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Introduction 

Symbols and Formal Symbols of 
Pseudodifferential Operators 

Takashi Aoki 

In this paper, we present a symbol theory of pseudodifferential opera­
tors in analytic category. A pseudodifferential operator is, by definition, 
an integral operator 

(0.1) U(X)f-----+PU(X) = J K(x, x')u(x')dx' 

with a holomorphic microfunction kernel K(x, x') defined on the conormal 
bundle supported by x=x'. The sheaf of rings of pseudodifferential 
operators is denoted by $R ([5], [6], [8]). It follows from Cauchy's inte­
gral formula that $R contains all linear differential operators with analytic 
coefficients. Moreover, $R includes the sheaf $00 of microdifferential oper­
ators ([10]). Needless to say, those classes of operators are very important 
in the investigations of various problems. We emphasize that the classes 
contain operators of infinite order and that the use of such operators is 
crucial in many cases (cf. [6], [10], [12]). 

Symbols of pseudodifferential operators are defined by Kataoka [7]. 
He defines symbols from the cohomological definition of $R by the aid of 
Radon transformations. On the other hand, Boutet de Monvel [4] intro­
duces analytic pseudodifferential operators by using oscillatory integrals 
for given symbol classes and shows that standard symbolic calculus is 
valid as well as in Coo-category (see [11], for example). We note that 
pseudodifferential operators in the sense of [4] are contained in $8 by 
virtue of Kataoka's theory. 

The aim of this paper is to develop and to complete the symbol 
theory of $R from the standpoint of [7]. The advantages of the viewpoint 
are related to the invariance of the cohomological definition of $R. The 
sheaf itself is defined independently of a choice of local coordinate systems. 
The cohomology group which defines $R can be represented elementarily 
by the method of the Radon transformation ([7], [8]); we shall make full 
use of the method. One of our main contributions is introducing the 
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notion of formal symbols, which is generalization of a definition intro­
duced in [4]. Such generalization enables us to deal with operators of 
infinite order in general (cf. [2], [3]). 

The plan of this paper is as follows. In Section l, we recall the 
algebraic definitions of pseudodifferential operators and micro differential 
operators. Concrete descriptions of pseudodifferential operators are given 
in Section 2. In Section 3, we recall the theory of Radon transformations 
of Kataoka. Section 4 gives a definition of symbols of pseudo differential 
operators. In Sections 5 and 6, we introduce formal symbols and double 
formal symbols and study infinite sums of symbols. By using the formal­
ism developed in those sections, we establish symbolic calculus of opera­
tors in Section 7. 

§ 1. Preliminaries 

In this section we recall the algebraic definition of fffR, fff~, £2=, etc. 
(Cf. [5]-[10]). 

Let X be an n-dimensional complex manifold, (!) x the sheaf of holo­
morphic functions on X. Let Y be a d-codimensional complex submani­
fold in X. The conormal vector bundle of Y in X is denoted by TtX. 
We identify the real comonoidal transformation of X with center Y with 
7!'Ylx: (X-Y)llTtX-->-X. 

The sheaf '??~IX on TtX is defined by 

(1.1) 

where a: TtX-->-TtX is the antipodal mapping. The sections of '??~IX are 
called holomorphic microfunctions. The sheaf '??~IX is locally constant 
along the orbit of the action of R+ on TtX. The restriction of the sheaf 
to TiX is Pl}:IX=jf'~({!)x). 

Let us identify X with the diagonal of Xxx. Then the cotangent 
vector bundle T* X is identified with Ti( X x X) by the first projection. 
The sheaf fff§ is defined by 

(1.2) fff§='??§lxXX ® p:;IQ'X, 
P2 1&X 

where Q'X is the sheaf of holomorphic n-forms on X and P2: XXX-->-X is 
the second projection. The sections of fff§ are called pseudodifferential 
operators. 

By the definition, a pseudodifferential operator P is written in the 
form P=K(x, x')dx', where K(x, x') is a section of '??§IXXX' The holo­
morphic microfunction K(x, x') is called the kernel function of P. The 
product (composition) of two operators PI = KI(x, x')dx' and Pz= 
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K2(x, x')dx' is defined by P1P2= (J K1(x, x")K2(X", X')dxll)dx', where the 

integral is taken as a holomorphic microfunction (cf. [10], Chap. II). 
Then Iff!:: becomes the sheaf of (non-commutative) rings on T* X. 

Let us denote by r the projection from T* X - T;X to the cotangential 
projective bundle P*X=(T*X-T;X)/C x . The sheaf Iff'; is defined by 

IffX!T*X_Tp=r-lr * Iff!:: , 
Iff'; !Ti-X = Iff§ !T'!t-X. 

The sections of Iff'; are called microdifferential operators (of finite or infi­
nite order). The sheaf of micro differential operators of finite order is 
denoted by Iff x. The sheaf !!fix of differential operators on X is defined by 

!!fi';=88';IXXX ® p:;lQ'Jc. 
Pi: 1(!1X 

Let us denote by !!fix the sheaf of differential operators of finite order. 
There are the following canonical injective homomorphisms of sheaves of 
rings: 

where 7r: T* X ---+ X is the projection. Hence microdifferential operators 
and differential operators (of finite order or of infinite order) are pseudo­
differential operators. 

Remark. In [1], [2], [8], the sections of Iff!:: are called holomorphic 
microlocal operators. On the other hand, in [10], the sections of Iff'; 
(denoted by f!jJ x there) are called pseudodifferential operators. As we shall 
see later (Theorem 4.5), each operator in IffR is represented as a modulo 
class of temperate functions (=symbols). Therefore it seems to be natural 
to call operators in IffR pseudodifferential operators (cf. the definition of 
pseudodifferential operators in COO-category; see [11]). This is the reason 
why we use the naming "pseudodifferential operators" instead of "holo­
morphic microlocal operators". 

§ 2. Defining functions of the kernel functions 

We shall give concrete description of kernel functions of pseudo­
differential operators by holomorphic functions ([10], Chap. II, § 1.4). 
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Hereafter X denotes an open set in en with coordinate system X= 
(Xb .. " xn). Then we have the following identifications: 

T*X-:::::.Xxen:l x*=(x, ~)=(Xb "', Xn, ~b "', ~n)' 

TX-:::::.XXen:l x*=(x, V)=(Xb "', Xno Vb "', Vn). 

