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Isolated Q-Gorenstein Singularities of Dimension Three 

Shihoko Ishii 

Introduction 

Let (X, x) be a germ of an analytic space with isolated singularity at 
x. The symbol X will also denote a sufficiently small Stein neighbourhood 
of the germ (X, x). 

Using the plurigenera {Om}mEN, which where introduced by Watanabe 
[WI], we define an invariant "* for a singularity (X, x) as follows, 

IC* (X, x) = - 00, if om(X, x) = 0 for every mEN, and 

IC*(X, x) =s, if sup Ok(X, x) grows in order s as a function of m. 
k-;;'m 

For a normal isolated Q-Gorenstein singularity (X, x), IC*(X, x) turns 
out to be - 00, 0 or dim X ([WI]). In some sense, we may think of sin­
gularities (X, x) satisfying IC*(X, x) = - 00 as almost non-singular points. 
These singularities include canonical singularities. So it is natural for us 
to study singularities (X, x) with IC*(X, x) = O. Two dimensional normal 
Q-Gorenstein singularities with IC* =0 were completely determined by 
Watanabe ([WID and Tsunoda-Miyanishi ([T-MD independently. 

Higher dimensional isolated Gorenstein singularities with "* =0 were 
studied in [1]. Then, Watanabe extended this discussion to the case of 
isolated quasi-Gorenstein singularities ([W2]). 

In this paper, we will investigate higher-dimensional (espesially, 3-
dimensional, in detail) normal isolated Q-Gorenstein singularities with IC* =0. 

In Section 1, we summarize the notation, definitions and basic facts 
which will be used in this paper. 

In Section 2, we will show that, for a normal isolated Q-Gorenstein 
singularity (X, x) of dimension n>2, it is log-canonical if and only if 
IC*(X, x)<O. Moreover, it will be shown that the singularity (X, x) with 
IC*(X, x)<O satisfies the condition that the canonical map Hi(K, (!ix)-+ 
Hi(E, (!iE) is an isomorphism for every i>O, where f: g -+X is a good 
resolution of the singularity (X, x); i.e. f is a resolution with the divisor 
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E = f-I(x}red simple normal crossings (the singularity with this condition 
was named a Du Bois singularity by Steenbrink [S]). 

In Section 3, we introduce the concept "essential part" of the excep­
tional divisor of a good resolution and investigate the basic properties of 
the essential part. 

In Section 4, we will study minimal resolutions of higher dimensional 
Q-Gorenstein singularities. Of course, to define a minimal resolution, we 
have to allow some kinds of mild singularities on a resolved space ([R2]). 

In and after Section 5, we restrict our consideration to the three 
dimensional case. In Section 5, under a certain assumption, we study the 
configuration of essential part of a 3-dimen'sional normal Q-Gorenstein 
singularity with K* = O. The configurations which may occur in the essen­
tial part is listed in Table (1) at the last of Section 5. 

In Section 6, we construct a three-dimensional normal isolated Q­
Gorenstein singularity with K* =0 in each class listed in Table {I). 

§ Preliminaries 

Let (X, x) be a germ of normal isolated singularity of an analytic 
space of dimension n > 2. 

Definition 1.1. A resolution f: X ~X of the singularity is called a 
good resolution if the support of the inverse image of the singular point is 
a divisor with simple normal crossings on X. 

Definition 1.2. A singularity (X, x) is called a Gorenstein singularity 
if the local ring t2x ,:c is a Gorenstein ring. 

The following is well known. 

Proposition 1.3. For a singularity (X, x) of dimension n > 2, the follow­
ing conditions are equivalent: 

(1) The singularity (X, x) is a Gorenstein singularity, 
(2) the canonicalsheaf Wx is invertible at x and the local ring t2x ,x is 

a Cohen-Macaulay ring. 

We generalize the concept of Gorenstein singularity. 

Definition 1.4. A normal singularity (X, x) is called a Q-Gorenstein 
singularity if there eXists an integer r>O such that w:P=iiw~~eg) is 
invertible at x, where Kreg is the open subspace of X consisting of all non­
singular points and i: Xreg~X is the inclusion. For a Q-Gorenstein sin­
gularity (X, x), the minimal positive integer r such that w5P is invertible is 
called the index of (X, x). We frequently use the terminology "r-Gorenstein 
singularity" for a Q-Gorenstein singularity of index r. 
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Remark 1.5. A l-Gorenstein singularity is not Gorenstein! A 1-
Gorenstein singularity is called a quasi-Gorenstein singularity in [W2]. 

Definition 1.6. An r-Gorenstein singularity (X, x) is said to be 'a 
canonical (resp. terminal) singularity if the following condition is satisfied: 

For a good resolution f: X -+X of the singularity, we have in Div (X) 
®Q, 

(1) 

with ai>O (resp. ai>O) for all i, where Ei are the irreducible components 
of the exceptional divisor E. 

The singularity (X, x) is called a log-canonical (resp. log-terminal) 
singularity, if ai > -1 (resp. ai > -1) for all i in the equality (1). 

Proposition 1.7. Suppose cp: (Y, y)-+(X, x) is a proper morphism with 
X and Y normal varieties and cp is bale in codimension 1 on Y. 

Then 
(I) if (X, x) is canonical (resp. log-canonical, terminal, log-terminal), 

so is (Y, y) and 
(II) if(Y, y) is log-canonical (resp. log-terminal), so is (X, x). 

Proof This is an easy consequence of the logarithmic ramification 
formula (Lemma 1.6, [Ka2]). For later use, we present a proof here. 

Take a commutative diagram 

y~X 

gl 1f 
Y ----)ox 

'P 

with f and g good resolutions. Let DeY be an irreducible component of 
the exceptional divisor for g: Y -+ Y. 

First, assume ip(D) is a divisor on X. If we write down canonical 
divisors Ky and Kg as 

Ky =g* Ky +aD+(other terms) 

Kg = f* Kx+bip(D) +( other terms), 

then we have a=e(b+l)-I, where e is the ramification index of ip at D. 
Now, we have the following implications: a> -1~b> -1, a> -1~b> 
-1, b>O-+a>O and b>O-+a>O. 

Next, for the divisor D mapped to a lower dimensional subvariety by 
rp, we have a?-:. -1 (resp. a> -1), if X is log-canonical (resp. log-terminal) 
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by log. ramification formula. This completes the proof. 
For an r-Gorenstein singularity (X, x), by means of a local generator, 

we identify w::;J with (!) x, and define in the obvious wayan algebraic 
structure on A =(!) xEBw~PEB' .. EBW::;-lJ. The finite cyclic cover Y =SpecxA 
~X is called a canonical cover of X. Then, Y is a normal and I-Goren­
stein and the morphism is etale outside the singularity ([RID. By Proposi­
tion 1.7, some arguments on an r-Gorenstein singularity will be reduced to 
the case of I-Gorenstein. 

In the following, we fix a good resolution f: X ~X of the singularity 
(X, x). Denotef-l(x)red by E. 

Definition 1.8. For a normal isolated singularity (X, x), we define the 
plurigenera {Om}mEN by 

0m(X, x)=dimcr(X -{x}, (!)(mK))jL2Im(x -{x}), 

where Dlm(x - {x}) denotes the set of all Dim-integrable m-ple holomorphic 
n-forms on X -{x}. 

Proposition 1.9. (Watanabe [WI]). The plurigenus om(X, x) is repre­
sented as 

Om(X, x) = dimcr(X - E, (!)(mK))j reX, (!)(mK + (m -1 )E)). 

The following is proved in the same way as Theorem 1.13 an 
Example 1.14 of [WI]. 

Proposition 1.10 (Watanabe [WI]). For an r-Gorenstein singularity 
(X, x), either 

(I) 0m(X, x)=Ofor every mEN, 
(II) om(X, x)= I for m=O (mod r) and om(X, x)=O for m=t:O (mod 

r), or 
(III) orm(X, x) grows in order n as a function of m. 

We will close this section by a proposition about a Du Bois singularity. 
A Du Bois singularity is characterized as a singularity such that the natural 
maps (R1*(!)x)x~Hi(E, (!)E) are isomorphisms for all i >0. 

Proposition 1.11. Let (X, x) be a normal isolated singularity and let 
11:: Y ~ X be a finite Galois cover elale on X - {x} with Y normal. 

Then, Y is Du Bois, then so is eX, x). 

Proof Let S be the set of points of Y which correspond to x by 
the morphism 11:. Denote the Galois group by G. Take a commutative 
diagram, 
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_ it ..... 
Y~X 

gl If 
Y~X 

7C 

where f and g are good resolutions, G acts on Y, and the morphisms g and 
it are G-equivariant with the trivial action on X. Here, the existence of 
such a diagram follows from Theorem 5.3.1 of [H2]. Denote f- 1(x)red, 
g-l(S)red by E and Frespectively. Since Yis Du Bois, Rig*(!)y-==.Hi(F, (!)F) 
for i>O. So Rig*IF=O for i>O, where IF is the ideal sheaf of Fin (!)y. 
Then Rif*IE=(Rig*IF)G=O for i>O. This means that Rif*(!)x-==.Hi(E, (!)E) 
for i>O. 

§ 2. Log-canonical singularities 

In the following sections, (X, x) will denote a normal isolated r­
Gorenstein singularity of dimension n>2. We fix a good resolutionf: X~ 
X of the singularity (X, x). We denote f-l(x)red by E and decompose E 
into irreducible components Ei (i = 1,2, .. " s). 

