Chapter 2. Basics of Representations and Characters

A. DEFINITIONS AND EXAMPLES.

We start with the notion of a group: a set G with an associative multiplication
s,t — st, an identity id, and inverses s™!. A representation p of G assigns an
invertible matrix p(s) to each s € G in such a way that the matrix assigned to the
product of two elements is the product of the matrices assigned to each element:
p(st) = p(s)p(t). This implies that p(id) = I, p(s™!) = p(s)~!. The matrices we
work with are all invertible and are considered over the real or complex numbers.
We thus regard p as a homomorphism from G' to GL(V) — the linear maps on a
vector space V. The dimension of V' is denoted d, and called the dimension of p.

If W is a subspace of V stable under G (i.e., p(s)W C W for all s € G),
then p restricted to W gives a subrepresentation. Of course the zero subspace
and the subspace W = V are trivial subrepresentations. If the representation p
admits no non-trivial subrepresentation, then p is called irreducible. Before going
on, let us consider an example.

FEzample. S, the permutation group on n letters.

This is the group S,, of 1 — 1 mappings from a finite set into itself; we will use
the notation [ﬂ(ll) ”(22) -+« n(my)- Here are three different representations. There
are others.

(a) The trivial representation is 1-dimensional. It assigns each permutation to

the identity map p(7)z = z.

(b) The alternating representation is also 1-dimensional. To define it, recall the

sign of a permutation 7 is +1 if 7 can be written as a product or an even
even # of factors

number of transpositions ™ = Eab)(cd) . ..(ef)‘. The sign of 7 is —1 if 7 can
be written as an odd number of transpositions. Elementary books on group
theory show that sgn(r) is well defined and that sgn(my7) = sgn(my)sgn(m).
It follows that z — sgn(7) - z is a 1-dimensional representation.

(¢) The permutation representation is an n-dimensional representation. To define
it, consider the standard basis ey, ..., e, of R™. It is only necessary to define
the linear map p(7) on the basis vectors. Define p(7)e; = er(;). The matrix
of a linear map L is defined by L(e;) = ¥ L;je;. With this convention, p(7);;
is zero or one. It is one if and only if 7(j) = %, so p(7)i; = bixez). 1 will
write permutations right to left. Thus 727 means first perform m; and then
perform 7.

We will also be using cycle notation for permutations, (aja;...ax) means
a; — az, a3 — az...ay — a3. Thus (1 2)(2 3) = (12 3) (and not (1 3 2)).

5
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Under the permutation representation this last equation transforms into

Observe that the permutation representation has subspaces that are sent into
themselves under the action of the group: the 1-dimensional space spanned by e; +
-+++ ey, and its complement W = {z € R" : Xz; = 0} both have this property.
A representation p is irreducible if there is no non-trivial subspace W C V with
p(s)W C W forall s € G. Irreducible representations are the basic building blocks
of any representation, in the sense that any representation can be decomposed
into irreducible representations (Theorem 2 below). It turns out (Exercise 2.6
in Serre or “a useful fact” in 7-A below) that the restriction of the permutation
representation to W is an irreducible n — 1-dimensional representation. For 3,
there are only three irreducible representations; the trivial, alternating, and 2-
dimensional representation (Corollary 2 of Proposition 5 below).

EXPLICIT COMPUTATION OF THE 2-DIMENSIONAL
REPRESENTATION OF 3

Let W ={z€R3: z;+z+3 =0} Let w; = e; — ez, wy = €3 — €3.
Clearly w; € W. They form a basis for W, for if v = ze; + yes + ze3 € W, then
v=1re;+yes+(—z—y)es = z(e1 —e2)+ (x4 y)(ez —e3). In this case, it is easy to
argue that the restriction of the permutation representation to W is irreducible.
Let (z,y, z) be nonzero in W (suppose, say z # 0) and let W; be the span of this
vector. We want to show that W; is not a subrepresentation. Suppose it were.
Then, we would have (1,y’,2') and so (y',1,2') and so (1 —¥',%'—1,0) in W;. If
y' # 1, then e; —e; and so e; —e3 and e; — ez arein Wy. So W, = W. If ¢/ = 1,
then (1,1,-2) € W;. Permuting the last two coordinates and subtracting shows
ey —e3 and so e; — ey are in Wy, so Wy = W.

