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On Coxeter Arrangements and the Coxeter Number

Peter Orlik, Louis Solomon and Hiroaki Terao

Abstract

Let (G, V) be an irreducible Coxeter group and let .« be the corre-
sponding Coxeter arrangement. Let H e &/ be a hyperplane and let .«/#
be the restriction of .o/ to H. Let & be the Coxeter number. We prove
that

|/ H | =]t |—h+1

and show that /7 is a free arrangement whose degrees are m,, - - -, m,_,
the first /—1 exponents G.

§1. Introduction

Let V' be Euclidean space of dimension / with positive definite inner
product written (, ). A hyperplane in V is a vector subspace of codimen-
sion 1. An arrangement o/ =(of, V) in V'is a finite set of hyperplanes.

Let S=S(V*) be the symmetric algebra of the dual space V*. We
may view S as the graded algebra of polynomial functions on V. Let
Der(S) be the S-module of all derivations of S. A non-zero element 6§ ¢
Der (S) is said to be homogeneous of degree b, written deg 6=>, if 4(S,)C
S,+p- This makes Der(S) a graded S-module. Choose, for each He 7,
a linear form «, € V* with ker(a,)=H. Define Q € S by
(1.1) 0= ] ax-

Heo
The polynomial Q is uniquely determined by o/ up to a constant multiple.
Define

(1.2 D(s7)={6 € Der(S)|6Q e 0S}.
Then D(«¢) is a graded S-submodule of Der (S).

(1.3) Definition [14]. The arrangement = is free if D(</) is a free
S-module.
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If o7 is free then [11, Theorem 1.11.i] there exists a basis for D(«)
as S-module consisting of / homogeneous elements 4, - -+, 8,. Let b,=
deg,-+1. The integers by, - - -, b, depend only on /. We call them the
degrees of o/ and write deg(«)=1{b,, - - -, b,}. The main theorem in [15]
asserts that the integers b,, - - -, b, are determined by combinatorial data.
To make this precise we need the notion of characteristic polynomial of an
arrangement. Let L= L(.2/) be the set of intersections of elements of .«/.
Partially order L by reverse inclusion so that L has V as its minimal ele-
ment and &/ as its set of atoms. The poset L is a finite geometric lattice
with rank function r(X)=codim,X, X € L. The M¢bius function p of L is
an integer-valued function defined recursively as follows [9, p. 344].

(4 X, X)=1 if XeL
) pX, N=— > uX,Z) if X,YeL and X<Y.
ZeL
XL ZLY

It is convenient to define
(L.5) H{X)=p(V, X) if XelL.
The characteristic polynomial (<7, t) is defined by

(1.6) At 1)= 3 (X,

It is an important invariant to the arrangement. The main theorem in [15]
is:

(1.7) Theorem. If o/ is a free arrangement with deg o/ ={b,, - - -, b,}
then

Wt )= ﬁl (t—b)).

Let O(¥V) be the orthogonal group and let G be a finite subgroup of
O(V) which is generated by reflections. Then G is a Coxeter group [l,
Ch. 5, §3.2, Th. 1]. The group G acts naturally as a group of automorph-
isms of S. Chevalley’s theorem [1, Ch. 5, § 5.5, Th. 4] asserts that there are
algebraically independent homogeneous elements f,, - - -, f; in the invariant
subring S¢ such that Sé=R[f, ---,f;]. The polynomials f;, - - -, f, are
called basic invariants. We agree to number them so that deg f,<---<
degf,. The integers m,=degf,—1 are the exponents of G[1, Ch. 5, §6.2].
Let o/ =4/(G) be the set of reflecting hyperplanes of G. We call &7 a
Coxeter arrangement. K. Saito has shown [10, 4.8] that a Coxeter arrange-
ment o/ is free and that deg(/)={m,, ---,m,}. It follows from (1.7)
and Saito’s theorem that
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(1.8) Wt 1)= _]’j]l(t—mi)

a formula which was proved in [5, Th. 4.8] in the more general context of
unitary reflection groups.

(1.9) Definition. Let o be an arrangement. If X e L(</) let o/ be
the arrangement in X defined by

FE¥={XNH|He o and XN H+X}.
We call o/~ the restriction of </ to X.
(1.10) Conjecture. If o is free and X e L(«/) then /% is free.