Theorem 2.1. For a no;mal isolated r-Gorenstein singularity (X, x), the 
following equivalences hold; 

(i) the singularity (X, x) is log-canonical if and only if om(X, x)< 1 for 
every mEN, and 

(ii) the singularity (X, x) is log-terminal if and only if om(X, x)=O for 
everym E N. 

Proof Denote a canonical divisor by Kx=f*Kx+ L:~=lmiEi' in 
Q®Div(X). 

First assume m i > -1 for every i. Then, for a positive integer m 
which can be divided by r, we get 

f*(mKx)-E <mKx+(m-l)E. 

Therefore, 

(1) F(X, (!)(f*(mKx)-E))cF(X, (!)(mKx +(m-l)E)). 

On the other hand, 

(2) 

The equality (2) and the relation (1) yield the surjective map: 

F(X, (!)(f*(mKx»)/F(X, (!)(f*(mKx)-E)) 

~F(X-E, (!)(mKx))/F(X, (!)(mKx +(m-l)E)). 
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Here, note that the left hand side is contained in r(E, {!} E) ~ C by the exact 
sequence 

This means that om(X, x)<1 for every m which can be divided by r. Hence 
om(X, x)<1 for every meN. 

Next assume m i > -1 for every i. Then, 

f*(mKx)~mKg+(m-I)E 

for any m which can be devided by r. Therefore, T(X -E, (!}(mKg)) = 
rex, (!}(f*(mKx»)r;;;.r(X, (!}(mKg+(m-I)E)), which means that om(X, x) 
= 0 for any m which can be divided by r and, obviously for every meN. 

Conversely, assume that om(X, x)<1 for every meN. If orCX, x)=O, 
then orm(X, x)=O for every meN (Theorem 1.6 [WI]). In this case, we 
have r(X-E, {!}(rKg))=r(X, (!}(rKg+(r-I)E)). This means that any 
r-ple holomorphic n-form (j on X, f*(j has poles on E of order at most 
r-1. Therefore, mi "? -(r-I)/r >-l. 

If or(X, x)= 1, then ' 

rex -E, (!}(mrKg)) = <(jm>ffiT(X, (!}(mrKg+(mr-I)E)), 

where (j is a r-ple merom orphic n-form which is holomorphic on X-E. 
The r-ple merom orphic n-form (j must have poles of order r on E. In 
fact, for a holomorphic n-form g, (jm-Ig e T(X, (!}(mrKg+(mr-I)E)) for 
any m> 1. So g has zeros of order at least s(m-I)-mr+ I, where s is the 
order of poles of (J at E. Therefore s must be r. Now we have rmi > - r 
for any i and the equality holds for some i. This completes the proof. 

Definition 2.2. A Q-Gorenstein singularity (X, x) with 0m(X, x)< I 
for every meN and om(X, x) = 1 for some m is called a periodically elliptic 
singularity. In particular, a singularity (X, x) with om(X, x) = I for every 
meN is called a purely elliptic singularity. 

Note that a singularity is periodically elliptic if and only if it is log­
canonical and not log-terminal, by Theorem 2.1. For a periodically elliptic 
singularity (X, x) of index r, om(X, x)=O for m$O (mod r) and om(X, x) 
= 1 for m=O (mod r). 

Proposition 2.3 ([I)), [W2)). A I-Gorenstein singularity (X, x) is log­
canonical if and only if it is a Du Bois singularity. 

Proof If the singularity (X, x) is Gorenstein, the equivalence of 
"log-canonical" and "Du Bois" was proved in [I], and this was extended to 
the case of I-Goresntein in [W2]. 
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Theorem 2.4. If a normal isolated singularity (X, x) is log-canonical, 
then it is a Du Bois singularity. 

Proof Let IT: Y --+X be the canonical cover of (X, x). Then all 
singularities of Yare isolated I-Gorenstein and log-canonical by Proposi­
tion 1.7. Then Y is Du Bois by Proposition 2.3. Consequently, we ob­
serve that (X, x) is Du Bois by Proposition 1.11. 

Remark 2.5. For a general Q-Gorenstein singularity (X, x), the con­
verse of Theorem 2.4 does not hold. In fact, a rational two dimensional 
singularity is always Q-Gorenstein ([AI]) and Du Bois ([S]) , but there is a 
rational two-dimensional singularity which is not a log-canonical singu­
larity. 

§ 3. A good resolution of normal isolated Q-Gorenstein singularities of 
dimension n:2:: 2 

In this section, we consider the essential part of a good resolution of a 
normal isolated Q-Gorenstein singularity (X, x). First, we introduce the 
concept "essential part" of the exceptional divisor which, in fact, plays an 
essential role in the exceptional divisor. 

Definition 3.1. Let f: X --+X be a good resolution of a singularity 
(X, x). We denote f-\x)red by E and decompose E into irreducible 
components Ei (i = 1,2, ... , s). We write a canonical divisor of X in 
Q®Div(X) as 

where mi :2::0 for any i E I and mj>O for any j E J. We define the essential 
divisor of Kg to be the divisor L:JEJ [mj]Ej and denote it by EJ . We call 
the reduced divisor E Jred the essential part of E. A component of EJred is 
called an essential component of E. 

Remark 3.2. If a singularity (X, x) is log-terminal, the essential divi­
sor of Kg is empty. If a singularity (X, x) is periodically elliptic (i.e., log­
canonical but not log-terminal), then the essential divisor is reduced. 

The following is proved as Proposition 3.7 in [I]. 

Proposition 3.3. Let f: X --+X be a good resolution of a singularity 
(X, x), E J be the essential divisor of Kx. Then, 

(1) hn-l(D, (!)D)=Pg(X, x) for any integral divisor D with D>Eb 
(2) hn- 1(D, (!)D)=O for any effective divisor D which does not have a 

common component of EJ • 
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Lemma 3.4. Let (X, x) be an r-Gorenstein singularity with r> 1 and 
let 1L': Y -+X be the canonical covering. 

Then the set 1L'-I(x)red consists of only one point. 

Proof Take a point y e 1L'-I(x)red and the subgroup H of Z/(r) con­
sisting of the elements which fix the point y. Then the singularity (Y, y) is 
l-Gorenstein and (Y, y)/H = (X, x). Now, denote the morphism (Y, y)-+ 
(X, x) by 1L". Noting that 1L" is etale outside of x, we get 1L" *(1}(Ky) = (1}(Kx) 
®1L" *(1}y on X -{x}, which is isomorphic to 1L" *(1}y on X -{x} since (Y, y) 
is l-Gorenstein. Therefore, /\'«(1}(Kx)®1L"*(1}y)~/\'1L',*(1}y on X-{x}, 
where s is the order of H. By tensoring the invertible sheaf (/\ 81L" *(1}y)-1 
on the both sides of the equality, we have (1}(sKx)~(1}x on X -{x}. The 
definition of the index of Q-Gorenstein singularity yields that s must be r, 
which means H = Z/(r). 

Lemma 3.5. Let (X, x) be an r-Gorenstein singularity with r > 1. Take 
a commutative diagram 

where f and g are good resolutions, ft is the canonical covering. 
Then the essential part of g- I1L'-I(x)red is mapped generically finitely onto 

the essential part off-I(x)red by the morphism ft. 

Proof Let Et be an irreducible component of the exceptional divisor 
for f: X -+X and Ft be one of the irreducible components of the exceptional 
divisor forg: Y -+Ywhich correspond to Ei by ft. 

If we write down canonical divisors Ky and K% as follows; 

Ky =g*Ky + aFt + (other terms) 

K% =f*Kx+bEi + (other terms), 

then a< -1 if and only if b~ -1 by the proof of Proposition 1.7. This 
completes the proof. 

Proposition 3.6. Assume a singularity (X, x) is periodically elliptic. 
For a good resolution f: X -+X of the singularity (X, x), the essential part E J 

of E=f-I(x)red is connected. 

Proof First, consider the case where (X, x) is of index one. Then 
piX, x)=hn-I(EJ , (1}EJ) = 1. Therefore, we can apply the argument for the 
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proof of Corollary 3.9 of [I]. Consequently we find that EJ is connected. 
For a general r-Gorenstein singularity (X, x), take the canonical cover 

n: Y ---+X. Then, by the above argumertt, Lemma 3.4 and Lemma 3.5, we 
obtain that EJ is also connected. 

Proposition 3.7. Let (X, x) be a periodically elliptic singularity of index 
r. If r > 1 (resp, r = 1), a reduced effective divisor E' with E' <EJ (resp. 
E'<EJ ) satisfies Hn-'(E', (9E') =0. 

Proof For r >O,piX, x)=hn-'(EJ , (9E)=O. Therefore hn-'(E', (9E') 
=0 for E'<EJ • If r = 1, then 1 =piX, x»hn-1(E', (9E') for E' <EJ by 
Proposition 3.8 of [I]. This completes the proof. 

Lemma 3.8. Let n: cr, y)---+ (X, x) be afinite Galois covering of germs 
of periodically elliptic singularities with the Galois group G, which is etale 
outside the singularities. Let g: Y ---+ Y be a G-equivariant good resolution of 
the singularity (Y, y) with the essential part F. 

Assume the index r of the singularity (X, x) is greater than one. Then 
Hn-,(F, (9F)G=O. 

Proof Since Hn-l(F, (9F)=O for a periodically elliptic singularity 
(Y, y) of index greater than one (cf. Proposition 3.7), it is sufficient to show 
the assertion of the lemma for a purely elliptic singularity (Y, y). 

