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§ o. Introduction 

Non-characteristic boundary value problems were formulated for 
hyperfunctions by Komatsu-Kawai [9] and Schapira [12]. They defined 
the boundary values of hyperfunction solutions and proved the uniqueness 
of solutions of the boundary value problem. Solvability of the (local) 
boundary value problem was proved by Kaneko [2] under the assumption 
of semi-hyperbolicity. 

Kataoka [6, 8] introduced the notion of mildness on the boundary 
for hyperfunctions. He studied non-characteristic boundary value problems 
in detail by using the theory of mild hyperfunctions (see [7, 8]). 

Let P be a linear partial differential operator of order m with analytic 
coefficients defined on an open subset M of Rn '" x=(xt> x'), and set 
int M+ ={x EM; xl>O} and N={x EM; Xl =O}. Suppose that N is non­
characteristic with respect to P. Then any hyperfunction u(x) defined on 
int M+ satisfying Pu(x)=O becomes mild on N, and the boundary value 
vix' ) = (ajaxl)lu( +0, x') is defined as a hyperfunction on Nfor any integer 
j :2::0. Moreover if VO(X'), ... , Vm-I(X' ) vanish, then u(x) vanishes near N. 

However, if N is characteristic with respect to P, then u(x) is not 
mild in general. In this paper, we define the F-mildness for hyperfunc­
tions defined on int M+. The notion of F-mildness is a generalization of 
that of mildness. If u(x) is F-mild on N, we can define the boundary 
value vix' ) = (ajaXI)JU( +0, x') for any integer j>O as a hyperfunction on 
N in a natural way. 

Using F-mild hyperfunctions, we formulate boundary value problems 
for Fuchsian partial differential operators and prove the uniqueness of 
solutions of the boundary value problem. Let P be a Fuchsian partial 
differential operator of weight m - k with respect to Xl in the sense of 
Baouendi-Goulaouic [1] and let u(x) be a hyperfunction on int M+ satis­
fying Pu(x)=O. Assume that the characteristic exponents of P avoid 
certain integral values. Under these assumptions, if u(x) is F-mild on N 
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and (a;axl)iU( +0, x') vanishes for any O~j~m-k-I, then u(x) vanishes 
near N (Corollary of Theorem 2). Moreover, if P is hyperbolic with 
respect to the xl-direction on int M+, then this boundary value problem 
is locally solvable. (Solvability will be treated in a forthcoming paper.) 
We should remark that Kashiwara-Oshima [4] formulated boundary value 
problems for all hyperfunction solutions of Pu(x)=O on int M+. They 
defined m 'boundary values' of a solution u(x) and proved that these 
'boundary values' determine u(x) near N. However, as stated above, 
(m-k) boundary values determine u(x) if u(x) is F-mild. 

Cauchy problems for Fuchsian partial differential operators were 
studied by Tahara [13] and Daku [11] in the category of hyperfunctions 
with a real analytic parameter Xl: Well-posedness of the Cauchy problem 
for Fuchsian hyperbolic operators was proved in [13], and the uniqueness 
of solutions of the Cauchy problem was proved in [11] for general Fuchsian 
operators. Micro-local Cauchy problems for Fuchsian pseudo-differential 
operators were also treated in [10, 11]. In this and forthcoming papers, 
we shall extend these results to boundary value problems. 

In Section 1, we develop the theory of F-mild hyperfunctions by 
using the curvilinear wave expansions (Radon transformations) for holo­
morphic functions (cf. Kataoka [5] and Kaneko [3]). Our main result in 
Section I is the edge of the wedge theorem for F-mild hyperfunctions 
(Theorem 1). 

In Section 2, we formulate the boundary value problem for Fuchsian 
partial differential operators and state a micro-local uniqueness theorem 
(in other words, propagation of regularity from the boundary) (Theorem 
2). 

In Section 3, we give a characterization of the singular spectrum of a 
mild hyperfunction using the carrier of an analytic functional. Combining 
this characterization and the method of [1] (Cauchy problems for analytic 
functionals), we prove the micro-local uniqueness theorem in Section 4. 

§ 1. Theory of F-miId hyperfunctions 

Kataoka introduced the notion of mild hyperfunctions in his theory 
of micro-local boundary value problems ([6, 8]). Let M be a real analytic 
manifold and M + be a closed subset of M with real analytic boundary 
N. When N is non-characteristic for a linear partial differential 
operator P with analytic coefficients, each hyperfunction u on int M + (the 
interior of M+) satisfying Pu=O becomes mild on N and has boundary 
values (as hyperfunctions) on N in a natural way. Thus the notion of 
mildness is sufficient for non-characteristic boundary value problems. 
However, when N is characteristic for P, u is not mild on N generally. 
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We shall consider a wider class of hyperfunctions on int M+ which have 
boundary values in a natural way. 

