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Symbols and Formal Symbols of
Pseudodifferential Operators

Takashi Aoki

Introduction

In this paper, we present a symbol theory of pseudodifferential opera-
tors in analytic category. A pseudodifferential operator is, by definition,
an integral operator

©.1) U(X)—> Pu(x) = j KCx, x)u(x)dx’

with a holomorphic microfunction kernel K(x, x’) defined on the conormal
bundle supported by x=x’. The sheaf of rings of pseudodifferential
operators is denoted by &% ([5], [6], [8]). It follows from Cauchy’s inte-
gral formula that &% contains all linear differential operators with analytic
coefficients. Moreover, £F includes the sheaf &> of microdifferential oper-
ators ([10]). Needless to say, those classes of operators are very important
in the investigations of various problems. We emphasize that the classes
contain operators of infinite order and that the use of such operators is
crucial in many cases (cf. [6], [10], [12]).

Symbols of pseudodifferential operators are defined by Kataoka [7].
He defines symbols from the cohomological definition of &¥ by the aid of
Radon transformations. On the other hand, Boutet de Monvel [4] intro-
duces analytic pseudodifferential operators by using oscillatory integrals
for given symbol classes and shows that standard symbolic calculus is
valid as well as in C=-category (see [11], for example). We note that
pseudodifferential operators in the sense of [4] are contained in &F by
virtue of Kataoka’s theory.

The aim of this paper is to develop and to complete the symbol
theory of &F from the standpoint of [7]. The advantages of the viewpoint
are related to the invariance of the cohomological definition of £%€. The
sheaf itself is defined independently of a choice of local coordinate systems.
The cohomology group which defines &% can be represented elementarily
by the method of the Radon transformation ([7], [8]); we shall make full
use of the method. One of our main contributions is introducing the
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notion of formal symbols, which is generalization of a definition intro-
duced in [4]. Such generalization enables us to deal with operators of
infinite order in general (cf. [2], [3]).

The plan of this paper is as follows. In Section 1, we recall the
algebraic definitions of pseudodifferential operators and microdifferential
operators. Concrete descriptions of pseudodifferential operators are given
in Section 2. In Section 3, we recall the theory of Radon transformations
of Kataoka. Section 4 gives a definition of symbols of pseudodifferential
operators. In Sections 5 and 6, we introduce formal symbols and double
formal symbols and study infinite sums of symbols. By using the formal-
ism developed in those sections, we establish symbolic calculus of opera-
tors in Section 7.

§1. Preliminaries

In this section we recall the algebraic definition of &%, &<, 2=, etc.
(Cf. [5]-{10D).

Let X be an n-dimensional complex manifold, @, the sheaf of holo-
morphic functions on X. Let Y be a d-codimensional complex submani-
fold in X. The conormal vector bundle of Y in X is denoted by T§X.
We identify the real comonoidal transformation of X with center Y with
Tpixt (X— V)L TEX—X.

The sheaf €%, on T#X is defined by

(1.1 nglxzﬁg’;x(ﬂx—/}xﬁx)a,

where a: T§X—T#X is the antipodal mapping. The sections of €%, ; are
called holomorphic microfunctions. The sheaf %%, is locally constant
along the orbit of the action of R* on T#X. The restriction of the sheaf
to T3X is B3 x=H#%(0y).

Let us identify X with the diagonal of XX X. Then the cotangent
vector bundle 7%X is identified with T#(X X X) by the first projection.
The sheaf &% is defined by

(1.2) EE=CRxxx @ pi'l%,

p5lox
where £7% is the sheaf of holomorphic n-forms on X and p,: X X X—X is
the second projection. The sections of &% are called pseudodifferential
operators.

By the definition, a pseudodifferential operator P is written in the
form P=K(x, x")dx’, where K(x, x) is a section of €% x,x. The holo-
morphic microfunction K(x, x”) is called the kernel function of P. The
product (composition) of two operators P,=K,(x, x')dx’ and P,=
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Ky(x, x")dx’ is defined by P,P =<IK1(x, XK (x", x")dx" )dx', where the

integral is taken as a holomorphic microfunction (cf. [10], Chap. II).
Then &% becomes the sheaf of (non-commutative) rings on 7*X.

Let us denote by 7 the projection from 7% X — T %X to the cotangential
projective bundle P*X=(T*X—T%X)/C*. The sheaf &3 is defined by

-1 R
€3 IT*X—T*XX =T"746%,

3 lr’fxx = éa§ [T*XX'

The sections of &% are called microdifferential operators (of finite or infi-
nite order). The sheaf of microdifferential operators of finite order is
denoted by 6. The sheaf 93 of differential operators on X is defined by

D3=RBz\xxx & pi2%.

pitox

Let us denote by 2, the sheaf of differential operators of finite order.
There are the following canonical injective homomorphisms of sheaves of
rings:

D y=—>8%

L]

F9Fe—> 87— 6,

where n: T*X—X is the projection. Hence microdifferential operators
and differential operators (of finite order or of infinite order) are pseudo-
differential operators.

Remark. In [1], [2], [8], the sections of &% are called holomorphic
microlocal operators. On the other hand, in [10], the sections of &%
(denoted by &, there) are called pseudodifferential operators. As we shall
see later (Theorem 4.5), each operator in &* is represented as a modulo
class of temperate functions (=symbols). Therefore it seems to be natural
to call operators in &% pseudodifferential operators (cf. the definition of
pseudodifferential operators in C>-category; see [11]). This is the reason
why we use the naming “pseudodifferential operators™ instead of “holo-
morphic microlocal operators”.

§2. Defining functions of the kernel functions

We shall give concrete description of kernel functions of pseudo-
differential operators by holomorphic functions ([10], Chap. II, § 1.4).
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Hereafter X denotes an open set in C* with coordinate system x=
(x5, - -+, X,). Then we have the following identifications:

T*X:chn Ej x*:(xs S)Z(Xl, c s X 51’ RS &.n):
TX=XXC"3 x,=(x, V)y=(Xp, =+, Xp» U, =+ *, Up).
Here TX is the tangent vector bundle of X. The inner product of (7X),
s vand (T*X), > £ is given by Re (v, §)=Re(v:&;+ - - - +v,&,). Letus
fix a point #*=(%, £) in T*X. We can assume without loss of generality
that (%, £)=(0; 2,0, - --,0) (1 € C). Conic neighborhoods of #* in T*X
are denoted by 2, £, - - -, etc. Here a subset V' T*X is said to be conic
ifrV={(x, r&); (x,& e V}CVforany r=1..
We shall consider the stalk &% ;.=&% of &% at #*. If 2=0, then
the stalk coincides with 2% ;, which is well known. Hence from now on
we assume 1+0. By the definition we have

2.1 ER=Htx(m 3 2 x0T 0 s>

where 09 =0y, ®pr' 0%, a(®)=(0; —2,0, ---,0). For ¢>0, ¢>0
we set

U,={(x, x) e XXX; |x|<c, |¥'|<c},
Zc,s:{(xa x/) € Uc: Re (Z(XI_X{))ze[Im (Z(xl—xi))]’
|xy—x1|=e|x;— x5, j=2, - - -, n}.