We may assume that the morphism g appears on the following com­
mutative diagram; 

where f and g are good resolutions, G acts on Y, and the morphisms g and 
it are G-equivariant with the trivial action on X. Denote the essential part 

off-'(x)red by E. Then the morphism nlF is decomposed as F ~FjG:!..E, 
where cp is a finite Galois covering and"", induces an isomorphism between 
Zariski open subsets FjG-D::::.E -So 

Then we have the exact sequence of Hodge structures; 

By taking Gr~, we obtain 
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Here, noting that E is a Du Bois variety, we have Gr~Hn-\E):::::: 

Hn-I(E, (!)E), which is zero because the singularity (X, x) is periodically 
elliptic of index r>1. On the other hand, Gr~Hn-I(S)=O, since S is 
a proper variety of dimension <n-1. Moreover, it is checked that 
Gr~Hn-I(D) also vanishes. In fact, Gr~Hn-1(D) is contained in Gr~Hn-1 
(SO-I(D» which is isomorphic to Hn-I(15, (!)jj), where 15 is the maximal 
reduced divisor contained in SO-leD). However, we know that Hn-I(15, (!)Jj) 
=0 since 15~F(cf. Proposition 3.7). 

Now, by the exact sequence (1), we get Gr~Hn-I(F/G)=O. 
Next, consider the commutative diagram; 

where p and pC are induced from natural morphisms Q.-+Q. from the 
stupid filtered De Rham complex to the Du Bois' filtered complex on FIG 
and F respectively. 

Here, we note that pG is an isomorphism since F is a Du Bois variety. 
Therefore p is injective. Consequently, we obtain Hn-I(F, (!)F)G=O as 
desired. 

In the rest of this section, we will define the types of periodically 
elliptic singularities. 

Let f: X -+X be a good resolution of a purely elliptic singularity 
(X, x), and let EJ be the essential divisor off 

Then, since EJ is a complete variety with simple normal crossings, 

n-l 

Hn-I(EJ' (!)EJ::::::Gr~Hn-I(EJ)=fB H~'~l(EJ)' 
i=O 

where Hf,;/(*) is the (i,j) component of Gr~jHm(*). Because the left 
hand side is a one-dimensional C-vector space, it must coincide with one 
of H~'~l(EJ) (i =0, 1, ... , n-l). 

Definition 3.9. A purely elliptic singularity (X, x) is of type (0, i) (i = 
0, 1,2, ... , n-l) if Hn-I(EJ' (!)EJ) consists of the (0, i)-Hodge-component. 
A periodically elliptic singularity (X, x) is called of type (0, i), if the purely 
elliptic singularity on the canonical cover of (X, x) is of type (0, i). 

Note that a purely elliptic singularity (X, x) is of type (0, i) if and only 
if Hn -l(f-l(x)red' (!) consists of the (0, i)-Hodge-component, since this is 
canonically isomorphic to Hn-I(EJ' (!)EJ. 

Here, we note that the type of a purely elliptic singularity (X, x) 
defined above is independent of the choice of a good resolutionf: X -+X 
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(Proposition 4.2, [I]). 

Theorem 3.10. For a periodically elliptic singularity (X, x) of type 
(0, 0), the index of (X, x) is either one or two. 

Proof Assuming the index r> 1, we will show that r must be two. 
For a periodically elliptic singularity (X, x) of type (0, 0) of index r > 1, 
take the canonical cover 7t": (Y, y)~(X, x). Let G= <A) be the Galois 
group of 7t". In what follows, we will use the same notation X, Y,/, g, ft, 

F, E, etc. as in the proof of Lemma 3.8. Denote the dual graph of F by r. 
Then an automorphism A on F induces an automorphism on Hn-l(r, Z). 

I 
Here, remember that Hn-l(r, C)= WoHn-l(F) and the right hand side is 
a one-dimensional C-vector space since the singularity (Y, y) is of type 
(0,0). Let a be a free generator of Hn-l(r, Z). Then, A(a) is either a or 
-a in Hn-l(F, (!}F). Now, by Lemma 3.8, A(a) must be -a, which means 
that the order r of G can be devided by 2. Therefore, the subgroup H = 
<A2) is a proper subgroup of G. Here, if H =1= <I), the quotient (Y', y') = 
(Y, y)/H is again a purely elliptic singularity by Lemma 3.8. Now, we 
have a cyclic covering h: (Y', y')~(X, x) etale outside the singularity with 
(Y', y') a purely elliptic singularity. Note that the degree of the morphism 
h is less than r. However, this is a contradiction to the definition of the 
index. 

§ 4. A minimal resolution of a Q-Gorenstein singularity 

Definition 4.1. A projective birational morphism g: Y ~X with Y­
g-l(X)~X_{x} from a normal variety Y is called a partial resolution of 
the singularity (X, x). A partial resolution g: Y ~X is called a minimal 
resolution of the singularity (X, x), if Y has only terminal singularities and 
Ky is relatively numerically effective with respect to g. For simplicity, we 
use "nef" instead of "numerically effective". 

Noting that a terminal singularity on a surface is a non-singular point, 
we see that a minimal resolution defined in 4.1 coincides with the well 
known one for a surface singularity. 

Proposition 4.2. Let g: Y ~X be a minimal resolution of a Q-Goren­
stein singularity (X, x) of dimension n>2. 

Then the inverse image g-l(X) is of pure codimension one. 
Moreover, if we denote g-l(x)red by L;:=l D i , a canonical divisor on Y is 

presented as Ky=g*Kx-L;~=lnjDj with nj';::::Ofor every i as Q-Cartier 
divisors. 

Proof As is well known, a projective birational morphism g: Y~X 
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is obtained by a blowing up of some ideal sheaf on X. Therefore, there 
are positive numbers m! (i = 1,2, ... , t) such that L = - L:~=1 miDi is 
relatively ample Cartier divisor with respect to g, where all Di (i = 1, ... , s) 
are the Weil divisors contained in g-I(X) and Di (i=s+l, ... , t) are not 
contained in g-I(X). Since Ky is relatively nef, Ky +aL (a>O, a E Q) is 
relatively nef. Here, we denote a canonical divisor Ky by g* Kx - L:~=1 nPi 
with ni E Q. 

If there exists a negative ni' let a be a positive integer -mini=l, ... ;s 
{ni/mi}. Then, we have 

where !3i=O for the j's such that ni/mi attain the minimal value, and !3i>O 
for the other i's. Here, we may assume the existence of i(1 <i <s) for 
which ni/mi does not attain -a, because, if not, we have ni= -ami>O 
for all i::::=1, ... , s. Consequently Ky+aL is not nef on some Di with 
!3i =0, which is a contradiction. 

Now we have only to show that g-l(x)red = L:f=l Di. Let C be a curve 
contained in an irreducible component of g-l(x)red of codimension >2. 
We can take a curve C snch that C is not contained in L:~=1 Di and 
intersects it. Then, KyC =(f*Kx - L:~=1 niDi)C<O, since ni>O for i = 
1,2, ... , s. Therefore, g-l(x)red must coincide with L:f=l Di. 

Proposition 4.3. Let g: Y -+X be a minimal resolution of purely elliptic 
singularity (X, x). 

Then Ky=g*Kx - L:f=lDi where Di are Wei! divisors with g-l(x)rejl= 

'L:f=l Di • 

Proof Since the index of the singularity (X, x) is one, all the coeffi­
cients ni of Ky =g* Ky - L:f=l niDi are integers. Noting that the singu­
larity (X, x) is log-canonical, ni = 0, 1, for i = 1, ... , s, by Proposition 
4.2. However ni = 0 leads a contradiction. 

Proposition 4.4. For a 3-dimensional singularity (X, x), there exists a 
minimal resolution of the singularity, if and only if there is a resolution f: X 
-+X such that the algebra r:JJm:?of*(!)(mKx) is finitely generated over (!) x. 

Proof First, assume that g: Y -+X is a minimal resolution. Then, by 
a relative version of Kawamata's theorem ([Kal]), the algebra tBg*(!)(mKy) 
is finitely generated over (!) x. Since Y has only terminal singularities, the 
algebra is isomorphic to tBf*(!)(mKx), where h: X-+Yis a resolution and 
f=gh. 

Next, conversely assume that the algebra tBf*(!)(mKx) is finitely 
generated over (!) x for a resolution f: X -+ X. Denote the variety 
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Proj «(£;f*(!}(mKg)) by Y and the canonical morphism Y--+X by g. Then Y 
has only canonical singularities and Ky is relatively ample Q-Cartier divisor 
with respect to g. Here, by M. Reid ([Rl]), there exists a partial resolu­
tion h: Y'--+Y such that Y' has only terminal singularities and Ky.=h*Ky 
as Q-Cartier divisors. Thus, we have a minimal resolution gh: Y' --+X of 
the singularity. 

Definition 4.5. A singularity (X, x) which has a resolution f: X--+X 
with finitely generated (!}x-algebra tBm~of*(!)(mKg) is called an f.g. singu­
larity. 

Remark 4.6. It is conjectured that every 3-dimensional Q-Gorenstein 
singularity is an f.g. singularity. Shepherd-Barron has shown that a 
singularity defined by a non-degenerate polynomial is an f.g. singularity 
([SB2]). 

Proposition 4.7. Let g: Y --+X be a minimal resolution of a purely 
elliptic fg. singularity (X, x) of dimension three. 

Then, the singularities of the divisor D=g-l(x)red is only normal cros­
sings except for finite points. 

Proof First, we note that every singularity of Y is isolated, since the 
singularities on Yare 3-dimensional and terminal·([R2]). 

