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F-mild Hyperfunctions and Fuchsian Partial
Differential Equations

Toshinori Oaku

§ 0. Introduction

Non-characteristic boundary value problems were formulated for
hyperfunctions by Komatsu-Kawai [9] and Schapira [12]. They defined
the boundary values of hyperfunction solutions and proved the uniqueness
of solutions of the boundary value problem. Solvability of the (local)
boundary value problem was proved by Kaneko [2] under the assumption
of semi-hyperbolicity.

Kataoka [6, 8] introduced the notion of mildness on the boundary
for hyperfunctions. He studied non-characteristic boundary value problems
in detail by using the theory of mild hyperfunctions (see [7, 8]).

Let P be a linear partial differential operator of order m with analytic
coefficients defined on an open subset M of R" 3> x=(x,, x’), and set
int M,={xe M;x,>0} and N={x e M; x,=0}. Suppose that N is non-
characteristic with respect to P. Then any hyperfunction u(x) defined on
int M, satisfying Pu(x)=0 becomes mild on N, and the boundary value
v;(x")=(0/0x,)’u(+0, x’) is defined as a hyperfunction on N for any integer
Jj=0. Moreover if v (x’), - - -, U, _(x’) vanish, then u(x) vanishes near N.

However, if N is characteristic with respect to P, then u(x) is not
mild in general. In this paper, we define the F-mildness for hyperfunc-
tions defined on int M,. The notion of F-mildness is a generalization of
that of mildness. If u(x) is F-mild on N, we can define the boundary
value v,(x")=(3/0x,)’u(+0, x’) for any integer ;=0 as a hyperfunction on
N in a natural way.

Using F-mild hyperfunctions, we formulate boundary value problems
for Fuchsian partial differential operators and prove the uniqueness of
solutions of the boundary value problem. Let P be a Fuchsian partial
differential operator of weight m—k with respect to x, in the sense of
Baouendi-Goulaouic [1] and let 4(x) be a hyperfunction on int M, satis-
fying Pu(x)=0. Assume that the characteristic exponents of P avoid
certain integral values. Under these assumptions, if u(x) is F-mild on N
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and (8/6x,)’u(+0, x’) vanishes for any 0= j <m—k—1, then u(x) vanishes
near N (Corollary of Theorem 2). Moreover, if P is hyperbolic with
respect to the x;-direction on int M,, then this boundary value problem
is locally solvable. (Solvability will be treated in a forthcoming paper.)
We should remark that Kashiwara-Oshima [4] formulated boundary value
problems for all hyperfunction solutions of Pu(x)=0 on int M,. They
defined m ‘boundary values’ of a solution u(x) and proved that these
‘boundary values’ determine u(x) near N. However, as stated above,
(m—k) boundary values determine u(x) if u(x) is F-mild.

Cauchy problems for Fuchsian partial differential operators were
studied by Tahara [13] and Oaku [11] in the category of hyperfunctions
with a real analytic parameter x,: Well-posedness of the Cauchy problem
for Fuchsian hyperbolic operators was proved in [13], and the uniqueness
of solutions of the Cauchy problem was proved in [11] for general Fuchsian
operators. Micro-local Cauchy problems for Fuchsian pseudo-differential
operators were also treated in [10, 11]. In this and forthcoming papers,
we shall extend these results to boundary value problems.

In Section 1, we develop the theory of F-mild hyperfunctions by
using the curvilinear wave expansions (Radon transformations) for holo-
morphic functions (cf. Kataoka [5] and Kaneko [3]). Our main result in
Section 1 is the edge of the wedge theorem for F-mild hyperfunctions
(Theorem 1).

In Section 2, we formulate the boundary value problem for Fuchsian
partial differential operators and state a micro-local uniqueness theorem
(in other words, propagation of regularity from the boundary) (Theorem
2). -

In Section 3, we give a characterization of the singular spectrum of a
mild hyperfunction using the carrier of an analytic functional. Combining
this characterization and the method of [1] (Cauchy problems for analytic
functionals), we prove the micro-local uniqueness theorem in Section 4.

81. Theory of F-mild hyperfunctions

Kataoka introduced the notion of mild hyperfunctions in his theory -
of micro-local boundary value problems ([6, 8]). Let M be a real analytic
manifold and M, be a closed subset of M with real analytic boundary
N. When N is non-characteristic for a linear partial differential
operator P with analytic coefficients, each hyperfunction  on int M, (the
interior of M,) satisfying Pu=0 becomes mild on N and has boundary
values (as hyperfunctions) on N in a natural way. Thus the notion of
mildness is sufficient for non-characteristic boundary value problems.
However, when N is characteristic for P, u is not mild on N generally.
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We shall consider a wider class of hyperfunctions on int M, which have
boundary values in a natural way.

