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VI. AFTERTHOUGHTS

1. Two topics that were left out.

THE L? SPACE OF A GAUSSIAN PROCESS: Looking back over what I
have written, it seems to me that these notes contain almost everything a
beginning researcher needs to know about the mathematical basis of Gaus-
sian processes. Somehow, although my original intention was only to cover
problems of continuity and extrema, there is a lot of other material that has
found its way into the notes. There is one gaping omission, however, and this
relates to the £? space associated with a Gaussian process, and its Hilbert
space structure.

The reason that this material does not appear here is that it has nothing
to do with continuity, boundedness, and suprema distributions, and these
have been our main concern. Nevertheless, a word of advice to the teacher
or the reader: If, after going through these notes you have some time and
energy left, read the first seven chapters of Major’s (1981) monograph on
multiple Wiener integrals, and follow it up with the elegant and powerful
central limit theorem of Dynkin and Mandelbaum (1983). Then you will be

ready to start a serious reading of the Gaussian literature in all its breadth
and beauty.

ON MARKOV PROCESSES AND THE ISOMORPHISM THEOREM: Markov
processes have appeared in these notes only in a very peripheral fashion.
This is unfortunate, because it tends to reinforce the “well known fact” that
Gaussian and Markovian processes have little to do with one another, and
this WKF is taking somewhat of a beating at the moment. To explain why, I
want to describe for you a simple version of a theorem due to Dynkin (1983).
Then I will explain to you why this theorem is interesting.

Let {X,,t > 0} be an R*-valued, symmetric, Markov process with sta-
tionary transition density p,(z,y) = p (v, z). (We really need certain techni-
cal side conditions, but shall leave them out here.) Let ¢ be an exponential
random variable with mean one, independent of X, which we treat as a death
time for X, and let A be the “cemetary” state for X so that the “killed ver-
sion” of X is given by the process

o X:, t<E,
Xt:{ 3
A, t>¢.

The killed process Xt is still a Markov process, with transition density
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e *'p,(z,y), z,y € R%, and Green’s function ¢g(z,y) defined by

(6.1) o(z,9) = /0 " e tp(2,7) db.

We shall assume throughout that 0 < g(z,z) < oo for all z.

For each z, € R* we define the probability P,, on the space of paths of
X, augmented by A, via the finite-dimensional distributions

(62) P., {th €B,,..., X, €B. }
1

= —_‘/ / e_tkptl(130,331)1’:,—“(-'51,12)---Pt,‘—t,‘_,(zk—lazk)
B, Bk

B g(xo,xo)

X g(Tk,2o) dz; ... dzy

for ¢;,...tx > 0 and Borel sets B;. Properly formulated P, {-} can be
interpreted as P{-| X, = zo,Xe_ = z, }, so that P, describes a process
starting and finishing (after an exponential killing time) at z,. ( Note that
at time ¢ the path takes the value A. Therefore, P, {X;, € R%,... ,X}k €
R*} = P{€ > t,|Xo = 70, X- = 2o}.)

We shall be interested in the local time process { L.,z € R*} of the
killed version X, of X, which can be formally expressed as

(6.3) L. = / “ 6. (X(0) dt,

where 6, is the Dirac delta function centered at z. This definition can be
made rigorous, as usual, by taking L, as the Radon-Nikodym derivative of
the occupation measure

wa) = [7 L)

where we follow the convention that for all Borel sets A € R?, I, (X,) = 0
for t > £. (Another approach is to approximate 6, by some density function

and then pass to the limit.)
To set up Dynkin’s theorem, the first thing we have to note is that the
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Green’s function (6.1) is always positive semi-definite, since

|[ atz)gta,v)aty) dzay
- / / / a(z)etp,(z,y)a(y) dzdydt  (by (6.1))

(by Chapman-Kolmogorov)

= // dzdt{/a(x)e“/zpt,g(z,z) dz /a(y)e't/zpt/z(%y) dy}

(by symmetry)

- / / dzdt[E{a(X.;»)| X, = 2}]’

> 0.