Let C be a one dimensional irreducible component of the singular 
locus of D. Then D is a Cartier divisor on a non-singular 3-fold at a 
general point of C. Denote the multiplicity of D at a general point by m. 
Next, take the blowing up a: Y'--+Y at the center C, and represent a 
canonical divisor K y , as 

• 
Ky.=a*g*Kx - L: [Dt]-dDo, 

\=1 

where [D t ] is the proper transform of an irreducible component D t of D 
(i = 1, .. " s) and Do = a-1(C)red' Then, d must be m-l, because at a 
general point of C, a is considered as a blowing-up of a non-singular 3-fold 
with a non-singular curve as the center. Therefore, we have a good resolu­
tionf: X--+Xfactored through g·a with Kg=f*Kx-(m-l)[DJ-(other 
terms). Here, m must be <2 by Theorem 2.1, since (X, x) is purely elliptic. 

If D is not ordinary at a general point of C, then, by successive 
blowing-ups of Y with suitable curves as centers, we have a partial resolu­
tion g": Y"--+X factored through g with Kyu=g"Kx-Di -D~-D~­
(other terms), where Di, D~ and D~ are components of g"-l(x)red and inter­
sect at a curve C'. By passing through the blowing-up of Y" with center 
C', we get a good resolutionf: X--+Xwith Kg=f*Kx-dEi-(other terms) 
(d>2), which is a contradiction. 
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§ 5. Configurations of the essential parts of 3-dimensional periodically 
elliptic f.g. singularities 

In this section, we study the configuration of the essential part of a 
good resolution of 3-dimensional periodically elliptic f.g. singularities. It 
turns out to be a distinguished figure according to the type of the singu­
larity (cf. Definition 3.9). First, we mention the main results of this section. 

Theorem 5.1. Let f: X --..X be a good resolution of a purely elliptic fg. 
singularity (X, x) of dimension 3. 

Then the essential part EJ of E = f-I(x)red is as follows. 
(1) If(X, x) is of type (0,2), EJ is an irreducible surface birationally 

equivalent to a K3 or Abelian surface. 
(2) If (X, x) is of type (0, 1), EJ is either 

(2a) a chain of surfaces E1, E2, ••• , Es (s > 2) with rational surfaces 
E1, E, and elliptic ruled surfaces E2, ••• , ES - B where Ei and E i +1 intersect 
at an elliptic curve for i = I, ... , s-l, or 

(2b) a circle of elliptic ruled surfaces E1, E2, ••• , E" E'+I =E1 
(s:2.2), where Ei and Ei+1 intersect at each section for i = I, ... , s, and EJ 
has a ruling over an elliptic curve; i.e., there is a morphism p: EJ--..C to 
an elliptic curve C whose restriction on each component is the canonical 
projection of the ruled surface to the base curve. 

(3) If (X, x) is of type (0, 0), then EJ consists of rational surfaces with 
rational intersection curves and the dual graph of EJ is a two dimensional 
simplicial complex which is a triangulation of an image of a compact orien­
table real surface by a continuous map. 

Theorem 5.2. Let f: X--..X be a good resolution of 3-dimensional 
periodically elliptic fg. singularity (X, x) of index r> I. 

Then the essential part EJ of E = f-I(x)red is as follows. 
(1) If (X, x) is of type (0, 2), then either 

(la) EJ is an irreducible surface birationally equivalent to an 
Enriques surface or a bielliptic surface and the index r is 2, or 2, 3, 4, 6 

respectively, or 
(lb) EJ is either a ratinal surface or an elliptic ruled surface. 

(2) If (X, x) is of type (0, 1), then either 
(2a) the index r equals to 2, EJ is a chain of elliptic ruled surfaces 

(possibly with a rational surface at one end) and all double curves are 
elliptic, 

(2b) EJ is a chain of rational surfaces and all double curves are 
rational, or 

(2c) EJ is a circle of the rational surfaces and all double curves are 
rational. 
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(3) If (X, x) is of type (0, 0), then the index r turns out to be 2, E j 

consists of rational surfaces with rational intersection curves and the dual 
graph of E J is a triangulation of an image of the quotient of an orientable 
real surface by a reflection which does not preserve the orientation. 

To prove our theorems, we prepare basic lemmas. 

Lemma 5.3. Let S be a normal surface and ifJ: S --+S be a resolution 
of the singularities of S. 

Then, for an effective Wei! divisor C on X, the inverse image ifJ*C 
defined by Sakai ([Sa]) is again effective; i.e. ifJ*C=I::i=,a,C,+Co with 
ai>O at e Q, where {C'}'=I"",8 are the excpetional curves and Co is the 
proper transform of C. 

More precisely, if C passes through th2 singularities on S, then a, ~O 
for any i. 

Proof We will use the same notation as in [Sa]. First, denote the 
inverse image ifJ*C by I::L, atC, + Co. Next, decompose the integral 
divisor I::i=, [ailC, as 

8 

I:: [ai]Ci=C+-C-, 
i=l 

where C+ and C- are effective and have no common components. Then 
we have a relation of two integral divisors 

Therefore, we have the inclusions 

res, (D([ifJ*c]))~r(s, (D(Co+c+»~r(s-ti C,' (D(Co»). 
Here, the first term is isomorphic to reS, (DiC» by Theorem 2.1 of [Sa]. 
Noting that reS, (D(C»=reS-{singular points}, (D(C» by the normality 
of S, we get that res, (D(C» is isomorphic to res - I:: Ci, (D(Co»' There­
fore the inclusion l is the equality. This means that C- is a fixed com­
ponent of \ Co+ C+ \. But Co+ C+ and C- have no common components, 
which means C- =0. Thus, we have [ai]~O, so ai>O. However, a,=O 
does not occur, if C passes the point ifJ(Ei)' 

Lemma 5.4. Let g: Y --+X be a minimal resolution of a 3-dimensional 
purely elliptic fg. singularity (X, x). Let D=g-'(x)red' 

Then, D is a Gorenstein variety and (DD(KD)-::=.(DD' 

Proof By Proposition 4.3, Ky=g*Kx-D. Therefore, by the ad-
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junction formula, (!J D(KD) c:::. (!J D outside the singularities of Y. Here, we 
note that Y has only isolated singularities ([R2]). Then we have (!J D(KD) 
c:::.(!JD onD. 

