
CHAPTER 1

Introduction

This monograph deals with problems concerning distributions in
statistical models in which there is a group of invariance transforma-
tions. The methods to be presented make use of mathematical tools
that involve interplay between groups and integration. The purpose
of this monograph is not only to demonstrate by examples the sta-
tistical usefulness of the methods, but also to present a systematic
account of the mathematical background.

One of the most important problems in a statistical model with
an invariance group is to obtain the distribution of a maximal in-
variant (precise definitions of this and other notions will be made in
subsequent chapters). However, other statistics that are not invari-
ant but equivariant may be of interest too (for instance, maximum
likelihood estimators). Often these distributional problems can be
handled without group methods on an ad hoc basis, but the full use
of a known invariant measure on the group provides a more systematic
treatment that usually also is easier to carry out. Invariant measures
are guaranteed for locally compact groups, and it is to those groups
that this monograph will be confined. That includes all such "nice"
groups as translations and matrix groups, but not large groups such
as all continuous and strictly monotonic transformations of the real
line. Thus, the statistical problems to be considered are typically of
the parametric rather than nonparametric type.

As a justification for the use of group methods in a simple ex-
ample consider the derivation of the χ2-distribution, or equivalently,
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the χ-distribution. Let X = (X l 5 . . . ,Xn) be a random vector in n-

dimensional Euclidean space and put R2 = Σ" X? In the simplest

case, leading to the central χ2-distribution, the Xi are independent

and identically distributed (iid) iV(0,1) so that the distribution of X

is

(2π)-f e χ p ( - | r 2 ) λ ( ώ ) ,

in which r2 = Σi xl a n < ^ λ(dx) = ώ 2 . . . c?xn is n-dimensional Lebes-

gue measure. At first glance, sophisticated methods for deriving the

distribution of R2 would seem totally out of place. Indeed, introduce

polar coordinates with radial coordinate r and a set of n — 1 additional

angular coordinates, for brevity denoted by the single symbol θ and

its random version by θ. Then X is in 1-1 correspondence with (i?, Θ)

and X(dx) = rn~1drμ(dθ) for some measure μ that does not depend

on r. Now integrate over θ to obtain the distribution of R. Since

the integrand does not depend on 0, the result of the integration is

a constant An, which is the area of the unit sphere £ ^ # f = 1 (the

value of An is listed in (7.7.9)). Hence, the distribution of R is

which is the familiar χ-distribution with n degrees of freedom. Note

that in this derivation it is not necessary to make an explicit choice

forfl.

The limitation of the above elementary derivation is evident when

the density of X with respect to λ depends not only on r but also on

θ. For instance, the Xi could be as before except that not all means

are 0 (so that R2 is noncentral χ 2). More generally, X could have an

arbitrary density with respect to λ that fails to be spherically sym-

metric. In order to perform the integration over θ it would then be

necessary to make a specific choice for θ and to compute the Jaco-

bian of the transformation from x to (r, θ). Any such choice is highly

arbitrary, and, furthermore, the Jacobian computation tends to be

rather messy. It is here that group methods offer a more systematic

and convenient—therefore more attractive—approach. The relevant
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group G in the present problem is O(n), the group of all n x n orthog-
onal matrices. Now regard X as an n x 1 column vector and consider
the transformation X —• ΓX with an arbitrary Γ G G . This defines a
so-called action of G on n-space. Since R2 = X'X, R2 is invariant
under this transformation for every Γ G G , and so is R of course; even
maximal invariant, for it is easy to show that any invariant function
of X depends on X only through R. Define the function t on n-space
into the nonnegative half-line by t(x) = r, so that t(X) = i2, and
suppose that the distribution of X is p(x)X(dx) with some probabil-
ity density p. Then the methods in this monograph will show that
the density of R at r is J p(Tx)μG{dT) with respect to an explicitly
described measure v(dr), where x is any point for which t(x) = r,
and μG is the unique invariant probability measure on G (invariant
here means that the measure of a set does not change if the set is
orthogonally transformed).