Next consider the action of 7 on this basis
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CONVOLUTIONS AND FOURIER TRANSFORMS

Throughout we will use the notion of convolution and the Fourier transform.
Suppose P and @ are probabilities on a finite group G. Thus P(s) > 0,%,P(s) =
1. By the convolution P * @ we mean the probability P * Q(s) = £, P(st71)Q(t) :
“first pick t from @, then independently pick « from P and form the product ut.”
Note that in general P x Q # @ % P. Let the order of G be denoted |G|. The
uniform distribution on G is U(s) = 1/|G| for all s € G. Observe that UxU = U
but this does not characterize U/-the uniform distribution on any subgroup satisfies
this as well. However, U x P = U for any P and this characterizes U.

Let P be a probability on G. The Fourier transform of P at the representa-

tion p is the matrix X
P(p) = XsP(s)p(s).

The same definitions works for any function P. In Proposition 11, we will show
that as p ranges over irreducible representations, the matrices P(p) determine P.

EXERCISE 1. Let p be any representation. Show P’*\Q(p) = P(p)Q(p).

ExXERcISE 2. Consider the following probability (random transpositions) on 53
P(id) = p, P(12) = P(13) = P(23) = (1 - p)/3.

Compute T'(p) for the three irreducible representations of S3. (You’ll learn some-
thing.)

B. THE BASIC THEOREMS.

This section follows Serre quite closely. In particular, the theorems are num-
bered to match Serre.
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Theorem 1. Let p: G — GL(V) be a linear representation of G in V and
let W be a subspace of V stable under G. Then there is a complement W° (so
V=W+W° WnW?°=0) stable under G.

Proof. Let <,>; be a scalar product on V. Define a new inner product by
<u,v>= %, < p(s)u, p(s)v>1. Then <, > is invariant: < p(s)u, p(s)v > = <
u,v > . The orthogonal complement of W in V serves as WP. O

Remark 1. We will say that the representation V' splits into the direct sum of W
and W0 and write V. = W @ W°. The importance of this decomposition cannot
be overemphasized. It means we can study the action of G on V by separately
studying the action of G on W and W°.

Remark 2. We have already seen a simple example: the decomposition of the
permutation representation of S,. Here is a second example. Let S, act on R?
by p(7)(z,y) = sgn(m)(z,y). The subspace W = {(z,y) : z = y} is invariant.

Its complement, under the usual inner product, is W = {(z,y): =z = -y} is
also invariant. Here, the complement is not unique. For example, W = {(z,y):
2z = —y} is also an invariant complement.

Remark 3. The proof of Theorem 1 uses the “averaging trick;” it is the standard
way to make a function of several variables invariant. The second most widely
used approach, defining < u,v >2= maxy, < p(g)u, p(g)v >1, doesn’t work here
since <, >, is not still an inner product.

Remark 4. The invariance of the scalar product <, > means that if e; is chosen
as an orthonormal basis with respect to <,>, then < p(s)e;, p(s)e; > = &;j.
It follows that the matrices p(s) are unitary. Thus, if ever we need to, we may
assume our representations are unitary.

Remark 5. Theorem 1 is true for compact groups. It can fail for noncompact
groups. For example, take G = R under addition. Take V as the set of linear
polynomials az + b. Define p(t)f(z) = f(z + t). The constants form a non-trivial
subspace with no invariant complement. Theorem 1 can also fail over a finite
field.

Return to the setting of Theorem 1 by induction we get:

Theorem 2. FEvery representation is a direct sum of irreducible representations.

There are two ways of taking two representations (p, V) and (n, W) of the
same group and making a new representation. The direct sum constructs the
vector space V @ W consisting of all pairs (v,w), v € V, w € W. The direct sum
representation p @ n(s)(v,w) = (p(s)v,n(s)w). This has dimension d, + d, and
clearly contains invariant subspaces equivalent to V and W.

The tensor product constructs a new vector space V ® W of dimension d,d,,
which can be defined as the set of formal linear combinations v ® w subject to
the rules (av; + bv2) ® w = a(v1 ® w) + b(v; ® w) (and symmetrically). If vy,

..y Vg and wy, ..., wy are a basis for V and W, then v; ® w; is a basis for
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V ® W. Alternatively, V ® W can be regarded as the set of a by b matrices were
v ® w has i entry A;u; if v = XA;v;, w = Lpjw;. The representation operates as
P N(s)(v® w) = p(s)v @ n(s)w.

