
CHAPTER 4, CONSEQUENCES AND CRITICISMS OF THE LIKELIHOOD
PRINCIPLE AND RELATIVE LIKELIHOOD PRINCIPLE

Most people who reject the LP do so because it has consequences

they do not like. Of course any theory deserves to be rejected if its conse-

quences are erroneous, but great care must be taken in making sure that the

consequences really are wrong and not just in opposition to the intuition

currently dominant in the field. In this section we discuss some of the more

surprising consequences of the LP and RLP, and investigate the conflicts with

prevalent statistical intuition. It will come as no surprise that we feel

that the conflicts are always resolved in favor of the LP and RLP.

4.1 INCOMPATIBILITY WITH FREQUENTIST CONCEPTS

4.1.1 Introduction

The philosophical incompatibility of the LP and the frequentist

viewpoint is clear, since the LP deals only with the observed x, while frequen-

tist analyses involve averages over possible observations. It cannot be said,

however, that any particular frequentist procedure conflicts with the LP,

since the procedure could happen to correspond to a sensible conditional

procedure. Such a correspondence does, in fact, occur in many statistical situ-

ations. For instance, much of frequentist normal distribution theory inference

provides the same numerical measures of "confidence" as does noninformative

prior conditional Bayesian theory (because of the symmetries or group structure

of the problem), although the interpretations of these measures are different.

(A cynic might argue that frequentist statistics has survived precisely because

of such lucky correspondences.) Nevertheless, enough direct conflicts have been
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66 THE LIKELIHOOD PRINCIPLE

(and will be) seen to justify viewing the LP as revolutionary from a

frequentist perspective.

We have already alluded to the fact that a frequentist can

logically dismiss the LP, essentially by rejecting the WCP and concluding that

the concept of learning or drawing conclusions about θ, for a particular

experiment, is meaningless. Thus Neyman (c.f. Neyman (1957, 1967, 1977))

espouses the viewpoint that only the performance of a procedure in repeated use

is relevant, and that it is a mistake to think in terms of learning about

particular θ. Though logically viable, this viewpoint is scientifically

unappealing. Experiments are done precisely to obtain "evidence" about

unknown θ, and investigators will not take kindly to being told that this is

meaningless. Thus Birnbaum (1977) argues that Neyman-Pearson conclusions are

virtually always used in an "evidentiary" fashion, rather than as measures of

procedure performance in repeated use. Savage put this very succinctly when

talking about confidence sets in Savage et. al. (1962):

"The only use I know for a confidence

interval is to have confidence in it."

Supposing then that we are going to use a frequency measure as a

measure of evidence about θ, what classical justifications for such behavior

can be advanced? There are at least the following four:

(i) Frequency measures are "objective", having a well defined physical

interpretation, and science demands objective statistical measures.

(ii) The use of frequency measures (and procedures based on them) is

reasonably sound and safe for nonspecialists.

(iii) One needs "repeatable" experiments in science, i.e., any evidence

gathered about θ should also be likely to be found if the experiment is

repeated; this will supposedly be true if frequency measures of evidence are

used.

(iv) The following principle should be followed:

CONFIDENCE PRINCIPLE. Any statistician who uses a methodology in which he makes
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We will briefly examine these four justifications.

4.1.2 Objectivity

It should be observed, first of all, that the LP is entirely objec-

tive, stating only that the evidence about θ is contained in the likelihood

function. Also, the likelihood function has as much physical reality as any

frequency measure calculated for a presumed model. It would thus be logically

sound to pass on to the next issue. We dally, however, because of the problem

of using the likelihood function. Indeed, since in Chapter 5 we will argue for

Bayesian use of the likelihood function, issues of objectivity will become relevant.

The Bayesian answers to criticisms of objectivity are either (i)

objectivity is a myth, or (ii) only through "noninformative" prior Bayesian

analysis can objectivity be really attained. As an example of the first

argument, Box (1980) states:

"In the past, the need for probabilities

expressing prior belief has often been thought

of, not as a necessity for all scientific

inference, but rather as a feature peculiar to

Bayesian inference. This seems to come from

the curious idea that an outright assumption

does not count as a prior belief... I believe

that it is impossible logically to distinguish

between model assumptions and the prior

distribution of the parameters."

A general review of this objectivity issue is given in Berger and Berry (1987).

(See also Berger (1985).) The only portion of frequentist theory formally

exempt from the argument is (completely) nonparametric analysis, and, even

then, the choice of a particular procedure to use can be argued to be a

highly subjective input.
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If the model can be claimed to have some objective status, there

is still argument (ii) (above) to contend with. The idea behind this argument

is that one can lay claim to objectivity only by purposely striving for it,

through use of what is deemed to be an "objective prior." Substantial

support for this position can be found in Jeffreys (1961), Box and Tiao (1973),

Zellner (1971), Rosenkranz (1977), Bernardo (1979), Berger (1980,1984e), and

Jaynes (1981, 1982). Regardless of the validity of argument (ii), it is a

fact that use of noninformative priors is objective, purposely not involving

subjective prior opinions, and is consistent with the LP. The measures of

evidence used are, of course, probabilistic statements about the unknown θ

itself (through the formal posterior distribution of θ) and hence may be

deemed less "real", but a very strong case can be made that "evidence" about

uncertain quantities should only be quantified probabilistically (c.f.

deFinetti (1972, 1974)). There are also other likelihood based methods which

can be classified as objective, as will be seen in Chapter 5. Hence, even if

deemed obtainable and desirable, objectivity is not a reason to reject the LP

in favor of frequency measures.

4.1.3 Procedures for Nonspecialists

We accept the argument that it is important to develop reasonably

simple statistical procedures which can be safely used by nonspecialists.

However, it is not at all clear that this need be done from a frequency

viewpoint. First, frequency methods often attain formal simplicity by

obscuring difficult issues, such as the choice of error probabilities in a

test or the choice of a partition in a conditional confidence procedure

(see Section 2.5). Second, relatively simple procedures and methods of

evaluation consistent with the LP can be developed (w/o the introduction of

subjective priors) as the books of Jeffreys (1961), Box and Tiao (1973), and

Zellner (1971) indicate. We are continually surprised at the ease with which

the use of noninformative priors, as in these books, gives excellent

(conditional) procedures. Indeed, as mentioned earlier, many reasonable
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frequentΐst procedures are, at least approximately, noninformative prior Bayes

procedures, and "frequency confidence" then often coincides with "posterior

confidence." When this correspondence does not occur, such as in unconditional

frequentist approaches to the examples in Section 2.1, the frequentist approach

is definitely suspect. Further discussion and references can be found in

Berger (1980). Note that we are not maintaining that the use of noninformative

priors solves all problems and is foolproof, but only that, if procedures

which are simple to use and interpret are deemed necessary, then there are

good conditional alternatives to frequentist development of procedures. We

have also slighted the subjective Bayes solution to the problem, which will,

however, be discussed in Chapter 5.

In this situation, where a procedure is developed for use by

nonspecialists, the performance of the procedure in repeated use is certainly

relevant (see Section 3.5.4), though not necessarily of primary importance.