Here TX is the tangent vector bundle of X. The inner product of (TX)" 
:l V and (T*X},,:l ~ is given by Re<v, g>=Re(vl~I+'" +vn~n)' Let us 

fix a point x* = (x, ~) in T* X. We can assume without loss of generality 
that (x, ~) = (0; A, 0, .. " 0) (A E e). Conic neighborhoods of x* in T* X 
are denoted by Q, QI, .. " etc. Here a subset V c T* X is said to be conic 
if rV={(x, rg); (x,~) E V}c V for any r;;::::1., 

We shall consider the stalk c!IJ.~.=c!:. of c!~ at x*. If A=O, then 
the stalk coincides with !?)x,~, which is well known. Hence from now on 
we assume A=FO. By the definition we have 

(2.1) 

where (!)'1;'i=(!)XXX®p;IQ'J" a(x*) =(0; -A, 0, ···,0). For c>O, e>O 
we set 

Uc = {(x, x') E XXX; Ixl<c, Ix/l<c}, 

Zc,.= {(x, x') E Uc; Re (A(X1-x'J»e 11m (A(x1-x;»)!, 

IX1-xil~elxj-x~l,j=2, "', n}. 

Then it follows from Proposition 1.2.3 in [10], Chapter I that the right­
hand side of (2.1) becomes the inductive limit 

.as c, e~O. 

Let us fix c, e>O and calculate the cohomology. The open set Uc-Zc,. is 
covered by holomorphically convex sets V(·) (1.1 = 1, .. " n) defined by 

V(·) = V(·) = {(x x') E U . Ix -x'l<e Ix -x'I} c,e , c' 1 1 lo 11' 1.1=2" ··,n. 

Set 

(2.2) 
n 

V= Vc,.= U V(·), V(·) = n V(I'). 

11=1 1''''. 
We have the following exact sequence: 

n ~ 

ill r(V(·)· (!)(O,n»~r(v' (!)(o,n»)~Hn (U' A1(O,n»~o 
Q7 'XXX 'XXX Zc.e c· ClXXX • 
,.,=1 
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Hence any P=K(x, x')dx' e c!f. can be represented as an equivalence class 
of a holomorphic form vex, x')dx' e rev; 1P~~1) for some c, e>O. We 
may write as follows: 

(2.3) P=K(x, x')dx'=[v(x, x')dx']. 

We call vex, x')dx' (or vex, x'» a defining function of the pseudodiffer­
ential operator P e c!f •. 

Example 2.1. Let us define a holomorphic function of one variable 
~ with parameter p. by 

i/) (~)- 1 r(I+p.) ( .. --J- 1 2 ) 
I' - 21t'.J=1 (_~y+1' \/-"-(-- ,- , ... , 

i/)_m(~)=~ ~m-l{10g~_(I:l~_r)}, rn=I,2,···. 
21t' -1(rn-l)! .~1 lJ 

Here risthe Euler constant. Let a=(ah •• " an) be a multi-index (az, .. " 
an e Z+ ={O, 1,2, ... }). Set 

Then i/) aCx-x')dx' defines an operator in c!f.; we shall write it in the form 
D;=D;~ • ... • D;: (D",,=%xJ, j= 1,2, .. " n). If a 1 e Z (resp. a 1 e Z+) 
then the operator belongs to c!". (resp. P2,,). 

§ 3. Radon transformations 

Let us define W, Y by 

W={(x, ~,p); x E X, ~ e Cn_{O}, p e C}, 

Y={(x, ~,p) E W;p=O}. 

Let P=K(x, x')dx' be an operator E c!f.. By the definition K(x, x') is a 
section of ~§IXXX over an open (conic) neighborhood Q of x*=(x, ~)= 
(0; 1, 0, . ··,0)(1=/=0) identified with (x, x,~, -~) E TI(XXX). We set 

(3.1) f(x E:)_ (n-l)! f . K(x, x') dx' 
,co,p - (-21t'.f=1)n (p-<x_x',~»n . 

It follows from the theory of integration for holomorphic microfunctions 
(cf. [10], Chap. II) that f(x, ~,p) is a section of ~~IW over a neighborhood 
of {(x, ~,p; tdp) E TfW;P=O, t>O, (x,~) E Q}. It is clear thatf(x, ~,p) 
is homogeneous of order (-n) with respect to (x, ~) .. Conversely, if such 
a holomorphic microfunctionf(x, ~,p) is given, then a section K(x, x') of 
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ce'~IXXX can be defined by the theory of Radon transformations (cf. [8]). 
The holomorphic microfunction K(x, x') is formally defined by 

(3.2) K(x, x') = f f(x, ~,<x-x', ~»Q)(~), 
/'-. 

where Q)(~)= L:j~l (-I)i-l~jd~J\ . .. /\d~j/\' .. /\d~n' The correspond-
ence f 1----+ K is reciprocal to (3.1). Since Y is of co dimension 1 in W, ce': IW 

is easily represented; we have the following: 

Theorem 3.1 ([8], Theorem 3.2.3, Definition 3.2.4). Let!T and d be 
two sheaves on T* X defined as follows: For each xt = (xo, ~o) E T* X, 

!Tx~={f(x, ~,p)Q)(~);fis holomorphic on {(x, ~,p) E W; 

I~-~ol<e, Ipl<e, -Rep>O, Ix-xol<e} for some e>O 

and is homogeneous of order (-n) with respct to (~, p)}, 

dx~={f(x, ~,p)Q)(~) E !Txt;fis holomorphic at (x, ~,p)=(xo, ~o, O)}. 

Then the correspondences (3.1) and (3.2) yield the following linear iso­
morphism: 

Let us remark that neither !T nor d is invariant under the change of 
variables. By the preceding theorem we may write 

P=[f(x, ~,p)Q)(~)], 

wheref(x, ~,p)Q)(~) E !Txt. We callf(x, ~,p)Q)(~) or f(x, ~,p) the Radon 
transformation of K(x, x') (or P). If P=K(x, x')dx' is represented by a 
defining function 1/r(x, Xl) E r(Vc ,.; @xxx) (for some c, e>O) as (2.3), then 
the correspondence (3.1) is written in the form 

(33) f( c )- (n-l)! ffi1d id id 1/r(x,x-y) 
. x, ,>,p - (21t'-!=1t fio Yl j Y2'" j Yn (p-<y, Ot 

as a holomorphic function. Here /30' /31 are sufficiently small complex 
numbers so that 

0< Re )./30 < e 1m )./30' 

O<Re )./31< -e 1m )./3b 

f dYJ means the contour integral along the cycle {Yj; I Yj l=e-1Iyd+o} with 

O<O~ l,j=2, .. " n (cf. [6], Chap. III). 
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(j'22) 

Fig. 3.1. 

§4. Symbols 

We shall define the symbol of a pseudodifferential operator PEg: •. 
Let ICx, e,p) be the Radon transformation of P. We may assume that 
P is holomorphic on 

{Cx, e,p) E W; [x-x[<c, [e-~[<c, [p[<c, Re p<O} 

for some c >0. It follows from the homogeneity of I that I becomes holo­
morphic on 

{Cx, e,p) E W; [x-x[<c, [e-~[<c, [p[<c, Rep<e[Imp[} 

for some e>O. Let So, Sl be holomorphic functions of e homogeneous of 
order 1 with respect to e so that [soCe)[<c, [SlCe)[<C, O<ResoCe)< 
-dmsoCe), O<Re sle)<dm SlCe) for [e-~[<c. Let 2=2Ce) be a path 
starting from So, ending at Sl and around the origin clockwise. 