The explicit decomposition of tensor products into direct sums is a booming
business. New irreducible representations can be constructed from known ones
by tensoring and decomposing.

The notion of the character of a representation is extraordinarily useful. If p
is a representation, define x,(s) = Tr p(s). This doesn’t depend on the basis
chosen for V' because the trace is basis free.

ProprosITION 1. If x is the character of a representation p of degree d then

(1) x(id) = d; (2) x(s7") = x(s)*; (3) x(tst™") = x(s).

Proof. (1) p(id) = id. (2) First p(s*) = I for a large enough. It follows that the
eigenvalues A; of p(s) are roots of unity. Then, with * complex conjugation,

X(s)* = Tr p(s)* = TAY = B1/X; = Tr p(s) ™ = Tr p(s™") = x(s71).
(3) Tr(AB) = Tr(BA). O

PROPOSITION 2. Letpy : G — GL(Vy) and p; : G — GL(V3) be representations
with characters x1 and x2. Then (1) the character of p; @ ps is x1 + X2 and (2)
the character of p; ® p2 is x1 - Xx2-

Proof. (1) Choose a basis so the matrix of p; @ p, is given as (& p(l). (2) The
matrix of the linear map p;(s) ® p2(s) is the tensor product of the matrices p;(s)
and p(s). This has diagonal entries pj*'*(s)p32”2(s). 0O

Consider two representations p based on V and 7 based on W. They are called
equivalent if there is a 1-1 linear map f from V onto W such that 750 f = f o p;,.
For example, consider the following two representations of the symmetric group:
p, the 1-dimensional trivial representation (so V = R and p(7)z = z) and 7, the
restriction of the n-dimensional permutation representation to the subspace W
spanned by the vector e; + -+ -+ e,. Here 7(7)z(e1+ -+ en) = z(e1 + -+ €n).
The isomorphism can be taken as f(z) = z(ey + -+ en).

The following “lemma” is one of the most used elementary tools.

SCHUR’S LEMMA

Let p' : G — GL(V;) and p? : G — GL(V,) be two irreducible representa-
tions of G, and let f be a linear map of V; into V, such that

plof=fop! forall s€QG.

Then
(1) If p! and p? are not equivalent, we have f = 0.
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(2) If Vi = V3 and p! = p?, f is a constant times the identity.

Proof. Observe that the kernel and image of f are both invariant subspaces. For
the kernel, if f(v) = 0, then fpl(v) = p2f(v) = 0, so pl(v) is in the kernel. For
the image, if w = f(v), then p?(w) = fpl(v) is in the image too. By irreducibility,
both kernel and image are trivial or the whole space. To prove (1) suppose f # 0.
Then Ker = 0, image = V; and f is an isomorphism. To prove (2) suppose f # 0
(if f = 0 the result is true). Then f has a non-zero eigenvalue A. The map
f1 = f — A satisfies p2f! = f1p! and has a non-trivial kernel, so f* = 0. m]

EXERCISE 3. Recall that the uniform distribution is defined by U(s) = 1/|G],
where |G| is the order of the group G. Then at the trivial representation U(p) = 1
and at any non-trivial irreducible representation U(p) = 0.

There are a number of useful ways of rewriting Schur’s lemma. Let |G| be
the order of G.

COROLLARY 1. Let h be any linear map of V; into V. Let

h = =% Lhp}.
|G| (pt) Pt
Then
(1) If p* and p?* are not equivalent, h® = 0.

(2) If V1 = V, and p! = p?, then h® is a constant times the identity, the constant
being Tr h/d,.

Proof.  For any s, p*_,h%pl = |G|2ps"1t- hpl, = —é—[E(pfs)"lhp%s = h0. If
p! and p? are not isomorphic then h® = 0 by part (1) of Schur’s lemma. If
Vi = Va2, p1 = pa = p, then by part (2), h® = cI. Take the trace of both sides
and solve for c. g

The object of the next rewriting of Schur’s lemma is to show that the matrix
entries of the irreducible representations form an orthogonal basis for all functions
on the group G. For compact groups, this sometimes is called the Peter-Weyl
theorem.