Good frequency performance can even be of interest to the strict conditionalist,

as the following example indicates.

EXAMPLE 16. Suppose a confidence procedure C(x) is to be used (i.e., when

X = x is observed it will be stated that θ € C(x)), having frequentist

coverage probability

r(θ) = P
Ω
(C(X) contains θ) >_ 1-α.

θ

A conditional Bayesian ( f o r s i m p l i c i t y ) would, f o r a p r i o r d i s t r i b u t i o n π on Θ ,

be i n t e r e s t e d in having good posterior p r o b a b i l i t y t h a t θ is in C ( x ) , i . e . ,

would want

λ(x) Ξ P π ( θ l x ) ( θ € C(x))

to be large, where π(θ|x) is the posterior probability distribution of θ

given x. But, letting m denote the marginal distribution of X (i.e.,

m( ) = E
π
P (•)) and I

β
(y) denote the usual indicator function on a set B, it

is clear that
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E
m
λ(X) = E V

( θ
l

X )
( θ € C(X))

= Ejoint distbn. (
θ
'

χ
)[I

c ( χ )

= E
π
P

n
(C(X) contains θ)
θ

Since this relationship holds regardless of π, a conditionalist could feel

that λ(x) is "likely
11
 to be large if C(x) is used and α is small, and hence be

willing to use C(x) when unable to carry out a trustworthy Bayesian analysis.

See Pratt (1965) and Berger (1984b) for more general development and specific

examples.

It is important to emphasize that the primary goal in situations

such as Example 16 should still be good conditional performance, and that the

frequentist measure does not guarantee this. Conceivably, λ(x) could be very

small for some x (and all m), which is certainly relevant since such x could be

observed. Thus our view is that procedures should usually be developed from a

conditional viewpoint, and their frequency properties perhaps investigated to

ensure robustness. Of course the already existing classical procedures which

have good conditional properties are fine. Other discussions of this point can

be found in Godambe and Thompson (1977), Godambe (1982a,b), and Berger (1984e).

4.1.4 Repeatability

There is certainly truth to the observation that, if a scientific

experiment claims to have obtained strong evidence about θ, then many

scientists expect future similar experiments to also provide strong evidence.

The frequency measures, based on imagining repetitions of the experiment,

seem ideally suited to achieve this. There is a serious concern here, however,

as the following example indicates.

EXAMPLE 17. Suppose X has the two point distribution given by P
Ω
(X = 0) = .99

and P
Q
(X = θ) = .01. (Either θ will be measured exactly, or no observation

will be recorded.) If now x = 5 is observed, it should certainly be concluded
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that θ = 5 exactly (very strong "evidence"), but repetitions of the experiment

are very unlikely to reproduce the result.

It could perhaps be argued that science should not believe "lucky"

observations, as in the previous example, and hence should not think

conditionally on the data. This seems too severe a straightjacket, however.

One can always be skeptical of lucky observations and seek possible alternative

reasons for them, but their conditional evidential interpretation should be

allowed. Such conditional interpretations can, of course, also be verified or

disproved by future investigations.

4.1.5 The Confidence Principle

The Confidence Principle was implicit in much of Neyman's early

development of the frequentist viewpoint (c.f. Neyman (1967) and also Neyman

(1957, 1977) and Berger (1984c)), and was stated explicitly by Birnbaum (c.f.

Giere (1977) and Birnbaum (1968, 1970, 1977)), who ultimately came to reject

the LP because of its conflict with the Confidence Principle. Other discussions

of this or related principles can be found in Cox and Hinkley (1974) (which

distinguishes between strong and weak versions, the weak version allowing

conditioning on relevant subsets), Kiefer (1977b), Le Cam (1977), and Barnard

and Godambe (1982). Critical discussion can be found in Jeffreys (1961),

Hacking (1965), Edwards (1972), deFinetti (1972, 1974), Pratt (1977), and

Jaynes (1981, 1982). The following mathematical formulation of the

Confidence Principle will be useful in the discussion, and is related to the

Evaluation Game in Section 3.7.2.

THE FORMAL CONFIDENCE PRINCIPLE. A procedure 6 is to be used for a sequence of

problems consisting of observing X. ^ P . A criterion, L(θ.,ό(x.)), measures

the performance of 6 in each problem (small L being good). One should report,

as the "confidence" in use of 6
Λ

1
 n

(4.1.1) R(δ) = sup Tim ̂  I L(θ.,δ(x.)),
£ n*» i = l
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assuming the limit exists with probability one. (It can usually be shown that

R(δ) = sup R(θ,δ), where R(θ,δ) = EA(θ ,δ (X)).)

EXAMPLE 18. Suppose 6 is a confidence procedure, so that δ(x.) c @ will be the

confidene

δ(x ) is

confidence set when x
i
 is observed. The natural measure of the performance of

since this measures, whether or not δ(x.) does contain θ.. The risk of 6 is

R(θ,δ) = E L(e.δ(X)) = l-P
Q
(δ(X) contains θ ) ,

θ σ

and i t i s easy t o show, f o r t h i s p r o b l e m , t h a t

R(δ) = sup R(e>δ) = 1 - i n f P Ω ( δ ( X ) c o n t a i n s Θ ) .
Θ θ

 θ

Hence the "report," according to the Confidence Principle, should be one minus

the minimum coverage probability of δ.

Although the Confidence Principle is formulated above only in terms

of repetitive use of δ for problems of the same form (but possibly differing

θ ), it can easily be generalized to include use of δ for different types of

problems. Such a generalization adds little conceptually, however. The appeal

of the Confidence Principle is undeniable. By following it, the actual average

performance of δ in repeated use will be at least as good as the reported

performance R(δ). There are several problems in following the Confidence

Principle, however.

The first difficulty is that, in virtually all statistical investi-

gations, extensive assumptions concerning the model, etc., are made. Thus a

person claiming to err no more than 5% of the time because he follows the

Confidence Principle, is really saying he errs no more than 5% of the time if

all the model assumptions he makes are correct. This removes some of the

lustre from the principle.

A second serious issue is the need to have a valid bound, R(δ), on

the performance of δ. This is an often unappreciated aspect of the frequen-

tist position. Indeed, the frequentist position is often viewed as requiring
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only the reporting of the function R(θ,ό). Without the bound, R(δ), however,

no guarantee of long run performance, in actual use of δ on different problems,

can be given.

EXAMPLE 19. Consider simple versus simple hypothesis testing, and suppose one

always uses the most powerful test of level
 α
 = .01. One can make the

frequentist statement that only 1% of true null hypotheses will be rejected

(i.e., R(θ,ό) = .01 for Θ equal to the null), but this says nothing about how

often one errs when rejecting. For instance, if the test has power of .01

(admittedly terrible power, but useful for making the point) and the null and

alternative hypotheses occur equally often in repetitive use of the test, then

half of all rejections will be in error. Thus one can not make meaningful

statements about actual error incurred in repetitive use, without an appropriate

bound on R(θ
s
δ) for all Θ.