The above example will now be generalized to X being a n n x p
random matrix. Put S = X'X (' denotes transpose), then S has
the standard Wishart distribution with n degrees of freedom if the
elements of X are iid iV(0,l). When p = 1, 5 = R2 of the pre-
vious example and the χ2-distribution re-emerges. There are many
derivations of the Wishart distribution that do not use group meth-
ods; see, e.g., Anderson (1984), Section 7.2. None of these derivations
is elementary, unlike the elementary derivation of the χ2-distribution
when p = 1. However, making full use of group methods provides
a very attractive alternative derivation. Furthermore, the method
does not depend on the particular density of X. The starting point
is a Gram-Schmidt decomposition X = ί/Γ, in which U : n x p has
orthonormal columns and T is p x p upper triangular with positive
diagonal elements. Then S = T'T (Cholesky decomposition) and S is
in 1-1 correspondence with T so that the distribution of T is just as
useful as that of 5. The invariance group G in this example is again
0{n) with action X —> ΓX, Γ e G . Obviously, S remains invariant
under this action (in fact, maximal invariant). The group methods
in this monograph lead to factorization of Lebesgue measure λ on
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np-dimensional space into a product measure on the product space in
which (Z7, T) takes its values. Then any density of X with respect to
λ translates into a joint density of (17, Γ) with respect to the product
measure. In particular, in the standard Wishart case, U and T turn
out to be independent, leading immediately to the marginal distribu-
tions of U and T (therefore, of 5). For arbitrary density of X, an
integral expression for the density of T is obtained; this is useful, for
instance, for the noncentral Wishart distribution. The details are in
Section 9.2. Incidentally, U above is a so-called equivariant statistic:
when X is changed to ΓX, U transforms into TU; see Example 2.1.13.

If the group G is compact, as is the case with 0(n) in the previous
examples, then it is often possible to obtain a partial result with
help of more modest means. Suppose a random variable X takes its
values in X and has a density p(x) with respect to a measure \{dx)
that is invariant under the transformations of a compact group G
that acts on X (e.g., Lebesgue measure is invariant under orthogonal
transformations). Let t : X —> ^ be a maximal invariant function and
let v — λί" 1 be the measure that λ induces on ^ via the function
t. Then the density of T = t(X) with respect to v at y £ ^ is
f p(gx)μG(dg), where x is any point in X for which t(x) = y, and
μG is the unique invariant probability measure on G. This follows
from elementary integration properties and is proved in Eaton (1983),
Proposition 7.15. However, this relatively easy result obscures the
fact that it does not come to grips with the measure ι/, except for its
definition. In contrast, the method of global cross section employed in
this monograph enables a more complete answer, including an explicit
expression for the measure v. In problems involving density ratios,
the explicit knowledge of v may not be needed and then the above
simple derivation is useful. This will be elaborated in Chapter 13.

When the group G is not compact several complications arise.
First, the invariant measure on G is no longer finite and therefore
cannot be chosen to be a probability measure. Consequently, the
proof alluded to in the previous paragraph does not go through. Sec-
ond, there is a priori no guarantee that the induced measure v is
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really a measure, i.e., finite on compacta, nor that J p(gx)μa(dg) (or
whatever takes its place) is finite. Third, and perhaps most impor-
tantly, the action of G on X may be bad even though both G and
X are very regular. In particular, the orbit space may fail to be a
Hausdorff space. No specific statistical example of this phenomenon
is known to this writer, but in mathematics the classical example of
such unpleasant action is the irrational flow on the torus (see,
e.g., Hewitt and Ross, 1979, Section 6.17, Example (e); or Greup,
Halperin, and Vanstone, 1972, Section 3.10). The two-dimensional
torus can be pictured as a ring (the geometric, not algebraic, object)
in three-dimensional space, but is analytically more conveniently rep-
resented by a unit square 0 < #, y < 1 in which the parallel edges are
identified; i.e., the points (0,y) and (l,y) coincide for all 0 < y < 1,
and so do the points (a;,0) and (x, 1) for all 0 < x < 1. The group G
is the real line R under addition. Take any irrational number α, then
the action of G on the torus is defined by

(x, y) —> (x + t (mod 1), y + at (mod 1)), t 6 R.