Imp 

Rep 

Fig. 4.1 
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We set 

(4.1) 

Then we have 

Proposition 4.1 (Cf. [7], § 3.3; [1], Theorem 2.1.1). a) P(x,~) is holo­
morphic on a conic neighborhood Q of x* and satisfies the following estimate: 
For each Q' c Q and for every h >0 there is a constant C >0 such that 

IP(x, ~)I<C exp (h I~j) 

for any (x,~) E Q'. Here Q'eQ means Q' is a compactly generated conic 
subset in Q. 

b) !ffE d/t*' then for each Q'eQ there are constants h>O, C>0 
such that 

IP(x, ~)I<C exp (-h I~j) 

for any (x, ~) E Q'. 

Now we introduce a symbol class and its subclass. 

Definition 4.2. Let Q be a conic open set in T* X. Then we denote 
by S(Q) the set of all P(x, ~) E <!JT'X(Q) such that for every Q' c Q and for 
each h>O 

IP(x, ~)I<C" exp (hl~j), (x, ~) E Q' 

is valid for some constant C". The elements of S(Q) are called symbols 
defined in Q or temperate (holomorphic) functions. If for each Q' e Q 

IP(x, ~)I<C exp (-h I~j), (x, ~) E Q' 

holds for some positive constants h, C, then the symbol P(x, ~) E S(Q) is 
said to be a null-symbol or rapidly decreasing in Q. We denote by R(Q) 
the set of all null-symbols defined in Q. 

It is clear that R(Q) is an ideal of the commutative ring S(Q). Com­
bining Proposition 4.1 with Definition 4.2 yields at once the following 

Theorem 4.3. The correspondence 

.'T/t. ~f(x, ~,p)Q)(~)~P(x,~) 

defined by (4.1) induces the following linear homomorphism 
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0': 1ff:'~limS(Q)/R(Q), 
~ 

where Q runs on the family of conic neighborhoods of x*. The homomor­
phism 0' is independent of the choices of so, Sl. 

Definition 4.4 (Cf. [7], §3.3). The mapping 0' defined in Theorem 4.3 
is called the symbol mapping. The image (or its representative) O'(P)= 
P(x, ~) of an operator P E Iffr. is said to be the symbol of P. 

Remark. We use the same letters to represent the operators and their 
symbols. As a rule the variables (x,~) are designated when the letters 
denote the symbols. 

We shall show that the symbol mapping 0' is a linear isomorphism. 
Let Q be a conic neighborhood of x* = (x, ~) = (0; A, 0, ... , 0) (A * 0), 
P(x, ~) E S(Q). Let r be a sufficiently large number >0. We set 

(4.2) 1 S"" g(x, ~,p)= .f=t P(x, 'C~)e<p'Cn-ld'C 
(2n- _1)n r 

for ~l=A and extend g(x, ~,p) as a homogeneous function of order (-n) 
with respect to (~, p). Then we have 

Theorem 4.5. There is a linear homomorphism 

fjj: lim S(Q)/R(Q)~.r:t./d:t.=::.Iff:* 
~ 
IJ3 :to 

induced from P(x, ~)t-4g(x, ~,p)(J)(~) defined by (4.2). The homomorphism 
fjj is independent of the choice of r . Moreover fjj 0 0' = id and 0' 0 fjj = id hold. 

Proof It is clear that g(x, ~,p)(J)(~) defined by (4.2) belongs to .rIl;O 
for each P(x, ~) E S(Q), Q being a conic neighborhood of x*. Let r' be a 
sufficiently large positive number. Then the integral 

f:, P(x,'C~)e<P'Cn-l d'C 

is holomorphic at p=O. Hence fjj does not depend on r modulo d:t •. 
We shall show fjj oO'=id. Let us assume P(x, ~)=O'([f(x, ~,p)(J)(~)]), i.e., 
(4.1) holds. Because of the homogeneity, it is sufficient to prove fjj 0 O'lh=A 
=id. Let g(x, ~,p)(J)(~) be the image of P(x, ~) by fjj. Then we have 

g(x, ~,p)(J)(~)= 
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I f e~-~r = -,~ I(x, e, q) dqw(e) 
2rrJ"=l Z«) q-p 

=/(x, e,p)w(e) modulo dot •. 

Thus we have fii oO'=id. Next we prove 0' 0 fii=id. Let us suppose that 
the image of P(x, e) E SeQ) by fii is g(x, e,p)w(e). If el:;t=O we have by 
the definition 

(4.3) 
g(x, e, p) =g(x, }.elel> }.plel)· (Afelt 

=-J-,--- f= P(x, dele 1) exp (dplel)1:n- 1d1:' (}.Iel)n. 
(2rr'V-l)n r 

The integral converges locally uniformly and defines a holomorphic func­
tion if Re (}.plel)<O. Let us denote by r ± the paths starting from r, 
tending to 00 along 1m 1:= ±c' Re 1: (O<c' ~ I). 

Imt" Imt" 

r Ret" 

r Ret" 

r-

Fig. 4.2 

If the path of integration in (4.3) is replaced by r ± then g(x, e, p) is holo­
morphically continued to Re p<c" IImpl (O<c" ~ 1). We set Q(x, e)= 
O'([g(x, e, p)w(e)]), that is, 

(4.4) 

where 2 is a path like Fig. 4.1 (so, Sl may be replaced). Let us decompose 
2=2 ++2_ where 2±=2 n {Imp~O}. Then Re (1:p) <0 for any 1: E r ±, 

p E 2 ±. Now combining (4.3) and (4.4) yields 

(4.5) 
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+ J=-r f dp f d"P(x, d~/~I) 2IT -1 I_ T-

X exp «d/~1-1)p)"n-I(A/';-I)n. 

We denote by 1+ (resp. L) the first term (resp. the second term) of the 
right-hand side of (4.5). Then we write 

where Po=,S n {Imp=O}. Similarly, we have 

It follows from the choice of So, SI that I~) and I<!) are rapidly decreasing 
as 1~I~oo. Hence Q(x, ';-)=I'l:) -I~) modulo rapidly decreasing functions. 
We shall calculate the right-hand side: 

Since ("-~I/).tl exp «d/';-1-1)po) is the Cauchy kernel with damping 
factor, the right-hand side coincides with P(x, .;-) in a conic neighborhood 
of x*. Therefore we have (] 0 f11 = id. 