The problem with needing R(δ) is, of course, that it could be a

useless bound (or could even be infinite). Indeed, whenever R(θ,ό) is highly

variable as a function of Θ
>
 the reporting of R(δ) is likely to be excessively

conservative. The conditional frequentist approaches discussed in Section 2.4

have considerable promise in overcoming this difficulty, however, and can be

given interpretations compatible with the Confidence Principle.

Ultimately, the only clear objection to the Confidence Principle is

that it conflicts with the LP. This was indicated in the examples and discus-

sion in Chapter 2, and will be seen in later examples also. Most condition-

alists view the Confidence Principle, while attractive, as an unattainable

goal. (Note, however, that a Bayesian conditionalist follows the Confidence

Principle to the extent that his statements of accuracy will be correct, in

the long run average sense, if his prior assumptions are correct; one could,

indeed, argue that it is the Bayesian who is honestly trying to follow the

Confidence Principle by clearly stating the beliefs and assumptions his

assessments are based on.) In choosing between the LP and the Confidence

Principle, it is important to recall the simple axiomatic basis of the LP, and
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to realize that no such basis has been found for the Confidence Principle.

Indeed, the long run performance view is deemed rather peculiar by most

uninitiated people (c.f., the discussions in the early papers of Neyman in

Neyman (1967)).

4.2 THE IRRELEVANCE OF STOPPING RULES

4.2.1 Introduction

One of the most important applications of the LP and RLP is the

Stopping Rule Principle (SRP). Stated informally, the SRP is simply that the

reason for stopping experimentation (the stopping rule) should be irrelevant to

evidentiary conclusions about θ. The theoretical and practical implications of

the SRP to such fields as sequential analysis and clinical trials are

enormous, and will be partially discussed in Sections 4.2.3 and 4.2.4. The

SRP itself will be discussed at two levels: in Section 4.2.2 it will be

presented in a relatively simple sequential setting, in which it will be shown

to follow solely from the LP, while in Section 4.2.6 a yery general version

will be developed from the RLP. Section 4.2.7 discusses situations in which

the SRP is not applicable, and Section 4.2.5 points out an interesting conflict

between frequentist admissibility and the frequentist belief in the importance

of considering stopping rules.

The Stopping Rule Principle was first espoused by Barnard

(1947a, 1949), whose motivation at the time was essentially a reluctance to

allow an experimenter's intentions to affect conclusions drawn from data.

(More will be said of this shortly.) The principle was shown to be a conse-

quence of the LP in Birnbaum (1962a), and Barnard, Jenkins and Winsten (1962),

and argued to hold in essentially complete generality by Pratt (1965). Other

good discussions of the principle can be found in Anscombe (1963), Cornfield

(1966), Bartholomew (1967), Basu (1975), Berger (1980), and in many Bayesian

works such as Edwards, Lindman, and Savage (1963).
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Before formally introducing stopping rules and the stopping rule

principle, it is useful to illustrate certain of the ideas through a simple

example. The following example, from Berger and Berry (1987), demonstrates

the possible extreme dependence of frequentist measures upon the intentions

of the experimenter concerning stopping the experiment. The example clearly

questions the sensibility of such extreme dependence. (Berger and Berry,

1987, also contains other simple examples, on both sides of the issue.)

EXAMPLE 19.1. A scientist enters the statistician's office with 100 observa-

tions, assumed to be independent and from a W(θ,l) distribution. The scientist

wants to test H
Q
: θ = 0 versus H-j: θ f 0. The current average is x"

n
 = 0.2, so

the standardized test statistic is z = ^|x" - 0| = 2. A careless classical

statistician might simply conclude that there is significant evidence against

H
Q
 at the 0.05 level. But a more careful one will ask the scientist, "Why did

you cease experimentation after 100 observations?" If the scientist replies,

"I just decided to take a batch of 100 observations," there would seem to be no

problem, and yery few classical statisticians would pursue the issue. But

there is another important question that should be asked (from the classical

perspective), namely: "What would you have done had the first 100 observations

not yielded significance?"

To see the reasons for this question, suppose the scientist

replies: "I would then have taken another batch of 100 observations." This

reply does not completely specify a stopping rule, but the scientist might

agree that he was implicitly considering a procedure of the form:

(a) take 100 observations;

(b) if /TOO]XΠQQI> k then stop and reject HQ ,

(c) if /TΰtΓ|x"-,
00
1< k then take another 100 observations and reject if

2 0 0
|> k.

For this procedure to have level α = 0.05,k must be chosen to be 2.18

(Pocock, 1977). Since the actual data had /T00"|x"
100
| = 2 < 2.18, the scientist

could not actually conclude significance, and hence would have to take the
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next TOO observations.

This strikes many people as peculiar. The interpretation of the

results of an experiment depends not only on the data obtained and the way it

was obtained, but also upon thought* of the experimenter concerning plans for

the future.

Of course, this can be carried further. Suppose the puzzled

scientist leaves and gets the next 100 observations, and brings them back.

Consider two cases. If /2001><2ΩOI
 = 2 > 1 < 2

 ^
8 t h e n tIie r e s

ults are not

significant. But they would have been significant had the scientist not

paused halfway through the study to calculate z! (It would certainly be

tempting not to disclose this interim calculation, and essentially impossible

to determine whether or not the scientist had made an interim calculation!)

On the other hand, suppose /200|X"
2
QQ| = 2.2 > 2.18, so now significance has

been obtained. But wait! Again the statistician asks what the scientist

would have done had the results not been significant. Suppose the

scientist says, "If my grant renewal were to be approved, I would then take

another 100 observations; if the grant renewal were rejected, I would have

no more funds and would have to stop the experiment in any case." The

advice of the classical statistician must then be: "We cannot make a

conclusion until we find out the outcome of your grant renewal; if it is

not renewed, you can claim significant evidence against H~, while if it is

renewed you cannot claim significance and must take another 100 observations."

The up-to-now honest scientist has had enough, and he sends in a request to

have the grant renewal denied, vowing never again to tell the statistician

what he would have done under alternative scenarios.

Note that we are not faulting the classical statistician here for

ascertaining and incorporating the stopping rule in the analysis. If one in-

sists on utilization of frequentist measures, such involvement of the stopping

rule (even if it exists only in the imagination of the experimenter) is manda-

tory. The need here for involvement of the stopping rule clearly calls the

basic frequentist premise into question, however.
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4.2.2 The (Discrete) Stopping Rule Principle

So as not to obscure the essential nature of the SRP, the discus-

sion in this section will be restricted to the following fairly simple

situation. Suppose E
τ
 is a sequential experiment consisting of (i) a

sequence of independent observations X-j, X,,,..., which will be observed one

at a time and which have common density f
Λ
(x); and (ii) a non-randomized

θ

stopping rule, τ , which can be represented by a sequence of sets,

A c χm = χχχχ...κc (the m-fold Cartesian product of % ) ,

having the property that

(4.2.1) if x
m
 = (x

Γ
...,x

m
) € Am, sampling stops;

m cif x ζ A , sampling continues.

