Advanced Studies in Pure Mathematics 7, 1985 Automorphic Forms and Number Theory pp. 103-111

Moonshine for $PSL_2(F_7)$

Masao Koike

0. In [1], Conway and Norton assigned a Thompson series of the form

$$q^{-1} + \sum_{n=1}^{\infty} H_n(m) q^n, \quad q = e^{2\pi i z}$$

to each element *m* of the Fischer-Griess group F_1 where H_n are characters of F_1 , and they conjectured among others that Thompson series are generators of the modular function fields of genus zero for some modular groups which contain $\Gamma_0(N)$ for some N. In [6], Queen studied moonshine for other simple groups, for example, Thompson's group F_3 .

In this paper, we consider these phenomena for $PSL_2(F_7)$ and its relation to Conway-Norton's monstrous moonshine.

Let $G = PSL_2(F_7)$. G acts on $F_7 \cup \{\infty\}$ as linear fractional transformations, so G can be considered as the subgroup of S_8 . Then, each element of G is written by products of cycles and these are of the following forms:

$$1^8$$
, $1 \cdot 7$, $1^2 \cdot 3^2$, 2^4 , 4^2 .

For each product of cycles of length n_i , $m = (n_1)(n_2) \cdots (n_s)$, $n_1 \ge \cdots \ge n_s \ge 1$ $\sum_{i=1}^s n_i = 8$, in G, we associate following modular forms:

$$\eta_{1,m}(z) = \prod_{i=1}^{s} \eta(3n_{i}z),$$

$$\eta_{2,m}(z) = \prod_{i=1}^{s} \eta(n_{i}z)^{3},$$

where $\eta(z)$ is the Dedekind η -function. Then $\eta_{1,m}(z)$ (resp. $\eta_{2,m}(z)$) is a cusp form of weight s/2 (resp. 3s/2) on $\Gamma_0(9n_1n_s)$ (resp. $\Gamma_0(n_1n_s)$) with some character and is known to be a common eigenfunction of all Hecke operators (cf. [4]).

We shall prove

Received December 19, 1983.

M. Koike

Theorem 0.1. For each m of G, there exists a modular form $\vartheta_m(z) = \sum_{n=0}^{\infty} a_n(m)q^n$ satisfying following properties:

(0.1) $\vartheta_m(z)$ is a θ -function of some quadratic lattice.

(0.2) There exist characters H_n , $n \ge 0$, of G such that

 $H_n(m) = a_n(m)$ for all $m \in G$.

(0.3) Put $j_{1,m}(z) = \vartheta_m(3z)/\eta_{1,m}(z)$. Then $j_{1,m}(z)$ coincides with a Thompson series to some element of Thompson's group F_3 .

(0.4) Put $j_{2,m}(z) = 9_m(z)^3/\eta_{2,m}(z)$. Then $j_{2,m}(z)$ coincides with a Thompson series to some element of F_1 up to a constant term.

(0.5) $j_{2,m}(z) = j_{1,m}(z/3)^3$ for all $m \in G$.

Similar theorems can be proved for $PSL_2(F_5)$ and $PSL_2(F_3)$. (see § 3).

m	$artheta_{\scriptscriptstyle m}(z)$	
18	$ heta_{{}_{E_{\mathbf{S}}}}(z)$	$1+240\sum_{n=1}^{\infty}\left(\sum_{\substack{d\mid n\\d>0}}d^3\right)q^n$
1.7	$\theta\left(z, \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}\right)$	$1+2\sum_{n=1}^{\infty}c_{1,\chi}(n)q^n$
$1^2 \cdot 3^2$	$\theta\left(z, \left(\begin{array}{ccc}2 & 1\\1 & 2\\\end{array} & 0\\\hline & & \\0 & & \\1 & 2\end{array}\right)\right)$	$1+12\sum_{n=1}^{\infty} (\sum_{\substack{d \mid n \\ d > 0, (d,3)=1}} d)q^n$
24	$\theta\left(z, \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ \hline 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right)\right)$	$1+8\sum_{n=1}^{\infty}\left(\sum_{\substack{d\mid n\\d>0,\ 4\nmid d}}d\right)q^n$
4²	$\theta\left(z, \begin{pmatrix} 4 & 0\\ 0 & 4 \end{pmatrix}\right)$	$1+4\sum_{n=1}^{\infty} c_{1,\psi}(n)q^{2n}$