Definition 4.6. The image P=f11(P(x, ~)) E Ifff. of a symbol P(x,';-) E 

SeQ) (or its equivalence class) by f11 is called the normal product of P(x, ~) 
and denoted by 

P= :P(x, .;-):. 

Remarks. a) The notation is an analogue of that in quantum field 
theory, for the commutation relations of differential operators are the 
same as those of free bosons. 

b) :P(x, ~): is denoted by P(x, Dx) in [1], [7]. 
c) The normal products of Xj' ~j, Xj~j (j= 1, .. " n) are Xj, D xj = 
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a/ax!, xjD",/ respectively. Moreover, if P(x, ~)=IaaCx)~a is a polynomial 
in ~ with analytic coefficients, then :P(x, ~):=IaaCx)D;. 

If the Radon transformation f(x, ~,p) of P e rB'f. is written as (3.3), 
then the symbol is 

P(x, ~)=(21t"yC1)n-l Lf(X, ~,p)e-Pdp 

= (n-I)! fh dYl'cdyz'" 'cdYnf dp t(x,x-y) e-P 
21t"-1=1 Po J J x (p_<y, ~»n 

=(_I)n f:: dYltdyz'" tdYnt(x,x-y)e-<1/,e>. 

Here the last identity makes sense modulo rapidly decreasing functions. 
Hence we have 

Proposition 4.7. If P e rB'f.. is represented by a defining function 
t(x, x') e (!I(Vc,.) (for some c, e>O; cf. § 2), then the symbol P(x,~) of P 
is calculated by 

The symbol obtained in the preceding proposition is an entire func­
tion of ~ of exponential type. Of course the symbol is temperate in a 
conic neighborhood of .t*. 

Now we introduce the orders of symbols. 

Definition 4.8. Let m be a real number. A symbol P(x,~) defined 
in a conic open set Q c T* X is said to be of order at most m (resp. m - 0) 
in Q if for every Q'cQ, P(x, ~)I~I-m is bounded in Q' (resp. for every, 
Q'cQ, P(x, ~)I~I-m~o as 1~I~oo, (x,~) e Q'). 

If there is no m satisfying the above condition for a symbol P(x, ~), 
then the symbol is called of infinite order in Q. For the symbols of infinite 
order, the orders of their logarithms are important. 

Definition 4.9. Let p be a real number such that O<p<I (resp. 0< 
p< 1). A symbol P(x, ~) defined in a conic open set Q is said to be of 
growth at most p (resp. p-O) if for any Q' c Q, there exist positive con­
stants h, C (resp. for any Q' Co Q, h >0 there is a positive constant C) such 
that 

IP(x, ~)I<C exp (hIH) 

is valid for each (x, ~) e Q'. 
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Remarks. a) By the definition, any symbol is always of growth at 
most 1-0 (cf. Proposition 4.1). 

b) In [1], symbols of growth at most p (resp. p-O) are called of 
growth order at most (p) (resp. {p}). 

§ 5. Formal symbols 

We shall generalize a definition introduced in a particular case by 
Boutet de Monvel [4] (cf. [1], [2]). 

Let Q denote a conic open set in T* X. 

Definition 5.1. A formal power series pet; x, .;)= L:i=o t j P/x,';) in 
t with coefficients in S(Q) is called a formal symbol (defined in Q) if for 
every QI c Q there are constants r, A satisfying the following conditions: 

a) O<r,O<A<l. 
b) For each h>O there is a positive constant C such that 

(5.1) IP/x, ';)I:S;;CAj exp (hl';l) 

is valid for any (x,';) E Q/ nMI>U+l)r},j=O, 1,2, .... We denote by 
S(Q) the set of all formal symbols defined in Q. 

We introduce the sum and the product in S(Q) as formal power series, 
in· t. Then S(Q) becomes a commutative ring. The space of symbols. 
S(Q) introduced in Section 4 is identified with a subring of S(Q): 

(5.2) S(Q)::::S(Q)I,=o={P= L: tJPj ; Pj=O for allj>O}. 

Sometimes L:i=o t j Pix, .;) is abbreviated to L:i=o Pix, ';). 

Definition 5.2. A formal symbol pet; x, .;)= L:i=o tJP/x,';) defined 
in Q is said to be equivalent to zero (in Q) and written pet; x, ';)~O if 
for every QI c Q there are constants r, A such that 

a) O<r,O<A<l. 
b) For every h>O there exists a constant C>O so that 

(5.3) 

holds for all (x, .;) E QI n MI>mr}, m= 1,2, .. '. We denote by R(Q} 
the set of all formal symbols equivalent to zero in Q. Two formal symbols 
P, Q E S(Q) are said to be equivalent if P - Q E R(a); then we write P ~ Q. 

Proposition 5.3 (Cf. [4]). Under identification (5.2), S(Q) n R(Q) = 
R(Q) holds. 
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Proof Suppose P(x, ~) E S(Q) n R(Q). Then for each Q' c Q, there 
exist constants r, A satisfying the following conditions: 

a) O<r,O<A<l. 
b) For each h>O there is a positive constant C such that 

(504) 

holds for every (x,~) E Q' n {I~I >mr}, m= 1,2, .. '. 
For each~, we take m as the integral part of 1 + I Hr. Then from (5.4) 

we have 

IP(x, ';:)I<CAIWr exp (hl';:I). 

Since O<A < 1, we can choose h >0 as h+y-1log A <0. Hence P(x, .;:) 
E R(Q). 

Conversely, let P(x, .;:) be an element of R(Q). Then by the defini­
tion there are constants C, h >0 for each Q' c Q so that 

IP(x, ~)I<C exp (-hl~I), (x,~) E Q' 

holds. If 1~I>m, then exp (-hl~J)<exp (-hm)=Bm. Here we set B= 
e-"; hence O<B<1. Therefore we have 

for (x,~) E Q' n {I~I>m}. This completes the proof. 

Proposition 5.4. R(Q) is an ideal of S(Q). 