First let us recall the notion of mild hyperfunctions in accordance
with [6]. Since mildness is a local property and invariant under local
coordinate transformations, we set M=R" > x=(x,, x’) with x'=(x,, - - -,
Xo), M,.={xe M;x,=0}, and N={x e M; x,=0}. We consider hyper-
functions defined on int M, locally on a neighborhood of a point of N.
More precisely, let j: int M,—M be the natural embedding and consider
the sheaf &y 5, =(jJ % x) |y, Where Z, denotes the sheaf of hyperfunc-
tions on M. By the flabbiness of #,, we can also write Zy;, =
'y (B (#y); here for a subset S of M and a sheaf & on M, I'y(F)
denotes the sheaf of sections of % whose supports are contained in S.

Let X=(0, *) be a point of N and u(x) be a germ of %y, at X.
Then u(x) is said to be mild at % if and only if u(x) can be expressed on.
{x eint M,;|x—x|<e} as a sum of boundary values of holomorphic
functions

u(x):jZi}l Fy(x,, X'+« —11')0),

where J is a positive integer, ¢ is a positive number, I'; are open convex
cones (whose vertices are 0) in R*~*, and Fy(2) is a holomorphic function
defined on
D, I';, e)={z=(z,, 2y e C"; | z2—%|<G¢,
& (Im z)* +(—Re z)2 <e|lmz'|, Im 2z’ e I'}}.

Here we set (¢), =max (0, ¢) for e R. The subsheaf of #,;, consisting

of sectinos of %y, which are mild on N is denoted by QZM a» and its
section is called a mild hyperfunction.

Now we define the notion of F-mildness which is a generalization of
that of mildness.

Definition 1. Let u(x) be a germ of %y ,, at X. Then u(x) is said
to be F-mild at % if and only if u(x) has the expression

) u(x)= jﬁ Fy(x, ¥ ++/=1T,0)

on {x e int M, ;|x—x%|<e}, where J is a positive integer, ¢ is a positive
number, ["; are open convex cones in R"~', and F,(z) is a holomorphic
function defined on a neighborhood (in C*) of

D'(%,I';,e)={z=(z,,2) e C"; |z—%|<e, Re 2,20, Im z,=0, Im 2 ¢ I';}.
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For an open subset U of N, we set
B (U)={t € By (U); uis F-mild at each point of U}.

Then it is easy to see that ,9§§|M+: U»—>,9§§|M+(U) defines a sheaf on N,
which we call the sheaf of F-mild hyperfunctions. By the definition, we
have the inclusions

o .
QN[M_;.C'@NMI_;. C'@NIM+'

These sheaves are invariant under the action of a linear partial differential
operator with analytic coefficients.

In the sequel we shall prove several properties of F-mild hyperfunc-
tions.

Lemma 1. Let I be an open convex cone of R"~' and F(z) be a holo-
morphic function defined on a neighborhood of D'(0, I', ) with e>0. Then
for any open subcone I'’ of I' such that '\ S**C I (here S"*={x" ¢ R*%;
|x"|=1Y}), there exists ¢>>0 such that F(z) is holomorphic on

{=x+4+v—-1ye C™;|z|<c, N<c|y'(x,+c|y'P, ¥y e [}
Proof- The function F(w}, z’) is holomorphic on
{wy, 2) € C*; |w,|[<W(e]2), |2'|<e[2, Im w,=0, Im 2’ € I'}.

Let IV be an open convex cone of R”~* such that "< I" (i.e. ['NS*2C
I"). Then by virtue of the local version of Bochner’s tube theorem, there
exists §>0 such that F(w?, z’) is holomorphic on

{wy, 2) e C™ [w|[<W'8,]2/|<6, |Im w,|<8|Im 2’|, Im 2’ e I},

Hence F(z) is holomorphic on

{z € C";|z|<6,|2/|<8,Imz e I, Re z,>( | Tm Z‘|—>2—(5]Im z'|)2}.
26[Im 7

(Since F(z) is defined on a neighborhood of D’(0, I, ¢), it is also single-
valued on the above set.) This completes the proof.

Proposition 1. F-mildness is invariant under local coordinate transfor-
mations of M which preserve M, and N.

We can easily verify this proposition by using Lemma 1.
Note that we can define the sheaf of F-mild hyperfunctions on the
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real analytic boundary of a real analytic manifold by virtue of this pro-
position. The following proposition is also an immediate consequence
of Lemma 1:

Proposition 2. Let u(x) be an F-mild hyperfunction. Then for any
intergr q =2, u(x?, x") is a mild hyperfunction.

Proposition 3. Let u(x) be an F-mild hyperfunction defined on an open
subset U of N. Then u(x3, x') is well-defined as a hyperfunction with a real
analytic parameter x, on a neighborhood (in M) of U.

Proof. Let u(x) be defined by
J
u(x)=Zle(x1, X'+ =110
=

at X e U, where F; is holomorphic on a neighborhood of D'(%, I';, ) with
open convex cones I'; in R”~'and ¢>>0. Then

U, XY= 37 Fy(o, X'+ =1 ,0)
=1

is a hyperfunction with a real analytic parameter x;. On the other hand,
u(x?, x') is well-defined on {x € M; |x—%|<e, x,#0} as a hyperfunction
and coincides with the above definition there. Hence by Holmgren’s
uniqueness theorem, the above definition of u(x}, x’) does not depend on
the choice of defining functions. This completes the proof.