1. We define $\vartheta_m(z)$ as follows:

Here, in last column, we give explicit description of $\vartheta_m(z)$ as Eisenstein series. E_8 means E_8 -lattice, namely, even integral unimodular 8-dimensional quadratic lattice. For any positive definite, even integral symmetric matrix $A = (a_{ij})_{1 \le i, j \le n}$, we define $\theta(z, A) = \sum_{x=(x_1, \dots, x_n) \in \mathbb{Z}^n} e^{\pi i z x A^i x}$. χ and ψ are non-trivial real Dirichlet characters mod 7 and mod 4 respec-

104

tively, and put $c_{1,\chi}(n) = \sum_{\substack{d \mid n \\ d > 0}} \chi(d)$ and $c_{1,\psi}(n) = \sum_{\substack{d \mid n \\ d > 0}} \psi(d)$. Hence (0.1) is true. With these data, we can prove following propositions by some calculations and comparing these with tables in [1] and [6].

Proposition 1.1. Let F_3 be Thompson's simple group. For each m in G, there exists an element of F_3 whose Thompson series in Table III of [6] coincides with $j_{1,m}(z)$.

G	18	1.7	1 ² ·3 ²	2⁴	4²
F_3	1A	7A	3A	4 A	8A

where elements of F_3 are denoted by the same symbol as in Table III of [6].

Proposition 1.2. For each m in G, there exists an element of F_1 whose Thompson series in Table 4 of [1] coincides with $j_{2,m}(z)$ up to a constant term c_m .

G	18	1.7	$1^2 \cdot 3^2$	24	4²
F_1	1 A	7A	3A	4A	8B
C _m	720	6	36	16	0

Hence (0.3), (0.4) and (0.5) are proved to be true.

Remark 1.3. (0.5) for $m = 1^8$ shows

$$\left(\frac{\theta_{E_8}(z)}{\eta(z)^8}\right)^3 = j(z), \quad j(z) \text{ the modular invariant,}$$

which is a well-known identity.

To prove (0.2), we need the character table of $PSL_2(F_7)$;

	18	1.7	$1^2 \cdot 3^2$	24	4²
1 _G	1	1	1	1	1
ψ	7	0	1	-1	-1
x_2	8	1	-1	0	0
θ_2	6	-1	0	2	0
$\eta_1 + \eta_2$	6	-1	0	-2	2

For this table, we refer Dornhoff's textbook [3]. For any fixed integer $n \ge 1$, we consider a class function χ on G by $\chi(m) = a_n(m)$. Then χ is written by

$$\chi = x \mathbf{1}_G + y \psi + z \chi_2 + w \theta_2 + u(\eta_1 + \eta_2)$$

with some constants x, y, z, w and u. Solving linear equations, we get

(1.1)
$$\begin{cases} z = x + y - a_n(1^2 \cdot 3^2), \\ u = \frac{1}{2}(y - x) + \frac{1}{2}a_n(4^2), \\ w = y - x + \frac{1}{2}a_n(4^2) + \frac{1}{2}a_n(2^4), \\ 24y = a_n(1^8) + 8a_n(1^2 \cdot 3^2) - 6a_n(4^2) - 3a_n(2^4), \\ 168x = a_n(1^8) + 48a_n(1 \cdot 7) + 56a_n(1^2 \cdot 3^2) + 42a_n(4^2) + 21a_n(2^4). \end{cases}$$

Therefore, it is easily seen that x, y, z, w and u are integers if and only lif the following congruences hold:

(1.2)
$$a_n(1^8) - a_n(1^2 \cdot 3^2) \equiv 0 \pmod{3},$$

(1.3)
$$a_n(1^8) - a_n(1 \cdot 7) \equiv 0 \pmod{7},$$

(1.4)
$$a_n(1^8) \equiv a_n(2^4) \pmod{4}$$
,

(1.5)
$$a_n(1^8) - 3a_n(2^4) + 2a_n(4^2) \equiv 0 \pmod{8}.$$

From the explicit description of $a_n(m)$ for $n \ge 1$, we get

(1.6)
$$\begin{cases} a_n(1^8) \equiv 0 \pmod{48}, & a_n(1^2 \cdot 3^2) \equiv 0 \pmod{3}, \\ a_n(2^4) \equiv 0 \pmod{8}, & a_n(4^2) \equiv 0 \pmod{4}. \end{cases}$$

Hence (1.2), (1.4) and (1.5) are proved to be true. We see that

$$a_n(1^{\mathfrak{s}}) = 240 \sum_{\substack{d \mid n \\ d > 0}} d^{\mathfrak{s}} \equiv 2 \sum_{\substack{d \mid n \\ d > 0}} \left(\frac{d}{7} \right) = a_n(1 \cdot 7) \pmod{7},$$

so (1.3) is proved to be true.

To show that x, y, z, w and u are positive, it is sufficient to prove that

(1.7)
$$\begin{cases} a_n(1^8) - 8a_n(1 \cdot 7) - 14a_n(4^2) - 7a_n(2^4) > 0, \\ a_n(1^8) + 6a_n(1 \cdot 7) - 7a(1^2 \cdot 3^2) > 0. \end{cases}$$

From the explicit description of $a_n(m)$ for $n \ge 1$, we get

(1.8)
$$\begin{cases} a_n(1^8) \ge 120a_n(1 \cdot 7), & a_n(1^8) \ge 20a_n(1^2 \cdot 3^2), \\ a_n(1^8) \ge 30a_n(2^4), & a_n(1^8) \ge 60a_n(4^2). \end{cases}$$

106

Hence (1.7) is proved.

2. We give several remarks.

Remark 2.1. $\mathcal{G}_{18}(z)$ is the θ -function of E_8 -lattice Λ . Hence, there arises a following question; does $PSL_2(F_7)$ act on Λ as isometries such that

(2.1)
$$\vartheta_m(z) = \theta(z, \Lambda_m)$$
 with $\Lambda_m = \{x \in \Lambda \mid mx = x\}$?

If this is true, we get another proof of (0.2).

There is an action of S_8 on Λ which arises in Lie group theory; let e_1, \dots, e_8 be an orthonormal basis of \mathbb{R}^8 , i.e. $\langle e_i, e_j \rangle = \delta_{ij}$. Put $\tilde{e} = \frac{1}{2} \sum_{i=1}^8 e_i, L = \sum_{i=1}^8 Ze_i + Z\tilde{e}$. Then $\Lambda = \{a = \sum_{i=1}^8 a_i e_i \in L \mid \sum_{i=1}^8 a_i$ even integer}. S_8 acts on Λ by natural permutations of e_1, \dots, e_8 . Therefore $PSL_2(\mathbb{F}_7)$ which is a subgroup of S_8 acts on Λ as isometries. However, in this situation, one knows that

(2.2)
$$\begin{cases} \vartheta_m(z) = \theta(z, \Lambda_m) & \text{for } m = 1^8, 1 \cdot 7, 1^2 \cdot 3^2, \\ \vartheta_m(z) \neq \theta(z, \Lambda_m) & \text{for } m = 2^4, 4^2. \end{cases}$$

In fact, we can answer the above question affirmatively in constructing a good lattice by using code theory. The detail will appear in elsewhere.

Remark 2.2. In Table III of L. Queen's paper [6], she gave Thompson series $j_m(z)$ to each element *m* of Thompson's group F_3 . One sees that

(2.3)
$$j_m(z) = q f_m(3z)$$
 for some $f_m(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}, a_n \in \mathbb{Z}$.