If (1.10) is true and deg(&/*)={bf, ---, bf} where k=dim X then
(1.7) implies

(111 Hst®, )= [] (1—b).

It is shown in [6], using the classification of finite reflection groups, that if
</ is a Coxeter arrangement then there is a factorization of type (1.11) for
every X e L(=/). By using the Addition Theorem of [14, p. 305] we have
checked in all irreducible groups except type E, that (1.10) holds for all
X e L(«) and that the degrees b are the roots of X(./%, t) computed in
[6]. To prove (1.10) it would suffice, arguing by induction on codim,X
to prove it in case X=H is a hyperplane. The main result of this paper
is the following theorem.

(1.12) Theorem. Let GC O(V) be a finite irreducible reflection group.
Let of =/(G) be the Coxeter arrangement and let He of. Then the
restriction o/ is a free arrangement and deg(L™)={my,, - - -, m,_,} the first
[—1 exponents of G. '

A slightly stronger statement is proved in (3.9). In fact &7 is free
for all Coxeter arrangements .o/(G) whether G is irreducible or not. There
is an easy reduction to the irreducible case. Unfortunately this does not
settle (1.10) for Coxeter arrangement .o/ because /¥ is not in general a
Coxeter arrangement. Theorems (1.7) and (1.12) have the following
corollary analogous to (1.8).

(1.13) Corollary. Let G O(V) be a finite irreducible reflection group.
Let of == o/ (G) be the Coxeter arrangement and let H e /. Then
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1-1
i=1

In particular, X(s/ %, t) is independent of H.

The numerical results in [6] suggest an assertion which is more general
than the one in (1.12):

(1.14) Conjecture. Let GCO(V) be a finite irreducible reflection
group. Let of = o/ (G) be the Coxeter arrangement. There exists for each
k with 1 <k<l a subspace X e L(/) of codimension k such that deg(</*)
={m,, - - -, m} the first k exponents of G.

Here is an outline of this paper. In Section 2 we prove some general
facts about restricted arrangements «/*. Although our main result is
(1.12) this increase in generality costs no additional effort and points in the
direction of (1.14). We prove Theorem (1.12) in Section 3. As an appli-
cation of (1.12) we prove a purely algebraic result concerning the basic
invariants:

(1.15) fireagS+fiS+ - +fiS.

On the geometric side we show as a consequence of (1.12) that the number
of /—2 simplexes in the Coxeter complex which lie in a hyperplane H e &/
is [G|/h. This is a theorem of Steinberg [13, Cor. 4.2]. In Section 4 we
use (1.12) to prove a character formula. Let ¢ be the character of G
afforded by the representation of G on V. If g e G let k(g) be the dimen-
sion of the fixed point set of g. Then

(1.16) §G¢(g)tk(g’=l(l—1)(t+mx)~ o (tm_y).

This may be viewed as an analogue of the Shephard-Todd formula [12, Th.
5.3]

(1.17) 2 1O = +m)(t+m,)- - - (t+m).

§ 2. Arrangements and their restrictions

Let ¥ be Euclidean space with inner product (,) and let &/ = (o7, V)
be an arrangement. Let S=S(V*) be the symmetric algebra of V*. As
in the Introduction, choose for each H e o/ a linear form ay € V* with
ker(az)=H, let Q=] ge., s and let D(/) be the set of all § e Der (S)
suchthat Q e @S. Letx,, - - -, x, be a basis for *. Then S=R[x,, - - -, x,].
For 8, - - -, 0, e D(«/) define
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O/ Aﬁlzdet [0j(xi)]1si,j£l'

Then 8, A\ - - - A8, is independent of the choice of basis, up to multiplication
by a constant. The following theorem is due to K. Saito [11].

(2.1) Theorem. Suppose @, ---,8, e D(</). Then

(i) 6,N---N8, € 0S.

(i) Suppose 8, ---, 0, are homogeneous. Then {,, ---,0,} is a
basis for D(f) if and only if 0, /\ « - - N0, 50 and 3 '_ (deg§,+1)=|o/|.

In Saito’s paper the first assertion is proved in (1.5.iii) for the ring of
germs of holomorphic functions rather than the polynomial ring S but the
arguments in our case are almost the same. The second assertion is proved
in (1.11.i) of Saito’s paper.

We will use the following theorem in field theory [2, Ch. I, 11.4].