Proposition 5.5. Let g: Y -+X be a minimal resolution of a 3-dimen­
sionalpurely ellipticfg. singularity (X, x) and let D be g-I(x)red' Let D= 
~~~l Di be the decomposition into irreducible components. 

Then, 
(i) if (X, x) is of type (0, 2), then D is an irreducible normal surface 

birational to either a K3- or Abelian surface, 
(ii) if (X, x) is of type (0,1), then either 

(iia) D is an irreducible normal surface birational to an elliptic 
ruled surface with two simple elliptic singularities, 

(iia') D is an irreducible normal rational surface with one simple 
elliptic singularity, or 

(iib) for every I-dimensional irreducible component C of the singular 
locus of D, a component of a-I(C) is birational to an elliptic curve, where a 
is the normalization of D, and every irreducible component of D is rational 
or elliptic ruled; 

More precisely, if an irreducible component Di of D is rational, for the 
double curve C of Don Di, ail(C) is irreducible, where ai is the normalization 
of Di. If an irreducible component Di of D is elliptic ruled, then for the 
double curve C of Don Di, either ail(C) is a union of two sections or aii(C) 
is a section and D has one simple elliptic singularity on Di, 

(iii) if (X, x) is of type (0, 0), then either 
(iiia) D is an irreducible normal rational surface with a cusp singu­

larity, or 
(iiib) every I-dimensional irreducible component of the singular locus 

of D is a rational curve and every irreducible component of D is a rational 
surface. 

Besides, every isolated singular point of D other than the ones mentioned 
above is at worst a rational double singularity. 

proof In the proof below, we use the notation; f: X-+X a good 

resolution with the essential part EJ , which is factored as X ~ y!!.o.x. 
First of all, assume that D admits only isolated singularities. Then, 

D must be irreducible and, therefore, normal by Serre's criteria ([EGA]). 
In fact, if D is decomposed as DI +Dz, then DI and Dz intersect at points. 
Therefore, Gr~HZ(D)c:::. EBi~I,2 Gr~HZ(Di)' So, one of Gr~H2(Di) must be 
non-zero, which yields that one of HZ(Ei' (!JE,) (i = 1,2) must be non-zero, 
where Ei is the proper transform of Di. This is a contradiction to Pro­
position 3.7. 
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For a normal Gorenstein surface D with trivial dualizing sheaf, we 
can apply a theorem of Umezu [U]. By her result, we get either that D is 
biratipnally equivalent to a K3- or Abelian surface with only rational 
double points as singularities or that D is birational to a ruled surface. 

In the former two cases, the singularity (X, x) will be of type (0,2). 
In fact, the essential part E J contains a birational K3- or Abelian surface. 
Here, by Proposition 3.7, EJ coincides with the surface and so H2(EJ' (!)EJ) 

consists of (0, 2)-Hodge-component. 
Now, we consider the latter case. We assume that D is birationally 

equivalent to a ruled surface of genus g. Denote the proper transform of 
D on X by Eo. Then the birational morphism hiE.: Eo-+D is factored 
through a minimal resolution ir: D-+D. Then Kjj = -.4, where .4~0 is 
exceptional by ir. Here, if g>2, by Umezu [U], the member of !-Kjjl is 
2C+(rulings) where C is a section. Let CI be the proper transform of C 
on Eo. Then, since CI is contracted to a point by h, we may assume that 
there exists an exceptional divisor EI on X such that ElnEo=CI. Now, 
by the adjunction formula, we have 

(5.5.1) Kx= -Eo-2EI + (other terms). 

This is a contradiction to the hypothesis of our proposition. Therefore g 
must be < 1. By the result of [U], D is as follows; 

(a) D is a rational surface with a cusp singularity and some (maybe 
no) rational double points, or 

({3) D is a rational surface with a simple elliptic singularity and some 
(maybe no) rational double points, or 

(r) D is birationally equivalent to an elliptic ruled surface with two 
simple elliptic singularities and some (maybe no) rational double points. 

Noting that Gr~H2(D) consists of the (0, 0) or (0, I)-Hodge-component 
in the case (a) or ({3) (r) respectively, we observe that the singularity (X, x) 
is of type (0, 0) or (0, 1) in the case (a) or ({3) (r) respectively. Now we get 
(iia), (iia') and (iiia). 

Next, assume that the singular locus of D has dimension one. Let C 
be a I-dimensional singular locus of D on an irreducible component Di of 
D. Take a normalization a: Di-+Di and then take the minimal resolution 
ir: Di-+D~ of Di. Then K D ,= -a-I(C): By Lemma 5.3 and the mini­
mality of ir, there is an effective member [a-I(C)]+Z in !-Kjjil, where Z 
is an effective divisor on Di supported on the exceptional sets of ir and 
[a-I(C)] is the proper transform of a-I(C) by ir. Therefore Di is a rational 
or elliptic ruled surface, because the genus g of Di>2 yields the representa­
tion (5.5.1) which is a contradiction .. Now, by [U] again, [a- 1(C)]+Z is 
either two disjoint sections of an elliptic ruled surface, an elliptic curve 
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on a rational surface or a circle of rational curves on a rational surface. 
Noting that an isolated singularity (D, p) is rational double if and only if 
1C*KD =K» ([Sa]), we have the last assertion of the proposition. Finally, 
(iib) and (iiib) can be easily shown by calculating the Hodge component of 
H 2(D, C). 

Proof of Theorem 5.1, (1). By Proposition 5.5, the assertion (1) of 
Theorem 5.1 is now obvious. 

Proof of Theorem 5.1, (2). First, we prepare a lemma. 

Lemma 5.6. For a purely elliptic fg. singularity (X, x) of type (0, 1), 
every double curve on the essential part EJ has positive genus and there is no 
triple point on EJ , 

Proof First, take any irreducible component E j of EJ and put EY = 
EJ-Ej • Then consider the exact sequence; 

... H1(Ej, @E,)(J)H1(EY, @Ev)----+HI(Ej n EY, @)----+H2{EJ , @E.r)----+O. 

Since H 2(EJ , @E.r) consists of the (0, I)-component, there are (0, I)-compo­
nent on HI(Ej n EY, 0). Therefore, E j n E'j contains at least one curve of 
positive genus. Note that this holds for any good resolution. 

Here, if I is a rational double curve on EJ , take the blowing-up a: X' 
-+X with center I. Then the divisor Eo=a-I(/) is an essential component 
of a-I of-I(x)red and the double curves of Ej in Eo are all rational, where 
Ej is the essential part of a-I 0 f-I(x)red' This is a contradiction to the 
fact mentioned above. 

If there exists a triple point p on EJ , take the blowing-up at p. Then 
we also have an essential component with only rational double curves on 
it. Q.E.D. of Lemma 5.6. 

Let (X, x) be a purely elliptic f.g. singularity of type (0, 1). To prove 
the theorem, it is sufficient to show the assertion for a good resolution 
f: X-+Xwhich factored through a minimal resolution g: Y-+X. 

Now, we will study in detail the configuration of D on a minimal 
resolution of a singularity (X, x) of type (0, 1). 

Since D is of normal crossings except for a set S of finite points, we 
can consider the dual graph r of D - S, which we call the generic dual 
graph of D. The generic dual graph r of D is connected, because, if not, 
there is a decomposition D=DI +D2, where DI and Dz intersect at points. 
This induces a contradiction in the same way as the proof of Proposition 
5.5; Remarking that KD;=( -D+Dt)ID;' where Di is a component of D, 
we can observe that r turns out to be either of followings; 
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(0) () : an elliptic ruled surface which intersects with itself at a 

section, 

(0') a circle of elliptic ruled surfaces with a section as a 

double curve. 
(e) 0: a surface described in (iia) or (iia'). 
(e') 0-: a rational surface with a double curve C such that O'-I(C) 

is an irreducible elliptic curve, where 0' is the normalization of D. 

(e") Z;-~~::· ·-~S (s>2): a chain of surfaces with elliptic intersec­

tion curves; each of DI and D2 is either an elliptic ruled surface with one 
simple elliptic singularity or a rational surface and D2, •• " D S _ I are all 
elliptic ruled surfaces. 

Again we note that every isolated singularity of D other than noted 
above is rational double. 

For the cases (0) and (0'), we have that the essential part EJ is a circle 
of elliptic ruled surfaces with a section as a double curve, by Lemma 5.6 
and the rational doubleness of isolated singularities in D. This provides 
us the first assertion of (2b) of Theorem 5.1. For the second assertion, we 
have only to remember that a circle of elliptic ruled surface EJ satisfies 
H2(EJ> l!JEJ)=C if and only if E J has a ruling over an elliptic curve. In 
what follows, we will show the cases (e), (e') and (e'') provide us (2a) of 
Theorem 5.1. 

Lemma 5.7. In the cases (e), (e') and (e"), for the essential part EJ> 
the vanishing HI(EJ> l!JE)=O holds. And a fortiori, the Hodge component 
HNEJ) =0. 

Proof First, we will show the vanishing Gr~HI(D)=O, where F is 
the Hodge filtration on HI(D, C). In fact, for case (e), the singularities of 
D are all Du Bois, then Gr~HI(D)c=.HI(D, (l)n)=O. The other cases are 
proved by Mayer-Vietoris exact sequence, which will be left to the reader. 

By Proposition 4.7, we have a resolution /': X'--+Ywith E'=f'-I o 

g-I(x)red of normal crossings (not necessarily simple normal crossings) and 
isomorphic outside a set S of finite points on Y. Denote the essential part 
of E' by Ej. Then, we have an exact sequence; 

Here the last term is zero, because each point of S is a terminal singularity 
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on Y. This yields H\E~, @E)=O. 
Now the vanishing H\EJ , @EJ)=O for the essential part of a good 