First let us recall the notion of mild hyperfunctions in accordance 
with [6]. Since mildness is a local property and invariant under local 
coordinate transformations, we set M=Rn 3 X=(Xj> x') with x'=(X2, ••• ~ 

xn), M+={x E M; xl :2::0}, and N={x E M; xl=O}. We consider hyper­
functions defined on int M + locally on a neighborhood of a point of N. 
More precisely, letj: int M+-+M be the natural embedding and consider 
the sheaf p;j NJM + = (j*j-lp;jM) IN' where p;jM denotes the sheaf of hyperfunc­
tions on M. By the flabbiness of p;j M, we can also write p;j NJM + = 
r M+(p;jM)/r N(p;jM); here for a subset S of M and a sheaf:F on M, rsC:F} 
denotes the sheaf of sections of :F whose supports are contained in S. 

Let X=(O, x') be a point of Nand u(x) be a germ of p;jNJM+ at X. 
Then u(x) is said to be mild at x if and only if u(x) can be expressed on 
{x E int M+; Ix-Xl<e} as a sum of boundary values of holomorphic 
functions 

J 

u(X) = .6 Fix l , x' +-1=1 rjO), 
j~l 

where J is a positive integer, e is a positive number, r j are open convex. 
cones (whose vertices are 0) in Rn-\ and Fiz) is a holomorphic function 
defined on 

D(x, r j , e)={Z=(Zl' z') E en; Iz-Xl<e, 

-v(Im Zl)2+( -Re Zl)~ <ellm z'l, 1m z' E r j }. 

Here we set (t)+ =max (0, t) for t E R. The subsheaf of p;jNJM+ consisting 

of sectinos of p;j NJM + which are mild on N is denoted by iJ NJM +' and its 
section is called a mild hyperfunction. 

Now we define the notion of F-mildness which is a generalization of 
that of mildness. 

Definition 1. Let u(x) be a germ of p;j NJM + at X. Then u(x) is said 
to be F-mild at x if and only if u(x) has the expression 

(1) 

on {x E int M+; Ix-Xl<e}, where J is a positive integer, e is a positive 
number, r j are open convex cones in Rn-\ and Fiz) is a holomorphic 
function defined on a neighborhood (in en) of 

D'(x, r j , e)={Z=(Zl' z') E en; IZ-Xl<e, Re Zl~O, 1m Zl=O, 1m z' E rj}' 
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For an open subset U of N, we set 

gj~IM+(U)={u E f!JN1M+(U); u is F-mild at each point of U}. 

Then it is easy to see that gj~IM+: U~gj~IM+(U) defines a sheaf on N, 
which we call the sheaf of F-mild hyperfunctions. By the definition, we 
have the inclusions 

These sheaves are invariant under the action of a linear partial differential 
operator with analytic coefficients. 

In the sequel we shall prove several properties of F-mild hyperfunc­
tions. 

Lemma 1. Let T be an open convex cone of Rn-1 and F(z) be a holo­
morphic function defined on a neighborhood of D'(O, r, e) with e>O. Then 
for any open sub cone r' of r such that F' n sn-2cT (here sn-2={x' E Rn-1; 
! x' I = I}), there exists c> ° such that F(z) is holomorphic on 

{z=x+-I=T y E en; Izl<c, y~<cly'I2(X1 +cly'12), y' E T'}. 

Proof The function F(w~, z') is holomorphic on 

Let T' be an open convex cone of Rn -1 such that T' c T (i.e. F' n s n - 2 C 

F). Then by virtue of the local version of Bochner's tube theorem, there 
exists 0>0 such that F(w~, z') is holomorphic on 

{(WI> z') E en; Iw11<.vT, Iz'l<o, 11m w11<01Im z'l, 1m z' E T'}. 

Hence F(z) is holomorphic on 

{z E en; IZ11<0, Iz'l<o, Imz' E T', Rez1>(2~~7:~1 r -(olIm Z'I)2}. 

{Since F(z) is defined on a neighborhood of D'(O, T, e), it is also single­
valued on the above set.) This completes the proof. 

Proposition 1. F-mildness is invariant under local coordinate transfor­
mations of M which preserve M + and N. 

We can easily verify this proposition by using Lemma 1. 
Note that we can define the sheaf of F-mild hyperfunctions on the 
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real analytic boundary of a real analytic manifold by virtue of this pro­
position. The following proposition is also an immediate consequence 
of Lemma 1: 

Proposition 2. Let u(x) be an F-mild hyper/unction. Then for any 
intergr q >2, u(xf, x') is a mild hyper/unction. 

Proposition 3. Let u(x) be an F-mild hyper/unction defined on an open 
subset U 0/ N. Then u(x~, x') is well-defined as a hyper/unction with a real 
analytic parameter Xl on a neighborhood (in M) 0/ U. 

Proof Let u(x) be defined by 

at X E U, where Fj is holomorphic on a neighbo~hood of D'(x, rj,,s) with 
open convex cones r j in Rn-l and ,s>0. Then 

J 

u(x~, x') = :6 Fix~, x' + r-I r jO) 
j~l 

is a hyperfunction with a real analytic parameter Xl. On the other hand, 
u(~, x') is well-defined on {x E M; Ix-xl<,s, XI=FO} as a hyperfunction 
and coincides with the above definition there. Hence by Holmgren's 
uniqueness theorem, the above definition of u(x~, x') does not depend on 
the choice of defining functions. This completes the proof. 