(2.2) Theorem. Let x,, ---,x, be indeterminates. Let f;, ---,f, €
R(x,, -+ +,x,). The extension R(x,, ---, x)/R(f}, - -+, f,) is algebraic if
and only if the Jacobian o(f,, - - -, f)/0(x,, - - -, x,) is not zero.

The inner product on V induces an inner product on FJ* which we
also denote by (,). Every R-linear map V*->S§ can be extended uniquely
to a derivation of S. Thus we can make the following two definitions (2.3)
and (2.4):

(2.3) Definition. Let x e V*. Define 8, ¢ Der(S) by 6,(»)=(x, »)
for any y e V*.

Note that the correspondence x—6, gives an R-linear map V*—
Der(S).

(2.4) Definition. Let fe S. Define ¢, ¢ Der(S) by 6(x)=6,(f) for
any x e V¥,

Then (2.4) is consistent with (2.3) when fe V'*. The group O(V)
acts naturally on V* and as a group of automorphisms of S.

(2.5) Lemma. Letge O(V). Then g0 p)=0,(g(p)) forall f,p
e S.

Proof. We begin by proving the special case

(26) g(ez(p))zﬁg(z)(g(p)) X € V*s P € S

Take x € V* arbitrarily and fix it. Consider the subset
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T={pe S|g0.(p)=0,u(g(p)}

of S.  We shall show T=S. Assume that p,ge T. Since 4, is a deriva-
tion of S and G acts as a group of automorphisms of S, direct computation
shows that

g0Ap+9)="0,.,(8(r+9),
and

80(p9))=0,0,(&(pq)):

forany ge G. Thus p+qge T and pge T. Therefore it suffices to show
V¥CT. LetpeV*. Then

2(0.(p)=g(x, p)=(g(x), g(P)) =0 4(g(P)).

This shows p e T and proves (2.6). A similar argument proves that it
suffices to show (2.5) when p e V*. Letp e V*. Then by (2.4) and (2.6)
we have

80P =800,/ N=0,(8(f) =0 (8(P))- O

(2.7) Proposition. Suppose there exist homogeneous polynomials
Ji oo+, fi e S such that

(i) 0,,eD() for 1<i<],

(ii) f, - -, f, are algebraically independent,

i) 2, (degfi—1)=|#|
Then o is free and {0, , - - -, 0,} is a basis for D(</).

Proof. Choose an orthonormal basis x,, - - -, x;, for V*. Then §,,
=0/dx; because ,,(x;)=(x;, X;)=0;;=0x,;/0x;. Let 6,=6,,. Then
ON - - N0, =det]f,(x)i<s, 5=
=det [‘9zj(fz')]1si, i<t
za(fla N '5fl)/a(x1> ) -xl)'

Since f;, - - -, f; are algebraically independent (2.2) shows thato(f;, - - -, f3)/
a(x;, - -+, x)#0 and thus 6, \--- A0,#0. Since degf,=degf,—2 the
assertion follows from (2.1.ii). O

The following proposition gives a useful criterion for an element to
lie in D(%).

(2.8) Proposition. Let § e Der(S). For 6 to be in D(s/) it is necessary
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and sufficient that 0(aey) € ayS for each H e of.

Proof. Let He o and write Q=a,Qy, where @, ¢ S. Sincefe
Der(S) we have 0(Q)=0(ex)Q y+ax0(Q). If 6(Q) e QS it follows, be-
cause QO and «aj are coprime, that f(a ;) € «,S. Conversely suppose that
Oay) € ayS for all He /. We may assume, arguing by induction on
Iggl that 0(Qx) € QuS. If Hay) € ayS then 0(Q)=0ax)Qr+and(Qy) €

. |

(2.9) Corollary. If BCZ .o, then D(B) 2 D(A).

Fix X e L(&{) and recall from (1.9) that we have deﬁned a restricted
arrangement /¥ in X.

(2.10) Definition. For X ¢ L(«/) define an arrangement
Ay={He A|XCH}CA.
(2.11) Definition. Let
I=IX)= > ayS

Hewx

be the ideal of S generated by the linear forms o, with H e of 4.

If we view S as the set of polynomial functions on ¥ then I is exactly
the subset of S whose elements vanish identically on X. Define the factor
ring S=S/I. Let z: S—S be the canonical projection. Usually we write
f instead of z(f) € S for f'e S. The dual space X* of X can be canonically
identified with the quotient space V*/IN V*=x(V*). Identify S with the
symmetric algebra of X'*.