Since the observations will be observed sequentially, it is clearly unnecessary

to have A contain points whose first j coordinates were in A. for any j < m;

thus we henceforth assume that

A
m
 Π A. x £

m
~

J
' = 0 for j < m.

The stopping time, N, corresponding to τ is that (random) m for which £ € Am;

the realization of N will be denoted by n. As usual, only proper stopping

rules will be considered, i.e., those which have N finite with probability one

for all θ. The probability density of the random experimental outcome

X
N

X
N
 = (X

r
...,X

N
) is then

(4.2.2) f
τ

θ
(x

n
) -

EXAMPLE 20. Suppose the X. are^(θ,l).

Case 1. Consider the stopping rule, τ , defined by

0 if m ί k

A!-

if m = k.
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1
The experiment E

τ
 is thus the fixed sample size experiment which always

observes precisely k observations.
2

Case 2. Consider the stopping rule, τ , defined by

(4.2.3) βξ = { χ
m
e *

m
: |xj > K m * } .

where x
m
 is the mean of (x^. .jxj and K is a fixed positive constant. (By

2
using the Law of the Iterated Logarithm, τ can be shown to be a proper stopping

rule.) This stopping rule is rather peculiar, in that it says to stop sampling

when the sample mean is K standard deviations from zero.

EXAMPLE 21. Suppose the X
i
 are Bernoulli (θ).

1

Case 1. Let E
τ
 be the fixed sample size experiment which takes k observa-

tions, where k <_ 2.
p

Case 2. Let τ be defined by

A* = {!}, k\ = {(0,0),(0,1)}, A? = 0 for j > 2

2
(i.e., stop if X, = 1, and otherwise stop after observing X^), and let E

τ
 be

the corresponding sequential experiment.

STOPPING RULE PRINCIPLE (SRP): In a sequential experiment E
τ
, with observed

final data x , Ev(E
τ
,x ) should not depend on the stopping rule τ.

The SRP would imply, in Example 20, that if the observation in

Case 2 happened to have n = k, then the evidentiary content of the data would

be the same as if the data had arisen from the fixed sample size experiment in

Case 1. A similar conclusion would hold in Example 21 if n = k occurred.

When % is discrete, the SRP is an immediate consequence of the LP.
n

This is immediate from (4.2.2) in that I
 n
(θ) is proportional to π f

Q
(x.)»

x
11
 i = l

 θ 1

which does not depend on the stopping rule. For derivation of the SRP in

general (from the RLP) see Section 4.2.6.
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4.2.3 Positive Implications

A recurring problem in classical statistics is that of optional

stopping. Ideally (from a classical viewpoint) an experimenter chooses his

stopping rule before experimentation, and then follows it exactly. Actual

practice is, however, acknowledged to be quite different. Experiments may end

because the data looks convincing enough, because money runs out, or because

the experimenter has a dinner date. Indeed, little or no thought may have been

given to the stopping rule prior to experimentation, in which case, upon stop-

ping for whatever reason, the data is often treated as having arisen from a

fixed sample size design. Optional stopping may often be harmless (such as

when the experimenter quits to have dinner), but stopping "when the data looks

good" can be a serious error when combined with frequentist measures of

evidence. For instance, if one used the stopping rule in Case 2 of Example 20,

but analyzed the data as if a fixed sample had been taken, one could guarantee

arbitrarily strong frequentist "significance" against H
π
: θ = 0 by merely

choosing large enough K.

Optional stopping poses a significant problem for classical

statistics, even when the experimenters are extremely scrupulous. Honest

frequentists face the problem of getting extremely convincing data too soon

(i.e., before their stopping rule says to stop), and then facing the dilemma

of honestly finishing the experiment, even though a waste of time or dangerous

to subjects, or of stopping the experiment with the prematurely convincing

evidence and then not being able to give frequency measures of evidence. One

could argue that experiments should be designed to allow for early stopping in

response to clear evidence (and, indeed, many such stopping rules have been

created, as in the theory of "repeated significance testing"), but there will

often be unforeseen eventualities that crop up in sequential experimentation,

leaving a strict frequentist in an embarassing position.

Contrast this enormous dilemma with the startling simplicity

resulting from use of the SRP. The SRP says that it just doesn't matter; stop

for whatever reasons, which (conditional on the data) do not depend on θ (see
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Section 4.2.7), and use an appropriate conditional analysis based on i
 n
(θ)

n *
(or, alternatively, π f

Λ
(x.)). The reason for stopping is simply not relevant.

i = l
 θ Ί

As Edwards, Lindman, and Savage (1963) say

"The irrelevance of stopping rules to

statistical inference restores a simpli-

city and freedom to experimental design...

Many experimenters would like to feel free

to collect data until they have either

conclusively proved their point, conclusively

disproved it, or run out of time, money, or

patience."

Anscombe (1963) simply makes the blunt statement "Sequential analysis is a

hoax." These comments should be qualified, of course, to the extent that

design will depend on the stopping rule. In other words, choosing between two

sequential designs obviously involves consideration of stopping rules. Indeed,

the most difficult part of (theoretical) sequential (decision) analysis is that

of deciding, at a given stage, whether to stop sampling or to take another

observation (i.e., choosing the stopping rule). Much of the work done in

classical sequential analysis has addressed this problem, and is hence of

considerable relevance.

The other desirable implication of the SRP is that analysis of an

experiment can be done objectively, in the sense that it is no longer necessary

to know the experimenter's intentions towards stopping. It seems \/ery strange

that a frequentist could not analyze a given set of data, such as (x,,...,x )

in Example 20,if the stopping rule is not given. If the experimenter forgot to

record the stopping rule and then died, it is unappealing to have to guess his

stopping rule in order to conduct the analysis. As mentioned earlier, it was

apparently this feeling, that data should be able to speak for itself, that led

Barnard to first support the Stopping Rule Principle.
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The above idea is actually a general consequence of the LP, and is

useful to apply in areas other than optional stopping. Consider the following

example.

EXAMPLE 22. An experiment was conducted with two treatment groups (T-, and T«)

and a control group (C), the outcomes for each experimental unit being simply

success (S) or failure (F). The data was

s

F

C

8

12

T l

12

8

T 2

2

8

In analyzing the results, the experimenter noted that, in comparing T, with C,

a standard analysis under the null hypothesis of no treatment effect was not

significant at level α = .1 (one-tailed), but that if the patients in T« and C

were pooled, then T, was significantly better at the α = .02 level. The

experimenter went on to say that T, was really the treatment of interest and

that T
2
 was thought to have no effect but was just included for thoroughness,

and hence that pooling Tp and C is acceptable.