Proof It is clear that R(Q) is an additive subgroup of S(Q). Let 
P(t; x, ~) = L: t i Plx, .;:) E R(Q), Q(t; x, ~) = L: tkQk(X, ~) E S(Q). It suf­
fices to show pet; x, ~)Q(t; x,~) E R(Q). We may assume that for each 
fJ'cQ there exist constants r>O, O<A<1 so that for every h>O there is 
a positive constant C satisfying 

(5.5) jiPiX, ~)I<CAj exp (hl~J), 1~1>(j+l)r, 

I Qk(X, ~)I<CAk exp (hl~I), 1~1>(k+l)r, 

I~Ol Plx, ~)I::;;:CAm exp (hl';:I), l';:l~mr 

for (x, .;:) E Q', j, k=O, 1,2, .. " m= 1,2, .. '. We set 

00 

Wet; x, ~)=P(t; x; ';:)Q(t; x, ~)= L: tIW1(X, ';:). 
I~O 

That is, 
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(5.6) W1(x, ~) = L: Pix, ~)Qk(X, ~). 
j+k=l 

We shall estimate I L:r="(/ W1(x, ~) I (m = 1, 2, ... ). Combining (5.5) and 
(5.6) yields 

I~l W1(x, ~)I~I'%t1 Pix,~)~: Qk(X, ~)I 

(5.7) 
+121~: j];!l Pj(x, ~)Qk(X, ~)I 

j, k::=;;m-l 

C2 

~ I-A Am exp (2h I~j) 

m-2 
+C2Am L: (l+m+I)Alexp(2hl~l) 

1=0 

for(x,~)EQ'n{I~I~mr},m=I,2, .... Since O<A<I, we can choose 
B so that A <B< l. Then it follows from (5.7) that there is C' for every 
h >0 such that 

I~l WI (x, ~)I~C'Bm exp (2hl~j) 

is valid for (x, ~) E Q' n {I ~ I >mr}, m = 1, 2, .. '. Hence W(t; x, ~) E R(Q). 

We consider the commutative ring S(Q)jR(Q). By Proposition 5.3, 
the inclusion SeQ) C:S(Q) (see (5.2)) induces the injective homomorphism 
tOI: S(Q)jR(Q)-+S(Q)jR(Q). Conversely we have the following 

Theorem 5.5. Let Q be a conic neighborhood of x* = (x; A, 0, .. " 0) 
in T* X. For every formal symbol pet; x, ~) = L:i=o t j Pj(x, ~) defined in Q, 
there are a conic neighborhood Q j c Q of x* and a symbol P(x, ~) defined in 
Qj so that P(x, ~)~P(t; x,~) in QI' 

Proof We may assume that Pix, ~) satisfies the estimate in Defini­
tion 5.1. Let us define fk(x, ~,p) (k=O, 1,2, ... ) as follows: If ~I=A, 
we set 

(5.8) 

We extend fk(x, ~,p) as a homogeneous function of degree (-n) with 
respect to (~,p). Then we have fk(x, ~,p)(J)(~) E .'Ta;*. By Theorem 4.5, 
we have :Pk(X,~): = [fk(x, ~,p)(J)(~)]. Let us define Pk(x, ~) by 
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k=O, 1, .... 

Here 1: is a path defined in Section 4. Then Pix, ~) is a symbol defined 
in a neighborhood Ql of x*. By virtue of Theorem 4.S, Pk(X,~) is equiva­
lent to Pk(X,~) in Ql' Since we have assumed (S.l), we obtain for ~l=A, 
hl~I+Rep<O 

I fk(X, ~,p) I ~ (k+ nn foo CA k exp {(k+ l)r{h I~I+ Re p)}t'n-ldt' 
(2rr)n r 

~ C'Aklr(hl~I+Rep)l-n exp {(k+ l)r(hl~I+Re p)}. 

Here C' is a constant depending on h. Hence 1:fk converges locally uni­
formly in Re p<O, for h is an arbitrary positive constant. Similar estimate 
is still valid when the path of integration in the last term in (S.8) is replaced 
by r ± (introduced in the proof of Theorem 4.S). Therefore 1:fk converges 
locally uniformly in Re p<e" I Impl (O<e" <t: 1). Since Pk(x, ~) is defined 
by (S.9), it satisfies the following estimate: For each Qi c Ql' there is a 
constant O<A<l such that for every h>O, 

(x,~) E Qi 

is valid for some C" >0. Hence L:r~o Pk(x, ~) converges locally uniformly 
in Ql' We now set 

It is clear that P(x,~) E S(Ql)' pet; x, ~) E S(Ql) and that P(x,~)­
P(t; x, ~). We shall prove that P(x, ~)-P(t; x, ~). It suffices to show 
P (t; x, ~) - P (t; x, ~). We use the same notation as in the proof of Theo­
rem 4.S. The right-hand side of (S.9) is calculated in the same way as 
(4.S), that is, we have 

Here we set 

(k% f dpf dt'P.(x, (k+1)At'~/~l) 
2rr -l.l'± r± 

X exp {«(k+ l)At'/~l-l)p }t'n-l(A/~l)n. 

We calculate I± by changing the order of the integrations. 
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L = b (k+ I)A)n f d'CPk(x, (k+ I)A'C';/';I) 
2IT - 1 ';1 r-

X exp {«k+ I)A'C/';1- 1)po} 'Cn-1 
(k+ I)A'C/';1-1 

- b (k+ I)A )nf d'CPk(x, (k+ I)A'C';/';I) 
2IT - 1 ';1 r-

=1'!..)-1':.). 

X exp {«k+ I)A'C/';1-1)SoL'Cn-1 
(k+ I)A'C/';1-1 
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We have Pix, ';)=1~)-1<:')+1'!..)-1~). Since exp{«k+l)A'C/';1-1)po}' 
«k+ I)A'C/';I-1)-1 is the Cauchy kernel (up to constant multiple) with 

damping factor, 1'!..)-I~)=fr+_r_ coincides with Pk(x,';) if ';1/(k+l)A is 

contained in the inside of r + -r _. Therefore, if (x,';) is contained in a 
sufficiently small neighborhood of i* and if [';[>(k+l)r" (r)>1), then 
Pk(x, .;)-Pix, ';)=1<:')-1~) holds. Let us recall that So, SI are homo­
geneous function of .; of order 1, Then [1<:')[ and [1~)[ are estimated 
(locally uniformly) by Co(k+1)nA k exp(-h'[';[) for some Co, h'>O. 
Hence there are positive constants C, h such that 

holds for [';[>mr", m= 1,2, .. '. This completes the proof. 
Let us remark that the above construction of P(x, .;) is independent 

of the choice of r modulo rapidly decreasing functions. Hence we have 

Theorem 5.6. The correspondence P(t; x, .;) >-* P(x,';) obtained in 
Theorem 5.5 induces the ring isomorphism 
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PlO: lim S(Q)jR(Q)~lim S(Q)jR(Q) 
~ ~ 
t)3.t* {,}3x* 

such that PlO 0 tOI =id, tOI 0 PlO=id. Here Q runs on the family of conic neigh­
borhoods of x* in T* X. 

Combining this with Theorem 4.5 yields the following 

Theorem 5.7. Set flfl=flf 0 PlO, then 

flf l : lim S(Q)jR(Q)~<ff:* 

is a linear isomorphism. 

~ 
D3x* 

Definition 5.8. The image of a formal symbol (or its equivalence 
class) pet; x, ~)= '6j~o t f Pix, ~) E SeQ) by flfl is denoted by 

:P(t; x, ~):=:'6 tfP/x, ~): 
j~O 

and called the normal product of pet; x, ~). 