Then it follows from Proposition 1.2.3 in [10], Chapter I that the right-
hand side of (2.1) becomes the inductive limit

lim H%, (U,.; 0%%% as ¢, e—>0.

Let us fix ¢, e>>0 and calculate the cohomology. The open set U,—Z, . is
covered by holomorphically convex sets V' (v=1, - - -, n) defined by

VO=Va={(x,x) e U; Re (A0x;—x))<e|Im (A(x; —x) [},
Vo=V ={(x, x) e U,; |x—x{|<e|x,— X,

I y=2 ---, 1.

Set
2.2) V=V, = O ye, Vo — M Ve,
»=1 p#y

We have the following exact sequence:

B I(70; 098)—>T(V; 08— H, (Ue: 0% —>0.
v=1
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Hence any P=K(x, x')dx’ € &% can be represented as an equivalence class
of a holomorphic form (x, x)dx’ e ['(V; 0%7) for some ¢, e>0. We
may write as follows:

2.3) P=K(x, x")dx' =[¥(x, x")dx'].

We call ¥(x, x)dx’ (or 4r(x, x")) a defining function of the pseudodiffer-
ential operator P e &%.

Example 2.1. Let us define a holomorphic function of one variable
= with parameter ¢ by

= 1 I'd+p 1 —2 ...
d)f‘(r)'" 271"\/:.f (——‘7.')“'” (/li 17 27 )’

D_n(t) =

m-1
10g1———<z l—r)}, m=1,2, ---.
y=1

Y

1 m-1
2my/ — 1(m—1)! ¢ {

Here 7 is the Euler constant. Let a=(e,, - - -, @,) be 2 multi-index (a,, - - -,
o, e Z,={0,1,2,---}). Set

D (x—x")dx' =D, (x;—x7)+ - - D, (X, —Xp)dxie - - o dx;,

Then @,(x—x")dx’ defines an operator in &% ; we shall write it in the form
D;=Dz.-..-.Di" (D,j:&/axj,jzl, 2,---,m. If wyeZ (resp. ¢, e Z,)
then the operator belongs to & ;. (resp. 9y).

§3. Radon transformations

Let us define W, Y by
W:{(xa E:p)’ X € )(9 ‘E € Cn__{o}’ p € C}:
Y={(x,&p) e W; p=0}.

Let P=K(x, x")dx’ be an operator & &%. By the definition K(x, x") is a
section of %% .y over an open (conic) neighborhood 2 of ¥*=(%, &)=
(©0; 2,0, - - -, 0)(2+£0) identified with (%, %, £, —&) e THX X X). We set

n—1)!
3.1 — Al
G0 T &D= o=y ) oG,

It follows from the theory of integration -for holomorphic microfunctions
(cf. [10], Chap. II) that f(x, &, p) is a section of €%, over a neighborhood
of {(x, & p; tdp) e T¥W; p=0, t>0, (x, &) € 2}. It is clear that f(x, &, p)
is homogeneous of order (—n) with respect to (x, £). Conversely, if such
a holomorphic microfunction f(x, &, p) is given, then a section K(x, x’) of
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%% xxx can be defined by the theory of Radon transformations (cf. [8]).
The holomorphic microfunction K(x, x’) is formally defined by

(.2) K(x, ') = j F0x, & {x— X, EDa(®),

AN
where o(8)=>17_, (—1)Y7'¢,d& N - - - NdE;N - - - NdE,. The correspond-
ence f—K is reciprocal to (3.1). Since Y is of codimension 1 in W, ¥¥
is easily represented ; we have the following:

Theorem 3.1 ([8], Theorem 3.2.3, Definition 3.2.4). Let J and </ be
two sheaves on T*X defined as follows: For each x¥f ={(x,, &) € T*X,

T w={f(x, & p)w(&); f is holomorphic on {(x, & p) e W;
[E—&|<e, | P|<e, —Rep>0, [x—x,|<e} for some >0
and is homogeneous of order (—n) with respct to (&, p)},
ot 5 ={f(x, & p)w(§) € T . f is holomorphic at (x, &, p)=(xo, &, 0)}-

Then the correspondences (3.1) and (3.2) yield the following linear iso-
morphism:

EE~T|A.

Let us remark that neither 7~ nor . is invariant under the change of
variables. By the preceding theorem we may write

,P:[f(x’ E’ p)w(E)]a

where f(x, &, p)w(&) € T 5. We call f(x, &, p)w(&) or f(x, & p) the Radon
transformation of K(x, x’) (or P). If P=K(x, x")dx’ is represented by a
defining function y(x, x’) € I'(V,,.; Oxx) (for some ¢, £>0) as (2.3), then
the correspondence (3.1) is written in the form

(=D q]f(x,x »)
3.3 6, p)= d b "

as a holomorphic function. Here B, 8, are sufficiently small complex
numbers so that

0<<Re 28,<e Im 48,
0<Re 48, < —¢eIm 283,

§ dy; means the contour integral along the cycle {y;; | y;|=¢*|y; |4 8} with
0<8<]1, j=2, - - -, n (cf. [6], Chap. III).
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Imy; Imy;

Re 2y1=0

-
-

////
Db

7 Rey; Rey;

Fig. 3.1.

§4. Symbols

We shall define the symbol of a pseudodifferential operator P e &E&.
Let f(x, &, p) be the Radon transformation of P. We may assume that
P is holomorphic on

{8 p) e W;|x—x

for some ¢>0. It follows from the homogeneity of f that f becomes holo-
morphic on

<e, [§—€|<c, |p|<c, Re p<0}

{(x, &, p) e W; |x—%|<c, |$—-5°|<c, |p|<c, Re p<e|Imp|}

for some ¢>>0. Let s,, s, be holomorphic functions of & homogeneous of
order 1 with respect to & so that [s,(&)|<c, |5:(8)]<e, 0<<Re 5,(8)<
—eIm 5,(8), 0<Re 5,(8)<e Im s5,(8) for [£—&|<c. Let I=23(¢) be a path
starting from s,, ending at s, and around the origin clockwise.