By this proposition we can define boundary values of F-mild hyper-
functions.

Definition 2. Let u(x) be an F-mild hyperfunction defined on an
open subset U of N. Then the boundary value u(+0, x") e Z,(U) is
defined as the restriction of u(x%, x’) to N.

Remark. Let u(x) be defined by (1). Then it is easy to see that
J
u(+0a X’)=Z FJ‘(Oa X’+ vV — 1 FJO)
i=1

holds on {(0, x) € N; |x'—x"|<e}.

Now we define the p-singular spectra of F-mild hyperfunctions. Let
VoIS M=K —=1T*M —M)/|R*=M X v/ —18""' and v—1S*N=
Nx+/—=18""* be the purely imaginary cosphere bundles of M and N
respectively and let z,,: 4/ —1S*M—M and ny:+/ —1S*N—N be the
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canonical projections. Let p: &/ —1S*M|y—« —1SEM—+/ —15*N be
the canonical map. We denote by SS(f) the singular spectrum of a
hyperfunction f.

Definition 3, Let u(x) be an F-mild hyperfunction defined on a
subset U of N. Then the p-singular spectrum p-SS() of u is the closed
subset of 75 (U)C+/ — 1 S*N defined by

p—SS@)=p(SS@u(xt, XNN (W —1.5*M|y—+ — 1SFM)).

It is easy to see that SS(u(+0, x"))C p—SS(u(x)) holds.
In the sequel, we shall characterize the p-singular spectrum by defin-

ing functions. For &'=(§,, ---,&)eS*%and z/=(z, ---,2z,)e C"",
we put
2)!
W, )= 2
( 2 )n 1

o (A=A =2, 1= =2, &) —(2" {2, &)}
(2, &)+ = 1" <2, &)

where (z/, &'>=2z8+---+2z,&, and z%=z+ ... +z.. In the sequel,
we use fundamental properties of curvilinear wave expansions (Radon
transformations) for holomorphic functions proved in Section 1 of [5].
See also Chapter 2, Section 3 and Chapter 3, Section 3 of [3].

Lemma 2. Let K be a compact subset of N with C*-boundary and let
u(x) be an F-mild hyperfunction on K defined by

J
u(x):Z Fj(xla x,+ V. — IF]O)5
Jj=1

where F; is holomorphic on a neighborhood of D'(K, I ;, &)=\ ex D'(x, ', ¢)
with open convex cones I'; in R*™' and ¢>0. Let X be a point of int K
and & be a point of ™. Then the point (%, ¥ — 1£’) e ¥ —1S*N is not
contained in p —SS(u) if and only if

J

FGo=3 [ Faw)WE—w, &)
F=1J K+ /~lay

is analytic at (z, &)= (%, &) for any sufficiently small a;el’,.

Proof. TFirst assume that (%, v/ —1£) ¢ o0—SS(). Then there exist
h~olomorphic functions G, (v=1, - --,[) defined on a neighborhood of
D'(x, V,, e)={ze C";|z—x|<e,Im z,=0, Im 2z’ ¢ V,} such that
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l
u(xl, x)=2, G(x;, X'+~ —1V,0)
v=1

on {x € M;|x—x|<e}; here V, are open convex cones in R"~! whose polar
sets Vo={&"e R*"*; (¥, &»=0 for any 3’ € V,} do not contain &. Set
D={x"e R*"';|x'—%'|<e/2} and let b, € ¥, be small enough. Then by
the edge of the wedge theorem for hyperfunctions, we know that

l
F@26)-2 [ Gl )W —w, )i’
v=1J D+ 4/=1b,
is analytic in (z, ') on a neighborhood of {X} X S~ if b, € V, are small

enough. On the other hand,

j Gz, WIW(Z —W, Edw’
D+ /-1by

is analytic on a neighborhood of {¥}X(S"-*—¥?). Since & is not con-
tained in V9, - - -, V9, the function F(z2, 2’; &) is analytic at (z, &)=(%, &).
Noting that F(z; &’) is analytic (and single-valued) on a neighborhood of
D'(%, 4, ) X {€’} with some >0 for any open cone 4= {)’ € R"*; (¥, &
>0}, we know that F(z; &’) is analytic at (X, &.