By this proposition we can define boundary values of F-mild hyper­
functions. 

Definition 2. Let u(x) be an F-mild hyperfunction defined on an 
open subset U of N. Then the boundary value u( +0, x') e flAN(U) is 
defined as the restriction of u(x~, x') to N. 

Remark. Let u(x) be defined by (1). Then it is easy to see that 

J 

u( + 0, x') = :6 Fj(O, x' + r-I r jO) 
j~l 

holds on {CO, x') eN; Ix' -x'l<,s}. 

Now we define the p-singular spectra of F-mild hyperfunctions. Let 
r-IS*M=Cr-IT*M -M)/R+=MX r-Is n - l and r-IS*N= 
NXr-IS n - 2 be the purely imaginary cosphere bundles of M and N 
respectively and let 1C M: r-I S* M ~ M and 1C N: .J=l S* N ~ N. be the 
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canonical projections. Let p: r-T S* MIN - r-T StM ---+r-T S* N be 
the canonical map. We denote by SS(f) the singular spectrum of a 
hyperfunction f 

Definition 3, Let u(x) be an F-mild hyperfunction defined on a 
subset U of N. Then the p-singular spectrum p-SS(u) of u is the closed 
subset of 7rjVl(U)cr-T S* N defined by 

p-SS(u)=p(SS(u(xi, x'» n (r-T S* MIN-r-T StM». 

It is easy to see that SS(u( +0, x'»cp-SS(u(x» holds. 
In the sequel, we shall characterize the p-singular spectrum by defin­

ing functions. For ~'=(~2'" "~n)Esn-2 and Z'=(Z2, "',Zn)ECn-\ 
we put 

W(Z' ~')_ (n-2)! 
, (-27rr-T)n-l 

X (l-r-T<z', ~'»n-3{1_r-T<z', ~'>_(z'2_<Z', ~')2)} 
{<z', ~'>+r-T(Z'2_<Z', ~'>2W-l ' 

where <z', ~'>=Z2~2+ ... +zn~n and z'2=zi+'" +z~. In the sequel, 
we use fundamental properties of curvilinear wave expansions (Radon 
transformations) for holomorphic functions proved in Section 1 of [5]. 
See also Chapter 2, Section 3 and Chapter 3, Section 3 of [3]. 

Lemma 2. Let K be a compact subset of N with C2-boundary and let 
u(x) be an F-mild hyperfunction on K defined by 

where Fj is holomorphic on a neighborhood of D'(K, r j , c:)=UXEK D'(x, r, c:) 
with open convex cones r j in Rn-l and c:>0. Let x be a point of int K 
and ~, be a point of sn-2. Then the point (x, r-T ~') E r-T S* N is not 
contained in p - SS(u) if and only if 

F(z;~')=tf _ Fizl,WI)W(Z'_W',~')dw' 
j~l K+ ';-laj 

is analytic at (z, ~') = (x, ~') for any sufficiently small a j E r j' 

Proof First assume that (x, r-T ~') $ p-SS(u). Then there exist 
holomorphic functions Gv (11= 1, .. " I) defined on a neighborhood of 
jj'(x, Vv, c)={z E C n; Iz-xl<c:, 1m Zl =0, 1m z' E VJ such that 
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I 

u(xi, x')=.6 GvCXl' x' +V=-T V.O) 
).1=1 

on {x E M; IX-Xl<e}; here V. are open convex cones in Rn-l whose polar 
sets V~=W ERn-I; <y', ';'):;::::0 for any y' E V.} do not contain ~'. Set 
D={x' ERn-I; Ix'-X'I<ej2} and let b. E V. be small enough. Then by 
the edge of the wedge theorem for hyperfunctions, we know that 

F(zi, z';.;')-t f _ G.(ZI> w')W(z' -w', ';')dw' 
v=1 D+ .y'-lbll 

is analytic in (z,.;') on a neighborhood of {x} X sn-2 if b. E V. are small 
enough. On the other hand, 

f - G.(Zl' w')W(z' -w', .;')dw' 
D+ ,,-lb. 

is analytic on a neighborhood of {x} X (sn-2_ V~). Since~' is not con­
tained in V~, .. " V~, the function F(zi, z'; .;') is analytic at (z, ';') = (x, ~'). 
Noting that F(z; .;') is analytic (and single-valued) on a neighborhood of 
D'(x, Li, e) X {~'} with some e>O for any open cone Liib {y' E Rn-l; <y', ~') 
>O}, we know that F(z;.;') is analytic at (x, ~'). 