resolution factored through gf': X'-+X is not difficult, so we omit the 
proof. 

Lemma 5.S. For the case (e), (e') and (e"), the essential part EJ con­
tains the following configuration: 

(1) ···-0-··· Eo : Eo an elliptic ruled surface with the disjoint sections 

as double curves, or 

(2) ~o-···: Eo a rational surface with an elliptic curve as a double 

curve. 

Proof Immediate consequence from (e), (e') and (e"). 

Lemma 5.9. Assume HNEJ) =0 for a purely elliptic singularity (X, x). 
Denote a canonical divisor Kg by ~iEI miEi-EJ (mi~O). If Ei (i E J) 
intersects to a component of EJ at a curve of gneus g >0, then, mi must be 
zero. 

To prove the lemma we have to prepare two sublemmas. 

Sublemma 5.10. Assume H~l(EJ)=O. Put 

F1= M Ei' Fz= ~ Ei , 
iEI,Eir:r.Fl 

EinEJ contains 
pOSitive genus curves 

E i nFl contains 
positive genu!; curves 

Ft = ~ Ei • 
iEI,Eic:.FIU···UFt_l 

EinFt-l contains 
positive genus curves 

Then, for any component Ei of Fk (k= 1,2, ... , t) and an irreducible 
curve CiO in Ci=Ei n Fk_1 of genus >0, q(Ei)=g(CiO) and other components 
of Ci are all rational. 

Proof First, take any component El~~. Then we have an exact 
sequence induced from Mayer-Vietoris sequence; 

O~H~l(EJ+El)~H~l(EJ)EBH~l(EI)~H~l(Cl)~H~I(EJ+El) 
:::=H~I(EJ). 

By the surjectivity of cp, we get q(EI)=h~I(EI)~h~I(CI)= ~jg(Clj), where 
{Cli} are the components of Cl. Let ClO have positive genus. Then q(EI ) 

<g(CIO), because El is a ruled surface which appears on a resolution of a 
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terminal singularity. Therefore, q(E1)=g(CIO) and g(C1j)=O for j=l=O. 
Now we get the assertion for any component of p,.. To prove the sub­
lemma for F2, ... , Ft , note that cp is an isomorphism, so H~I(EJ+El)=O 
for any El <P,.. Take two components E1, E2 of FI with EI n E2=1=</J, and 
put C2=E2 n EJ. Then, on the exact sequence; 

by the surjectivity of cp', q(E2»g(C20)+h~I(ElnE2)' where C20 is the irre­
ducible curve of positive genus in C2. However, q(E2)=g(C20) yields that 
any component of El n E2 is rational and cp' is an isomorphism. Thus, we 
get H~I(EJ+EI+E2)=O. Inductively we have H~I(EJ+Fl)=O. Now, 
we stand on the same stage as we did on the first discussion about a com­
ponent of p,.. Therefore, we shall prove the assertion for F2, F3, ••• , Ft 

successively. 

Sublemma 5.11. Under the same assumption as 5.10. Let EI be a 
component of FI, C1 a curve of positive genus in EI n E J and Eo the component 
of E J with EI nEo=CI. Put GI=E1 , 

G2= .'E E i , G3= .'E E i , 
teI,E,,,,E, 

E in G1 contains 
positive genus curves 

iEI,EitX.GtUG2 
EtnG2 contains 

positive genus curves 

Gt = .'E Ei • 
iEI,E;<zG,U···UGt-, 

EtnGt-l contains 
positive genus curves 

Then, there exist a canonical surjective morphism 1t': G= .'E~~I Gk-+C" 
an open subspace U of X and a contraction; 

that is an isomorphism outside Gnu. 

Proof For any component Ei of Gk , the only one intersection curve 
of Ei and Gk _ 1 with positive genus is a section of ruled surface E j (Sublem­
rna 5.10). Therefore, there is a surjective morphism 1t'i: Ej-+Gk _ 1 cor­
responding to the intersection curve of positive genus. Now we get the 
first assertion. 
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Next, take an open subspace U of X such that un E, n G k -I is etale 
on C1 for any E, < G To and GnU does not intersect a divisor E - Eo - G. 

Since E is contracted to a point, there exist positive integers {n,heIUJ 
such that - L:'ErUJ n,E, 10 is ample on G. Therefore restricting it on G n 
u, -(L:E,s:O n,E,+noEo)lonu is relatively ample with respect to lr. Because 
Eolonu=C1lonu is a section on a ruled surface EI in U on a Stein space, 
its linear system is base point free. Then -Z= - L:E,s:O n,Etloou is 
relatively ample with respect to lr. On the other hand, we have lr*(T)z=(!Jc, 
which is proved in the same way as Proposition 4.2 of [SBI]. Hence, by 
[A2] and [HI], we have a contraction 

U II ) V 

i i 
GnU~Clnu, 

such that II is an isomorphism outisde Gnu. Q.E.D. of Sublemma 5.11. 

Proof of Lemma 5.9. Assume a component EI <E1 of non-essential 
part intersects to a component Eo<EJ at a curve of positive genus. By 
5.10 and 5.11, we have a contraction morphism ll. We will use the same 
notation as in 5.11. Let v be a general point of C1 n U in V and H n Va 
general hyperplane through v. Then H is a normal surface with a singu­
larity v and V is regarded as H X C1 in the neighbourhood of v. Let Ii be 
the proper transform of Hby ll. Then llln: Ii-7H is a resolution since 
U is regarded as lix CIon the neighbourhood of v. Now, denote a canoni­
cal divisor Kx by L:'E1m,E,-EJ with m,>O. Then KU=L:E,s;om,E,­
Eo with m,>O, and therefore Kv= -Eo. 

Cutting the two canonical divisors by hyperplanes H, Ii, we get Kn= 
L:E,s:om,E,-Eo and KH= ,-EoIH' because (!J(H)®(!JH~(!JH and (T)(Ii)®(!Jn 
~(!Jn. Denote Eiln by ei, then for i>l, e, is a configuration of rational 
curves {eil , e'2' ... , eiJ,} and in particular el is a rational curve. Then for 
a resolution ll'=lll11: Ii-7H of a surface singularity (H, v), we have KH= 
-eo and K11=L:mie,-[eO] with mi>O. Therefore, if we write K11= 
ll'* K H+ J:i,j nijeij, the coefficient nij of every exceptional curve eij must 
be strictly positive by Lemma 5.3. This means that the singularity (H, v) 
is a non-singular point. So, the morphism ll' is obtained by a successive 
blowing up at suitable points. Thus, on K11 = L: m,ei-[eO]' we get ml =0 
since el intersects [eo]. This completes the proof of Lemma 5.9. 

Now, we will turn to the proof of Theorem 5.1 (2a) in the case (e), (e') 
and (.0''). Consider the case that EJ contains a configuration (1) described 
in Lemma 5.8 (for the other case, we omit the proof, since it is shown 
similarly). 
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Since HI(EJ, @EJ)=O, we have HI(r EJ' C)=O, where r EJ is the dual 
graph of EJ • Therefore r EJ does not contain a circle. So E,/ is decom­
posed into two disjoint connected components E_ and E+, where, for a 
divisor D<EJ, DV means EJ-D. Put CI=EonE+ and C_I=EonE_. 
Then we know that they are disjoint elliptic curves on Eo. 

First, we study the configuration of E +. Denote by EI the component 
of E+ which intersects Eo at CI . Put E; =E_ + Eo, E[ =K +Eo+EI. 

We claim that HI(E+, @EJ=Hl(E;, @E~)=O. In fact, by the decom­
position EJ=E;+E+, we have the Mayer-Vietoris exact sequence; 

Then, HI(E;, @)=HI(E+, @)=O. 
Since EI is either the proper transform of a component of D or a 

component which appears on a resolution of a terminal singularity, EI is a 
ruled surface. Here, noting that EI contains an elliptic curve El n Eo, we 
get that EI is either rational or elliptic ruled. 

If El is rational, E[=EJ. In fact, we have an exact sequence; 

HI(E[, @E*}---+H1(E;, @)ffiH1(E1, @)~Hl(E; nE1, @) 
, II II II 

o 0 C 

~H2(El' @)~O. 

Then, H 2(E[, @)*O, which means E[ =EJ by Proposition 3.7. 
If EI is an elliptic ruled surface, then EI intersects to only one com­

ponent of EJ other than Eo at a section. In fact, let El intersects a divisor 
EJ-EO-E1 at C. Then by Lemma 5.6, C is a disjoint union of positive 
genus curves. If C is not a section, the curve Ei'IE,=C1 +Cintersects a 
generalrulingfatmorethan two points. Since KE'=~iElmiEi-Ei'IE" 
there must exist a component Ei with mi > 0, which intersects El and 
crosses the rulingf of E1• However, this is a contradiction to Lemma 5.9. 
Therefore, C must be a section. 

By the successive process we finally have a configuration of E+; EI, 
E2, ••• ,E., where Ei (i = 1, 2, .. " s - 1) are elliptic ruled, Es is rational 
and E i , E i +1 intersect at a section for i = 1, .. " s-1. In the same way, 
we have the similar discription of the configuration of E _. 

Proof of Theorem 5.1, (3). Let (X, x) be a purely elliptic singularity 
of type (0, 0). 
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Lemma 5.12. H~l(EJ)=O for a purely elliptic singularity (X, x) of 
type (0, 0). 

Proof We can easily check that H~l(D)=O by (iii) of Proposition 
5.5. By the same argument of Lemma 5:7, we have the assertion. 

Lemma 5.13. For each component E j of the essential part EJ, the 
double curves of EJ on Ejform some circles. 

Proof For an irreducible component E j of EJ, E j n E'j contains 
at least one circle of curves, where E'j =EJ - E}" In fact, on the exact 
sequence 

Hl(EJ' (2)---+Hl(Ej, (2)ffiH1(E'/, (2)---+Hl(Ej n E'j, (2) 

~H2(EJ' (2)---+0, 

the surjectivity of'P yields that H1(Ej n E'j, (2) contains a (0, O)-component, 
which means it contains at least one circle C of curves. If there is a com­
ponent Co in E j n E'j which is not contained in any circle of E j n E'j, take 
an irreducible component Eo < EJ such that Eo n E j = Co. Consider the 
diagram 

-+Hl(Ej, (2)ffiHl(E'j, (2)---+ H1(E j n E'j,(2) _~H2(EJ' (2)-+0, 

1 1, 1 
-+H1(Ej , (2) ---+Hl(Ej n (E'j -Eo), (2)-_!~H2(EJ-Eo, (2)-+0. 

ffiHl(E'j -Eo, (2) 

By taking the (0, O)-components of the diagram, we have 

Here, we may assume a is surjective. Because, if EJ has no triple 
point on Co, then by blowing up X at Co and taking the new exceptional 
component as Eo, we have H~O(Eon(E'j-Eo»=O, which induces {the 
cokernel of a} =0. If there is a triple point p of E J on Co, then by blowing 
up X at p and taking the new exceptional component as Eo, we have also 
H~(Eo n (E'j - Eo» =0. On the other hand, by the definition of Eo, fi is 
bijective. Therefore, by "snake lemma", r is injective, which is a contradic­
tion to Proposition 3.7. Q.E.D. of Lemma 5.13. 