Now assume that F(z; &) is analytic at (%, &). Let 4, (k=0, 1, - - -,
J’) be closed proper convex cones in R™~! such that | ,cxes 4,=S""%
& e int 4,, the measure of 4, 4, is zero, and that F(z; &) is analytic in
(z, &') on a neighborhood of {£} X (4,1 S*7%). Put

Fa@=,  do@) [ Fiaw )W, v

for k=0,1, ---,J’, where do(&’) denotes the volume element on S™-%
Then F;,(z) is holomorphic on a neighborhood of D'(%, V;;, ¢) with some
£>>0 for any open convex cone Ve 4y+1;, and we have

FD=Fu@)+ 3] Ful@)

on D/(%,I";,¢). By the above assumption, F,,+ ---+F,, is analytic
at z=x. Since

27 (FD N p— SS(Fyu(xy, X +V =TV, 0) C{Z} XV =T (Ah4-T))
C{FxvV =14,

we have (¥, vV —1&) ¢ 0—SS(u(x)). This completes the proof.
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Proposition 4. Let u(x) be an F-mild hyperfunction defined on a
neighborhood of % € N. Then (%, /' —1&) e ¥ =18*N is not contained in
0 —SS(w) if and only if there exist holomorphic functions F; (j=1, ---,J)
defined on a neighborhood of D'(%, I',, €) with ¢>>0 and open convex cones
I';CR*~* whose polar sets do not contain & such that

e) u(x)= 3" F (s, X'+ V=T

Proof. 1t is obvious that (%, +/ — 1 {g’) ¢ p—SS(w) if # has the above
expression. Assume (X, v —1&") ¢ p—SS(u). Let u(x) be defined by

»
u(x)=33 G/, ¥/ ++/ =TV, 0),
=

where G, is holomorphic on a neighborhood of D’(%, V;, e} with e>>0 and
open convex cones V,CR"*"'. Then by Lemma 2,

6@ =35 [ Ga W=, )
=1J D+ /10y
is analytic at (z, &)= (%, &) if b, e V, are sufficiently small. Here we set
D={x"e R"';|x’—*%"|<e/2}. Then by the argument of the latter part
of the proof of Lemma 2, u has the expression (2) with I} 3 &. This
completes the proof.
In view of this proposition, we know that p—SS(u(x)) coincides with
¢—SS(x)) defined in [6] for a mild hyperfunction u(x) (see Definition
2.2.1 of [6]).

Proposition 5. Let u(x) be an F-mild hyperfunction defined on an
open subset U of N.  Then we have

p—SS(u(x)=p—SS(u(xt, X)
for any positive integer q.

Proof. Let X be a point of U and let K be a compact subset of U
with C*boundary such that £ e int K. Let u(x) be defined by (1) with F;,
holomorphic on a neighborhood of D'(K, I';, ¢). Set

F(z; S’):ZJ: _ Fiz, wYW( —w, &)aw’

=1 Jd K+ y=lay

with sufficiently small @, e I",. Let & ¢ S*-* and set

I'={y e R" ;¥ §’>>‘/'|y’ (Y, €Y
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Since F(z; &) is analytic on a neighborhood of D'(%, I', 6) X {£’} with some
8>0, F(z2, Z’; &) is analytic on a neighborhood of (z, &)=(%, &) if and
only if F(z; &) is analytic on a neighborhood of (%, £&). This completes
the proof in view of Lemma 2.

Proposition 6. Let K be a compact set of N and I” be an open convex
cone of R*~'. Let u(x) be an F-mild hyperfunction defined on a neighbor-
hood of K such that p—SSW)CK X~ —1I°. Then, for any open convex
cone I I', there exists a unique holomorphic function F(z) defined on a
neighborhood of D'(K, I'’, €) for some ¢>0 such that

u(x)=F(x, x'++ —1170)
holds on {x e M; dis (x, K)<e, x,>>0} (dis denotes the distance).

Proof. There exists a holomorphic function G defined on a neigh-
borhood of D/(K, I/, e)=\J,ex D'(x, I"’, ) with some ¢>0 such that

u(xt, x)=G(x,, x’++ —1170)
on {x e M; dis (x, K)<e}. Since
Glxy, X' ++ —11"0)=G(—x;, X' ++ —1170),

we have G(z,, z’)=G(—z, z’). Hence there exists a holomorphic function
F(z) defined on a neighborhood of D'(K, I/, §) with some §>0 such that
G(2)=F(z3, z’). Then we have

u(x?, x)=F(x%, x'4++—1170)
on {x e M; dis (x, K)<5}. Hence we have
u(x)=F(x,, x’' ++/ —1170)
on {x € M; dis (x, K)<§, x,>0}. This completes the proof.

Theorem 1 (Edge of the wedge theorem for F-mild hyperfunctions).
Let K be a compact subset of N and Iy, - - -, I"; be open convex cones in
R™'.  Let Fy(z) be a holomorphic function defined on a neighborhood of
D'(K, I';, &) with >0 such that

J -
> Fy(xy, X'+ —11,0)=0
=1
on {x e M; x,>0, dis (x, K)<e}. Then for any subcone I';=I;, there

exist holomorphic functions F,(z) defined on a neighborhood of D'(K, I'}+
I}, 0) with some 6>0 such that
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F@O=3Ful@ (j=1,+++,7)

and F;(2)= —F,(2) for 1<j, k<J.

Proof. We shall prove this theorem by induction on J. First set
J=2. Note that

F(x, X'+ —1I'0)= —F,(x}, X'+~ = 11I',0)

holds on a neighborhood of K in M by virtue of Holmgren’s uniqueness
theorem. Hence by the usual edge of the wedge theorem for hyper-
functions, F,(z}, z')= —F,(z%, z’) is holomorphic on a neighborhood of

D'(K, I'}+17, ') with some ¢’>>0. Setting Fj,=F, and F, = F,, we have
proved this theorem for J=2.