To the criticial appraiser, this creates doubts concerning

hypothesis selection and confirmation from the same set of data. On the other

hand, maybe the experimenter really was planning to pool Tp and C all along

(and was sure J^ was no worse than C), an especially plausible possibility

considering that only 10 patients were given T«. In any case, it is discon-

certing that to analyze the problem from a frequentist perspective we have to

know what the experimenter's intentions were. Trying to analyze hard data

by guessing what the experimenter was thinking before doing the experiment

seems rather strange. (Of course, a Bayesian won't necessarily be able to

avoid such considerations, since the experimenter's statements may well affect

prior probability judgements. The uncertainty will be up front in the prior

where it belongs, however, with the data speaking for itself through the

likelihood function.)
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4.2.4 Criticisms

The rosy statements in the previous section concerning the SRP can

be viewed as hopelessly misguided by frequentists, since frequency measures are

so dependent on stopping rules. Consider Examples 20 and 21, for instance.

EXAMPLE 21 (continued). In the fixed sample size experiment, X
k
 would be an

unbiased estimator of θ for either k = 1 or 2. If one were to ignore the

stopping rule, τ , in Case 2, however, and still use the sample mean as the

estimator, a "problem" of bias arises. Indeed, the sample mean, 5L, has

Eθ"XN = P θ

( X Γ 1 ) E θ " l l X Γ 1 ] + V Y 0 ) E θ [ ' X 2 l X l < l

= Θ + 1 Θ(I-Θ),

which is biased upwards. Thus if a conditionalist stated he would be using

5L, regardless of the stopping rule, the experimenter could use τ and "make θ

appear larger than it really is" (if desired).

EXAMPLE 20 (continued). This example has been extensively discussed, in terms

of its relationship to the SRP and the LP. Armitage (1961) published (to our

knowledge) the first such discussion. Basu (1975) gives a particularly

thorough examination of a version of the example. For definiteness in highlight-

ing the "paradox," let us assume that a 95% "confidence interval" for θ is

desired, and that an "objective" conditionalist states that, if a fixed sample

of size n were taken, he would use the interval

(4.2.4) C
n
(ί

n
) = (^-(1.96)0"*,^ + (1.96)rf*).

Of course, he would not interpret confidence in the frequency sense, but

instead would (probably) use a posterior Bayesian viewpoint with the noninform-

ative prior density
 π
(θ) = 1, which leads to a 7?(x

n
,n~2) posterior distribution

for Θ (also, the usual fiducial distribution and the likelihood function for

θ).

Suppose now that the experimenter has an interest in seeing that

θ = 0 is not in the confidence interval. He could then use the stopping rule
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in (4.2.3) for some K > 1.96. The conditionalist, being bound to ignore the

stopping rule, will still use (4.2.4) as his confidence interval, but this can

never contain zero. Hence the frequentist probability of coverage of (4.2.4),

namely

2
Γ(Θ) = ?l (C

N
(X

N
) contains θ),

is such that r(0) = 0 and (by continuity) r(θ) is near zero for small θ. The

experimenter has thus succeeded in getting the conditionalist to perceive that

θ t 0, and has done so honestly.

Examples 20 and 21 are typical of how the SRP (or the LP) seems to

allow the experimenter to mislead a conditionalist. The "misleading", however,

is solely from a frequentist viewpoint, and will not be of concern to a

conditionalist. Before discussing why, two comments about Example 20 should

be gotten out of the way.

(i) Use of a stopping rule, such as that in (4.2.3), can be chancy for an

experimenter if Θ = 0 is a real possibility, since then N is likely to

be extremely large. (This has no real bearing on the arguments here,

however.)

(ii) A Bayesian conditionalist might not completely ignore a stopping rule

such as that in (4.2.3), if he suspects it is being used because the

experimenter thinks Θ might be zero. The Bayesian might then assign some

positive prior probability, \, to Θ being equal to zero, in recognition

of the experimenter's possible knowledge. (The stopping rule is affect-

ing only the prior, however, not "what the data says.") A Bayesian

analysis in this situation is strikingly different than that in the

"noninformative
11
 case. Indeed, as a particular example, if the θ t 0 are

p
given prior density (1-λ) times a 7?(0,p ) density, then the posterior

probability that Θ = 0, given the observation x
p
 = Kn"^, is
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o
For some s p e c i f i c numbers, suppose t h a t p = 10, K = 3, and n = 10,000. Then,

π(0|x n = 3n"*) = [ H ( λ " Ί - l ) ( . 2 8 5 ) ] " 1 .

For moderate λ, this says that θ = 0 is quite plausible when n is large, even

though x is three standard deviations from 0. (This is essentially

"Jeffrey's" or "Lindley's" Paradox.)

Finally, let us return to Examples 20 and 21 and see if the

conditional perspective might not after all be more intuitively appealing.

The use of a biased estimator in Example 21 is really not that troubling, since

bias has long been a suspect criterion (especially when compared to, say, the

plausibility of the Weak Conditionality Principle). We will concentrate on

the more disturbing Example 20, therefore.

EXAMPLE 20 (continued). First of all, the likelihood function for θ (when we

stop at time n) is proportional to a 7l(x ,r\~
2
) density. This clearly indicates

that any particular value of θ near x
n
 is more plausible than a value far from

x
n
 The interval in (4.2.4) is a reasonable choice from this viewpoint,

although other conditionalists might vary the constant 1.96 or shift somewhat

towards a suspected prior mean.

Contrast this with the rather unreasonable way in which a frequen-

tist must behave to obtain, say, coverage probability of at least .95 for all

θ when K is large. It can be shown that a frequentist should stick to

connected intervals (to minimize size for a given coverage probability) and

that, when (say) x
n
 is slightly bigger than Kn~^ and n is fairly large (which

will typically be the case for large K and the stopping rule (4.2.3)), these

intervals must usually include both zero and x . Hence, in order to ensure the

desired coverage probability at zero when K is large, a frequentist will modify

(4.2.4) by replacing a small portion of this interval of "likely" e, such as

(x
n
 + (1.96-ε

n
)n~^, x

n
 + (1.96)n~*), with a big interval, [0, x

n
-(1.96)rf*),

of unlikely θ. This seems unreasonable. The conditionalist knows that an x

satisfying x
p
 > Kn~^ (with n very large) could have arisen from θ = 0, but
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values near x
n
 are so much more likely to be the true θ that he "bets" on

these. It should be reemphasized that the conditional analysis is predicated

on θ = 0 having no special plausibility; if it does, the Bayesian conclusions

(see (ii) above) will be quite different.

The above attempts are probably unlikely to satisfy a frequentist's

violated intuition, if the frequentist is not practiced in thinking condition-

ally. As Savage said in Savage et. al. (1962)

"I learned the stopping rule principle

from Professor Barnard, in conversation

in the summer of 1952. Frankly, I then

thought it a scandal that anyone in the

profession could advance an idea so

patently wrong, even as today I can scarcely

believe that some people resist an idea so

patently right."

Of some force may be the argument that, i f one's intuition gives contradictory

insights, i t should be trusted in simple situations, such as Example 2, rather

than in extremely complex situations such as Example 20. The next section

also lends support to the case for ignoring the stopping rule.

4.2.5 Stopping Rules and Inadmissibility

In Section 3.7 i t was argued that behavior in violation of the LP,

but consistent with the WCP, tends to be decision-theoretically inadmissible.

We rephrase the conclusion, in this section, to show that behavior dependent

on the stopping rule wi l l often be inadmissible.