Remark. Sometimes we abbreviate : '6j~o t f Pf(x, ~): to 

Of course, Definition 4.6 is included in the preceding definition. 

Definition 5.9. Let m be a real number, pet; x, ~)= '6j~o tfP/X,~) 
a formal symbol defined in a conic open set Q in T* X. We call pet; x,~) 
a formal symbol of order at most m in Q if for every Q' e Q there exist 
positive constants r, C, A sllch that O<A < I and that 

IP/x, ~)I::;:CAfl~lm 

holds for any (x,~) E Q'n{I~I>(j+l)r},j=O, 1,2, .... 

Definition 5.10. Let P be a real number such that 0 <p < 1 (resp. 
O<p< 1), pet; x, ~)= '6j~o tiP/X,~) a formal symbol defined in a conic 
open set Q in T* X. The formal symbol P(t; x, ~) is said to be of growth 
at most P (resp. P - 0) if for every Q' c Q there exist positive constants r, C, 
A, h such that O<A<1 and that (resp. for every Q'eQ there are positive 
constants r, A such that O<A<1 and that for each h>O there exists a 
constant C>O for which) 
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I Pix, ~)I<CAj exp (hl~IP) 

holds for any (x,~) E Q'n{I~I>(j+1)r},j=O, 1,2, .... 

The preceding definitions are natural extensions of Definitions 4.8 
and 4.9, for we have 

Proposition 5.11 (Cf. [4], (1.14». Let Q be a conic open set in T* X. 
P(x,~) a symbol E S(Q), pet; x, ~) a formal symbol E S(Q) of order at 
most m (resp. of growth at most p, of growth at most p-O). If P(x, ~)­
pet; x, ~), then P(x, ~) is of order at most m (resp. of growth at most p, of 
growth at most p-O). 

The proposition can be proved in the same manner as Proposition 5.3. 
We give some examples of formal symbols and symbols equivalent to 

them. We suppose n=l and write ~1=~. 

Example 5.12. a) I:j~o t j 2- j - 2. This is trivial one. But we 
remark that the left-hand side is not a formal symbol in the sense of [4] 
(cf. [1]). 

b) I:j~otj~-j-~.(~-l)-l-~·(l-eH).(~-1)-l (Re ~>O). The 
last term is an entire function. 

c) I:j~o t'.iI (-~)-j - r e<-8~s-lds (Re ~>O). 
d) I:j~o tj(j!tl~j/2_ I:j~o (j!tl~j/2=exp -IT. Both members are 

of growth 1/2. 

§ 6. Double formal symbols 

It is sometimes convenient to deal with certain double formal series 
of symbols rather than formal symbols (cf. [3]). We introduce the fol­
lowing 

D~finition 6.1. Let Q be a conic open set in T* X. Let P(tl> t2 ; x, ~) 
= I:j,k~O tft:Pjk(x, ~) be a formal power series in (tb t2) with coefficients 
in S(Q). We call P(tb t2; x, ~) a double formal symbol defined in Q if for 
any Q' c Q there exist positive constants r, A satisfying the following con­
ditions: 

a) O<A<l, 
b) For each h>O there is a constant C>O such that 

(6.1) 

holds for any (x,~) E Q' n MI>(j+k+ l)r},j, k=O, 1,2, . . .. The set of 
all double formal symbols defined in Q is denoted by S2(Q). 
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Null-class in the space of double formal symbols SM2) is defined as 
follows. 

Definition 6.2. A double formal symbol 
00 

P(tl' t2 ; x, ~)= I: t{t~Pjk(X,~) 
j,k=O 

defined in Q is said to be equivalent to zero if for any Q'rb Q there exist 
positive constants r, A satisfying the following: 

a) O<A<l, 
b) For each h>O there is a constant C>O such that 

(6.2) I I: Pjk(x, ~)I::;;:CAm exp (hl~J) 
j+k';m-! 

is valid for any (x,~) E Q' n MI>mr}, m= 1,2, .. '. The set of all double 
formal symbols E S2(Q) equivalent to zero is denoted by R.zCQ). Two 
double formal symbols defined in Q are said to be equivalent if the dif­
ference belongs to R2(Q). 

We introduce the sum and the product in S2(Q) as formal power series 
in (tl> t2)' Then SzCQ) becomes a commutative ring. The ring of formal 
symbols SeQ) is identified with a subring of S2(Q) by setting t= t l • Here­
after we always consider t= t l • By the definition, the following pro­
position is trivial. 

Proposition 6.3. SeQ) n Rz(Q)=R(Q). 

Hence we may write P(tl> t2; x, ~)~Q(tl' t2; x,~) if P(tl> t2; x,~) E 

S2(Q) is equivalent to Q(tl> t2; x, ~) E S2(Q) (cf. Definition 5.2). 

Proposition 6.4. R2(Q) is an ideal of S2(Q). 

The preceding proposition is proved in the same way as proposition 
5.4. 

Now, we have the following injections: 

R(Q) ~ R(Q) ~ R2(Q) 

J J J 
S(Q)~ S(Q)~S2(Q). 

By virtue of Proposition 6.3, there is an injective homomorphism 
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Remark. If pet; x,~) E SeQ) then pet); x, ~)-P(tz; x, ~). 

Let us define Pz): Sz(Q)~S(Q) by setting PzlP(tl> tz; x, ~))=P(t, t; 
x, ~). Then we have 

Theorem 6.5. The mapping Pz) induces the homomorphism 

such that Pz) 0 c)z=id, c)Z 0 P2) =id. 

Proof If P(tl> tz; x, ~) E Rz(Q), then, by the definition, we have 
PZ)(P(tl> tz; x, ~)) E R(Q). It is clear that Pz) 0 c)z=id. We shall show ()2 0 PZ) 
=id. It suffices to show that P(tl>tz; x, ~) - P(tl> t); x,~) holds for any 
P(tl> tz; x,~) E Sz(Q). Suppose pet), tz; x, ~)= L:j,k~O t{t:Pjk(x, ~). We 
write pet), t); x, ~)= L:j,k~O t{t~Pjk(x, ~). Then we have Pjo(x, ~)= 
L:t~OPj-k,k(X,~),j=O, 1,2, ... and Pjk(x,~)=O,k>O,j=O, 1, .... 
Hence we have 

m-l 

L: Pjk(X,~) - L: Pjo(x, ~) 
j+k::;:m-l j=O 

m-l j 

L: Pjk(X,~) - L: L: Pj-k,k(X, ~) 
j+ko;m-l j~O k~O 

=0. 

This completes the proof. 

Combining this with Theorem 5.7 yields 

Theorem 6.6. Set Wz = w) 0 PZl> then 

is a linear isomorphism. Here Q runs on the family of conic neighborhoods 
ofx* in T*X. 