Now assume that F(z; ';') is analytic at (x, ~'). Let Lik (k=O, 1, .. " 
J') be closed proper convex cones in Rn-l such that UO:5:k:5:J,Lik=sn-2, 
~' E int Lio, the measure of Li j n Lik is zero, and that F(z; ';') is analytic in 
(z, .;') on a neighborhood of {x} X (Lio n sn-2). Put 

for k=O, 1, .. " J', where du(';') denotes the volume element on sn-2. 
Then Fjk(z) is holomorphic on a neighborhood of D'(x, V jk , e) with some 
e>O for any open convex cone VjkcLi~+rj, and we have 

J' 

F/z) = Fjo(z) + .6 Fjk(z) 
k~l 

on D'(x, r j , e). By the above assumption, F1,o+'" +FJ,o is analytic 
at z=X. Since 

7rN\{X}) n p-SS(Fjk(Xl' x' +V=-T VjkO)) C {x} X v=-T (Li~+rJo 
C {x} X v=-T Lik , 

we have (x,,f=t t) ~ p-SS(u(x)). This completes the proof. 
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Proposition 4. Let u(x) be an F-mild hyperfunction defined on a 
neighborhood of X E N. Then (x, r-1 ~') E r-1 S* N is not contained in 
p-SS(u) if and only if there exist holomorphic functions Fj (j= 1, .. " J) 
defined on a neighborhood of D'(x, r j , s) with s>O and open convex cones 
rjcRn-l whose polar sets do not contain ~' such that 

(2) 
J 

u(x) = L: Fixl' x' +r-1 rjO). 
j~l 

Proof It is obvious that (x, r-1 ~') ffo p-SS(u) if u has the above 
expression. Assume (x, r-1 ~') ffo p-SS(u). Let u(x) be defined by 

where Gj is holomorphic on a neighborhood of D'(x, Vj' s) with s>O and 
open convex cones VjCR n - l • Then by Lemma 2, 

G(Z; ~')= t f _ G/zh w')W(z'-w', ~')dw' 
j~l D+ ';-lbj 

is analytic at (z, ~') = (x, ~') if b j E Vj are sufficiently small. Here we set 
D={x' E Rn-l; Ix'-x'l<s/2}. Then by the argument of the latter part 
of the proof of Lemma 2, u has the expression (2) with r~ ~ ~'. This 
completes the proof. 

In view of this proposition, we know that p-SS(u(x)) coincides with 
t - SS(u(x)) defined in [6] for a mild hyperfunction u(x) (see Definition 
2.2.1 of [6]). 

Proposition 5. Let u(x) be an F-mild hyperfunction defined on an 
open subset U of N. Then we have 

p - SS(u(x)) = p ~ SS(u(x'{, x')) 

for any positive integer q. 

Proof Let x be a point of U and let K be a compact subset of U 
with C2-boundary such that x E int K. Let u(x) be defined by (1) with F j 

holomorphic on a neighborhood of D'(K, r j , s). Set 

F(z; ~')= t f _ F/Zl' w') W(z' -w', ~')dw' 
j~l K+ ';-laJ 

with sufficiently small a j E r j • Let~' E sn-2 and set 
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Since F(z; n is analytic on a neighborhood of D'(x, r, 0) X {e'l with some 
0>0, F(zl, z'; ';/) is analytic on a neighborhood of (z, n=(x, ~/) if and 
only if F(z; n is analytic on a neighborhood of (x, ~/). This completes 
the proof in view of Lemma 2. 

Proposition 6. Let K be a compact set of Nand r be an open convex 
cone of R n - I. Let u(x) be an F-mild hyperfunction defined on a neighbor­
hood of K such that p-SS(u)CK x-V=T roo Then, for any open convex 
cone T'er, there exists a unique holomorphicfunction F(z) defined on a 
neighborhood of D'(K, r ' , e) for some e>O such that 

u(x) = F(xl> x' + -V=T r'O) 

holds on {x E M; dis (x, K)<e, xl>O} (dis denotes the distance). 

Proof. There exists a holomorphic function G defined on a neigh­
borhood of D'(K, T', e)= UxeK D'(X, T', ,s) with some e>O such that 

u(x~, X')= G(XI> x' +-V=T r'O) 

on {x E M; dis (x, K)<,s}. Since 

G(XI' x' + -1=1 r'O) = G( - XI> x' + -1=1 r'o), 

we have G(ZI' Z')=G(-Zl> ZI). Hence there exists a holomorphic function 
F(z) defined on a neighborhood of D'(K, r ' , 0) with some 0>0 such that 
G(z)=F(z~, Zl). Then we have 

u(x~, x')=F(x~, x' +-1=1 r'O) 

on {x E M; dis (x, K)<o}. Hence we have 

u(x):::::: F(xl> x' + -V=T T'O) 

on {x E M; dis (x, K)<o, Xl>O}. This completes the proof. 

Theorem 1 (Edge of the wedge theorem for F-mild hyper functions). 
Let K be a compact subset of Nand r l, ... , r J be open convex cones in 
R n - I. Let Fiz) be a holomorphic function defined on a neighborhood of 
D'(K, r j, e) with e>O such that 

J _ 
.z= Fj(xl> x' +.y'"=1 r jO) = 0 
j~l 

on {x E M; X1>0, dis (x, K)<,s}. Then for any subcone r~c.rj, there 
exist holomorphic functions Fjk(z) defined on a neighborhood of D'(K, r~+ 
r£,o) with some 0>0 such that 
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J 

Flz) = L. Fjk(z) (j= 1, ... , J) 
k=l 

and Fjk(z) = -Fkiz)Jor l~j, k;;;'J. 