Put

(2.4)
$$\tilde{j}_m(z) = j_m \left(\frac{z}{3}\right)^3 = q f_m(z)^3.$$

Then, comparing these with Table 4 in Conway-Norton's paper [1], one knows that $\tilde{j}_m(z)$ coincides with Thompson series to some element of F_1 up to a constant term, except for 18B, 27A and 27C. For 18B of F_3 , $\tilde{j}_m(z)$ coincides with Thompson series to 3A of 3.2 Suzuki. I wonder that this coincidence can be interpretated via E_8 -lattice. See Remark 2.3.

Remark 2.3. In [2], it is known that $PSL_2(F_7)$ is a maximal subgroup of the Mathieu group M_{24} . There exists an element Π of type 3⁸ in S_{24} , but not in M_{24} such that the centralizer C_{Π} of Π in M_{24} is isomorphic to $PSL_2(F_7)$. This isomorphism maps an element of type $(n_1) \cdots (n_s)$ to $(n_1)^3 \cdots (n_s)^3$. M_{24} acts on the Leech lattice L as isometries. Then, for the element g of type 3⁸ in M_{24} , it is supposed to be true that

(2.5)
$$\theta(z, L_g) = E_4(3z) = \theta_{E_8}(3z)$$

with $L_g = \{x \in L \mid gx = x\}$. Does $PSL_2(F_7)$ act on L_m as isometries such that

(2.6)
$$\vartheta_m(3z) = \theta(z, (L_g)_m)$$
 for all $m \in PSL(F_7)$?

Thompson's group F_3 appears as the subgroup of the centralizer of 3C in F_1 and it is known that Thompson series to 3C in F_1 coincides with

$$\frac{E_4(3z)}{\eta(3z)^8} = \frac{\theta_{E_8}(z)}{\eta(z)^8} \bigg|_{z \to 3z}.$$

For the results mentioned here, we refer [5].

Remark 2.4. For any product *m* of cycles of length n_i , $m = (n_1) \cdots (n_s)$, $n_1 \ge n_2 \ge \cdots \ge n_s$, *m* is called symmetric if

(2.7)
$$\{n_1, n_2, \cdots, n_s\} = \left\{\frac{N}{n_1}, \cdots, \frac{N}{n_s}\right\}$$
 with $N = n_1 n_s$

and

(2.8)
$$n_i$$
 divides n_1 for all *i*.

We assume that $\sum_{i=1}^{s} n_i = 8$ and s is even. Then all solutions of symmetric products are given by

$$(2.9) 18, 1.7, 12.32, 24, 42 and 2.6.$$

One knows that, except for 2.6, they appear in $PSL_2(F_7)$. For 2.6, we define

(2.10)
$$\vartheta_{2.6}(z) = \theta\left(z, \begin{pmatrix} 2 & 2 \\ 2 & 8 \end{pmatrix}\right).$$

Then we can prove that the analogous statement to (0.3), (0.4) and (0.5) for 2.6 is true.

3. In cases of $PSL_2(F_5)$ and $PSL(F_3)$, moonshines become more elementary than that of $PSL_2(F_7)$.

Let p=3 or 5. Let $\Omega = F_p \cup \{\infty\}$ and $L = \sum_{i \in \mathcal{Q}} \mathbb{Z}e_i$ such that $(e_i, e_j) = 2\delta_{ij}$ be the even integral, quadratic lattice of rank p+1. $PSL_2(F_p)$ acts on Ω by linear fractional transformations, so we can define action of $PSL_2(F_p)$ on L by

 $m \cdot e_i = e_{m(i)}$ for $m \in PSL_2(F_p)$, $i \in \Omega$,

which gives an isometry on L. We put, for any $m \in PSL_2(F_n)$,

$$\vartheta_m(z) = \theta(z, L_m)$$
 where $L_m = \{x \in L \mid m \cdot x = x\}$.