Now we assume that the theorem has been proved for J. Let
F, -, F,,,, etc. satisfy the assumptions of the theorem with J replaced
by J+1. Let I/ be an open convex cone of R"~'such that I, I/ < I;.
Let 4,, - -+, 4, be closed convex cones in R”~" such that
AJC(F;'/+FTI,+1)O (j:L "':J),
U 4,230 ---UI'HNIy.,

1<j<d

and that the measure of 4, 4, is zero if j#k. Let D be a compact set
of N with C*boundary such that Ke Dc{x e R*; dis (x, K)<¢/2} and
set

G@=[ @[ Fu W, v
4;n8n—2 D+ y/“la

forj=1, ..., J, where ae I';,, is small enough. Since the p-singular
spectrum of

J
Fpo(xp, X' ++/—11;,,0)= '—'Zle(xly xX+4/—1 FjO)
=
is contained in KX« — 1%, ,N{IU - - - UT')), the function
J
Gi@)=Fy ) =3 6,
=

becomes holomorphic on a neighborhood of K by virtue of Lemma 2.
Note that G,(z) is holomorphic on a neighborhood of D'(K, I/ +1'7.,, 8)
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with some §>0 and that F,,,=G,+G,+---+G,on D'(K,'’/,,,8). Ap-
plying the induction hypothesis to the functions F,+Gy+ Gy, F,+G,, -+ -,
F;+4G,, we can find holomorphic functions G, (j, k=1, -- -, J) defined
on a neighborhood of D'(K, I';41I';, §) with >0 such that G, +G,;=0
and

J
F1+G0+G1=;1G1,k,
J
F1+G1=kZ=IIij (=2,---,J).
Set F=Gy for 1<j,k<J and F, ;.,=—F;.1,,=—G—Gy, Fj ;.=
—F;,,,;=—G,forj=2,---,J. Then we have
J+1

F;=kZ=ll ija ij—l—ij:Oa

and F;; is holomorphic on a neighborhood of D'(K, I';+17;, ). This
completes the proof.

Before ending this section, we give an example of F-mild hyperfunc-
tions which are not mild.

Example. Let « be a real number such that 1 <<a<2 and set
F(z, 2)= (@ — e/ - z) s

here we take the branch of zg such that zi>0 for z,>0. Then F(z,, z,) is
holomorphic on

{21, z) € C%;|z,]<|2,|%, Im z,>0}
U {(zl, z;) e C?;|arg le<<1 —%—)n’, Im zz>0}.

Thus u(x)=F(x;, ' ++/— 10) defines an F-mild hyperfunction on N=
{(x;, x;) € R*; x,=0}. On the other hand, F(z,, z,) is singular on the set
{(—t%, ¥/ =1t); t=0}. By virtue of Proposition 6 and the corresponding
result for mild hyperfunctions (Proposition 2.1.21 of [6]), we know that
u(x) is not mild at (0, 0).

§ 2. Fuchsian partial differential equations

We use the notation D=(D,, D) and D’=(D,, - - -, D,) with D;=
0/6x;. Let P be a linear partial differential operator with real analytic
coefficients defined on a neighborhood of *=(0, *') e N. In accordance
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with Baouendi-Goulaouic [1], we call P a Fuchsian partial differential
operator of weight m—k with respect to x, if P can be written in the form

P=xEDp 4 A,(x, D)X= Dpi4 - - 4 Ay (x, D)DP
+Ak+1(x’ Dl)D'{n—k—l_}_ st +Am(xa D’)’

where

(i) k,meZ 0Zk<Zm,

(ii) the order of 4;(x, D’) is at most j for 1< j<m,

(iiiy the order of 4,(0, x’, D’) is at most 0 for 1< <k.
Setting A4,(0, x’, D')y=a,(x’) for 1<j<k, we define the characteristic
polynomial e(4, x”) of P by

e, xNV=22—1)---QA—m+D+a,(xYA(A~1)- - -(A—m+2)
+ - a2 -1)- - -@Q—m+k+1).

Let 2=0, - - -, m—k—1, 4,, - - -, 4, be the roots of the equation e(1, £ )=0
(they are called the characteristic exponents of P at X=(0, ¥')).

We consider boundary value problems for P in the framework of F-
mild hyperfunctions and give a uniqueness theorem.

Theorem 2. Assume 2; ¢ {ve Z;v=2m—k} for 1<j<k. Let u(x)
and f(x) be F-mild hyperfunctions defined on a neighborhood of % such that
Pu=f. Let& be apoint of S** and suppose (%, v/ —1&’) ¢ p—SS(f(x))
and (%, v =18&) ¢ SS(Diu(+0, x)) for 0L j<m—k—1. Then we have
& vV —18) ¢ p—SS(u(x)).

We shall give the proof of this theorem in Section 4.