Proof We shall prove this theorem by induction on J. First set 
J=2. Note that 

Flx~, x' +v=t Tm= -F2(~' x' +v=t T 20) 

holds on a neighborhood of Kin M by virtue of Holmgren's uniqueness 
theorem. Hence by the usual edge of the wedge theorem for hyper­
functions, Fl(~' Zl)= -F2(Z~, z') is holomorphic on a neighborhood of 

D'(K, T~+T~, e') with some e'>O. Setting F12=Fl and F21 =F2, we have 
proved this theorem for J = 2. 

Now we assume that the theorem has been proved for J. Let 
FlO ... , FJ + 1, etc. satisfy the assumptions of the theorem with J replaced 
by J+ 1. Let TJ be an open convex cone of Rn - 1 such that T~c.TJ cTj • 

Let Llt> ... , LlJ be closed convex cones in R n - 1 such that 

Lljc(TJ+T'J+l)O (j=l, .. . ,J), 

U Llj:;:)(TW··· UT~)nT~+l 
1';' j';' J 

and that the measure of Ll j n Llk is zero if I=I=k. Let D be a compact set 
of N with C2-boundary such that Kc. Dc{x eRn; dis (x, K)<e/2} and 
set 

forj=l, ... ,J, where aeTJ +1 is small enough. Since the p-singular 
spectrum of 

is contained in K X v=t (T~ + 1 n (n U ... U Tm, the function 

becomes holomorphic on a neighborhood of K by virtue of Lemma 2. 
Note that Glz) is holomorphic on a neighborhood of D'(K, TJ +T'J+lO 0) 
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with some 0>0 and that FJ+1= GO+G1 + ... +GJ on D'(K, r'J+l> 0). Ap­
plying the induction hypothesis to the functions Fl + Go + Gl> Fz + Gz, •. " 
FJ+GJ, we can find holomorphic functions Gjk (j, k= 1, .. " J) defined 
on a neighborhood of D'(K, r~+r~, 0) with 0>0 such that Gjk+Gkj=O 
and 

Set Fjk=Gjk for 1 <j, k-s.J and F1,J+l= -FJ+1,1= -GO-G1, Fj,J+l= 
-FJ+1,j= -Gj for j=2, "', J. Then we have 

and F jk is holomorphic on a neighborhood of D'(K, r~+r~, 0). This 
completes the proof. 

Before ending this section, we give an example of F-mild hyperfunc­
tions which are not mild. 

Example. Let a be a real number such that 1 <a<2 and set 

here we take the branch oJz; such that z;>O Jor zz>O. Then F(zl> zz) is 
holomorphic on 

{(Zl> zz) E C Z; IZll<lzzla, 1m zz>O} 

U {(Zl> Z2) E C Z ; larg z11«I- ~}r, Imzz>O}. 

Thus u(x)=F(x1, x'+.J=TO) defines an F-mild hyperfunction on N= 
{(Xl> x z) E RZ; Xl=O}. On the other hand, F(zl> zz) is singular on the set 
{( -ta,.f=1 t); t >O}. By virtue of Proposition 6 and the corresponding 
result for mild hyperfunctions (Proposition 2.1.21 of [6]), we know that 
u(x) is not mild at (0, 0). 

§ 2. Fuchsian partial differential equations 

We use the notation D=(D1,D') and D'=(Dz," ·,Dn) with D j = 
a/axj • Let P be a linear partial differential operator with real analytic 
coefficients defined on a neighborhood of x= (0, x') E N. In accordance 
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with Baouendi-Goulaouic [1], we call P a Fuchsian partial ·differential 
operator of weight m - k with respect to Xl if P can be written in the form 

where 

p=x~D;n+Al(X, D')x~-ID;n-l+ . .. +Ak(x, D')D;n-k 

+Ak+l(X, D')D;n-k-l+ . .. +Am(x, D'), 

(i) k, m E Z, O~k~m, 
(ii) the order of AtCx, D') is at mostj for 1':Sj ~m, 
(iii) the order of Aj(O, x', D') is at most 0 for 1 <j~k. 

Setting A;CO, x', D')= atCx') for 1 ~j ~k, we define the characteristic 
polynomial e(l, x') of P by 

e(A, x')= A(A-l)· .. (l-m+ l)+al(x')A(A-I)· .. (A-m+2) 

+ ... +ak(x')A(l-I) .. ·(A-m+k+l). 

Let A=O, .. " m-k-l, AI> .. " Ak be the roots of the equation e(A, X')=O 
(they are called the characteristic exponents of P at X= (0, x'». 

We consider boundary value problems for P in the framework ofF­
mild hyperfunctions and give a uniqueness theorem. 

Theorem 2. Assume Ad {lJEZ;lJ>m-k} for l~j<k. Let u(x) 
and f(x) be F-mild hyperjunctions defined on a neighborhood of x such that 
Pu= f Let~' be a point of sn-2 and suppose (x, -1=1 ~') ~ p-SS(f(x» 
and (x,-I=1~'HSS(D{u(+O,x'»for O<j<m-k-l. Then we have 
(x, J=1 ~') ~ p-SS(u(x». 