Imp

S1
/2

/d Rep
N

\

0

Fig. 4.1



188 T. Aoki
We set
@1 P(x, §=Qry/ =Ty Lf(x, &, p)e~ dp.

Then we have

Proposition 4.1 (Cf. [7], § 3.3; [1], Theorem 2.1.1). a) P(x, &) is holo-
morphic on a conic neighborhood Q of X* and satisfies the following estimate:
For each Q"< 2 and for every h>0 there is a constant C >0 such that

|P(x, &)|< Cexp (h]£)

for any (x, &) € /. Here ' 2 means £ is a compactly generated conic
subset in .

b) Iffe .l then for each ' there are constants h>0, C >0
such that

| P(x, §)|<Cexp (—h|&]
for any (x, &) e £2/.

Now we introduce a symbol class and its subclass.

Definition 4.2. Let £ be a conic open set in 7*X. Then we denote
by S(£2) the set of all P(x, &) & O,.(£2) such that for every £’ £ and for
each 2>0

[P(x, §)|<C, exp (h]|E)]), (x,8) e &

is valid for some constant C,. The elements of S(£) are called symbols
defined in £ or temperate (holomorphic) functions. If for each 2'<= £

[P(x, §)|<Cexp(—h[&), (x,§el

holds for some positive constants %, C, then the symbol P(x, &) € S(2) is
said to be a null-symbol or rapidly decreasing in 2. We denote by R(2)
the set of all null-symbols defined in £2.

It is clear that R(£) is an ideal of the commutative ring S(2). Com-
bining Proposition 4.1 with Definition 4.2 yields at once the following

Theorem 4.3. The correspondence

y:&* 9f‘(x9 55 p)w(é)i—)P(x, S)
defined by (4.1) induces the following linear homomorphism
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g: & ——1im S(Q)/R(2),
-

where £ runs on the family of conic neighborhoods of **. The homomor-
phism ¢ is independent of the choices of s, s;.

Definition 4.4 (Cf. [7], §3.3). The mapping ¢ defined in Theorem 4.3
is called the symbol mapping. The image (or its representative) ¢(P)=
P(x, &) of an operator P e &% is said to be the symbol of P.

Remark. We use the same letters to represent the operators and their
symbols. As a rule the variables (x, &) are designated when the letters
denote the symbols.

We shall show that the symbol mapping ¢ is a linear isomorphism.
Let £ be a conic neighborhood of **=(%, £)=(0; 4,0, ---,0) (1~0),
P(x, &) € S(£2). Letr be a sufficiently large number >0. We set

4.2) jw P(x, c&)e e 1de

. 1
g(x, S’P)—m

for £,=2 and extend g(x, &, p) as a homogeneous function of order (—n)
with respect to (& p). Then we have

Theorem 4.5. There is a linear homomorphism

@ lim S(Q)/R(D——> T /A = EX
Pay e

induced from P(x, &)— g(x, &, p)w(§) defined by (4.2). The homomorphism
@ is independent of the choice of r. Moreover @ o 6=id and ¢ o @ =id hold.

Proof. 1Tt is clear that g(x, &, p)w(§) defined by (4.2) belongs to J ;.
for each P(x, &) € S(f2), L2 being a conic neighborhood of #*. Letr’ be a
sufficiently large positive number. Then the integral

Jr P(x, t&)e?c"'dc

is holomorphic at p=0. Hence @ does not depend on r modulo & .
We shall show @ og=id. Let us assume P(x, &) =a([f(x, & p)w(8))), i.c.,
(4.1) holds. Because of the homogeneity, it is sufficient to prove @ o a|,,-;
=id. Let g(x, &, p)o(€) be the image of P(x, &) by w. Then we have

— 1 < - TP n—1
g &p)o®)=—— e [ fo 8 e tdgererideo®

= 1 N -7q TD
B —277«'—«/—?_—1— Ir JE(E)f(x, § qle™"dq e dza(§)
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B 1 f f( e(p*Q)T d
_—27—1‘«/”——1 208 % &4) q—p 70

=f(x, & pw(§) modulo o

Thus we have @ og=1d. Next we prove go@=id. Let us suppose that
the image of P(x, &) ¢ S(2) by @ is g(x, & p)w(8). If £,+0 we have by
the definition

g(x, & p)=g(x, 28/¢,, Ap/&:) - (/&)"

4.3) -
[ PG wagled exp (eaple)er e Gle

. 1
T Q@r/ =)
The integral converges locally uniformly and defines a holomorphic func-

tion if Re (Ap/&,)<<0. Let us denote by 7. the paths starting from r,
tending to oo along Im z=+¢' Re r (0’ K 1).

Imz Im=z

Fig. 4.2

If the path of integration in (4.3) is replaced by 7. then g(x, &, p) is holo-
morphically continued to Re p<{¢”|Im p| (0<e”" ¢ 1). We set O(x, &)=

o([g(x, & P)w(§)D), that is,

(44) O(x, =Cav =D [ _g(x, & ple~2dp,
where ' is a path like Fig. 4.1 (s,, 5, may be replaced). Let us decompose

=X +2X_where 3, =YN{Imp=0}. Then Re(zp)<<Oforanyce?,,
pe2.. Now combining (4.3) and (4.4) yields

]
(4.5) 06 )= — L+ dp j | deP(x o2

xexp ((z2/&,— D) p)c" (/&))"
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1
gyt [, @), dePe i)
Xexp (2/8— 1) p)e (18"

We denote by I, (resp. I_) the first term (resp. the second term) of the
right-hand side of (4.5). Then we write

_ 1 - zngi—nrn—l _
L= j deP(x, <2 [6)1°5 T exp (Hfg— 1))

Tl"‘ 1

J dtP(x, 28 /50—”—51—1"1 exp ((z2/6;—1)po)
T+ TA—§

1
24/ —1

1 2
=IO,

where p,=23 N {Im p=0}. Similarly, we have

fr_ dcP(x, rzs/sl)ﬁ%i exp ((z2/&,—1) py)

TA—¢&,

A
- 274/ —1
[ awper rlé/&)iﬁ—_%ni exp ((c3/&:— 1)sy)

72_ 1

1
2a/—1
=IO,

It follows from the choice of s,, s, that I® and I® are rapidly decreasing
as|&l>oo. Hence Q(x, &) =1 —IP modulo rapidly decreasing functions.
We shall calculate the right-hand side:

! . e _
2r/—1 J-r++r_ dtP(x, tA§/§) S exp ((cA/&,— 1) po).