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By the above lemma, the dual graph r of EJ is 2-dimensional sim­
plicial complex without a boundary. 

Here, since (X, x) is of type (0,0), C=::: H2(EJ> (!}EJ) =::: HgO(EJ) =::: 
H 2(r, C), which means that r contains a two dimensional simplicial 
complex which triangulates an image of a compact orientable real surface 
by a continuous map. Now by Proposition 3.7, r must coincide with the 
image complex. Therefore the assertion about the dual graph r in (3) of 
5.1 follows. 

Now, we will show that every component E j of E J is rational and all 
intersection curves are rational. Since an irreducible component E j is 
either the proper transform of a component of D or a component of a 
resolution of a terminal singularity, E j is ruled. By Lemma 5.13, the 
intersection curves form a circle of curves, so it contains a (multi-) section 
of a ruled surface E j • Therefore, it is sufficient to show that any intersec­
tion curves of EJ are rational. 

Suppose E J has a double curve CI with genus g(CI»O on a com­
ponent EI • By Lemma 5.12, we can apply Lemma 5.9 to our case. Then, 
by adjunction formula, either 

(i) EI is a ruled surface of irregularity g(CI), EI n E'( consists of a 
section CI another section C~ and some rational curves, or 

(ii) EI is a ruled surface of irregularity q :::;;;g( C1), EI n E'( consists of 
a double section and some rational curves. 

Therefore, E J contains a configuration E' which is either, 
(a) a chain of ruled surfaces EI, .. " E, of positive irregularity, EI 

and E2 (also E,_I and Es) intersect at a double section of EI (of E8 ) Ei and 
Ei + 1 (1 <i <s-l) intersect at a section of E i , or 

(b) a circle of ruled surfaces of the positive common irregularity 
whose intersection curve is a section of each component. 

Since E' cannot be contracted to a curve on Y by (iii) of Proposition 
5.5, E' is contracted to a terminal singularity. But a good resolution of a 
terminal singularity does not contain such configurations. 

Now we will turn to the consideration of the case index r> 1. 
Let (X, x) be a periodically elliptic f.g. singularity of index r >0 and 

(XI> XI) the canonical cover of (X, x). For the convenience, we fix a 
diagram; 

_ IT _ 

XI-----+X 

g 1 If 
x1-----+x 

'JT; 

where f and g are good resolutions with the essential parts EJ and E~ 
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respectively, G acts on Xl and g, it are G-equivariant morphisms with the 
trivial action on X. 

Proof of Theorem 5.2 (1). If (X, x) is of type (0,2), the essential part 
EJ is an image of generically finite morphism it[E:r: E~---,>-EJ from the 
essential part E~ for a good resolution g of (Xl' Xl). Since E~ is irreducible 
and birational to either a K3- or Abelian surface, E J is also irreducible 
and birational to either an Enriques, a bielliptic, an elliptic ruled or a 
rational surface. 

When E J is either an Enriques surface or a bielliptic surface, the 
index r turns out to be 2 or 2, 3, 4, 6 respectively. In fact, consider the 
case of an Enriques surface (the other case is proved in a similar way, so it 
will be omitted). First, we note that morphism 

Yl=Proj EB g*(!)(mKxJ~Xl 
m2::0 

admits an action of G which is compatible with the action of G on Xl. 
Denote h-l(xl)red by D', and D'/G by D. In our case, D' has only rational 
double points as singularities and the minimal resolution is a minimal K3-
surface. On the other hand, D is birational equivalent to an Enriques 
surface with only quotient singularities. 

Claim that (!)(KD,) = (!) D' and (!)(2KD) = (!) D. The first assertion is trivial. 
For the second claim, let a: i5---,>-D be the minimal resolution of the singu­
larities of D, then Kj)=a*KD-I1 in Q0Div(i5), where 11"2.0. Since i5 is 
obtained by blowing-ups from the Enriques surface, [2Kj) [ has an effective 
member. Therefore, we may regard a*(2KD) as an effective Q-divisor, 
and, by [Sa], (!)(2KD)=a*(!)j)([a*2KDD. The right hand side contains (!)D' 
so 2KD is trivial or [2KD[ has an effective member. If [2KD[ has an effective 
member, by the ramification formula for the restricted morphism h [D': D'---'>­
D, [2KD,[ has an effective member, which is a contradiction to (!)(KD,) = (!)D'· 
Thus we obtain (!)(2KD)=(!)D. 

From this and the ramification formula, the morphism h [D' is etale. 
Since (h In) * K D = (!) D', the morphism h [D' is factored through the etale 
double covering h': Do---,>-D corresponding to the invertible sheaf (!)(KD) of 
order 2. Now we have a subgroup H of G such that D'/H=Do. Noting 
that (!)(KDo) = (!)(h'*KD)= (!)D' we have H2(D', (!)D,)H = H2(Do' (!)D,) * 0. 
Therefore the singularity of Xl/His of index 1 by Lemma 3.8. Thus H must 
be < 1 > by the definition of the index of (X, x). This yields that r =2. 

Proof of Theorem 5.2. (2). Let (X, x) be of type (0, 1) with index r > 1. 
First, claim that EJ is a chain or circle of surfaces whose components 

are elliptic ruled or rational, and double curves are elliptic or rational. 
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By (2) of Theorem 5.1, any component of EJ is rational or elliptic 
ruled and any intersection curve is rational or elliptic. Since an element of 
G induces an automorphism of the dual graph r E'.J of E~, the quotient 
E~/G is either a circle or a chain of normal surfaces. On the other hand, 
EJ has no triple point. In fact, if EJ has components EI> E2, E3 with 
EI n E2 n E3=1=9' then there must be a connected configuration D in E~/G 
which intersects [EI], [E2] and [E3] , where [Ei ] is the proper transform of 
Ei by the canonical morphism t: E~/G-+EJ' This is a contradiction to 
the configuration of E~/G. Considering that t is an isomorphism between 
an open subset of E~/G and an open dense subset on EJ> EJ is a chain or 
a circle of surfaces which are rational or elliptic ruled. Here, we note that 
E J does not contain the configuration noted in (2) of Theorem 5.1. In 
fact, if E J contains the configuration E' noted in (2) of Theorem 5.1, then 
H2(E', dJE,)=C, which is a contradiction to Proposition 3.7. 

Lemma 5.14. Let E j be a rational component of EJ which intersects to 
two other components of E J • Assume that there exists an elliptic ruled 
component E~ of E~ which is mapped onto E j • 

Then, E j intersects the other components of E at rational curves. 

Proof Let C be a double curve of E J which lies on E j • Then, there 
is a double curve C of E~ which lies on E~ and is mapped onto C. Let H 
be the subgroup of G which fixes a component E~. Then H fixes each 
double curve of E~ on E~, by the assumption on E j • Since C is a section 
of an elliptic ruled surface E~, there exists an H-equivariant isomorphism 
HI(C, dJ{!):::: HI(E~, dJE). By the definition of E~, E~/H is a rational 
surface. Therefore, HI(C, dJ{!Y' = Hl(E~, dJE)H = O. Considering that 
Hl(C, dJC)=H1(C, dJc)H, we get that C is a rational curve. 

Now we are going to establish the assertions (2a) (2b) and (2c) in 
Theorem 5.2. 

First, assume that EJ is a circle of components. Then E~ is a circle 
of elliptic ruled surfaces noted in (2b) of Theorem 5.1. If EJ contains an 
elliptic ruled component E j , then E j must intersect the other components 
of E J at elliptic curves. Therefore, by Lemma 5.14, there is no rational 
component in E J • Now E J is a circle of elliptic ruled surfaces with elliptic 
curves as double curves. Moreover EJ has a ruling of an elliptic curve 
C/G where p: E~-+C is a projection noted in (2b) of Theorem 5.1. In 
fact, any automorphism on E~ maps a ruling of E~ to a ruling of E~. 
Here, we have a compatible action of G on C, and induced morphism E J 

-+C/G determines a ruling on EJ. However, the ruling of EJ over an 
elliptic curve implies H2(EJ' dJ E) = C, which is a contradiction by Pro­
position 3.7. Consequently, in this case, the circle E J consists of rational 



192 S. Ishii 

components and double curves are all rational. 
Next, assume that EJ is a chain of components. To determine the 

configuration of EJ , we will divide it into three cases. 
Case 1. EJ consists of rational components. 
If EJ has an elliptic double curve, then EJ contains a configuration 

(2a) of Theorem 5.1. Therefore, double curves of EJ are all rational. 
Case 2. EJ consists of elliptic ruled components. Obviously, double 

curves of EJ are all elliptic. The assertion about the index r of the singu­
larity (X, x) is shown as follows. 

Since the components of EJ are all elliptic ruled, E~ is a circle of 
elliptic ruled surfaces noted in (2b) of Theorem 5.1. Then, a generator a 
of G does not preserve the orientation of the dual graph r EJ' Let H be 
the subgroup of G generated by aZ• Then, H preserve the orientation of 
r E J' Considering that EJ consists of elliptic ruled component, E~/H is a 
circle of elliptic ruled surfaces. Therefore, HZ(E~, (lJE)H =C which implies 
H = «2) = 1 by Lemma 3.8 

Case 3. EJ contains both of rational and elliptic ruled components. 
Noting that an elliptic ruled component intersects the other com­

ponents at elliptic curves, EJ consists of elliptic ruled surfaces with rational 
surfaces at edges and all double curves are elliptic, by Lemma 5.14. 
However, the configuration with rational components at both edges is just 
the same as (2a) of Theorem 5.1. Therefore EJ contains only one rational 
component at an edge. Now, we will consider the index r of the singularity. 
In this case, E~ is (2a) of Theorem 5.1. Two rational components of E~ 
are mapped to the rational component of EJ • So a generator a of G 
induces the reflection of r EJ at a center of the chain. Then the subgroup 