The action of m in $PSL_2(F_p)$ on Ω induces a permutation of Ω , so m can be written by a product of cycles of length n_i :

$$m=(n_1)\cdots(n_s), \quad n_1\geq n_2\geq\cdots\geq n_s\geq 1.$$

For such m, we put

$$\eta_m(z) = \eta(n_1 z) \cdots \eta(n_s z)$$

and

$$j_{1,m}(z) = \begin{cases} \frac{\vartheta_m(2z)}{\eta_m(4z)} & \text{when } p = 5, \\ \frac{\vartheta_m(3z)}{\eta_m(6z)} & \text{when } p = 3, \end{cases}$$
$$j_{2,m}(z) = \begin{cases} \frac{\vartheta_m(z)^2}{\eta_m(2z)^2} & \text{when } p = 5, \\ \frac{\vartheta_m(z)^3}{\eta_m(2z)^3} & \text{when } p = 3. \end{cases}$$

Then we can prove

Theorem 3.1. The notation being as above, the following statements are true;

(3.1) For any $m \in PSL_2(F_p)$, $j_{1,m}(z)$ and $j_{2,m}(z)$ coincide with Thompson series to some elements of F_1 up to constant terms, except for $j_{1,1,3}(z)$.

(3.2) For any $m \in PSL_2(F_3)$, $j_{1,m}(z)$ coincides with Thompson series to some element of F_3 .

(3.3) Let
$$j_{1,m}(z) = \sum_{n=-1}^{\infty} H_n(m)q^n$$
, $H_n(m) \in \mathbb{Z}$.

Then $H_n(m)$, for all $n \ge 1$, are characters of $PSL_2(\mathbf{F}_p)$.

(3.4)
$$j_{2,m}(z) = \begin{cases} j_{1,m}\left(\frac{z}{2}\right)^2 & \text{when } p=5, \\ j_{1,m}\left(\frac{z}{3}\right)^3 & \text{when } p=3. \end{cases}$$

Case of $PSL_2(F_5)$:

т	16	1.5	$1^2 \cdot 2^2$	3²
$j_{1,m}(z)$	8B	40B	16A	24E
$j_{2,m}(\boldsymbol{z})$	4A	20A	8A	12D

Case of $PSL_2(F_3)$:

m		14	1.3	2²
$j_{1,m}(z)$	F_1	12D		24E
	F_3	4A	12A	8A
$j_{2,m}(z)$		4A	12A	8B

Proof. (3.4) is obvious. The proofs of (3.1) and (3.2) can be done by some computations of $\vartheta_m(z)$ and $\eta_m(z)$. The similar results to (3.3) are already mentioned in [1] (see (2) in page 317), [7] and [8], so we omit the proof.

Remark 3.1. Analogous result to Remark 2.4 can be proved in case of $PSL_2(F_5)$; for 2.4, we define

$$\vartheta_{2.4}(z) = \theta\left(z, \begin{pmatrix} 4 \\ & 8 \end{pmatrix}\right).$$

Acknowledgement. I am very grateful to Y. Tanaka for very useful conversation about this subject during the preparation of this paper.

References

- J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc., 11 (1979), 308-339.
- [2] J. H. Conway, Three Lectures on exceptional groups, Proc. Conf. London Math. Soc., ed. by G. Higman and M. B. Powell, Academic Press, London, 1971.
- [3] L. Dornhoff, Group representation theory, Marcel Dekker Inc., New-York, 1971.
- [4] M. Koike, On Mckay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
- [5] —, Mathieu group and modular forms, in preparation.
- [6] L. Queen, Modular functions arising from some finite groups, Math. Comp., 37 (1981), 547-580.

110

[7] G. Mason, M₂₄ and certain automorphic forms, preprint.
[8] J. G. Thompson, Finite groups and modular functions, Bull. London Math. Soc., 11 (1979), 347-351.

Department of Mathematics Nagoya University Chikusa-ku, Nagoya, 464 Japan