Since (z—&,/2)*exp ((z4/&,—1)p,) is the Cauchy kernel with damping
factor, the right-hand side coincides with P(x, &) in a conic neighborhood
of #*. Therefore we have ¢ o @ =id.

1 2)
o1 =

Definition 4.6. The image P=a(P(x, £)) € & of a symbol P(x, &) €
S(£2) (or its equivalence class) by @ is called the normal product of P(x, &)
and denoted by

P=:P(x, &):.

Remarks. a) The notation is an analogue of that in quantum field
theory, for the commutation relations of differential operators are the
same as those of free bosons.

b) :P(x, &):is denoted by P(x, D,) in [1], [7].

¢) The normal products of x;, &, x,;§; (j=1, ---, n) are x;, D,,=
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0/0x;, x;D,, respectively. Moreover, if P(x, §)=2a,(x)§* is a polynomial
in & with analytic coefficients, then :P(x, &):=2a,(x)Dz.

If the Radon transformation f(x, &, p) of P e &% is written as (3.3),
then the symbol is

PG, =Cav =D [ (v, 6 pe~rap

— (n'—])' ﬁld d d '\b‘(x>x y) -p
‘——27?«/—3 .V1§ AN § ynJ\ dp—-2 = <o (p—< 7, &) €

81
=(-D" L dylff;dyz- - §dynw(x, x—y)e e,

Here the last identity makes sense modulo rapidly decreasing functions.
Hence we have

Proposition 4.7. If Pe &L is represented by a defining function
P(x, x) € OV, (for some c, e>0; cf. § 2), then the symbol P(x, &) of P
is calculated by

(4.6) P(x, &)=(—1" J: dy, § dy,- - - fi;dy"‘!’(x’ X— e~ @,

The symbol obtained in the preceding proposition is an entire func-
tion of & of exponential type. Of course the symbol is temperate in a
conic neighborhood of £*. o

Now we introduce the orders of symbols.

Definition 4.8. Let m be a real number. A symbol P(x, &) defined
in a conic open set £C T*X is said to be of order at most m (resp. m—0)
in 2 if for every 2’ £, P(x, &)|&|"™ is bounded in £’ (resp. for every,
<, P(x, £)|&] ™0 as [g]—>00, (x, §) € ). v

If there is no m satisfying the above condition for a symbol P(x, &),
then the symbol is called of infinite order in £. For the symbols of infinite
order, the orders of their logarithms are important.

Definition 4.9. Let p be a real number such that 0<p<<1 (resp. 0<
p<1). A symbol P(x, &) defined in a conic open set £ is said to be of
growth at most p (resp. p—0) if for any £’ £, there exist positive con-
stants 4, C (resp. for any £2’< 2, A>0 there is a positive constant C) such
that

[P(x, &)|<Cexp (h|E)
is valid for each (x, &) € £’.
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Remarks. a) By the definition, any symbol is always of growth at
most 1-0 (cf. Proposition 4.1).

b) In [1}, symbols of growth at most p (resp. p—0) are called of
growth order at most (p) (resp. {o}).

§5. Y¥ormal symbols

We shall generalize a definition introduced in a particular case by
Boutet de Monvel [4] (cf. [1], [2]).
Let £ denote a conic open set in T*X,

Definition 5.1. A formal power series P(f; x, §)=) 7ot Py(x, &) in
t with coefficients in S(£) is called a formal symbol (defined in Q) if for
every 2’ {2 there are constants r, A satisfying the following conditions:

a) 0<r, 041,

b) For each 2>>0 there is a positive constant C such that

(.0 | Py(x, §)|< CAY exp (h]£])

is valid for any (x, &) € 2’ N{|&|=(U+Dr}, j=0,1,2, - - .. We denote by
S(9) the set of all formal symbols defined in £2.

We introduce the sum and the product in S(£2) as formal power series.
in-z. Then S(£) becomes a commutative ring. The space of symbols.
S(£) introduced in Section 4 is identified with a subring of S(2):

(5.2 S(Q)=S(@Q),.o={P=3 tP,; P,=0 for all j>0}.
Sometimes > 7., t/P;(x, &) is abbreviated to > 7., Py(x, &).

Definition 5.2. A formal symbol P(¢; x, £)=2 7., t'P,(x, &) defined
in £ is said to be equivalent to zero (in £2) and written P(¢; x, §)~0 if’
for every 2’ 2 there are constants r, 4 such that

a) 0<r, 0<<4<I.

b) For every A>>0 there exists a constant C>0 so that

(5.3) 3 Py, )|<CA exp (h]2)
holds for all (x, &) e 2’ N{|&|>mr}, m=1,2, ---. We denote by R(Q)

the set qf all formal symbols equivalent to zero in 2. Two formal symbols.
P, Q e S(£) are said to be equivalent if P—Q e R({); then we write P~ Q.

Proposition 5.3 (Cf. [4]). Under identification (5.2), S(2)NR(Q) =
R(£) holds.
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Proof. Suppose P(x, &) e S()NR(2). Then for each 2’ <= £, there
exist constants r, A satisfying the following conditions:

a) 0<r, 0<<A<1.

b) For each 2>0 there is a positive constant C such that

G4 |P(x, §)|<CA™ exp (h|§])

holds for every (x, §) e 2’ N{|g =>mr}, m=1,2, ---.
For each &, we take m as the integral part of 1 4-|£|/r. Then from (5.4)
we have

|P(x, §)|<CA*V exp (h]€).

Since 0<C 4 <1, we can choose h>0 as hA+r-'log A<0. Hence P(x, &)
€ R(9).

Conversely, let P(x, &) be an element of R(2). Then by the defini-
tion there are constants C, 2>0 for each £’ Q2 so that

|P(x, OI<Cexp (—h[E]),  (x,&el

holds. If |&|>m, then exp (—h|&))<exp (—hm)=B™. Here we set B=
e "; hence 0<B<1. Therefore we have

|P(x, §)|<CB™
for (x, &) € 2’N{&|=>m}. This completes the proof.
Proposition 5.4. R(Q) is an ideal of S(2).