We shall give the proof of this theorem in Section 4. 

Corollary. Assume Aj ~ {lJ E Z; lJ>m-k} forI <j<k. Let u(x) be 
an F-mild hyperfunction defined on a neighborhood ofx satisfying Pu(x)=O 
and Dfu(+O, x') = o for O<j~m-k-l. Then u(x) = 0 holds on a neigh-
borhood of X. . 

Proof By Theorem 2, we know that p-SS(u(X»nIt"Nl(x)=¢. In 
view of Lemma 2, this implies that u(x) is real analytic on a neighborhood 
of X. Hence we have u(x) =0 on a neighborhood of x by virtue of the 
Cauchy-Kowalevsky type theorem for Fuchsian partial differential equa­
tions (see [1]). 

On the other hand, we can solve the boundary value problem if P is 
hyperbolic with respect to the Xl-direction on int M+. More precisely, let 
P be as above and assume that Pm(x, C"I> -1=1 ~') never vanishes if x E Rn, 
Ix-xl<e, xl>O, ~' E Rn-t, Re C"1*0 with some e>O;here Pm denotes the 
principal symbol of P. Assume moreover that Aj ~ {lJ E Z; lJ>m-k} for 
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l~j~k. Then for any F-mild hyperfunctionJ(x) defined on a neighbor­
hood of x and for any hyperfunction v/x/) defined on a neighborhood of 
x/ (O~j ~m-k-l), there exists a unique F-mild hyperfunction u(x) 
defined on a neighborhood of x such that Pu= J and D{u( +0, x/)=v/x/) 
for O~j ~m-k-l. We shall give a proof of this statement elsewhere. 

§ 3. Mild hyperfunctions and analytic functionals 

We shall consider mild hyperfunctions with compact supports and 
regard them as analytic functional valued functions. 

We fix R>O and put BR={X/ E Rn-I; Ix'I~R}. For a subset K of 
en-I and s>O, we set 

K,={z' E en-I; dis (z/, K)<s}, 

where dis (z', K)=inf {Iz/ -w/I; w/ E K}. For an open bounded subset [) 
of e n-\ we denote by (!}c(fJ) the space of the continuous functions on Q 
which are holomorphic on Q. By the norm IIJII=sup {IJ(z/) I; z' E Q}, 
(!}cCQ) becomes a Banach space. We denote by F(Q) the closure of 
(!}(e n- I) (the space of all entire functions on en-I) in (!}cCQ), and by F'(Q) 
its dual space (note that F(Q) and F'(Q) are Banach spaces). If Q I c Q2 

are two open connected bounded sets in en-I, there are natural inclusions 
F(Q2)cF(QI) and F'(QI)cF'(Q2). 

LetJ(x) be a mild hyperfunction defined· on N whose support is con­
tained in int BR • ThenJ(x) can be regarded as a hyperfunction defined 
on {x E M; O<XI<e} whose support is contained in (0, e)xint BR for 
some e>O. Hence for any ¢l(x') E d(BR) (where d denotes the sheaf of 
real analytic functions on Rn-I), 

is well-defined as a real analytic function on {XI E R; O<xI <e}. Moreover 
this function becomes analytic on a neighborhood of XI = 0: 

Proposition 7. Let J(x) be a mild hyperJunction defined on N whose 
support is contained in int BR. Then there exists 0>0 such that for any 
s>O theJunctionJ(x l , .) can be regarded as an F'«BR),)-valuedJunction on 
{XI E R; O<XI~O} by the pairing 

Jor ¢l(z') E F«BR),). Moreover the Junction J(x\> .) can be continued to an 
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F'«BR)s)-valued holomorphic function defined on a complex neighborhood of 
{Xl E R; O~Xl~O}. (This complex neighborhood depends on s>O). 

Proof Using the softness of the sheaf of mild microfunctions ?/ N I M + 

(see Theorem 2.1.12 of[6], where ?/NIM+ is denoted by ~NIMJ and Pro­
position 2.1.21 of [6], we can take holomorphic functions Fiz) (j= 1, ... , 
J) defined on a neighborhood of D'(BR , r j , 2,,) with open convex cones 
rjCRn-l and ,,>0 such that 

Let aj E rj be small enough and set 

F(z; n= t f _ Fizl' w')W(z' -w', t;')dw'. 
j=l BR+~+ ";-laj 

In view of Lemma 2, F(z; n is analytic on a neighborhood of (z, t;') E 

{0}XaBRXS n - 2• Let £1k (k= 1, ... , n) be closed proper convex cones in 
R n - l such that £11 U ... U £1n =Rn - l and the measure of £1j n £1k is zero for 
i*k. We set 

Then for arbitrary open convex cones Vk c; £1~, G k is holomorphic on a 
neighborhood of 

with some 0<0<1. Moreover we have 

on BR • By Lemma 1, we may assume that each Gk(z) is holomorphic on 

{z=x+/=ty E en; IZll<o, dis (z', BR)<o, Xl> -0Iy'12, 

IYll<0Iy'12,y' E Vk }. 