Suppose we have possible observations X ^ X ^ , . . . , as in Section

1 2
4.2.2, and are considering two possible stopping rules, τ and τ , with

1 2 1 2

respective stopping sets {Am) and {Am}. The stopping rules, τ and τ , are

presumed to have the possibility of yielding common data, £ Π ; i . e . , there is

presumed to be some n* and A c A1* Π A ^ such that A has positive probability
1 2 n n

in both Eτ and Eτ for a l l θ. Examples 20 and 21 are of this type, since the
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2
 Ί 2

sets A, have positive probability for all θ (under both E
τ
 and E

τ
 ), so that

?
A = A. works.

Suppose that we face a decision problem concerning θ, consisting of

choice of an action a ζ G under a loss function L(a,θ) which is s t r i c t l y

convex in "a" for each θ. (More general loss functions can often be handled
1 2

also.) Proposed for use in Eτ and Eτ , respectively, are decision rules

δ^x1 1) and 6 2 ( x n ) . I f , now, the stopping rule is f e l t to make a difference, δ-j

and ό2 should differ for at least some of the possible common observations.

Thus we suppose that there is some A* c A for which
(4.2.5) 5 ] ( x n * ) ί δ 2 (x n *) for xn* <= A*.

Consider, next, the mixed experiment, E*, consisting of observing

1 τ J

J = 1 or 2 with probability -? each and then performing E . This is a well
N,

defined sequential experiment with random observation ( J , jK ) , N, being the
J

stopping time for Eτ . I f the WCP is followedfor E* and (4.2.5) holds, then

the decision rule, 6, used for E* should satisfy

δ ( ( l , £ n * ) ) f δ ( ( 2 , £ n * ) ) for xn*<E A*,.

(Alternatively, this inequality should hold on some A* i f i t is f e l t that the

stopping rule actually used - i . e . , the value of j - really is relevant to

the decision.) But, the estimator

\ δ ( ( Ί , $ n * ) ) + \ δ ( ( 2 , £ n * ) ) i f n = n* and xn
 € A*

n)) otherwise

satisfies (because of the strict convexity of L)

(4.2.6) L(δ*((J,x
Π
*)),θ) < \ L(δ((l,x

n
*)),θ) + \ L(δ((2,£

n
*)),θ).

Ί

E. stand for expectation in experiments E* E
p U

E
τ
 , respectively, the frequentist risk (in E*) of δ* satisfies

1 2
Hence, letting EJ, E_, and E. stand for expectation in experiments E*, E

τ
 , and
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R(θ,δ*) == E*L(δ*((

= E*L(δ((J

Nj

N l

N l

N..r». >
2

9
E L(δ^

: θ L ( 6 ( (

N

= R(θ,δ).

(The inequality above is strict because of (4.2.6), the fact that A* has
1 2

positive probability for all Θ in E
τ
 and E

τ
 , and providing R(θ,δ) is finite.)

This establishes the inadmissibility of allowing the stopping rule to affect

the decision making.

EXAMPLE 21 (continued). Suppose that the goal is to estimate θ under squared

error loss, and that, because of the bias in use of X^ for the stopping rule

τ , an estimator δ
2
(x ) would be used (in E

τ
 ) such that δp(x ) is not equal

to x
p
 for at least one possible observation, say, n = 1, x, = 1. Let E

τ
 be

the fixed sample size experiment of size k = 1, and suppose that δ-|(x .) = x,

would be used for this experiment. However, the experimenter chooses between
1 2

performing E
τ
 and E

τ
 on the basis of a fair coin flip (J = 1 or 2). This is

exactly the situation discussed above, and if the experimenter follows his

"instincts" and uses different estimates (depending on J or the actual

stopping rule employed)when x^ = 1 is observed, he will be behaving in an

inadmissible fashion.

The development above is just a special case of that in Section

3.7, which in turn is basically just a version of the Rao-Blackwell theorem.

(Here, J is not part of the sufficient statistic for θ in E* when x
11 € A*,

and decision rules should be based only on the sufficient statistic.) The

reason for explicitly giving the development in the sequential framework is

to clearly exhibit the conflict between the frequentist desire for

admissibility and the intuitive notion that the stopping rule used should

matter.
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4.2.6 The General Stopping Rule Principle

The SRP can be generalized to an e s s e n t i a l l y a r b i t r a r y sequence of

experiments, and shown ( i n t h i s g e n e r a l i t y ) to follow from the RLP. Thus

suppose we have a v a i l a b l e a sequence E-|,E2,... of experiments (replacing the

i . i . d . observations, X ^ X ^ , . . . , of Section 4 . 2 . 2 ) consisting of observing X.

on% . We can consider, f o r each m, the composite experiment

Em = ( X m , θ, {P™}) consisting of observing Xm = ( X Ί , . . . , X ) o n / = Π L with
σ ^ I ΓTl . i J

p r o b a b i l i t y d i s t r i b u t i o n P"\ ( I f the experiments are independent, P1? w i l l
θ σ

s i m p l y by t h e p r o d u c t measure o f t h e i n d i v i d u a l d i s t r i b u t i o n s o n £ . . )
j

We consider sequential procedures in which we decide, a f t e r

performing experiments E Ί , . . . , E , whether or not to perform E ,,. As usual,
I m m+1

we can allow this decision to depend upon the outcome of an auxilliary chance

mechanism, leading to the following general notion of a stopping rule.

DEFINITION. A stopping rule is a sequence Γ = (τ
Q
,τ,,...) in which τ

Q
 € [0,1]

is a constant and τ : X -*• [0,1] a measurable function on X for m >_ 1.

The intention is that τ
m
(x

m
) represent the conditional probability

of stopping after only m observations, given that we have taken m observations

and have observed x
m
 = (x,,...,x ). The nonrandomized stopping rules discussed

in Section 4.2.2 are the special case where the τ can only assume the values

0 and 1. When convenient, we shall regard τ
Q
 as a function on the one-point

set χ° = {0}, the "sample space" for the null experiment E° = (%°, Θ, {P^}),

with P
θ
 the point mass at X 's only point for all θ.

Now define X* = {(m,x
m
): m € IN, £ m € % m } . For

£ m = (x,,...,xm) € X™ and 0 < j < m, let £
m > J = (x-,,.. .,x.) € 7? denote the

initial segment; of course x = 0 € X no matter what x m € Xm might be. For

each stopping rule,τ,determine a family {P^} of measures on X* by setting

m-1 ™ „• ~ ~
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for each m and Borel set A c ^
m
, With this definition, τ

Q
 is the probability

of performing E , i.e. of taking no data at all. After observing x
m
, τ (x

m
) is

the conditional probability of taking no more observations.

If Pΐ(z*) = 1 for all θ, then the procedure is certain to stop
θ

eventually and τ is called proper; otherwise τ is improper and, for at least

one θ, there is a positive probability (1-P£(£*)) that the sequential procedure
θ

would require sampling an infinite number of times. For a proper stopping

rule, τ, we can consider the sequential experiment

E*= ((N,X
N
), θ, {P£}),

θ

where N denotes the (random) stopping time. (It is notationally convenient to

include N as part of the observation although it could, of course, be

recovered from X .)