H = <aZ) fixes all components of E~. Considering that all components 
except for one edge are elliptic ruled surfaces, E~/H is a chain of elliptic 
surface with rational surfaces at both edges and all double curves are 
elliptic. Therefore, HZ(E;, (lJEJ)H =C which implies <aZ) = 1 by Lemma 
3.8. Hence the index r is 2. 

Proof of Theorem 5.2, (3). Let (X, x) be of type (0, 0) of index r > l. 
Then the equality /' =2 follows immediately from Theorem 3.10. By (3) 
of Theorem 5.1, all components and all intersection curves are rational. 
The shape of the dual graph r EJ of EJ follows from the consideration of 
the quotient of a compact orientable real surface by an involution which 
does not preserve the orientation. 

§ 6. Constructions of periodically elliptic singularities 

The aim of this section is to construct examples of periodically elliptic 
singularities in each class (I) -(XIX) of Table (1). 
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Table of periodically elliptic singularities (Table (1» 

a K3-surface 1 0 1 Gorenstein I 
0, 2 

an Abelan surface 1 2 1 not II Gorenstein 

(2a) in 5.1 1 0 1 I Gorenstein III 
0, 1 

(2b) in 5.1 1 2 1 not IV 5.1 Gorenstein 
triangulation of an 
image of S2 I 0 1 Gorenstein V 
........ 

1 2 1 not VI 0, 0 of SlXS1 Gorenstein 
........ 

not of compact orien- 1 2g 1 Gorenstein VII 
table of genus g>1 

an Enriques s.uface 2 0 0 rational VIII 

a bielliptic suface 2,3,4 1 0 not IX 
0, 2 or 6 rational 

a rational surface >1 0 0 rational X 
an elliptic ruled >1 1 0 not XI surface rational 
a chain of elliptic 2 1 0 not XII ruled surfaces rational 
a chain of elliptic 
ruled surfaces with 2 0 0 rational XIII rational surface at 0, 1 one end 5.2 
(2b) in 5.2 >1 0 0 rational XIV 

--~ 

not (2c) in 5.2 >1 1 0 rational XV 
triangulation of an 2 0 0 rational XVI image of RP2 
........ 

2 1 0 not XVII of Klein bottle rational 
0, 0 ........ 

of compact non- 2 g 0 not XVIII orient able surface rational 
of genus g>I 

the others in 5.2, (3) 2 I 
;;:::0 0 rational or XIX not 

First, we quote the following theorem of Persson and Kulikov. 

Theorem 6.1 (Persson [P], Kulikov [K] Friedman-Morrison [F-M]). 
Let 1t': Z~L1 be a semi-stable degeneration of projective surfaces with 

mKz =0, such that the special fiber Zo is projective. (The least such m is 
necessarily 1,2,3,4, or 6) Then either 

I) Zo is smooth; 
II) Zo is a circle of elliptic ruled components, or a chain of elliptic 
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ruled components (possibly with rational surfaces at one or both ends of 
the chain), and all double curves are smooth elliptic curves; or 

III) Zo consists of rational surfaces meeting along rational curves 
which form a circle on each component. If r is the dual graph of zo, then 
r is a triangulation of S2, Rp2, Sl X Sl, or the Klein bottle. 

Theorem 6.2. Let n: Z-+,d be a degeneration of surfaces in Theorem 
6.1 with the specialjiber ZOo 

Then there exist a periodically elliptic singularity (X, x) and a minimal 
resolution g: Y -+X with g-l(x)red~Zo' 

Proof The singularity and its resolution can be constructed as in 
Theorem 5.2 of [I]. 

Let C be a very ample divisor on Zo which is non-singular on each 
irreducible component of Zo and intersects to the double curves normally. 
Let h: Y -+Z be the blowing up with the center C. Denote the proper 
transform of Zo by E. Then the restriction h': E-+Zo of h is an isomor­
phism, since h' is the blowing up by a Cartier divisor C on E. By the 
isomorphism h', N E/y is isomorphic to Nzo/z@{f)zo(-C)={f)zo(-C) which 
is negative by the definition of C. So the divisor E is exceptional in Y. 
Let (X, x) be the singularity obtained by contracting E in Y. We claim 
that the singularity (X, x) is periodically elliptic. In fact, by the definition 
of C, Yhas only isolated rational singularities locally defined by X 1X 2-XaX 4 

in C 4 which are terminal. On the other hand, Ky = - E in Q @ Div (Y). 
This means that (X, x) is Q-Gorenstein and log-canonical and not log­
terminal; i.e. periodically elliptic. Since Ky@{f)E={f)E(-E) is ample on 
E, Ky is relatively nef with respect to the contraction morphism g: Y -+X. 
Now, we find that g is a minimal resolution of a periodically elliptic singu­
larity (X, x). 

Remark 6.3. Now, by Theorem 6.2, we have periodically elliptic 
singularities I, II, III, IV, V, VI, VIII, IX, XII, XIII, XVI, XVII in Table 
(1). 

Examples of VII and XVIII can be constructed by Tsuchihashi's meth­
od ([T]). 

Next, we will construct examples of the other classes. 

Example 6.4 (class X and XI). Let S be a rational or elliptic ruled 
surface with an exceptional set C such that the contraction g: S-+S' of C 
is in the category of porjective varieties. Assume Ks=((1-r)jr)C (r>2). 
For example, let r be 2 (or 4) and C1 be a union of 6-lines of general 
positions. (or 4, respectively) on p2, and S be the blowing-up of p 2 at the 
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double points. Let C be the proper transform of CI in S. Then Sand C 
satisfy the above conditions. 

For another example, let r be 3 and CI be a union of suitable 3-
sections on a elliptic ruled surface R of degree 2, S be the blowing up of 
R at CI n C2 where C2 is a ruling. Let C be the proper transform of CIon 
S. Then Sand C satisfy our conditions too. 

In the product SXPl, denote the divisor Sx{a} (a E PI) by Sa. 
Then, 

for distinct ai E pi (i =0, 1,2, .. " r). 
On the other hand, take an ample divisor C' on S' which does not 

pass the singular points g(C). Put C" =g*C' in Sa. Now, let Y be the 
o 

blowing up of S X pI at C" U {(ULI Sai) n (C X PI)} and Eo and EI be the 
proper transform on Y of Sao' C Xp l respectively. Then the normal 
bundle of Eo+EI is negative and in a neighbourhood of Eo+EI' we have 

r-l 
K y = -Eo-----EI· 

r 

Therefore, the singularity (X, x) obtained by contracting Eo+EI is a 
periodically elliptic singularity with one rational (or elliptic ruled) essential 
component (X, XI in Table (1)). 

Example 6.5 (class XIX). Let Eo be the sum of two general hyper­
planes in P 3, and Hi be general hyperplanes for i = 1,2, .. ,,4 such that 
L:i=1 Hi + Eo is of normal crossings. Then, in Q®Div (P3), 

4 

Kps= -Eo-l/2 L: Hi' 
i=l 

Let p: Y -+P 3 be the successive blowing up at the intersections of two 
[Hi]'s, where [Hi] means the proper transform of Hi on each stage. Here, 
on Y, the proper transforms [Hi]'s are disjoint each other and 

4 

K y = -[Eo]-1/2 L: [HJ 
i=l 

Let L be a very ample divisor on Y such that L+[Eo] are simple 
normal crossings. Take the blowing-up ql: YI-+Y of Yat Lo=[Eo]nL. 
Next taking the blowing-up q2: Y2-+YI of YI at Ui=1 [Hi] n [Eo], we get 

4 4 

K y2 = -[Eo]-1/2 L: [Hi]-1/2 L: E i , 
i=l i=l 
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where Ei is the exceptional divisor on Y2 mapped onto [Eo] n lHi]c YI • 

Last, take the blowing-up q3: Y3-* Y2 of Yz at Ui~l (lHi] n Ei)' Con­
sequently, by the similar argument to Theorem 6.2, Y3 has at worst isolated 
cDV singularities, the normal bundle NCEoYY. are negative and 

4 

K y .= -[Eo]- 1/2 L:: ([Hi] + [EiD 
i=l 

Noting that (U [HiD n (U:~l [EiD =<jJ, we have 

4 

(1) Ku= -[Eo]-1/2 L:: [Ei] 
i=l 

on a neighbourhood U C Y3 of U:~o [Ei]' 
Now, we will show that (U, L::i~o [EiD gives a partial good resolution 

of a periodically elliptic singularity (X, x) in the class XIV of Table (1). 
We can easily check that there is a morphism /': U-*Z which contracts 
the divisor L::t~l [Ei ] to a curve in Z isomorphic to Ui~l [Ei] n [Eo]. Then, 

4 

NCEoJI z ~ N[EoJIU + 1/2 L:: [Ei] ICEoJ 
i=l 

which is negative. Therefore [Eo] is contractible in Z to a singular point 
(X, x). By (1) and the definition of Eo. (X, x) is a periodicaIly elliptic 
singularity in the class XIV. 

Example 6.6 (class XIV). Let C' be the sum of three general lines in 
P2. Take a blowing-up b: S-*P2 at sufficiently many general points on 
C' so that Nels is negative, where C is the proper transform of C'. Let Y 
be the product Sx pl. Denote the divisors C XPI and Sx {a} (a E Pi) on 
Y by Eo and Sa respectively. Fix distinct 4-points ai' .. " a4 E PI. Then, 

4 

Ky = -Eo-l/2 L:: Sa,. 
i=l 

Now, take the blowing-up, Y I -* Yat curves U (Sa, n Eo) and Uj~l (Sbj n Eo) 
for sufficiently many general points b j E pl. Then, 

4 

K Y1 = -[Eo] - 1/2 L:: ([Sa.] + Ei ), 
i=l 

where Ei is the exceptional divisor which is mapped onto Sa, n Eo. Next, 
again take the blowing up Y2-* YI at ([S a.1 n Ei)' Consequently, Y2 has at 
worst isolated cD V points as singularities and 
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Noting that (U [Sai)) n (U [Ei]}=~' we have 

4 

(2) Ku= -[Eo]-1/2 I: [Ei]' 
i==l 

on a neighbourhood U of U:=o lEt]. We can show that the divisor 
I:t=o [Ei] is contractible to a singular point in the similar way to Example 
6.5. By the above representation of a canonical divisor Ku and the defi­
nition of Eo, the singularity belongs to the class XV. 

Note that the singularity constructed above has index 2. We remark 
that the similar construction give us a singularity in the class XV which 
has index 3. 

Example 6.7 (class XIX). Let Eo be the sum of three general hyper­
planes in ps, and H t • Hz be two general hyperplanes. Then, Kps= -Eo-
1/2(Ht +Hz}. Take a suitable blowing up y~p3 and an open subset U 
of Y similarly to Example 6.5. Then U is a partial good resolution of a 
periodically elliptic singularity with the essential part [Eo] which is isomor­
phic to Eo. This shows that the singularity belongs to the class XIX. 
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