Suppose p! and p? are given in matrix form

Pt = (7'1'1j1(t))v P% = (Ti2j2(t))'

The linear maps h and h° are defined by matrices z;,;, and z; . We have

zizil - | | Z Tle]?(t )mh]lrhil(t)

tj1j2

In case (1), A® = 0 for all choices of h. This can only happen if the coefficients of
zj,;, are all zero. This gives
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COROLLARY 2. In case (1)

1

Gl Y rian(traa () =0 forall iy, i, ji, d.

teG

COROLLARY 3. In case (2)

L

1 : if i =3 d i =g
@ZTizjz(t l)rjlil(t)z {g" fu =t ald =

tec otherwise.

Proof. In case (2), h® = A, or 2, = Mbii,, with A = 26, 2,5, This gives

tgil

1 -1 61' i
@ Z Tizjz(t )$j2jl leil(t) = dl ? Z‘Sjljalejz'
tj1j2 P da
Since h is arbitrary, we get to equate coefficients of z, ;, . 0O

ORTHOGONALITY RELATIONS FOR CHARACTERS.

Corollaries 2 and 3 above assume a neat form if the representations involved
are unitary, so that 7(s)* = 7(s~!) where * indicates conjugate transpose. Re-
mark 4 to Theorem 1 implies this can always be assumed without loss of generality.
Introduce the usual inner product on functions

1

(¢l) = @M(t)f/)(t)*-

With this inner product, Corollaries 2 and 3 say that the matrix entries of the
unitary irreducible representations are orthogonal as functions from G into C.

Theorem 3. The characters of irreducible representations are orthonormal.

Proof. Let p be irreducible with character x and given in matrix form by
pr = 1ij(t). So x(t) = Eri(t), (xIx) = Zi j(riilrj;). From Corollary 3 above
(rii|rjj) = al;-éij. If x, x' are characters of non-equivalent representations, then

(XIx') = D _(riilr};)-

ij

in obvious notation

Corollary 2 shows each term (7;|r};) = 0. 0

Theorem 4. Let p, V be a representation of G with character ¢. Suppose V
decomposes into a direct sum of irreducible representations:

V=wW& oW
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Then, if W is an irreducible representation with character x, the number of W;
equivalent to W equals (¢|x).

Proof. Let x; be the character of W;. By Proposition 2, ¢ = x1 + -+ + Xk, and
(xilx) is 0 or 1 as W; is not, or is, equivalent to W. O

COROLLARY 1.  The number of W; isomorphic to W does not depend on the
decomposition (e.g., the basis chosen).

Proof. (¢|x) does not depend on the decomposition. O

COROLLARY 2. Tuwo representations with the same character are equivalent.

Proof. They each contain the same irreducible representations the same number
of times. O

We often write V= mW; @ ---® m,W, to denote that V contains W; m;
times. Observe that (¢|¢) = E¥m?. This sum equals 1 if and only if ¢ is the
character of an irreducible representation.

Theorem 5. If ¢ is the character of a representation then (¢|¢) is a positive
integer and equals 1 if and only if the representation is irreducible.

EXERCISE 4. Do exercises 2.5 and 2.6 in Serre. Use 2.6 to prove that the n — 1-
dimensional part of the n-dimensional permutation representation is irreducible.
(Another proof follows from “A useful fact” in Chapter 7-A.)

C. DECOMPOSITION OF THE REGULAR REPRESENTATION
AND FOURIER INVERSION.

Let the irreducible characters be labelled ;. Suppose their degrees are d;.
The regular representation is based on a vector space with basis {e;}, s € G.
Define ps(e:) = ess. Observe that the underlying vector space can be identified
with the set of all functions on G.

PRrROPOSITION 5. The character rg of the regular representation is given by
ra(1) = |G|
rg(s) =0, s#1.

Proof. pi(es) = €5 s0 Tr py = |G|. For s # 1, pser = est # e; so all diagonal
entries of the matrix for p, are zero. O

CoOROLLARY 1. FEvery irreducible representation W; is contained in the regular
representation with multiplicity equal to its degree.