(2.12) Lemma. i) For e D(</,), there is a unique element @ ¢
Der (S) such that the diagram

5258
ﬂl lﬂ.’
v § Y
S—>S
commutes. In other words, 0(f)=0(f) for all fe S. 1ii) If 0 € D(sZ), then
G e D(Z%).

Proof. i) By (2.8) we have f(ay) € ayS for all He of ; and thus
6(1)<1. This shows that there exists § ¢ Der(S) such that the diagram
commutes. The uniqueness is obvious.



468 P. Orlik, L. Soiomon and H. Terao

ii) Note that D(o/) = D( ) by (2.9). Thus 8 ¢ Der(S) is defined.
If He o and HN X e /¥ then HN X=ker(@y). Note that

0o ) =0(az) € n(axS)=ayS.
This shows that 4 ¢ D(s7%) by (2.8) applied to o/%. I

The derivation 8 is called the restriction of § ¢ D(«/x) to X. Note
that =0 or deg §=deg§ if 4 is homogeneous. To avoid an interruption
in the proof of the next lemma we make an elementary remark about
linear algebra. Since X is a subspace of V it inherits a positive definite
inner product, which in turn induces a positive definite inner product on
X*_ Let X°CV* be the annihilator of X and let (X°)* be its orthogonal
complement in ¥*. Then the restriction to (X°)L of the projection
m: V*—X* is an isometry

(2.13) g (X°)y=X*.
(2.14) Lemma. Let fe S and suppose 0, € D(of y). Then 8,=0;.

Proof. Note that (2.12.i) shows that 4, is defined. Since 4, and 6;
are derivations of S it suffices, in view of (2.13), to show that

(2.15) 0,(X)=64%) for xe (X°)*

If xe(X°)- and He o/, then a, € X° so 0, (wyg)=(x, ayz)=0. Thus
0, e D(sf5) so 0, is defined. By (2.12.i) and (2.4) we have ,(%)=6,(x)=
0,(f)=6,(f) and by (2.4) we have 6;(¥)=0,(f). Thus to prove (2.15) it
suffices to show that 6,=6, for x e (X°)*. Since 4, and 4, are deriva-
tions of S it suffices, in view of (2.13) to show that 4,(y)=0,(3) for all
x, ye (X°)t. Since the map ¢ in (2.13) is an isometry we have

0. (MN=0.(0)=(x, y)=(x, N=(%, )=0:(). O

(2.16) Proposition. Let .o/ be an arrangement and let X e L(/) with
dim X=k. Suppose there exist homogeneous polynomials f,, ---, f, €S
such that

(i) 6,,eD() for 1<i<k,

(ii) fi, -« -, fy are algebraically independent,

(i) 2. degf,—1=|*]
Then /% is free and {6,,, - - -, 6,,} is a basis for D(s/*).

Proof. Since 0,, e D(s/) we have 6, e D(s/¥) by (2.12.i)). Now
(2.14) shows §,,=8;, for 1<<i<k. The Proposition follows from (2.7)
applied with S in place of S. O
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§3. The restriction of a Coxeter arrangement to a hyperplane

Let GCO(V) be a finite reflection group and let .o/ =/(G) be the
corresponding Coxeter arrangement of reflecting hyperplanes. Let S¢
denote the ring of G-invariant polynomials.

(3.1) Proposition. Let fe S¢. Then 6, e D(<Z).
Proof. Recall that S¢Q is the set of anti-invariants of G:
S¢Q={fe S|g(f)=(degg)~'ffor all g e G}
by [1, Ch. 5, §5.4, Prop. 5(1)]. On the other hand,
8(0,(2)=0,,(8(2)=0(2(Q))=(det g) "' (Q)
for all g e G by (2.5). This shows 6,(Q) € S¢Q and thus §, e D(s7). [

Choose homogeneous basic invariants f,, - - -, f; € S with degf,< - - -
<degf,. Then S¢=R[f;, ---,f;] and m;=degf,—1 (=1, - - -, ) are the
exponents of G. The following theorem is due to K. Saito [10, 4.8].

(3.2) Theorem. Let s/ be a Coxeter arrangement. Then {0;,, - - -, 6, }
is a basis for D(sf). Thus < is free and deg (f)={m,, ----, m;}.