The orbit of the point (x,y) results if t runs from —oo to oo. Then
every orbit is dense in the torus and it is not possible to enclose two
distinct orbits in disjoint open invariant neighborhoods.

The above discussion points to the necessity of additional as-
sumptions on the action of G. This has led Bourbaki (1966b) to
introduce the notion of a proper action. For locally compact group
and space this amounts to the following: if A and B are compact sub-
sets of X, then the set of g E G for which gA and B have nonempty
intersection should have compact closure. This rules out, for instance,
the irrational flow on the torus since any orbit starting from a point
in A passes through B for arbitrarily large values of t.

In Chapters 8 through 11 where useful results are derived we shall
not explicitly assume the action of G on X to be proper. Instead,
stronger assumptions will be made that among other things imply
properness of the action. The reason for imposing stronger conditions
is to be able to achieve as complete a result as possible. Our method
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endeavors to find a maximal invariant Z and an equivariant Y such
that there is a 1-1 correspondence between X and (Y, Z). Let (Y, Z)
take its values in ^ x Z. Then under some conditions (to be specified
in Chapter 8) a measure λ on X transforms into a product measure,
say μy <g) μ^, on ^ X Z. Here μ^ can be obtained directly from the
invariant measure on G (Sections 7.3 and 7.4); the question how to
obtain μ^ will be dealt with in Chapter 8. If p is the density of X
with respect to λ and if p(x) = p$(y,z), then pQ is the density of
(Y, Z) with respect to μ^® μ^. Then the marginal distributions of Y
and Z may be obtained by integration over the other variable. If p0

is of the special form po(y,z) = Pι(y)P2{z)-> then Y and Z are seen
to be independent with distributions p1(y)μ^(dy) and P2(z)μz(dz),
respectively. This is the case in the Wishart example if the rows of
X are iid iV(0,Σ), where Y and Z are U and T, respectively, in the
example.

It should be clear from the above discussion that the most essen-
tial step in the derivation of distributions that result from the action
of a group G consists in relating a given measure λ on the sample
space X to a product measure on a product space ^ x Z in which Z is
any space that is in one-one correspondence with the orbits in X. The
other space ^ could be G itself, or some other space on which G acts
transitively. The two spaces, X and ^ xX, may but need not be in
1-1 correspondence. This point will be discussed in Chapter 12. But
in any case the process of deriving the product measure μ^ ® μ% on
y x Z from the measure λ on X will be called loosely factorization of
λ. Examples of such factorizations were first given by Stein (1956a,
b). More systematic treatments can be found in Schwartz (1966),
Wijsman (1967b), Koehn (1970), Bondar (1976), Farrell (1976, 1985),
Woteki and Mayer (1976), Andersson (1982), Andersson, Br0ns, and
Jensen (1983), Eaton (1983), and Wijsman (1986). In Eaton (1989)
there is an expository account based on Andersson (1982). In some
of the above references the space Z is taken to be a global cross
section, often simply called a cross section, i.e., a subset of X that
meets each orbit in exactly one point. These various treatments differ
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in their underlying assumptions. For instance, the cross section Z is
assumed to be differentiable in Wijsman (1967b, 1986), but only mea-
surable in Schwartz (1966), Bondar (1976), Farrell (1976, 1985). A
more detailed account may be found in Wijsman (1986), Section 2. Of
course, as is to be expected, stronger conclusions can be drawn from
stronger assumptions. Thus, the existence of a differentiable cross
section leads to an explicit expression for μ^ rather than merely its
existence. Therefore, in this monograph we shall pursue the method of
differentiable cross section since it is capable of providing more com-
plete factorization results. Each such factorization leads to a joint
distribution of (F, Z) but generally study of this joint distribution
has not been pursued in Chapters 9-11. The emphasis will be on the
marginal distribution of Z, expressed as an integral. There are also
applications, not included in this monograph, of cross sections to sta-
tistical problems other than factorization of a measure. The reader is
referred to Wijsman (1986), Section 4.