We may assume 0<s<0/4. Let "k: BR-+Rn - l be a C2 map such that 
(i) "k(X') = 0 for x' E aBR, 
(ii) "k(X') E Vk , I "ix') l:S:s/2 for x' E int BR , 

(iii) I "k(X') l=s/2 for x' E BR, dis (x', aBR)~0/2, 
and set rk={x' +-1=1 "k(X'); x' E BR}. Then by the definition of the 
integration of a hyperfunction, we have 
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for if! E F((BR)S)' Thus the function 

<f(zl' .), if! > = tJn Gk(ZI, w')if!(w')dw' 

is holomorphic on 

It is easy to see that fez!> .) is an F'((BR)s)-valued holomorphic function 
on Us. This completes the proof. 

In the sequel we shall characterize the p-singular spectra of mild 
hyperfunctions by using the carriers of analytic functionals. For 

we set 

For w' E e n- l and t;' E sn-2 we define an open set U(w', t;') of e n- l by 

U(w', t;')= {z' E en-I; 1m cli(w' -z', t;') > -(Re cli(w' - z', t;'»2}. 

We fix ~' E sn-2 and set 

v(~', s, r)=(BR)s n int ( n U(w', t;'», 
Cw',e') EKr 

where Kr= {(w', t;') E e n- l X sn-2; I w' l;S:r, I t;' -~' l;S:r} for s, r >0. It is 
easy to see that v(~', s, r) is a polynomially convex open subset of en-I. 
Note that there is a natural inclusion 

F'(V(~', s, r»cF'((BR),). 

Proposition 8. Let f(x) be a mild hyperfunction defined on N whose 
support is contained in int B R' Then the following conditions (i), (ii), (iii) 
are equivalent: 

(i) (0, -1=1 ~') $ p-SS(f). 
(ii) For any s>O, there exists r>O such that fez!> .) is an F'(V(~', 

s, r »-valued holomorphic funciton on a neighborhood of Zl = O. 
(iii) There exist s, r>O such thatf(zl' .) is an F'(VCt, s, r»-valued 

holomorphic function defined on a neighborhood of Zl = O. 
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Proof First let us show that (i) implies (ii). We inherit the nota­
tions in the proof of Proposition 7. We may assume ~'E int .11 and 
F(z; ~') is analytic on a neighborhood of {z E en; Iz!1 ~ e, I z' I <e} X 
(.1! n sn-2) with some e>O. Then GrCz) becomes holomorphic on {z E en; 
IZll~e, 1z'I~e}. We may assume Vkc{y' ERn-I; <y', ~'><O} for k=2, 
.. " n. We can modify el so that <el(X'), ~'><O if IX'I~e/2' and that 
el(X') E VI is small enough if x' E BR-B,. Since U(w', ~') contains 

{z'=x' +/=1 y' E en-I; <v' - y', ~'> >«v' - y')Z-<v' - y', ~'>")} 

with w'=u' +-1=1 v', we may assume rkc vet, S, r) for k=2, .. " nand 
X'+-I=1el(X')E V(t,s,r) for IX'I~e/2 if r>O is small enough. On 
the other hand, since BR-B, is contained in V(~', s, r) if r<e, we may 
assume r1 C V(~',s, r) by letting el(X') E VI be sufficiently small for x' E 
BR-B,. Hence we can take rkc V(~', s, r) so that Giz) is holomorphic 
on a neighborhood of {O} X r k for k= 1, .. " n. This implies (ii). 

Next let us show that (iii) implies (i). Suppose that f(zl' .) is an 
F'(V(~', SO, ro»-valued holomorphic function on {IZll<o} with some So, ro 
>0. Note that 

f(xi, x') = Ln-2 d(J(~') tn_,!(xi, y') W(x' - y' + -1=1 0, ~')dy' 

holds on ( - 01/2, 01/2) X Rn -1. Since the singular spectrum of 

g(x, ~')= f Rn_,!(xi, y') W(x' - y' + -1=1 0, ~')dy' 

is contained in 

it suffices to show that g(x, n is analytic at (x, ~')= (0, ~'). Set 

G(Xl' z', n= tn_,!(xi, u')W(z' -u', ~')du'. 

Then G(Xl' z', ~') is a real analytic function defined on 

{(Xl' z', ~') E RXe n - 1 XS n - 2 ; Ix1 1<01/Z, 

<1m z', e> >(Im z'Y-(Im z', ~'>2} 

with holomorphic parameters z', and we have 

g(x, ~')=G(Xl' x' +-1=1 ~'O, ~'). 
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It is easy to see that {Vee', s, r); s>so. O<r<ro} constitutes a system of 
fundamental neighborhoods of the closure of Vee, So, ro) consisting of 
polynomially convex open sets. Thus, as a function of w', we can regard 
W(z'-w', ~') as an F(V(~', SO, ro»)-valued holomorphic function defined 
on a complex neighborhood of {(z', n E en-I XS n - 2 ; 1z'I<ro, W -e'l<ro}. 