Corollary. Assume 2; ¢ {v e Z;v=m—k} for 1<j<k. Let u(x) be
an F-mild hyperfunction defined on a neighborhood of * satisfying Pu(x)=0
and Diu(+0, x)=0 for 0<j<m—k—1. Then u(x)=0 holds on a neigh-
borhood of x. ‘

Proof. By Theorem 2, we know that p—SS(x)) Nz7'(H)=¢. In
view of Lemma 2, this implies that u(x) is real analytic on a neighborhood
of . Hence we have u(x)=0 on a neighborhood of % by virtue of the
Cauchy-Kowalevsky type theorem for Fuchsian partial differential equa-
tions (see [1]).

On the other hand, we can solve the boundary value problem if P is
hyperbolic with respect to the x,-direction on int M,. More precisely, let
P be as above and assume that p,,(x, {;, ¥ — 1 &) never vanishes if x ¢ R",
|x—%|<e, x,>0, & € R""", Re {;0 with some £>0; here p,, denotes the
principal symbol of P. Assume moreover that 2; ¢ {ve Z; y=m—k} for
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1<j<k. Then for any F-mild hyperfunction f(x) defined on a neighbor-
hood of % and for any hyperfunction v,(x’) defined on a neighborhood of
¥ (0Lj<m—k—1), there exists a unique F-mild hyperfunction wu(x)
defined on a neighborhood of % such that Pu= f and Diu(+0, x")=v,(x")
for 0 j<m—k—1. We shall give a proof of this statement elsewhere.

§ 3. Mild hyperfunctions and analytic functionals

We shall consider mild hyperfunctions with compact supports and
regard them as analytic functional valued functions.

We fix R>0 and put By={x"e R**;|x’|<R}. For a subset K of
C"!and s>0, we set

K={z' e C*;dis(z, K)<s},

where dis (z/, K)=inf {|{z’—w’|; w’ e K}. For an open bounded subset 2
of C*~!, we denote by ¢,(£) the space of the continuous functions on £
which are holomorphic on £. By the norm | f|=sup {f(z')|; 2z’ ¢ 2},
0(2) becomes a Banach space. We denote by F(£2) the closure of
&(C ™" (the space of all entire functions on C*~) in ¢.(£2), and by F'(Q)
its dual space (note that F({2) and F’({) are Banach spaces). If 2,C %,
are two open connected bounded sets in C "', there are natural 1nclu31ons
F(Q)CF(£2)) and F'(2)CF'(,).

Let f(x) be a mild hyperfunction defined on N whose support is con-
tained in int B;. Then f(x) can be regarded as -a hyperfunction defined
on {xe M; 0<x,<e} whose support is contained in (0, ¢) Xint B, for
some e>0. Hence for any ¢(x’) € o/ (B;) (where &/ denotes the sheaf of
real analytic functions on R""?),

S ) 3= v X))

is well-defined as a real analytic function on {x; € R; 0<x,<{e}. Moreover
this function becomes analytic on a neighborhood of x,=0:

Proposition 7. Let f(x) be a mild hyperfunction defined on N whose
support is contained in int Bp. Then there exists 6 >0 such that for any
s>0 the function f(x,, -) can be regarded as an F'((By),)-valued function on
{x, € R; 0<x, <4} by the pairing

(fr 0 $y= | fonn X))’

Jor §(z') e F((Bg),). Moreover the function f(x,, -) can be continued to an
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F'((Bg),)-valued holomorphic function defined on a complex neighborhood of
{x, € R; 0 x, <6},  (This complex neighborhood depends on s>>0).

Proof. Using the softness of the sheaf of mild microfunctions % NiMs

(see Theorem 2.1.12 of [6], where % ~ix. 1S denoted by % vixy) and Pro-
position 2.1.21 of [6], we can take holomorphic functions Fy(z) (j=1, - - -,
J) defined on a neighborhood of D’(Bjg, I';, 2¢) with open convex cones
I';CR* and >0 such that

J
f(x)=Zle(x1, X'+ —11",0).
=
Let a; € I'; be small enough and set

F(z; 5’):}%}  Fz, W)W (' —w, &)aw'.

J=1J BRr+te+ v —laj

In view of Lemma 2, F(z; &’) is analytic on a neighborhood of (z, &) e
{0} X9B; xS % Let 4, (k=1, - - -, n) be closed proper convex cones in
R*~'such that 4,U - - - U4,=R""" and the measure of 4, 4, is zero for
Jj#Fk. Weset

G@=|  Fe &)
4dpNSn—2
Then for arbitrary open convex cones V,c 4%, G, is holomorphic on a
neighborhood of
D'(Bg, V., 9)U{z e C™;|2,|<4, dis (z/, 3Br) <45}

with some 0<§<1. Moreover we have
F)=3 Gl ¥ +V=T1,0)

on B,. By Lemma 1, we may assume that each G,(z) is holomorphic on

{z=x++—1y e C*;|z,|<4, dis(z/, Br) <4, x,> —45|)y'[,
[»:]<ay' P,y e Vi)

We may assume 0<s<{g§/4. Let ¢,: B—R""! be a C* map such that

(i) &/(x")=0 for x’ € 0By,

(ii) &(x) e V3, |ex(x")|<5/2 for X’ e int By,

(iii) |ex(x")|=s/2 for x’ € By, dis (x’, 3B)=6/2,
and set 7,={x'"4++ —1e,(x); X’ € By}. Then by the definition of the
integration of a hyperfunction, we have
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[ Je X036 =33 Gl w)gl )

for ¢ € F((Bg),). Thus the function

Fz ), o= ,i f Gz W)’

is holomorphic on
U={zi=x++ — 1y, € C;|2]<5/4, x,> —065°/4, | y,|<<ds/4}.