Proof. Tt is clear that R(Q) is an additive subgroup of S(2). Let
P(t; x, &)= t'P,(x, &) e R(Q), Qt; x, &)= t*Qu(x, &) € S(Q). It suf-
fices to show P(t; x, £)Q(t; x, £) € R(Q). We may assume that for each
' 2 there exist constants »r >0, 0<{A <1 so that for every 4 >0 there is
a positive constant C satisfying

| Py(x, &)|< CA7 exp (h]€)), &>+ Dr,
(5.5) |Qu(x, §)|<CA® exp (h|E]),  |&]=>(k+Dr,

m—1
3 Py <Cam e GigD. gz
e

for (x,8) e &, j, k=0,1,2, -- -, m=1,2, ---. We set

W@&@=HH&8@H%®=§”M@9-
That is,
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(5.6) Wi, $)=j +kZ'= le(x, §)0u(x, §).

We shall estimate | > 5! Wi(x, &) (in=1,2, --.). Combining (5.5) and
(5.6) yields

Eweol< S rwaE oo

2m—2

+E 3, P90
(.7 Frk<m=1
< © mexpnlt)
< = Amexp
4 Cam ST (I mt-1) A" exp (2]
ico
for (x, &) e 2’ N{|&|=mr}, m=1,2, ---. Since 0<A<1, we can choose

B so that A<<B<1. Then it follows from (5.7) that there is C’ for every
h>0 such that

1’"2 W, s)lg C'B™ exp (21]£])

is valid for (x, &) € 2'N{|&|>mr}, m=1,2, - - -. Hence W(t; x, &) ¢ R(Q).

We consider the gommutative ring S(2)/R(2). By Proposition 5.3,
the inclusion S(£2) CSA(AQ) (see (5.2)) induces the injective homomorphism
tor: S(Q)/R(Q)—S(2)/R(2). Conversely we have the following

Theorem 5.5. Let Q2 be a conic neighborhood of **=(%; 2,0, ---,0)
in T*X. For every formal symbol P(t; x, §)=72 5., t'P,(x, &) defined in 2,
there are a conic neighborhood 2,C 2 of X* and a symbol P(x, &) defined in
0, so that P(x, &)~P(t; x, &) in 2,.

Proof. We may assume that P,(x, £) satisfies the estimate in Defini-
tion 5.1. Let us define fi(x, &, p) (k=0,1,2, ---) as follows: If &=2,
we set

00

_ 1
Sl & )= Qrv—1)" .f(kn)r

:MJNP k41 (k+Drpn-1]
O =Ty ) L, (K+1)8)e " dz.
We extend fi(x, & p) as a homogeneous function of degree (—n) with
respect to (£, p). Then we have fi(x, §, p)o(§) € T 4. By Theorem 4.5,
we have :P,(x, &): =[fi(x, &, p)w(§)]. Let us define P,(x, &) by

P.(x, 7&)e P 1dr
(5.9



196 T. Aoki

(9)  Pyx, )=/ =Ty Lfk(x, & perdp, k=01, -

Here X is a path defined in Section 4. Then P,(x, &) is a symbol defined
in a neighborhood 2, of **. By virtue of Theorem 4.5, P,(x, &) is equiva-
lent to P.(x, &) in 2,. Since we have assumed (5.1), we obtain for &,=2,
h|&]+Re p<0
|6 & D)< %f CA* exp {(k-+1)e(h| €|+ Re p)}e"~'de
< C'A*|r(h|§|+Re p)|=" exp {(k+1)r(h| €|+ Re p)}.
Here C’ is a constant depending on 4. Hence X'f, converges locally uni-
formly in Re p<0, for 4 is an arbitrary positive constant. Similar estimate
is still valid when the path of integration in the last term in (5.8) is replaced
by 7. (introduced in the proof of Theorem 4.5). Therefore X'f, converges
locally uniformly in Re p<<¢”’|Im p| (0<e”’ & 1). Since P,(x, &) is defined

by (5.9), it satisfies the following estimate: For each 2;c ,, there is a
constant 0<CA4 <1 such that for every #>0,

|Pux, )|<C" A% exp (h]E]),  (x,8) e 2]

is valid for some C””>>0. Hence > 5, P,(x, &) converges locally uniformly
in 2,. We now set

P(X, $)= éo Fk(x: 5)3
P(t:x, )= 3, t*Pi(x, §).

It is clear that P(x, &) e S(R), P(t; x, &) e S(2,) and that P(x, &) ~
P(t; x,8). We shall prove that P(x, &)~ P(t; x, £). It suffices to show
P(t; x, &)~ P(t; x, &). We use the same notation as in the proof of Theo-
rem 4.5. The right-hand side of (5.9) is calculated in the same way as
(4.5), that is, we have

Pk(x: §)=I+ +I--

Here we set

_ (kD"
L= &0 [ 4 j | AP, (kDA

X exp {((k+1)az/§,—Dp}e""(2/€)".

We calculate I, by changing the order of the integrations.
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1 ((k+D2 |
L= (* ) [ | depie. et Dot

exp {(k+ Daz/6,—Dsi}
(k+1)z/§;—1

1 ((k+ 12 ) I - dePyx, (e e

T 2r/—1 3
€Xp {((k+ Daz/&,— Dp,} -1
(k+1)az/é—1

— J 2
=ID—J9,

1 (kD2
L= (2 )I deP,(x, (k+ 1)acg/e)

CXp {((k+ 1)277/51 — 1)p0} P
(k+1)2z/§,—1

1 ((k-l- 1)2 )”J‘r_ dePy(x, (k+1)2cE/£)

2z —1 £,
5 EXP {((k+D)ac/&,—1)s,} ot
(k+1Daz/&—1

=IO __ @

We have P(x, )=IP—I®+I®—IP. Since exp {(k+ 1)iz/&,—1)p,}-
((k+1D2c/g;— 1! is the Cauchy kernel (up to constant multiple) with

damping factor, /& I“’—j coincides with P,(x, &) if &/(k+1)A is
T+=T-

contained in the inside of 7, —7_. Therefore, if (x, &) is contained in a
sufficiently small neighborhood of x* and if |&|>(k+1)r"/ (r’>1), then
P(x, &) —P(x,&)=I®—I{ holds. Let us recall that s, s, are homo-
geneous function of & of order 1, Then [/®] and |I{| are estimated
(locally uniformly) by Cy(k+ 1)"4*exp (—#'|&]) for some C, A'>O0.
Hence there are positive constants C, /4 such that

35 (P, & — Pulx, ) < Cexp (—h[£)

holds for |&§|=mr”’, m=1, 2, - - .. This completes the proof.
Let us remark that the above construction of P(x, &) is independent
of the choice of r modulo rapidly decreasing functions. Hence we have

Theorem 5.6. The correspondence P(t; x,&)— P(x, &) obtained in
Theorem 5.5 induces the ring isomorphism
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pn: lim S(Q)/R(2)—=>lim S(2)/R(2)
—> —

Q233 234*

such that py o t;=1d, ¢4, 0 pyy=1id. Here £ runs on the family of conic neigh-
borhoods of X* in T*X.