Proof. The number in question is

(relxi) = o 3 ra()xi(s) = x;(1) = di. o
lGl sEG
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Remark. Thus, in particular, there are only finitely many irreducible represen-
tations.

COROLLARY 2.
(a) The degrees d; satisfy £d? = |G|.
(b) If s € G is different from 1, £d;xi(s) = 0.

Proof. By Corollary 1, rg(s) = Xd;xi(s). For (a) take s = 1, for (b) take any
other s. O

In light of remark 4 to Theorem 1, we may always choose a basis so the
matrices 7;;(s) are unitary.

COROLLARY 3.  The matriz entries of the unitary irreducible representations
form an orthogonal basis for the set of all functions on G.

Proof. We already know the matrix entries are all orthogonal as functions.
There are £d? = |G| of them, and this is the dimension of the vector space of all
functions. O

In practice it is useful to have an explicit formula expressing a function in
this basis. The following two results will be in constant use.

PROPOSITION.
(a) Fourier Inversion Theorem. Let f be a function on G, then

f(S) I |2d Tr(pl(s_l)f(pl))
(b) Plancherel Formula. Let f and h be functions on G, then

Sf(sTHh(s) = IE IEd Tr(f(p)h(p1)).

Proof. Part (a). Both sides are linear in f so it is sufficient to check the formula
for f(s) = 6,:. Then f(p;) = pi(t), and the right side equals

1 -
I—C-;—IEd,-Xi(s 1 t).

The result follows from Corollary 2.
Part (b). Both sides are linear in f; taking f(s) = ,:, we must show

W) = ==Sd; Te(pi(D)h(p1).

IG]

This was proved in part (a). a
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Remark 1. The inversion theorem shows that the transforms of f at the irre-
ducible representations determine f. It reduces to the well known discrete Fourier
inversion theorem when G = Z,.

Remark 2. The right hand side of the inversion theorem gives an explicit recipe
for expressing a function f as a linear combination of the basis functions of Corol-
lary 3. The right hand side being precisely the required linear combination as can
be seen by expanding out the trace.

Remark 3. The Plancherel Formula says, as usual, that the inner product
of two functions equals the “inner product” of their transforms. For real func-
tions and unitary representations it can be rewritten as X f(s)h(s) = |—lc-;|-2d,»

Tr(h(p;) f(p:)*). The theorem is surprisingly useful.

EXERCISE 5. The following problem comes up in investigating the distribution
of how close two randomly chosen group elements are. Let P be a probability on
G. Define P(s) = P(s71). Show that U = P P if and only if P is uniform.

EXERCISE 6. Let H be the eight element group of quarternions {1, £1, £j, £k}
with 12 = 52 = k? = —1 and multiplication given by k/‘:_\-j sotj =k, ji = —k,
etc. How many irreducible representations are there? What are their degrees?

Give an explicit construction of all of them. Show that if P is a probability on H
such that Px P = U, then P = U. Hint: See Diaconis and Shahshahani (1986b).

D. NUMBER OF IRREDUCIBLE REPRESENTATIONS.

Conjugacy is a useful equivalence relation on groups: s and t are called
conjugate if usu™! = t for some u. This is an equivalence relation and splits
the group into conjugacy classes. In an Abelian group, each class has only one
element. In non-Abelian groups, the definition lumps together sizable numbers
of elements. For matrix groups, the classification of matrices up to conjugacy is
the problem of “canonical forms.” For the permutation group, S,, there is one
conjugacy class for each partition of n: thus the identity forms a class (always),
the transpositions {(ij)} form a class, the 3 cycles {(ijk)}, products of 2-2 cy-
cles {(ij)(k€)}, and so on. The reason is the following formula for computing
the conjugate: if 7, written in cycle notation is (a...b)(c...d)...(e...f), then
=t = (w(a)...7(d))(w(c)...7(d))...(x(e)...7(f)). It follows that two per-
mutations with the same cycle lengths are conjugate, so there is one conjugacy
class for each partition of n.

A function f on G that is constant on conjugacy classes is called a class
function.