Definition 6.7. The image of P(t), t2: x,~) E S2(Q) (or its equivalence 
class) by Wz is denoted by :P(t), 1z; x, ~): and called the normal product 
of P(tl> tz; x, ~). 

§ 7. Symbolic calculus 

In this section we establish some calculation rules concerning pseudo­
differential operators, which are expressed in terms of formal symbols and 
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of double formal symbols. 
We first prepare the following lemma. Let Q denote a conic neigh­

borhood of x* = (x; A, 0, ... , 0) in T* X. 

Lemma 7.1. Let M=(aij) be an nXn matrix (ai) E C, l<i,j<n), 
pet; x,.;:) aformal symbol defined in Q. Then exp (t2ar; . MaX)p(t1 ; x,.;:) is a 
double formal symbol defined in Q. Hence exp (tar; . Max)p(t; x,.;:) is a 
formal symbol defined in Q. Moreover, if pet; x, .;:) ~ 0, then exp (t2ali • 

MaX)p(tl;X,';:)~O and exp(ta,·Max)P(t;x,';:)~O. Here ae·Max= 
L;i,j aijad)~j" 

hoof It mfilee, to ,how ;0 the c." M ~ ( 0 ... J We ."ume 

that the formal symbol PCt; x, .;:) = L;i=o t j Pix,';:) satisfies the condition 
of Definition 5.1. We have to estimate the coefficients of 

Let Q' and Q" be compactly generated conic subsets in Q such that Q d> 

Q':::;;Q". By using Cauchy's formula, we have for (x,';:) E Q" 

where x' = (X2' ... , x n), .;:' = (';:2' .. " .;: n), S >0 is a sufficiently small 
number,j, k=O, 1,2, . . .. Hence we have 

la~,a;lix, ';:)I:S:k!21';:I- ks- 2k sup IPiz, x', (, nl 
!z-xll =e 
1,-<,1=<1<1 

:S:k!21';:1- 1's- 2kC'Aj exp (hi';:!). 

Here h is an arbitrary constant >0, C' is some constant >0 depending on 
h. Let r' be a positive number. Then we have 

(7.1) ~! la~,a;,Pix, ';:)I:S:k!(j+k+ 1)-kr'-ks- 2kC'Aj exp (hi';:!) 

for every (x,';:) E Q"nMI>(j+k+l)r'},j, k=O, 1,2, .... If r' is taken 
as r' >s-2A -t, then (7.1) becomes 

~! lai,a;,pix, ';:)I:S:C'Aj+k exp (hi';:!). 
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Thus exp (tzae,a,)p(tl; x, ~) e Sz(Q'). We conclude that 

exp (tza<,a,)p(tl; x, ~) e Sz(Q), 

for Q' c Q is arbitrary. 
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Next, let us suppose pet; x, ~)~O. We assume the estimate in Defi­
nition 5.2. In the same way as above, we obtain for (x, ~) e Q' n {I ~ I > 
mr'}, m=l, 2, "', 

(7.2) I I: _l_a~ a~ Pix, ~)I 
j+k:<;;m-l k! " I 

<~l_l_la~ a~ mt-1 Plx, ~)I 
k=O k! "j=O 

m-l 

<C' I: k!e-Zkl~l-kAm-k exp (hl~1) 
1<=0 

<C"Am exp (hl~l), 

Theorem 7.2 (Composition). Let pet; x,~) and Q(t; x,~) be formal 
symbols defined in Q. Set 

(7.3) W(tl' t2 ; x, ~)=exp (t]ae· a",)p(tl; x, ~)Q(tl; y, 7)I~;:~. 

Then W(tl> t2 ; x,~) is a double formal symbol defined in Q such that 

:P(t; x, ~): :Q(t; x, ~):= :W(tl> t2 ; x, ~): 

holds in 0': .. 
Since W(tl> t2 ; x, ~)~ Wet, t; x,~) (cf. Theorem 6.5), the preceding 

theorem is equivalent to the following: 

Theorem 7.2'. Let pet; x,~) and Q(t; x,~) be formal symbols defined 
in Q. Set 

(7.4) Wet; x, ~)=exp (tae ·ay)p(t; x, ~)Q(t; y, 7)I~;:~. 

Then Wet; x,~) is a formal symbol defined in Q so that 

:P(t; x, ~): :Q(t; x, ~):= :W(t; x, ~): 

holds in 0': .. 
Proof Let P (l)(x, ~) and Q(I)(X, ~) be symbols equivalent respectively 

to pet; x,~) and Q(t; x,~) (cf. Theorem 5.5). It follows from Lemma 7.1 
that the formal symbol 
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is equivalent to Wet; x, ';-). Hence it suffices to show 

:P(I)(X, .;): :Q(I)(X, .;-):= :W(l)(t; x, ';-):. 

Let K(x, x') and L(x, x') (resp./(x, .;, p) and g(x, .;, p» denote the kernel 
functions (resp. the Radon transformations) of :P(I)(X, .;): and :Q(l)(x, ';):, 
respectively. As holomorphic microfunctions, we have 

ji(x';)- (n-I)! f K(x, x') dx ' 
, ,p - (-2it'.v=TY (p-(x-x' , .;-»n ' 

( I!:)_ (n-I)! f L(x, x') d I 

g X, ,>,p - (-2it'.v=T)n (p-(x-x' , .;»n x. 

The kernel function of the composite operator :P(l)(x, .;): :Q(I)(X, .;-): is 

H(x, x') = f K(x; xl)L(X", x')dx". Hence the Radon transformation 

hex, ,;-,p) of H{x, x') is 

h(x';-)- (n-I)! f H(x, x') dx' 
, ,p - {-2it'.v=T)n (p-(x-x' , .;-»n 

= (n-l)! Sf K(x, xl)L(x", x') dx"dx' 
(-2it'.v=T)n (p-(x-x' , .;-»n 

= f K(x, XI)g(X", ';-,p_(X_X", ';-»dX". 