Combining this with Theorem 4.5 yields the following
Theorem 5.7. Set w,=u o py, then

@, lim S(Q)/R(QD)—>EE
—>

234*

is a linear isomorphism.

Definition 5.8. The image of a formal symbol (or its equivalence
class) P(¢; x, &)= 7ot P;(x, &) e S() by @, is denoted by

P(t; x, &)= i tPLx, &):

and called the normal product of P(¢; x, §).

Remark. Sometimes we abbreviate : > 7., #/P;(x, &): to

8

5 Pj(xa S) -

i
Of course, Definition 4.6 is included in the preceding definition.

Definition 5.9. Let m be a real number, P(#; x, &) =127, t'P,x, &
a formal symbol defined in a conic open set 2 in T7*X. We call P(¢; x, &)
a formal symbol of order at most m in 2 if for every 2’< 2 there exist
positive constants r, C, 4 such that 0<C4<1 and that

|Py(x, H)|<CAl\g
holds for any (x, &) ¢ 2’N{|&|>(+Dr}, j=0,1,2, - - -.

Definition 5.10. Let p be a real number such that 0 < p <1 (resp.
0<pL), P(t; x,8)=2 7.0 t’Py(x, &) a formal symbol defined in a conic
open set £ in T*X. The formal symbol P(z; x, ) is said to be of growth
at most p (resp. p—0) if for every £’ £ there exist positive constants 7, C,
A, h such that 0<CA<{1 and that (resp. for every £’< 2 there are positive
constants r, 4 such that 0<C4<{1 and that for each 2>0 there exists a
constant C >0 for which)
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|Py(x, §)|<CA’ exp (h[£))

holds for any (x, &) € 2'N{&|>(+1r}, j=0,1,2, ---.

The preceding definitions are natural extensions of Definitions 4.8
and 4.9, for we have

Proposition 5.11 (Cf. [4], (1.14)). Let 2 be a conic open set in T*X,
P(x, &) a symbol e S(2), P(t; x, &) a formal symbol e S(2) of order at
most m (resp. of growth at most p, of growth at most p—0). If P(x, &)~
P(t; x, &), then P(x, &) is of order at most m (resp. of growth at most p, of
growth at most p—0).

The proposition can be proved in the same manner as Proposition 5.3.
We give some examples of formal symbols and symbols equivalent to
them. We suppose n=1 and write &, =¢.

Example 5.12. a) >7,7277~2. This is trivial one. But we
remark that the left-hand side is not a formal symbol in the sense of [4]
(cf. [1D).

b) 2FtiEi~5 (=1 ~E-(1—e ") (§—1)7" (Re §>0). The

last term is an entire function.
0 2.5 tl! (—5)"~r et=5¢s-'ds (Re £>0).
3

d) o (N E A~ 37, ()8 =exp v/ €. Both members are
of growth 1/2.

§ 6. Double formal symbols

It is sometimes convenient to deal with certain double formal series
of symbols rather than formal symbols (cf. [3]). We introduce the fol-
lowing

Definition 6.1. Let £ be a conic open set in 7*X. Let P(t,, t,; x, &)
=3 "0 H{tEP;(x, &) be a formal power series in (¢, £,) with coefficients
in S(2). We call P(t,, t,; x, £) a double formal symbol defined in £ if for
any 2’ < 2 there exist positive constants r, 4 satisfying the following con-
ditions:

a) 0<4<1,

b) For each 4>0 there is a constant C >0 such that

6.1) | Pjilx, §)|<CAF exp (h]€))

holds for any (x, §) € 2'N{|&|>(+k+Dr}, j, £=0,1,2, ---. Theset of
all double formal symbols defined in 2 is denoted by Sy(£2).
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Null-class in the space of double formal symbols S,(2) is defined as
follows.

Definition 6.2. A double formal symbol

P(tl’ tz; X, $)= .;0 t:{tngk(x5 S)
i
defined in 2 is said to be equivalent to zero if for any 2’ £ there exist
positive constants r, 4 satisfying the following:
a) 0<A<]I,
b) For each £>>0 there is a constant C>0 such that

6.2) |j+k:/__|:‘n_1ij(x, &)|<KCA™ exp (h|&])

is valid for any (x, &) € 2'N{|&|>mr}, m=1, 2, - - .. The set of all double
formal symbols e S,(2) equivalent to zero is denoted by Ry(2). Two
double formal symbols defined in £ are said to be equivalent if the dif-
ference belongs to R,(2).

We introduce the sum and the product in S,(2) as formal power series
in (t,, ). Then S,(2) becomes a commutative ring. The ring of formal
symbols S(f2) is identified with a subring of S,(2) by setting r=¢,. Here-
after we always consider t=¢,.. By the definition, the following pro-
position is trivial.

Proposition 6.3. S(2) N R,(2)=R(Q).

B Hence we may write P(t,, t,; x,A§)~Q(t1, ty;x,8) if P(t,t,;x,8) ¢
Sy(£) is equivalent to Q(t,, 1,; x, &) € Sy(2) (cf. Definition 5.2).

Proposition 6.4. R,(Q) is an ideal of S,(2).

The preceding proposition is proved in the same way as proposition
5.4.
Now, we have the following injections:

R(Q2)=—>R(2) = R,(Q)

Lol

S(Q) = S(2) = S,Q).
By virtue of Proposition 6.3, there is an injective homomorphism
1t S(Q)/R(QD)—>S(2)/RA2)
defined by ¢,(P(¢; x, £))=P(t,: x, &).



Symbols and Formal Symbols 201

Remark. If P(¢; x, &) € S(Q) then P(t;; x, &) ~ P(t,; x, &).

Let us define py: S(2)—S(2) by setting 0u(P(ty, 155 %, E))=P(t, t;
x, &). Then we have

Theorem 6.5. The mapping p,, induces the homomorphism
p21: SADRLD—>S(D)/R(2)
such that py 0 t;=1d, ¢5,0 p,;=1d.