The methods of Andersson (1982) and Andersson, Br0ns, and
Jensen (1983) do not involve cross sections but, instead, assume the
action of G to be proper. Within the use of proper action Anders-
son (1982) bases his treatment on Bourbaki's quotient measure whereas
Andersson, Br0ns, and Jensen (1983) rely on Bourbaki's theory of
integration as applied to product measure. These notions will be
discussed in Section 7.3 and 6.5, respectively. We shall not use the
approach of these authors, but a comparison of their assumptions and
results with ours will bς made in Chapter 12.

The basic method for factoring a measure, to be developed in
Chapter 8, involves computing a Jacobian at each point of a cross
section. This can be avoided if the model has additional structure,
consisting of the presence of another group H such that GH is a group
that acts transitively on X and such that a few additional requirements
are satisfied. This will be called special group structure. If it is
present, then any iί-orbit can be taken as a cross section and the
product measure μ^ ® μz follows directly from the Haar measures
on G and H without Jacobian computation, except for a positive
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multiplicative constant. The latter can be found by computing a
Jacobian at one point or by integrating an "easy" density.

The conditions for special group structure and the theorems that
can be derived from it are treated in Chapter 8. The statistical prob-
lems to which special group structure applies will be called Type I,
and examples are given in Chapter 9. In contrast, Type II problems
have no special group structure but there is a differentiable cross sec-
tion so that the basic factorization method applies. Examples appear
in Chapter 10. Finally, in Type III problems there is an extra group
H such that GH is a group acting transitively on X, but not all other
conditions for special group structure are met and consequently an H-
orbit is no longer a cross section. However, under certain conditions
an ff-orbit is a global slice and can still be useful in reducing the
original problem to a smaller one. This is presented in Chapter 11. In
several of the Type I and Type II problems it is shown how to obtain
a solution in steps by applying in succession the solutions of simpler
problems that have been solved already.

In some statistical problems what is needed is not the distribution
of a maximal invariant, but rather the density ratio of two such dis-
tributions. This is easier to obtain than the distributions themselves
since in the product measure μ^ ® μ^ it is not necessary to know an
expression for μ^, only its existence. This kind of problem can be
handled by local cross sections, or by using quotient measure, and
will be treated in Chapter 13.

The purpose of this monograph is mainly twofold. First, to
present an exposition of the method of differentiable cross section
combined with invariant measures on groups and enough examples
to demonstrate its usefulness; second, to provide the mathematical
background behind the method. In addition, there is in Chapter 12
a comparison between the cross section method and the factorization
method of Andersson, Br0ns, and Jensen (1983). This made it neces-
sary to include in Chapters 2 and 7 material on proper action. There
are other reasons for this inclusion as well. For instance, proper action
is a natural requirement for the construction of an invariant or rela-
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tively invariant measure on a homogeneous space (Sections 7.3, 7.4).
From the point of view of statistical application, the most important
chapters are 8-10 and 13. Some readers may decide to start with
Chapter 8 and go back to earlier chapters only as the need arises.