Proof. By [l,Ch.5,§5.4, Prop. 6.(ii)] we have >i_, m,=|.o/|. Apply
@.7). O

(3.3) Corollary. Let of be a Coxeter arrangement. Then
l
X, t)= gl(t—m,).

Proof. Apply (1.7) and (3.2). O

Choose a hyperplane H e o and hold it fixed. We want to apply
Proposition (2.16) to prove that the arrangement .77 is free in case (G, V)
is an irreducible group. For convenience we agree to choose the linear
forms ag, K e o so that (g, ax)=1. If X e L(«) define the fixer

3.4 Gy={g € G|g fixes all points of X}.
(3.6) Proposition. Let </ be a Coxeter arrangement. Then

| | =7+ 1=2 2. (o, )

Proof. If dim V=1 then /¥ is void and both sides of the formula
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equal 2. Next we prove the Proposition in case dim V=2 where | /% |=1
and the assertion is |/ |=2 3 xe., (ax, @x)®. In this case the group G is
dihedral of order 2m where m=|.o/|. Let R={+a,|Ke «}. We may
picture R as

X

and we [may assume that the a, for K- H lie in the upper half plane.
Then

23 (s =2 5 cost (kr/m)

k=0

=

= mZ—: (1+cos Qkx/m))

=0

=m=|L|.

This proves the assertion in case dim V'=2. Now suppose that dim V'>2.
Choose X ¢ &/7. Then #={KNX*|Ke o/} is a Coxeter arrangement
in the two-dimensional space X+, The corresponding group is, by [1, Ch.
5, §3.3, Prop. 2], the restriction of G to X+. Apply the two-dimensional
case to the arrangement (%, X1). If we identify (X1)* with X° as in
(2.13) this gives

(3.6) I%xl=2K§ (am, ax).

Write &/¥={X,, - - -, X} where n=|/#|. Let .«/,=./4, Then o/ =4,
U--- U, and &, N/ ,={H} for i#j. Thus

)= 3|7 ] (= D).

It follows from (3.6) that

n

2 > (am ax)'= 2, 2, Aam, ax)—2n—1)

Keo i=1Keuq
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= 3|t =2n—1)
=|of|~(n—1)
=\~ 7|41 =

(3.7) Theorem. Let GCO(V) be a finite irreducible reflection group.
Let h be the Coxeter number. Let of = /(G) and let He «f. Then

| |—|ALH|+1=h.
In particular | o/ ¥ | does not depend on H e of .

Proof. This follows at once from (3.5) and the known formula [I,
Ch. 5, §6.2, Th. 1, Cor.]

2 3 (ag, ax)=h.
Kew

Note that the summation in [1] is over a set of cardinality 2|.o/| and that
we have assumed (ay, ax)=1 for all Ke /. O

Recall the canonical projection z: S—S and the notation f=x=(f) e S
for fe S.

(3.8) Proposition. Ler G O(V) be a finite irreducible reflection group.

Let of =24 (G) and let He of. Then f,, -- -, f,_, are algebraically inde-
pendent.

Proof. Let x,, ---,x, be a basis for V* such that H=Xker x,. Let
E=RE®, -+, %)=R(%, ---,%,_) and let F=R(f, - -+, f;_). K. Saito

has shown [10, Lemma 3.1] that

O =cfi+0fi> - L[i- )T+ 8fo - fi)

where ¢ is a nonzero constant and 8, e R[f, -+, fi_ for i=1, - .., L
Since Q e x,S=Xker (z) we have

0=n(Q)=cfi+5,fi" '+ 43,

This shows that f; is algebraic over F.  On the other hand, E is algebraic
over F(f,) because R(x,, - - -, x,) is algebraic over R(f;, ---,f;). Since
E/F(f,) and F(f)/F are both algebraic, so is E/F. Since x,, - - -, X,_, are
algebraically independent it follows that f, ---, f;_, are algebraically
independent. |
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(3.9) Theorem. Let GC O(V) be a finite irreducible reflection group.
Let of = o/(G) be the Coxeter arrangement and let H € /. Then the deri-
vations 0,,, - - -, 0,,_, are a basis for D(4*). Thus /¥ is a free arrange-
ment and deg /7 ={m,, - - -, m,_,} the first I—1 exponents of G.