By the assumption (iii), the function 

G(z,n=<f(z~, .), W(z'-w',n>w' 

is holomorphic on a complex neighborhood of (z, ~')= (0, ~'). Hence 
g(x, n is real analytic at (x, ~') = (0, e'). This completes the proof. 

§ 4. Proof of Theorem 2 

We inherit the notation in Section 2. First let us show that it 
suffices to prove Theorem 2 when k=m. For this purpose we begin with 
the following lemma. 

Lemma 3. Let I be a positive integer and let u(x) be an F-mild 
hyperfunction defined on a neighborhood of X E N such that (x, -1=1 e') is 
not contained in the singular spectrum of D'Ju( + 0, x') for Ii = 0, 1, .. " I-I. 
Then there exist two F-mild hyper functions vex) and u'{x) defined on a 
neighborhood of x such that 

u(x) = xiv(x) + u'(x) 

and that (x, -1=1 e') ~ p-SS(u'(x)). 

Proof Let u(x) be defined by 

with Fj holomorphic on a neighborhood of D'(x, r i' e), where r h •• " r J 

are open convex cones in Rn-I and e>O. Put 

Then there is a holomorphic function Hiz) defined on a neighborhood of 
D'(x, r j, e) such that Gj(z)=ziHiz). Set 

J 

v(x) = L: Hix l , x' +-1=1 rp), 
j=1 

1-1 1 
u'(x) = L: -x~D~u( +0, x') . 

• =0 Ii! . 
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Then we have u(x)=xiv(x)+u'(x) and (x, -!=1 ~/) i p-SS(u'). This 
completes the proof. 

Now let P, u(x), f(x) be as in Theorem 2 with O;;;'k<m. Then by 
Lemma 3, there exist F-mild hyperfunctions vex) and u'(x) defined on a 
neighborhood of x such that 

u(x) = xm- kV(X) + u'(x) 

and (x, -!=1 ~/) i p-SS(u'). Then we have 

pxm- kV(X) = f(x) - pu'ex), 

and (x, -!=1 ~/) is not contained in the p-singular spectrum of f(x)­
pu'ex). It is easy to see that pxm- k is a Fuchsian partial differential 
operator of weight 0 with respect to XI and its characteristic exponents are 
not contained in {v E Z; v~O}. Hence in order to prove Theorem 2, we 
have only to show the following proposition. 

Proposition 9. Set 

where A/x, D') is a linear partial differential operator of order ;;;'j with 
analytic coefficients defined on a neighborhood ofx=O such that AiO, x', D') 
is a function a/x') for j = I, ···,m. Put 

e(;', xl)=;.m_al(X');.m-I_ . .. -am(x') 

and assume e(j, 0)*0 for any j E Z with j >0. Let u(x) be an F-mild 
hyperfunction defined on a neighborhood of 0 such that p-SS(Pu(x)) does 
not contain (0, -!=1 ~/). Under these assumptions, p-SS(u(x)) does not 
contain (0, -!=1 ~/). 

Proof We can choose an integer q ~2 such that e(j/q,O)*O for 
any j E Z withj >0. Set Pu(x) = f(x) , v(x)=u(xi, x'), and 

Q= (~ XIDlr -AI(xi, x', DI)(~ XIDlr-l - ... -Am(xi, x', D'). 

Note that Q is a Fuchsian partial differential operator of weight 0 
with respect to XI whose characteristic exponents are not contained in 
{v E Z; v~O}. We have 

g(x) = Qv(x)=f(xi, x') 

and (0, -!=1 ~/) i p-SS(g(x)). Since vex) and g(x) are mild hyperfunc-
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tions, we may assume that they are defined on N and their supports are 
contained in int BR with sufficiently small R>O by virtue of the softness 
of the sheaf of mild hyperfunctions (Corollary 2.1.22 of [6]). Thus, for 
any 8>0, we can regard U(ZI' .) and g(ZI> .) as F'«BR).)-valued holo­
moprhic functions on a neighborhood of Zl =0. By Proposition 8, g(Zh .) 
is an F'(V(~', 8, r))-valued holomorphic function on a neighborhood of 
Zl=O for some 8, r>O. 

Since V(~', 2s, r/2)~ V(~', s, r), there exists e>O such that V(~', 2s,. 
r/2)-:::J V(~', s, r).. Using the method of Baouendi-Goulaouic (Theorem 3 
of [1]), we can show that there exists a unique F'(V(~', s, r).)-valued holo­
morphic function v(ZI> .) defined on a neighborhood of Zl = 0 such that 
QV(Zl' . )=g(ZI> .). (Though they assume V(~', s, r)eRn-l in Theorem 3 
of [1], their proof also applies to our case.) By the uniqueness of the 
solution w of Qw=g, we know that U(Zl' .) is an F'(V(~', 2s, r/2))-valued 
holomorphic function defined on a neighborhood of Zl = O. Thus by 
Proposition 8, we have (0, -v'=T ~') ~ p-SS(u(x)). In view of Proposition 
5, we get (0, -v'=T ~') ~ p-SS(u(x)). This completes the proof. 
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