The Stopping Rule Principle for this general setting is

formalized in the following theorem, and is shown to follow from the RLP.

THEOREM 5 (The Stopping Rule Principle). From the RLP, it follows that, for

any (proper) stopping rule τ,

Ev(El,(n,x
n
)) = Ev(E

n
,x

n
)

for {P£}-a.e. (n,x ), i.e. the evidence concerning θ in E^ is identical with

that for the fixed sample size experiment £ (with the observed r\)
Λ
 so that

£ is irrelevant.

Proof. Pick n € IN and let U, e z* be the set of points (n,xn) with £n € £ n

satisfying 0 < τ
n
(x

n
) π (1-τ .(x

n > J
)), and let c: U

]
 •* (0,«) be the indicated

product. Map U
]
 onto U

2
 = {x

n € z": (n,xn) € U^} by setting φ(n,^n
) = £

n
.

Then φ is one-to-one and bimeasurable, and

P"(A) = / [l/cty)]p£(dy).
φ'

Ί
(A)

 θ

The assertion of the theorem now follows from the RLP. ||
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Notice that Θ was not required to be a subset of some Euclidean

space, nor was {P™} required to be a dominated family; thus even in situations

where no version of the usual LP can apply, the SRP is valid (provided, of

course, that the WCP and SP, and hence the RLP, are accepted). This was

observed in Pratt (1965).

4.2.7 Informative Stopping Rules

Even the definition of a stopping rule given in the last section

may seem somewhat narrow when compared with the vast possibilities for

informal stopping discussed in Section 4.2.3. Stopping rules which appear to

be more general can be created by introducing an auxilliary variable Y

(possibly random), and allowing τ , the conditional probability of stopping at

stage m, to depend on the value of Y, as well as on £
m
. This actually adds

very little generality, however, since the values of Y at each stage could

simply be incorporated into the data X.. The following example illustrates

the importance of sometimes doing this.

EXAMPLE 23. Suppose X,,X
2
,... are independent Bernoulli (θ) random variables,

with θ = .49 or θ = .51. The observations, however, arrive randomly. Indeed,

if θ = .49, the observations arrive as a Poisson process with mean rate of 1

per second, while if θ = .51, the observations will arrive as a Poisson

process with mean rate of 1 per hour. The "stopping rule" that will be used

is to stop the experiment at the first observation that arrives after 1 minute

has elapsed. One can here introduce Y = time, and write down the stopping

rule in terms of Y and the X..

It is intuitively clear that this stopping rule cannot be ignored

since, if one ends up with 60 observations, knowing whether the experiment ran

for 1 minute or 2 j days is crucial knowledge. Incorporating Y into the data

resolves all ambiguities, however. Thus, simply define Y. as the (random)

time at which the i — observation arrives, and consider the experiment to

consist of observing (X,,Y,), {Xn^o^ ^
e s t o

P P
i n
9
 ru

^
e W Ί #

H be given

by
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O if y
m
 < 1

and is of the form discussed in Section 4.2.6 (or even Section 4.2.2). The

importance of the number of observations arriving during the time span of

the experiment will be reflected in the portion of the likelihood function

due to the y..

Slightly more generality might be needed than afforded by simply

observing the auxilliary variables at the observation times (as in Example 23)

and including them as part of the observations, but the idea is clear:

consider all available observational information as part of the data X.. (Of

course, some auxilliary information may be considered too informal to include

as part of the data, and yet may have some effect on stopping, but such

information should only be ignored if it seems relatively unimportant, in

which case its effect on stopping can probably also be ignored.)

Even within the above more general perspective on stopping rules,

a difficulty might still arise. This difficulty is that the stopping rule

might be unknown or partially unknown, in that cessation of the sequential

experiment could depend on unobservable random quantities whose probability

distributions are not completely known. Following the convention of Section

3.5 and letting θ denote all unknown quantities, we could thus write a general

stopping rule in terms of τ (x
m
,θ). (Actually, by including a uniform random

variable in θ, it would be possible to have the τ assume only the values

zero or one.) The general density on x* (densities, and discreteness if

necessary, being assumed to retain compatibility with Section 3.5) would then

be

f£((n,x
n
)) = [Vίl-τjt^ J.θϊϊlτ^.θϊf;^

11
).

J ^

where f n is the density corresponding to P" Again fol lowing Section 3 . 5 , one
θ "
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could write θ = (ξ,n), where ξ is of interest and η is a nuisance variable.

If, for the observed (n,x
n
), τ (x

n
"\θ) does not depend on ξ for j £ n, and

if η is a noninformative nuisance parameter (see Section 3.5) for the fixed

sample size experiments involving observation of X
n
, then the LP and NNPP

(see Section 3.5) imply that τ is irrelevant. Such a T is called

noninformative; otherwise τ is said to be informative and the SRP will not

apply. (Raiffa and Schlaifer (1961) introduced these terms.)

We do not pursue the matter further because informative stopping

rules occur only rarely in practice (providing all observational information

is incorporated into the X., as in Example 23). There exists a certain amount

of disagreement concerning this point, but the disagreement seems to be

primarily due to the misconception that an informative stopping rule is one

for which N carries information about θ. This is not the definition of an

informative stopping rule. )lery often N will carry information about θ, but

to be informative a stopping rule must carry information about θ additional to

N
that available in X , and this last will be rare in practice.

4.3 THE IRRELEVANCE OF CENSORING MECHANISMS

4.3.1 Introduction

Another great simplification that application of the LP (or RLP)

makes possible is in the handling of censoring. Data is often observed in

censored form, and the mechanisms causing the censoring can be quite involved.

In most such cases, the LP (or RLP) will imply that only the result of the

censoring, and not the censoring mechanism or distribution, is relevant to

conclusions about Θ.

Section 4.3.2 considers the situation of fixed (nonrandom)

censoring, and establishes a version of the irrelevance of censoring

mechanisms called Censoring Principle 1. One of the implications of Censoring

Principle 1 is that the evidential import of an uncensored observation, from

an experiment in which censoring was possible, is the same as the identical

observation from an uncensored version of the experiment.
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Section 4.3.3 considers random censoring, and establishes

conditions under which the distribution of the censoring random variable is

irrelevant. The main condition is on the censoring mechanism itself, and

leads to the concept of a noninformative censoring mechanism. This concept

is surprisingly simple and powerful. It is not the case, however, that all

sensible censoring mechanisms are noninformative, although many common ones

are. This issue is discussed in Section 4.3.4.

The Censoring Principle, as it applies to uncensored observations

in nonrandom censoring, seems to be due to John Pratt (see Pratt (1961, 1965),

his discussion in Birnbaum (1962a), and the discussion in Savage et. al.

(1962)). The general Censoring Principles developed here and the concept of a

noninformative censoring mechanism appear to be new, however. Before

proceeding with these general developments, it is worthwhile to present an

illuminating (and entertaining) example from Pratt's discussion of Birnbaum

(1962a). The example makes a simple version of the Censoring Principle seem

intuitively obvious.