It is easy to see that f(z, -) is an F'((Bg),)-valued holomorphic function
on U,. This completes the proof.

In the sequel we shall characterize the p-singular spectra of mild
hyperfunctions by using the carriers of analytic functionals. For

§=(&y---,6)eS™? and zZ'=(2, ---,z,)eC"},
we set
Dz, 8)=L2, &>+V —1(z"—(Z, &)
For w e C*~'and & ¢ S™~* we define an open set U(w’, &) of C"~* by
Uw,&)={z e C"*'; Im dOW —2, &) > —Re O(w' —Z, &)}
We fix & € S™~? and set
Vs n=B.Nint( () VW, $)),

where K,={(w, &) e C"'XS™ % |w|<r, |&—&|<r} for s,r>0. Tt is
easy to see that V(¢/, s, ) is a polynomially convex open subset of C*~%.
Note that there is a natural inclusion

F/(V(&, 5, ) CF((Bg),)-

Proposition 8. Let f(x) be a mild hyperfunction defined on N whose
support is contained in int B,. Then the following conditions (i), (ii), (iii)
are equivalent:

(i) ©v=T#)¢p—SS(). O

(ii) For any s>0, there exists ¥ >0 such that f(z,, -) is an F'(V(&,
s, rY)-valued holomorphic funciton on a neighborhood of z,=0.

(i) There exist s, r>0 such that f(z,, -) is an F'(V(€, s, r))-valued
holomorphic function defined on a neighborhood of z,=0.
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Proof. First let us show that (i) implies (ii). We inherit the nota-
tions in the proof of Proposition 7. We may assume &’ ¢ int 4, and
F(z; &) is analytic on a neighborhood of {ze C";|z|<Ze, |Z/|Z e}l X
(4,N S™-* with some e>0. Then G,(z) becomes holomorphic on {z e C";
|z,|<e, |Z]<e). We may assume Vi, {y e R*~*; (), &><0} for k=2,
..., n. We can modify ¢ so that {g(x’), &><<0 if |x'|<¢/2- and that
&(x") e V; is small enough if x’ € B,— B,. Since U(w’, &) contains

{z'=x’+«/:_1y’ € Cn—-l; <v/___y/, E’>>((v’—y’)2—<v’—y’, $/>z)}
with w=u/++/—10’, we may assume 7,C V (&, s, r) for k=2, - - -, nand
X4+ —1ex)e V(E,s,r) for |x|<e/2 if r>0 is small enough. On
the other hand, since B,— B, is contained in V(&, s, r) if r<e, we may
assume 7,C V(&,s, r) by letting (x’) € V; be sufficiently small for x’ e
B,—B,.. Hence we can take 7,C V(&, 5, r) so that G,(z) is holomorphic
on a neighborhood of {0} X7, for k=1, - - -, n. This implies (ii).

Next let us show that (iii) implies (i). Suppose that f(z,, -) is an
F'(V(&, 5, 1))-valued holomorphic function on {|z,|<< 8} with some s,, r,
>0. Note that

o )=[ de@)[ 10t )Wy VIO, 0
holds on (—6"? 6"%) X R*~'. Since the singular spectrum of
g0 &)= S YIWE ¥+ V=10, &)y
is contained in
{(x, &; v/ —T(adx,+ (&, dx'y)0) e ¥/ =T S*(R*X S""%); a € R},
it suffices to show that g(x, &) is analytic at (x, &)= (0, &). Set
G(xy, 2, 5’)=Jm_l JC YW (' — ', €Yl

Then G(x,, z/, &) is a real analytic function defined on

{(xla z, 5/) eRXC"'xS"? lx1]<51/2’
<Im z, E’>>(Im Z')2—<Im z, §/>2}

with holomorphic parameters z’, and we have

g(x, §)=G(x;, x'++ —1£0, &).
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It is easy to see that {V(é’ , 8, )5 8>>58,, 0<{r<{ry} constitutes a system of
fundamental neighborhoods of the closure of V(£ s, r,) consisting of
polynomially convex open sets. Thus, as a function of w’, we can regard
W(z' —w', &) as an F(V(&, s,, ro))-valued holomorphic function defined
on a complex neighborhood of {(z/, &) e C™~* X " %;|2/|<ry, |E’—§"|<ro}.
By the assumption (iii), the function

G(z, &)=/, ), W(EZ' =W, &))w

is holomorphic on a complex neighborhood of (z, &)=(0, &). Hence
g(x, &) is real analytic at (x, &)=(0, &). This completes the proof.