Proof. Apply (2.16). It is known [I, Ch. 5, §6.2] that A=m, 41
and that m,+ - - - +m,=|/|. It follows from (3.7) that | /% |=m,+ - - -
+m;_,. This shows that hypothesis (iii) of (2.16) is satisfied. Hypotheses
(1) and (ii) of (2.16) are satisfied in view of (3.1) and (3.8). O

(3.10) Corollary. x(&#, t)=[][izi(t—m,).

Proof. Apply (1.7) and (3.9). O

(3.11) Corollary. f, e agS+fiS+---+f,_1S.

Proof. Put f=f, for simplicity. It suffices to show that
fefiS+ - +fiS

in S=S/ayS. Note that, §, € D(=«/¥) by (2.12.ii) and (3.1). Since (3.9)
asserts that 4., - - -, 0, _, are a basis for D(«/*), we have

6,¢6,S+---+6,, .S
Choose an orthonormal basis x,, - - -, x, for ¥*. Recall from the proof
of (2.7) that 6,,=48/0x,. Define g=>_,x}e S. Using (2.4) we get
l l
0;(‘1)'—‘-;‘. 0f(x§)=2; x0,(x;)
4 l
=2 § x0.(f)=2 ; x,(9f /ox,)=2(degf)f.
Therefore we obtain

2(degf)f=0,(9)=0,q) € 0, @S+ ---+0,,_(@S
=f1S+”‘+ft-1§- O
The Coxeter complex is the simplicial complex I” cut out on the unit

sphere S'~'C ¥V by the hyperplanes in the arrangement ./ =./(G). The
following corollary of (3.10) is due to Steinberg [13, Cor. 4.2].

(3.12) Corollary. The number of | — 2 simplexes in the Coxeter complex
I" which lie in a hyperplane H e o/ is |G|/h.

Proof. f XeLlet 'y={cel'l¢=X}. Then ['y is a subcomplex
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of I’ of dimension k—1 where k=dim X. Let @ be the set of simplexes
of I'y of dimension k—1. It is shown in [7.19] that

(3.13) (= D*0x]= 2, (=D u(X, 1)

Since {Y e L|Y>X}=L(«/%), the characteristic polynomial of the re-
stricted arrangement /% is, from the definition (1.6),

(3.14) WX, )= 3 (X, V)=,

Y>XxX

Thus from (3.13) and (3.14) we have
(3.15) (=D Og|=A(L*, —1).
Now take X=H, k=1[—1 and apply (3.10) with t=—1. This gives

(3.16) (O4l=T] G+ 1.

The assertion tollows since |G|=[]!_,(m;+1) and h=m,+1 by [1, Ch. 5,
§6.2]. O

(3.17) Remark. If .o/ is a Coxeter arrangement of type A, or B,
then the hypotheses of (2.16) are satisfied for all X e L using basic invariants
fis ++ s fr where k=dim X. In this case (2.16) leads us to analogues of
(3.9)-(3.12) for all X ¢ L.

§4. A character formula

Let (G, V) be a finite reflection gfoup. Let .« = <7(G) be the Coxeter
arrangement and let L=L(s/). If ge G let Fix(g)={ve V|guv=v} and
let k(g)=dim Fix(g). If , ¢ are characters of G let

@.1) W ©) =ﬁz W(2)olg™)

be the usuval inner product of characters. If X e L let +, denote the restric-
tion of + to the subgroup G,. In particular, let 1, denote the principal
character of Gy. Without risk of confusion we also let (,) denote the
inner product of characters of Gy.

(4.2) Definition. If + is a character of G let

Sy= gzj_(.; (g .
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The following Proposition allows us to compute the sum S, in terms of
the characteristic polynomials X(.o/%, t) of restricted arrangements.

(4.3) Proposition. Let « be a character of G. Then
S,= 22 0(AE, 1) Gxl(Px, 15).
XeL
Proof. If Xe Llet Fy={ge G|Fix(g)=X}. Then

“4.4 Gy=\*J F, (disjoint), XelL.
YeL

Y<x

To see this note that if g € F;. where Y<<X then Y2 X so g fixes X and
thus g € Gy. On the other hand if g € G5 then Y=Fix(g) is a subspace
of V which includes X. It is known as [5, Lemma 4.4] that if F}, is non-
empty then Y e L(«). This proves (4.4). In particular, taking X= N ;.
Hwehave G= 4, Fy. If ge Fy then k(g)=dimY. Thus it follows
from the definition (4.2) that

(4.5 (Z VA6)

YeL g€

For X e L let
aX)= 2, W) pX)= 2, ¥(g)-
It follows from (4.4) that
BX)= %, a(Y)

YSX

and hence by the M&bius inversion formula [9, Prop. 3.2] that
357

Thus (4.5) gives
| s,

Il

a(Y)rtim ¥

(2;: (X, Y)X))r=*¥

Ye

5]

Ye

l*
I/\
~

X, D) T)5(X).