Proof. If P(t,t,;x,8)¢€ R,(9), then, by the definition, we have
pu(P(ts 1,5 x, &) € R(2). Ttis clear that 0 ¢;=id. We shall show ¢;, 0 g,
=id. It suffices to show that P(z,%,; x, &)~ P(t, t; X, &) holds for any
P(t, t;;x,8) € S;(Q) Suppose P(tn t; x, &)= Zy,k ot{ téchk(x §. We
write P(ty, t1; %, &)= 7u Ot 't Pj,c(x &. Then we have P,o(x &=
o Pyopi(x,8),j=0,1,2, ... and ij(x, 8=0,k>0,j=0,1, ---.
Hence we have

Z (ij(x E) ij(xa E))

J+k<m=-1

=j+kz<\: ~Iij(X, & — Z: P]O(x &)

= 2 P(x, &) — Z =Pj 11X &)

J+k<m—1 =0
=0.
This completes the proof.
Combining this with Theorem 5.7 yields

Theorem 6.6. Set w,=w, o p,,, then

@,: lim S,(2)/R(Q)—>&E.
—>
22 8*
is a linear isomorphism. Here 2 runs on the family of conic neighborhoods
of #* in T*X.

Definition 6.7. The image of P(t,, t,: x, &) € S(Q) (or its equivalence
class) by @, is denoted by :P(t, ,; x, £): and called the normal product
of P(t,, t,; x, &).

§7. Symbolic calculas

In this section we establish some calculation rules concerning pseudo-
differential operators, which are expressed in terms of formal symbols and
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of double formal symbols.
We first prepare the following lemma. Let £ denote a conic neigh-
borhood of #*=(x; 2,0, - - -, 0) in T*X.

Lemma 7.1. Let M=(a;;) be an nXn matrix (a,; € C, 1<i, j<n),
P(t; x, &) a formal symbol defined in 2. Then exp (t,0.- M0, )P(t,; x, E) is a
double formal symbol defined in 2. Hence exp (.- M3, )P(t;x,8) is a
formal symbol defined in 2. Moreover, if P(t; x, &)~ 0, then exp (t,0,-
Mo )P(ty; x, &) ~0 and exp (.- M3, )P(t; x, &) ~0. Here 0.-Md,=
2it,1 4i50¢,0z

Proof. . It suffices to show in the case M= . . We assume
0

that the formal symbol P(t; x, §)=2 7., t'P,(x, &) satisfies the condition
of Definition 5.1. We have to estimate the coefficients of

exp (4,0:- M3)P(t; x, &) = > tith a'gla;;lp,(x, g).
k=0

Let £/ and £ be compactly generated conic subsets in 2 such that 2>
£’>02”. By using Cauchy’s formula, we have for (x, £) € 2"

f f - Pz, x',C, &)
Qz «/"' T JJiEsaiz ;u (C—Sl)’”+‘(z~—x1)’“‘

where x'=(x,, - -+, x,), &=(&, ---,&,), >0 is a sufficiently small
number, j, k=0,1,2, - ... Hence we have

0¢,05,P(x, §)=

|0¢ 0% P (x, 5)]£k!2]$]'ke'2’°' _iulp [Pz, x',C, &)]
ez

<kP|E|*eC" A7 exp (h|&).

Here £ is an arbitrary constant >0, C’ is some constant >0 depending on
h. Let r’ be a positive number. Then we have

(1) L1053 P e DK k4 /e 5O exp (h]€)

for every (x, &) e Q" N{&|>(+k+Dr'}, j, k=0,1,2, - ... If r’ is taken
as r’'>e"?4"!, then (7.1) becomes

% 105,05 Py(x, £)|<C/A’** exp (h|€)).
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Thus exp (,0,,0, )P (t;; x, §) € S(2). We conclude that
exp (tzae,az,)P(t1§ x,8) e §2(‘Q)9

for 2’ R is arbitrary.
Next, let us suppose P(¢; x, §)~0. We assume the estimate in Defi-

nition 5.2. In the same way as above, we obtain for (x, &) e 2'N{&|>

mr'’y, m=1,2, - .-,

(1.2) > e p(xg)

j+k<m-1 k! ]

m—1 m—-k-—1
<5 Lo "5 P, )
=0 k] TP =

m—1

<C > kleT g FA™ " exp (h|&])

k=0
<A™ exp (h|§),

where C”"=C’e'r’A(er’'A—1)"". Hence exp (#,0.,0,)P(t;; x, §) e R,(Q).

Theorem 7.2 (Composition). Let P(t; x, &) and Q(t; x, &) be formal
symbols defined in 2. Set

(7.3) W(t,, t,; X, §)=exp (0, 0)P(t:; X, §)O(t:; ¥, D=L

Then W(t,, t,; x, £) is a double formal symbol defined in §2 such that
P(t; x,8): :0(t; x, &)= W(ty, t,; x, &):

holds in &%.

Since W(t,, t,; x,&)~W(t, t; x, &) (cf. Theorem 6.5), the preceding
theorem is equivalent to the following:

Theorem 7.2’. Let P(t; x, &) and Q(t; x, &) be formal symbols defined
in 2. Set

(7.4) W(t; x, §)=exp (10.-9,)P(t; x, §)O(t; ¥, P [}=¢.
Then W(t; x, &) is a formal symbol defined in 2 so that

P(t;x,8): :0(t; x, 8):=W(t; x, §):
holds in &&.

Proof. Let P®(x, &) and Q®(x, &) be symbols equivalent respectively
to P(t; x, &) and Q(¢; x, &) (cf. Theorem 5.5). It follows from Lemma 7.1
that the formal symbol
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WO(t; x, §)=exp (19, -9,)P V(x, £)QU(y, )[5=%
is equivalent to W(¢; x, §). Hence it suffices to show
PO(x, §): 10D (x, §):= W O(¢; x, &)

Let K(x, x’) and L(x, x’) (resp. f(x, & p) and g(x, &, p)) denote the kernel
functions (resp. the Radon transformations) of :P®(x, £): and :Q%(x, &):,
respectively. As holomorphic microfunctions, we have

(n—1)! Keo,x) g
(=2zV/ =1 ) (p—(x—x, )"

_ (=1 L(x, x') dx’
808P = 1 ) e

S(x, & p)=

The kernel function of the composite operator :P®(x, §): :QU(x, &): is
H(x, x’):J‘K(x, x")L(x"”, x")dx"”. Hence the Radon transformation
h(x, &, p) of H(x, x') is
(n—1n! H(x, x') Ay’
(=2zv/=1)" J (p—<(x—x, &))"
—1mM 7 et o,
- a2

- j K(x, x")g (", & p—{x—x"", ENdx".

h(x, & p)=

We may assume that K(x, x’) is represented by a defining function (x, x’)
e )(V,,) for some ¢, e>0 (cf. §2). Then the defining function of

Hx, & ) s
81
e, 6,2 =(— 1" [ dyf dy o, 5 —3)g e =3, 6.0~ 0,

where the paths of the integrations are taken as in (3.3). (We use the
same letters 7, g to represent the defining functions of holomorphic micro-
functions 4, g, respectively). The symbol W(x, &) of h(x, &, p), hence of
PO(x, &): :00(x, &), is

W(x, &) =(Qry/— 1) L h(x, &, p)e-dp.

