+ RE(TIL) e,
+en((Tn+1 n+l)*P+P(Tn e,
=e +en((Tn+1 n+1)*P+P(T7/LIn)*)en'

Now let C;=(1, ---,i) e T,, then C/I, is regarded as a standard
inclusion Z§~*X0X Z3~*—Z3. Then (CiL)*: {X,, 8% zp—{X,, S%zp-1 is
given by forgetting i-th Z,-action in Z7. Then by definition I'¥ ,P(x)=x?
the cup product. Also we easily see that (C7,,I,.)*P =P(C/I,)* for i >0.
Thus we easily see

(Trsdua) P+ P(TILY ) =x°
and if xe{S% S%;; ¢>0, then x*=0 and hence (a,+ B )(X)=e.(x).
This completes the proof.

Corollary 5.6. The sequence
hn h
——> L(n)—>L(n—1)—> - - -——>L(1)—>L(0) = (S
is split exact.

Remark. As is well known (Kahn-Priddy [4]), there is a split exact
h h
sequence L(1)=>L(0)>HQ,.
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