Thus g can serve as the covariance function of a centered Gaussian pro-
cess, {G(z),z € R*}, say. Let (Q,7) denote the probability space of this
process. The measure 7 is, naturally, completely determined by the covari-
ance function g(z,y). Let L = { L,,z € R*} denote the local time process
defined in (6.3). This process is defined on a probability space (02, P;,)
where P,  is given in (6.2). We denote by E, and Ep, expectation with
respect to the measures 7 and P,, respectively. For reasons we shall explain
in a moment, the following result is known as “the isomorphism theorem”:

6.1 THEOREM (DYNKIN). Let F be any positive functional on the space
of functions from R* to R and let £, = gjéﬂ Then

G (o)

(6.4) E, {F(f) prE"

} = BB, {F(¢+1D)}

Equivalently, the process £ (w) with the measure &—)Tw(dw) and £ (w) +

g(zo,z0

L(w,) with the product measure 7(dw)P,, (dw,) are equal in distribution.

The importance of this Theorem is that it gives us a way of trans-
lating probability statements about certain Markov processes (at least those
statements that can be phrased in terms of local time) into statements about
Gaussian processes, and vice versa. Hence the “isomorphism” in the name of
the theorem. As an example, note that it is an immediate consequence of the
isomorphism theorem that the local time exists as long as 0 < g(z,z) < oo,
and that it has a continuous version whenever {G(z),z € R%} has a ver-
sion with continuous sample paths. This, of course, is a problem that we
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now know how to solve. Much deeper information about the sample path
properties of the local times of Markov processes can also be deduced from
known results on Gaussian processes, many of which are extremely difficult
to obtain in a purely Markovian framework. For details, see Marcus and
Rosen (1990), who are rewriting and extending previous results on Markov
local time via Gaussian tools.

In a very clever application of this approach, Raisa Epstein Feldman
(1989) has shown how to take all the hard combinatorics out of calculating
hitting time probabilities for random walks with exponential holding times by
using Gaussian processes. In Feldman (1990) she has shown how to calculate
general exit distributions for Lévy processes via Gaussian techniques, and has
obtained Wiener-Hopf factorisation results from the same framework.

The relationship between Markov and Gaussian processes goes even
deeper than Theorem 6.1. For example, while Theorem 6.1 is restricted
to Markov processes for which the local time exists as a point indexed pro-
cess, there are many interesting cases where the local time exists only as a
distribution. This, of course, makes all the hard work we have done treating
Gaussian processes on general parameter spaces even more justified.

Furthermore, by studying additive functionals of Markov processes it
is possible to determine conditions for certain set-indexed Gaussian process
themselves to have a kind of Markov property (Dynkin (1980)), and the en-
tire £? space of certain Gaussian processes defined on spaces of measures
and certain generalised Gaussian processes defined on Schwartz space can be
characterised via additive functionals of vector Markov processes (Adler and
Epstein, (1986)). (This paper also attempts to explain “why” the isomor-
phism theorem works, and has a reasonable amount of expository material
on the general background required for its appreciation.)

A proof of Theorem 6.1 (in a much wider setting) is given in Dynkin
(1984a). Other related papers, in which you can find applications and exten-
sions, are Dynkin (1983,1984b) and Adler, Marcus and Zinn (1989). All told,
this is an exciting new area of activity, since it is one of the few areas in Prob-
ability Theory today that seems to be bringing people of diverse interests
together, as opposed to what seems to be the natural trend for mathemati-
cians to become more and more specialised and isolated even from their own
colleagues. The reason you should be interested, is that the fact that you got
this far into these notes indicates that you have a serious interest in Gaussian
processes, and therefore may have something to contribute at this rapidly
developing interface.

2. Directions for research.

MAIJORISING MEASURES: As I mentioned a long time ago, in the Preface,
my original motivation in preparing these Notes was to learn about majoris-
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ing measures, which, at the time I started work, had only recently come to
the fore in the literature of Gaussian processes. At the time, there was much
excitement, for Talagrand’s wielding of this concept had brought a solution
to the fifty year old problem of finding necessary and sufficient conditions
for sample path continuity.