(Cf. (4.1) and Definition 4.2). We have
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[ e & prerap
z
B1
=(=D" L dp L dy, §dy’«lf(x, x—=1)g(x—y, & p—L, &E))e?

81
= (=1 [ dy f o x =) [ a(e—r 6, qleedg

—( [T far 5 Dt x—ppero [ gt ey

81 ‘ ’
=2 %ag((_ v f e § d v x—peo-9); L 2(x,"&, q)e~"dg.
Now we set
PO(x, &)=(—1)" Iﬁl dy, f;; dy'p(x, x—y)e=<,
Bo

0O(x, £) = 2uy/ =Ty~ j _dgg(x, & e

Then we have PO(x, £)~P®(x, &), 0D (x, £)~Q0®(x, &) and W(x, &)=
>, (1a)azP@(x, £)-020P(x, &), where the right-hand side converges if
l.Bola I,B1I<<1, |$1>>1 If we set

We(t; x, §)=exp (19:-0,)P O(x, )R (y, D=5,

then we have immediately W(x, §)~ W®(¢; x, £). This implies W(x, &)
~WO(t; x, &), for WO(t; x, &)~ W(t; x, ). Hence we have W(x, &) ~
W(t; x, &); this completes the proof.

Theorem 7.3 (Formal adjoint). Let P(t; x, &) be a formal symbol
defined in 2. Then

P¥(ty, 135 %, §)=exp (4,0, - 0)P (11 X, —§)
is a double formal symbol defined in 2% satisfying
GP(t; x, £))* = :P*(t, t,; x, &): in & .
Here the left-hand side means the formal adjoint operator of :P(t: x, &):.
Proof. By Theorem 6.5, it suffices to show the following
Theorem 7.3'. Let P(t; x, &) be a formal symbol defined in 2. Then
P(t; x, §)=exp (10;-9,)P(1; X, —§)

is a formal symbol defined in 2° such that
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CP(; %, &) = PH(t;%, ) in 6%,

Proof of Theorem 7.3’. Let P(x, &) be a symbol equivalent to P(z;
x,&). We may assume that P(x, &) can be written in the form (cf. Pro-
position 4.7)

(.9 P, O =(—=1" [ dy, fdyrp x—p)emro

where (x, x) e O(V.,,.) (c,e>0; cf. §2) is a defining function of :P(¢;
x, &):. Then the formal adjoint P* of P=:P(¢; x, &): is defined by

P*=[(—1)"y{x’, x)dx'].
Hence the symbol of P* is
84
(7.6) P*(x, 5)=J iy, § dyy(x—y, e v,
8%

where fi=—p8, fi=—p.. Weset o(x, y)=1(x, x—y). Then (7.5) and
(7.6) become respectively

31
.5y P, ©)=(= 1" [ dy, § gt y)e=,

1.6y PG, 9= dy § dy'pler—, =)+,
Combining (7.5)" with (7.6)’ yields
P¥(x, &) =(—1" J:: dy, § dy'o(x+, y)e= -
=(=1" f: dy, §dy’ Z‘I %}:T 3%o(x, y)e~ < -

s (=D P ’ ~d
=D = P 9305 , dy; o dy'o(x, y)e V7|, ¢

=31 awepx, —o).
z a!

The last term converges if [B,}, |8:]<1, |&€]>1. Then it is clear that
P*(t; x, &)~ P*(x, &). This completes the proof.

Theorem 7.4 (Change of variables). Let P(¢t; x, &) be a formal symbol
e S(Q) in a coordinate system (x). Let (¥) be another coordinate system
and denote by (y, ) the corresponding coordinate system on T*X, i.e., 5;=
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D1 0Ox,J0y)E,. Let M(x,x") be a matrix defined by y(x)— y(x)=
M(x, XY x—x). Then

F(tla tz; Vs W)Zexp (tzax’ : ae’)P(tl; X, $/+ tM(xa x’)r;) Iag:igya
is a double formal symbol in the coordinate system (y) such that
(Pt x, &)= :F(tl, Ly, ).

Here the right-hand side means the operator e &% corresponding to P(t,, t,;
¥, 1) with respect to the coordinate system (y, ).

Theorem 7.4’. Under the same notation as in Theorem 1.4, set

P(t; y, 7)=exp (18, 0:)P(t; x, &+ M(x, x)p)

A
Then P(t; v\ is a formal symbol defined in  such that
:P(t; x,8):=:P(t; y, p):.

Proofs of Theorems 7.4 and 7.4'. 1t suffices to show Theorem 7.4". Let
P(x, &) be a symbol equivalent to P(¢; x, §). We may assume that P(x, &)
is written in the form

Px, 9= (1" [ dyy(, x—y)emo
:I dx/(x, x")e= <=8,
where (x, x’) e O(V,,.) is a defining function of : P(¢; x, £): (¢, e>0; cf.

§2 and Proposition 4.7). Then the symbol of P=[(x, x)dx’] with respect
to the coordinate system (, 7) is ‘

P(y, 77)=I dx""(x, x'")e V=",

where y"=p(x""). We shall give formal calculus only; the justification is
the same as in the proofs of Theorems 7.2’ and 7.3.

ZJ‘ dx""(x, x'")e =A@

/
:J dx"(x, XY 3, _(_x,__'x)iag,e“@*f”x‘ﬂl(r,r’)v) s
« a.
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” 1 0805 oo i@ ang 7y
=| dx""y(x, x'") > 22 e A -
= al &r=0

=exp (9 0:)P(x, "M%, XY +&)yr o
Hence we have o
Py, 1) =exp (0 0:)P(x, "M s, X+l -
~exp (10,0 0:)P . "M, ¥ +8)]y s
~exp (10, -3, )P(t; x, "M(x, x"Y+&)
This implies P(y, 7)~ P(t; y, 7).

-
& =0
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