A major portion of this monograph, Chapters 2-7, is occupied
by the mathematical background. Even though most of this material
is available in the mathematical literature, it is scattered throughout
several sources. It seemed to this writer that it would be useful to
have in one place those mathematical concepts and theorems that are
pertinent to groups acting on spaces and measures on these groups
and spaces, especially measures that enjoy some sort of invariance
under the group action. The material in Chapters 2-7 is built up in
a more or less logical way. First some generalities about topological
groups and group action in Chapter 2. Then an introduction to dif-
ferentiable manifolds in Chapters 3 and 4, concentrating on tangent
spaces, differential of a mapping, vector fields, and differential forms.
This is followed in Chapter 5 by the special but important case of
Lie groups, which makes it possible to define invariant vector fields
(Lie algebra) and invariant differential forms. The latter (those of
highest degree) are going to be used as invariant measures on groups,
but before that can be defined, a certain amount of Bourbaki-type
integration theory has to be developed (Chapter 6). The various con-
cepts come together in Chapter 7, with the construction of invariant
and relatively invariant measures on locally compact groups and coset
spaces. Some or all of these chapters could be read for their own sake
as well, rather than as background for Chapters 8-13. For instance,
Chapter 3 could be read as an introduction to differential geometry
in statistical parameter spaces, as treated, e.g., in Amari, Barndorff-
Nielsen, Kass, Lauritzen, and Rao (198-7) (where references to other
relevant publications can be found). Chapter 5 may be useful as an
introduction to Lie groups; the concrete examples that appear in that
chapter may be helpful to the understanding of notions such as in-
variant vector fields, etc.. The introduction to the Bourbaki theory of
integration in Chapter 6 contains some comparison with the classical
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and Daniell integration theories, which may be of interest. Not all of
the contents of Chapter 2-7 can be found in the literature. At least
to the best of this writer's knowledge, the material in Section 5.9 and
Proposition 7.7.6 are new.

For the most part, definitions and results are stated carefully.
Many of the proofs are included, but for some proofs (especially the
longer ones) the reader is referred to the literature. As a result, this
monograph is self-contained to a considerable extent, but not com-
pletely. For those readers who would like more information on some
of the topics touched upon in Chapters 2-7 here follows a short list
of books that have been especially helpful to this writer. For general
topology: Kelley (1955) and Bourbaki (1966b). The latter is an excel-
lent English translation of the original French edition. It is unequaled
in its treatment of groups acting on spaces, including proper action.
The basics of invariant and relatively invariant measures on locally
compact groups can be found in Bourbaki (1963), and the founda-
tions of integration on locally compact spaces in Bourbaki (1965).
Further integration theory appears in Bourbaki (1967). None of these
Bourbaki volumes have been translated into English; however, even
readers with only elementary knowledge of French will have no diffi-
culty with it. For classical measure and integration: Halmos (1950).
For Lie groups: Cohn (1957) and Chevalley (1946), the former be-
ing the more elementary of the two. For Haar measure on locally
compact groups: Nachbin (1976), and for the Daniell integral (which
is essentially Bourbaki's method): Taylor (1965, 1985). Finally, for
manifolds, tangent spaces, differential of a mapping, etc.: Bishop and
Crittenden (1964).

To conclude this chapter, we indicate here briefly how this mono-
graph relates to several well-known books that deal with the concept
of invariance in statistics. Lehmann (1959, 1986, Chapter 6) treats a
general theory of invariance in hypothesis testing, first developed by
G. Hunt and C. Stein (unpublished). This deals with the derivation
and properties of invariant tests, not with measures on the invari-
ance groups. The same can be said about the treatment of equivari-
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ant estimators in Ferguson (1967, Chapter 4) and Lehmann (1983,
Chapter 3). There is some overlap of this monograph with that of
Barndorff-Nielsen, Blaesild, and Eriksen (1989). The latter has many
examples of invariant or relatively invariant measures, and of factor-
ization of measures. Our monograph is also in spirit close to Far-
rell (1976, 1985), Muirhead (1982), and Eaton (1983, 1989), all of
which deal with invariant measures on groups and related manifolds.
In contrast, there is no overlap to speak of with the monograph of
Diaconis (1988), which discusses applications of group representation
in statistics, especially of the permutation group on n symbols.