Looking back over Talagrand’s main result, however, it is clear that we
have not progressed quite as much as we might like, for, at this point of time,
we still do not understand majorising measures well enough to construct them
in general. If an entropy condition is satisfied, whether it involves the simple
entropy function of Dudley or the two-parameter entropy of Chapter 5, we
can build a majorising measure. But, in these cases, we already knew how
to handle continuity problems without majorising measures.

The challenge that therefore remains is to either more fully understand
majorising measures, or to replace them with a concept that is more amenable
to investigation. My personal feeling is that a two-parameter entropy ap-
proach will turn out to be the most natural in the long run, but I have been
wrong more than once in the past (Wife — personal communication).

In view of Theorem 4.2, it also follows that majorising measures must
have much in common with the distribution of the position of the maximum
of X, when this is well defined. This is clearly an interesting problem in its
own right, and very little is known. It is therefore doubly worthy of study.

EXTREMAL THEORY AND ASYMPTOTIC GROWTH PROPERTIES: To de-
scribe this problem, consider the following simple example: Let X;,t € &
be a centered, stationary, Gaussian process with continuously differentiable
sample paths. Set

(6.5) M(@) = sup X(s),

s€(0,t]

and, for A > 0 and Borel A C R

(6.6) Na(\) = #{t€ A: X, =\, X! >0},
(6.7) Ly(A) = v({te A: X, > A}),

where v(B) is the Lebesgue measure of B. Then N, (}) is the number of
upcrossings of the level A that X has in A, while L, (A) is the amount of
time, while in A, that X spends above the level A.
There is an old and rich theory associated with the study of the three
limits
lim P{M(t) > A},

t,A— oo

as t and A tend to infinity in a coordinated fashion, and

lim N:,A (A), lim LzA (A),

z,A— oo z,A— 00
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where, again, z and X tend to infinity in a coordinated fashion, z4 = {zt: t €
A}, and the limit is to be taken in the sense of weak convergence of random
measures.

You can find details of what happens in the limit (for the non-Gaussian,
non-differentiable as well as Gaussian differentiable case) in Leadbetter,
Lindgren and Rootzén (1983), Leadbetter and Rootzén (1988), and Lead-
better (1987), along with their copious bibliographies. In brief, if X satisfies
an appropriate mixing condition, (i.e. EX,X, — O fast enough as t — o0),
then the appropriate limiting distribution for M is double exponential, and
for N and L the limiting processes are, respectively, Poisson and compound
Poisson random measures.

All of these results, however, deal only with Gaussian processes on the
real line. There is a rather immediate extension to processes on R¢, and you
can find some older-style results in Adler (1981). There has never been an
attempt, however, to extend the extremal theory of Gaussian processes to
processes on general parameter spaces.

I leave it to you as a (heavily starred) exercise to see what can be made
of this, and what applications would be generated by such results.

LOCAL, DIFFERENTIAL, STRUCTURE OF SAMPLE PATHS: There is a rich
theory for Gaussian processes on Euclidean spaces that describes the struc-
ture of the sample paths in the vicinity of “rare events” such as local extrema
at asymptotically high levels.

For example, let X (¢) be a continuously differentiable, stationary Gaus-
sian process on R*, with covariance function R(t). Suppose that that at
some point 7 we have X(7) = u and

OX(ts, ... t)

= d;  =1,...,k.
Bt,- dn g la ’

t=r1

Then, with probability approaching one as u — oo, the random field has the
following deterministic representation in a neighbourhood of 7:

k

Y = —n) + 0(3),

t,5=1

(6.8) X(t) = u+ » di(ti—7) + Lu

where
9% R(t)

B T TS

t=0

(For details on a precise formulation of this result see, for example, Leadbet-

ter et. al. (1983) for processes on R* or Adler (1981) for random fields.)
Here is an interesting problem. We have developed throughout these

notes most of the results that would be needed to extend results like the
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above to general parameter spaces. However, most parameter spaces will
not have the nice differential structure that R®* has, which is required to
even write down (6.8). What is the extension of (6.8) to general parameter
spaces, and how do you prove it? (I think the first question is the more
difficult one.)

An answer to this question would, I believe, be of particular interest in
the study of set indexed (i.e. empirical related) processes.