Xe

!
'
N

6
>

By (3.14) the inner sum is X(=/%, ¢) and by (4.1) we have
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BX)=|Gx|(¥x; 12). O

To apply (4.3) we must find characters + such that (Yrx, 1;)=0 for
most X e L so that the sum on the right involves few characteristic poly-
nomials X(o/%, t). As a first example we show that (3.3) and (4.3) yield
the Shephard-Todd formula [12, Prop. 5.3] for orthogonal reflection groups.

(4.6) Theorem (Shephard and Todd). Let GC O(V) be a finite re-
flection group. Then
2O =(t+my). - - (t4+my).

geG

Proof. 1If g € G let 5(g) be the determinant of g. Then §: G—R is
a character of G. Suppose Xe L and XV, Then XTH for some
H e o/ so G, contains a reflection s. Since §(s)= —1 it follows that §, =
14 and thus (64, 15)=0. Now (3.3) and (4.3) yield

@7 T o= 1)= 11 Ge=m.

Since g € O(V) we have

48 8(8)=(— 1)+

The theorem follows if we replace ¢ by —¢ in (4.7) and use (4.8). |

(4.9) Lemma. Let ¢ be the character of the natural representation of
G in V and let § be the determinant character. Let «»=3§p. Then

) if X=V
(frxs 1x)=11 if Xesf
0 otherwise.

Proof. Suppose Xe L. Let
Y={ve V|gv=4(g)v for all g e G4}.

Since (py, dx) is the multiplicity of 6, as an irreducible constituent of the
natural representation of Gy on V we have

dim Y=(0y, 6x) =z, 1)

where the second equality follows from (4.1). Suppose that XV and
(¥rx> 1x)# 0. Then dim Y=£0. We must prove that X € o/ and dim Y'=1.
Since X=£V it follows that .o/, is non-empty. Choose He o/ ;. Letse G
be the relection fixing H. Then se Gy and sv—ve Hi forall ve V. If
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v e Y then sv=4(s)v= —v and thus —2v=sv—v e H+. This proves that
YCHL. Butdim H1=1so Y=H" and dim Y=1. Furthermore H=Y1
is uniquely determined by X. This proves that |&/|=1. Since X is an
intersection of elements of .o/ we must have X e .«7. 1

(4.10) Theorem. Let GC O(V) be a finite irreducible reflection group.
Let ¢ be the character of the natural representation of G on V. Then

ggso(g)t“ﬂ:l(t—l)ﬁ (t+m).

Proof. Let »=45¢p. By (4.9) we have (ry, 1;)=0 unless X=1V or
X e of. Thus (4.3) gives

S*#=X(Ma t)[GVI(‘I/'V’ 1X)+H§€:MX('Q{H3 t)[ GHI(‘!"H’ lH)

We have |G, |=1, (Y, 1;,)=I, |Gz|=2 and (Yry, 15)=1 where the last
equality follows from (4.9). We know from (3.3) that 2(«Z, )= []¢.,(t—m,)
and from (3.10) that X(& %, t)=> 21 (t—m,). Thus

-1
Sy=(U(t—m)+2|/)) T (1—m).
But 2|/ |=Ih=1I(m,+1) by [1, Ch. V, §6.2]. Thus

-1
S el =1+ 1) T] (t—m).
g i=
The theorem follows if we replace ¢ by —¢ and use (4.8). [

(4.11) Remark. If G is a Coxeter group of type 4, or B, the poly-
nomials S, have integer roots for all irreducible characters 4. This was
proved by D. E. Littlewood and A. R. Richardson [3, p. 56] in the case
of A, and by V. F. Molchanov [4] and W. Ostertag [8] in the case of B,.
In both cases there is a pleasant formula for the roots of S, in terms of
Young diagrams.
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