We may assume that K(x, x') is represented by a defining function t(x, x') 
e (l7(Vc,e) for some c, e > 0 (cf. § 2). Then the defining function of 

hex, .;-, p) is 

hex, ,;-,p)=( _I)n f:: dYI f dy't(x, x-y)g(x-y, ';-,p-(y, .;-», 

where the paths of the integrations are taken as in (3.3). (We use the 
same letters h, g to represent the defining functions of holomorphic micro­
functions h, g, respectively). The symbol W(x,';-) of hex, .;, p), hence of 
:P(I)(X, .;-): :Q(I)(X, ';-):, is 

(Cf. (4.1) and Definition 4.2). We have 
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L hex, ~,p)e~Pdp 

= (_l)n L dp f:: dYl f dy''I/r(X, x-y)g(x-y, ~,p-<y, ~»e-P 

= (_l)n f:: dYl f dy''I/r(x, x -y)e-<Y'O L g(x-y,~, q)e-qdq 

=(-l)nfP1 dy1idy'L; (_~)a 'l/rex, x-y)e-<II,e>f o;g(x,~~,q)e-qdq 
Po j a a. Z 

1 fP1 f ' f = L; -o~« _l)n dYl dy''I/r(x, x-y)e-<Y'O)o; g(x,~~, q)e-qdq. 
a a! Po Z 

Now we set 

P(2)(X, ~)=( _1)n f:: dYl f dy''I/r(x, x-y)e-<y,e}, 

Q(2)(X, ~) = (2n-r-T)n-l f z dq g(x, ~, q)e- q• 

Then we have P(l)(X, ~)_P(2)(X, ~), Q(l)(X, ~)_Q(2)(X,~) and W(x, ~)= 
L;a(1/a!)oeP(2)(x, ~)'O;Q(2)(X, ~), where the right-hand side converges if 
lfiol, lfill~l, 1~1~1. If we set 

W(2)(t; x, ~)=exp (to.·Oy)P(2)(X, ~)Q(2)(y, 7J)I~:~, 

then we have immediately W(x, ~)- W(2)(t; x, ~). This implies W(x,~) 
- W(I)(t; x, ~), for W(l)(t; x, ~)- W(2)(t; x, ~). Hence we have W(x, ~)­
Wet; x, ~); this completes the proof. 

Theorem 7.3 (Formal adjoint). Let pet; x,~) be a formal symbol 
defined in Q. Then 

P*(th t2; x, ~)=exp (t20.·O",)P(tl; x, -~) 

is a double formal symbol defined in Qa satisfying 

(:P(t; x, ~):)*= :P*(tl> t2 ; x, ~): 

Here the left-hand side means the formal adjoint operator of :P(t: x, ~):. 

Proof By Theorem 6.5, it suffices to show the following 

Theorem 7.3'. Let pet; x,~) be a formal symbol defined in Q. Then 

P*(t; x, ~)=exp (to.·ox)P(t; x, -~) 

is a formal symbol defined in Qa such that 
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(:P(t; x, ~):)*= :P*(t; x, ~): 

Proof of Theorem 7.3'. Let P(x, ~) be a symbol equivalent to pet; 
x, ~). We may assume that P(x,~) can be written in the form (cf. Pro­
position 4.7) 

(7.5) P(x, ~)=( _l)n f:: dYl f dy''I/r(x, x-y)e-<V'<> 

where 'I/r(x, x') E (!)(Vc,.) (c, e>O; cf. § 2) is a defining function of :P(t; 
x, ~):. Then the formal adjoint p* of P= :P(t; x, ~): is defined by 

P* =[( -l)n'l/r(x', x)dx']. 

Hence the symbol of P* is 

(7.6) P*(x, ~)= f:: dYl f dy''I/r(x-y, x)e-<v,.>, 

where fi~= -fio, fii= -fil' We setS9(x, Y)='I/r(x, x-y). Then (7.5) and 
(7.6) become respectively 

(7.5), P(x, ~)=( _l)n f:: dYl f dy'S9(x, y)e-<v,<>, 

(7.6), P*(x, ~)= f:: dYl f dy'S9(x-y, -y)e-<v,<>. 

Combining (7.5), with (7.6)' yields 

P*(x, ~)=( _l)n f:: dYl f dy'S9(X+Y, y)e-<V' -.> 

= ( -,-l)n fPl dYl i dy' L: L a~S9(X, y)e-<V' -.> 
Po :r a a! 

= L: _l_a~a~p(x, -~). 
a a! 

The last term converges if [fio [, [fit! <{ 1, [~[ ~ 1. Then it is clear that 
P*(t; x, ~)-P*(x, ~). This completes the proof. 

Theorem 7.4 (Change of variables). Let pet; x,~) be aformal symbol 
E SeQ) in a coordinate system (x). Let (y) be another coordinate system 

and denote by (y, '1)) the corresponding coordinate system on T*X, i.e., '1)j= 
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L:~=1 (axk/aYJ)l;k' Let M(x, x') be a matrix defined by y(x) - y(x') = 
M(x, x')(x-x'). Then 

P(tb t2 ; y, r;) =exp (t2aX" a.,)p(t,; x, t;' + tM(x, x')r;) Ix'=x, 
e=o 

is a double formal symbol in the coordinate system (y) such that 

:P(t; x, 1;):= :p(tb t2 ; y, r;):. 

Here the right-hand side means the operator E Cr. corresponding to P(tb t2 ; 

y, '1) with respect to the coordinate system (y, '1). 

Theorem 7.4'. Under the same notation as in Theorem 7.4, set 

Pet; y, r;) = exp (tax" a.,)p(t; x, 1;' + tM(x, x')'1) Ix'="" 
e=o 

Then Pet; y,~r;) is a formal symbol defined in Q such that 

:P(t; x, 1;):= :p(t; y, r;):. 

Proofs of Theorems 7.4 and 7.4'. It suffices to show Theorem 7.4'. Let 
P(x,l;) be a symbol equivalent to pet; x, t;). We may assume that P(x, t;) 
is written in the form 

P(x, I;)=(-l)n J dy,,(x, x-y)e-(Y'<> 

=J dx',,(x, x')e-(X-x',<>, 

where t(x, x') E m(Vc,.) is a defining function of :P(t; x, t;): (c, e>O; cf. 
§ 2 and Proposition 4.7). Then the symbol of P = [t(x, x')dx'] with respect 
to the coordinate system (y, r;) is 

p(y, r;)= J dx",,(x, x")e-(Y-Y"'~>, 

where y" = y(x"). We shall give formal calculus only; the justification is 
the same as in the proofs of Theorems 7.2' and 7.3'. 

p(y, r;)= J dx",,(x, x")e-(M(X'X")(X-X")'~> 

=:= J dx" ,,(x, x")e-(X-x",tM(X'X")~> 

=J dx",,(x, x") ~a (x" _x)a a~,e-(X-x",tM(X,X')~>lx'=x 
a! 
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Hence we have 

T.Aoki 

=exp (o",,·o.,)P(x, tM(x, XI)7)+~/)I",'=",. 
e'=o 

P(y, 7)) = exp (0"" ·o.,)P(x, tM(x, XI)7)+~/)I""=,,, 
.,=0 

~exp (to"" ·o.,)P(x, tM(x, XI)7)+~/)I",'=x 
.,=0 

~exp (to"" ·o.,)P(t; x, tM(x, x')7)+e)I",,=x . 

This implies P(y, 7)) ~ P(t; y, 7)). 
.,=0 
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