§4. Proof of Theorem 2

We inherit the notation in Section 2. First let us show that it
suffices to prove Theorem 2 when k=m. For this purpose we begin with
the following lemma.

Lemma 3. Let [ be a positive integer and let u(x) be an F-mild
hyperfunction defined on a neighborhood of % € N such that (%, N=1&)is
not contained in the singular spectrum of Diu(+0, x') for y=0,1, - - -, [—1.
Then there exist two F-mild hyperfunctions v(x) and u/'(x) defined on a
neighborhood of * such that

u(x) = xiu(x) +u'(x)
and that (%, /= 1&') ¢ p—SS(/(x)).
Proof. Let u(x) be defined by
u(x)= Ji Fy(xy, X ++/=11',0)

with F, holomorphic on a neighborhood of D'(, I';, ¢), where I';, - - -, I,
are open convex cones in R*~! and ¢2>0. Put

Gj(z)sz(z)-—g ;sz; (aiz)”pj(o, .

1

Then there is a holomorphic function H,(z) defined on a neighborhood of
D'(%, T;, ¢) such that Gy(2)=2zIH(z). Set

o) =3, H oo, ¥+ =TT 0),

-1 1
' (x)= ;‘) 5 x:Diu(+0, x).



240 T. Oaku

Then we have u(x)=xw(x)+u/'(x) and (%, V—1£)¢ p—SS@). This
completes the proof.

Now let P, u(x), f(x) be as in Theorem 2 with 0<k<m. Then by
Lemma 3, there exist F-mild hyperfunctions v(x) and #’(x) defined on a
neighborhood of % such that

u(x)=xT"*v(x)+u'(x)
and (%, v/ —1&’) ¢ p—SS(/). Then we have
Pxi~ u(x)= f(x) — Pu/(x),

and (%, /—1&") is not contained in the p-singular spectrum of f(x)—
Pu'(x). It is easy to see that PxT * is a Fuchsian partial differential
operator of weight 0 with respect to x, and its characteristic exponents are
not contained in {v € Z; v=0}. Hence in order to prove Theorem 2, we
have only to show the following proposition.

Proposition 9.  Set
P=(x,D)" —A\(x, D)o, D)™ — - - - — Ap(x, D),

where A (x, D') is a linear partial differential operator of order <j with
analytic coefficients defined on a neighborhood of x=0 such that A,0, x’, D’)
is a function a;(x’) for j=1, - .-, m. Put

e, xy=1"—a(xYA" ' — .- —a, (X))

and assume e(j, 0)£0 for any je Z with j=0. Let u(x) be an F-mild
hyperfunction defined on a neighborhood of 0 such that p— SS(Pu(x)) does
not contain (0, / —1£’).  Under these assumptions, p—SS(u(x)) does not
contain (0, v —1&).

Proof. We can choose an integer g =2 such that e(j/q, 0)=+0 for
any j € Z with j >0. Set Pu(x)=f(x), v(x)=u(x?, x’), and

0= (J—xlDl)m—Al(x;f, X, D’)(ixIDl) e — A X, D),
q q

Note that Q is a Fuchsian partial differential operator of weight 0
with respect to x, whose characteristic exponents are not contained in
{ve Z;»=0}. We have

g(x)=Qu(x)= f(x{, x')
and (0, v —1&) ¢ 0—SS(g(x)). Since v(x) and g(x) are mild hyperfunc-
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tions, we may assume that they are defined on N and their supports are
contained in int B, with sufficiently small R>0 by virtue of the softness
of the sheaf of mild hyperfunctions (Corollary 2.1.22 of [6]). Thus, for
any s>0, we can regard v(z,, -) and g(z,, -) as F'((Bg),)-valued holo-
moprhic functions on a neighborhood of z,=0. By Proposition 8, g(z,, -)
is an F/(V (&, s, r))-valued holomorphic function on a neighborhood of
z,=0 for some s, r >0.

Since V(é’ , 28, r[2)> V(é’ , 5, ), there exists ¢>0 such that V(é’ , 28,
12DV, s, r). Using the method of Baouendi-Goulaouic (Theorem 3
of [1]), we can show that there exists a unique F'(V(&, s, r).)-valued holo-
morphic function ¥(z;, -) defined on a neighborhood of z,=0 such that
Q(z, -)=g(z,, -). (Though they assume V(&, s, r)C R*~" in Theorem 3
of [1], their proof also applies to our case.) By the uniqueness of the
solution w of Qw=g, we know that v(z, -) is an F'(V (&, 2s, r/2))-valued
holomorphic function defined on a neighborhood of z,=0. Thus by
Proposition 8, we have (0, v — 1&’) ¢ p—SS(v(x)). In view of Proposition
5, we get (0, vV —1&’) ¢ p—SS(u(x)). This completes the proof.
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