PROPOSITION 6. Let f be a class function on G. Let p: G — GL(V) be an
irreducible representation of G. Then f(p) = A with

A= TEAOB() = %(fax:)-
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Proof.  psf(p)p;! = Tf(1)p(s)p(t)p(s™!) = Bf(t)p(sts™) = f(p). So, by part 2
of Schur’s lemma f(p) = AI. Take traces of both sides and solve for A. O

Remark. Sometimes in random walk problems, the probability used is constant
on conjugacy classes. An example is the walk generated by random transpositions:
this puts mass 1/n on the class of {id} and 2/n? on {(id)}. Proposition 6 says
that the Fourier transform f(p) is a constant times the identity. So P**(p) = AFI
and there is every possibility of a careful analysis of the rate of convergence. See
Chapter 3-D.

EXERCISE 7. Show that the convolution of two class functions is again a class
function. Show that f is a class function if and only if fxh = h* f for all functions
h.

Theorem 6. The characters of the irreducible representations: xi1, ..., xn form
an orthonormal basis for the class functions.

Proof. Proposition 1 shows that characters are class functions and Theorem 3
shows that they are orthonormal. It remains to show there are enough. Suppose
(flx¥) = 0, for f a class function. Then Proposition 6 gives f(p) = 0 for every
irreducible p and the inversion theorem gives f = 0. O

Theorem 7. The number of irreducible representations equals the number of
conjugacy classes.

Proof. Theorem 6 gives the number h of irreducible representations as the
dimension of the space of class functions. Clearly, a class function can be defined
to have an arbitrary value on each conjugacy class, so the dimension of the class
function equals the number of classes. O

Theorem 8. The following properties are equivalent
(1) G is Abelian.
(2) All irreducible representations of G have degree 1.

Proof. We have £d2 = |G|. If G is Abelian, then there are |G| conjugacy classes,
and so G terms in the sum, each of which must be 1. If all d, = 1, then there
must be |G| conjugacy classes, so for each s,t,sts™! = ¢, or G is Abelian. a

Fzample. The irreducible representations of Z,, — the integers mod n.

This is an Abelian group, so all irreducible representations have degree 1.
Any p is determined by the image of 1: p(k) = p(1)*¥, and p(1)" = 1, so p(1)
must be an nt" root of unity. There are n such: €*"/", Each gives an ir-
reducible representation: p;(k) = €*"7%/" (any 1-dimensional representation is
irreducible). They are in-equivalent, since the characters are all distinct (not al-
lowed) or p!(k) = p?(k). The Fourier transform is the well known discrete Fourier
transform and the inversion theorem translates to the familiar result: If f is a
function on Z,,, and f(j) = Zpf(k)e*™*/" then f(k) = 1%, f(j)e-2miik/n,
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E. ProbpucT oF GROUPS.

If G; and G, are groups, their product is the set of pairs (g1, g2) with mul-
tiplication defined coordinate-wise. The following considerations show that the
representation theory of the product is determined by the representation theory
of each factor.

Let p' : Gy — GL(Vy) and p* : Gy — GL(V;) be representations. Define
pPt®p?: Gy x Gy — GL(V; @ V,) by

' ® pls (01 ® v2) = py(v1) ® pF(02).

This is a representation with character x;(s) - x2(%).

Theorem 9.

(1) If p! and p? are irreducible, then p' @ p?* is irreducible.

(2) Each irreducible representation of Gy x G2 is equivalent to a representation
pt ® p? where p' is an irreducible representation of G;.

Proof.

(1) (xalx1) = (xz2lx2) = 1, but the norm of the character of p; ® p; is
e Exa()xz (Hxa(s)"x2(8)* = (xalx1) - (x2]x2) = 1. So Theorem 5 gives
irreducibility.

(2) The characters of the product representation are of the form x; - x2. It is
enough to show these form a basis for the class functions on G; x G. Since
they are all characters of irreducible representations, they are orthonormal,
so it must be proved that they are it all of the possible characters. If f(s,t)
is a class function orthogonal to all x;(s)x2(?), then

Sf(s, xa(s)* x2(8)" = 0.
Then for each t, X f(s,t)x1(s)* = 0, so f(s,t) = 0 for each ¢. O
EXERcISE 8. Compute all the irreducible representations of Z§, explicitly.
We now leave Serre to get to applications, omitting the very important topic

of induced representations. The most relevant material is Section 3.3, Chapter 7,
and Sections 8.1, 8.2. A bit of it is developed here in Chapter 3-F.