EXAMPLE 24 (Pratt). A sample of 25 observations was taken from a 7?(θ,σ
2
)

population, and inference about the population mean was desired. All observa-

tions were found to lie between 72 and 99, and a standard normal analysis was

performed by a frequentist statistician. The statistician reported the

analysis to the experimenter, but, curious about the observed 99, asked the

experimenter how high his measuring instrument (assumed to be perfectly

accurate) read. The experimenter said that the instrument only read to 100,

but that, if he had observed a reading of 100, he would have switched to

another instrument which had a range of 100 to 1000. The statistician was

happy with this response, and satisfied with a job well done.

The next day the experimenter called about something else, and

mentioned that he had just checked the high range instrument and found that it

was broken. The statistician asked if the experimenter would have had the

instrument repaired before completing the previous experiment, to which the
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experimenter said no. The statistician then said that what were really being

observed were observations, X., from the truncated distribution with the

usual normal density for x. < 100 but the point mass

o(lOO) = 7 V-exp{- -~ (x-θ)
2
}dx

),σ 100 (2π)~
2
~σ 2σ

P
θ

5

at x. = 100. This, said the statistician, calls for a different analysis; for

instance, the usual 100(l-α)% confidence interval for θ in the normal situation

would no longer have probability of coverage of at least 1-α in the truncated

situation. The experimenter reacted to this with outrage, saying that he

observed precisely what he would have observed had the high range instrument

been working (all observations were less than 100), and that the condition of

an instrument never used in the experiment hardly seemed relevant to the

information about θ obtained from the experiment. The frequentist statistician

merely shook his head at the naivete of experimenters.

4.3.2 Fixed Censoring and Equivalent Censoring Mechanisms

C o n s i d e r an e x p e r i m e n t E = ( X , Θ , { P Q } ) F i x e d c e n s o r i n g o c c u r s w h e n ,
θ

instead of X, one observes Y = g ( X ) , where g is a known function from % into

floy. Thus the experiment really performed is E^ = (Y, Θ, {P
fl
og }). (As

usual, if A c ^ , g"
Ί
(A) = {x € %: g(x) € A}.)

EXAMPLE 25. Suppose X = (Xj. . .X ), where the Xi represent the times of

death due to cancer of patients in a cancer survival experiment. Suppose,

however, that the experiment will last only ten years, so that the real data

will, for the i — patient, be

(4.3.1) Y. = (Y],YJ) = (min{X
Ί
.,10}, I [

O >
l o ]

( X
i

} )

(i.e., the truncated survival time and an indicator as to whether the

observation is or is not truncated). Thus

(4.3.2) Y = g(X) Ξ (Y
r
. . . , Y

n
) .

This is an example of what is commonly called type I censoring. Example 24 is
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also of this type.

EXAMPLE 26. Suppose that X = (X
]
 X

R
) , but that the n-r largest of the X.

will be truncated at the r ^ largest. Thus let

(4.3.3) Y. = (γ],γξ) = (min{X.,X
(r)
h I ^ χ -jtX.)),

where X/^x <_ X^x <.-. .<_ X/ \ are the order statistics for X. Again

(4.3.4) Y = g(X) E (Y
r
...,Y

n
).

This is an example of what is commonly called type I I censoring.

EXAMPLE 27. Suppose X = Rn, y = % x { 0 , 1 } , and for some fixed p > 0,

(X.O) i f |X| £ p

(4.3.5) g(X) =

(pX/|X|,l) i f IXI > p.

Then E^ represents the experiment in which the radius of X is truncated at p,

but the direction, X/|X|, of X is faithfully reported. This is not a

standard "type" of censoring, but fits easily within our framework.

Our goal in this section is to indicate that the only effect a

censoring mechanism should have on a conclusion is to convey knowledge concern-

ing the actual location of x in%. This may seem intuitively obvious, but

Example 24 is a prime illustration of how this is not the case classically.

We formalize this notion in the following definition.

DEFINITION. Let E = (X, θ, {P }) i?eα given unoensored experiment
Λ
 and

θ

consider two fixed censoring mechanisms g, and g^ These mechanisms will be

said to be equivalent on A c % if, for all x € A,

(4.3.6) g^tg^x)) = g2 Ί
(g

2
(

χ
))

As a special case
Λ
 a single fixed censoring mechanism^ g

3
 will be said to be

equivalent to no censoring on h a Z if g" (g(x)) = x for all x € A.
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The idea in the above definition is that, for censoring mechanism

g , one observes Y. = g (X) and that the only information communicated by the

censored data, y., is that x was in gT (y^. If (4.3.6) is satisfied, then

g.j and g? will always convey the same information (for x € A). And a g which

is equivalent to no censoring (for x € A) conveys exactly the same information

that x does. In Example 24, it is clear that the censoring mechanism is

equivalent to no censoring on A = {x: x. < 100, i = 1,...,25}; in Example 25,

g is equivalent to no censoring on A = {x: x. < 10, i = l,...,n}; and, in

Example 27, g is equivalent to no censoring on A = {x: |x| < p}. As an

example of possible equivalence of two different censoring mechanisms, consider

the following combination of Examples 25 and 26.

EXAMPLE 28. Suppose X = (X 1 >...,X n), where the X^ can assume only positive

integer values. Let g1 be as in (4.3.1) and (4.3.2), g2 be as in (4.3.3) and

(4.3.4), and A = {x: x, % = 10}. It is easy to check that, for x € A,

gi
Ί
(g

Ί
(χ)) = 92

1
(g

2
(

χ
)) = t* e

 A :
 î = ^ ί

f
 ^ i "Όϊ

Hence the type I and type II censoring would, in this case, be equivalent on A.

(Note that classical analysis tends to treat the two types of censoring

differently.)

We now formally state, and justify, the principle that equivalent

censoring mechanisms convey the same information about θ, for x € A.

91 g2
CENSORING PRINCIPLE 1. If E and E are two experiments arising from

censoring mechanisms equivalent on A for an experiment E
Λ
 then

(4.3.7) Ev(E
9
\

 g ]
(x)) = Ev(E

9 2
,

for all x € A if X is discrete, and for {P } - a.e. x € A in general. As a

special case, if g~ (g(x)) = x for all x € A, then (4.3.7) can be replaced by

(4.3.8) Ev(Eg, g(x)) = Ev(E,x).

Censoring Principle 1 follows from the LP in the discrete case
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since, by definition, the probabilities of g-j(x) and g Λ x ) are equal (to

P
θ
(g^(g

Ί
 (x)))) for all θ. In the general case it follows from the RLP by

setting U
]
 = ίg^ x ) : x € A}., U2 = ίg 2

(x): x € A}, φίg^x)) = g
2
(x) and

cίg^x)) = 1 for x e A.

The greatest practical use of Censoring Principle 1 is in the case

where a censoring mechanism, g, is equivalent to no censoring on A, as was the

case in Examples 24, 25, and 27 when no censoring happened to occur. The

censoring mechanism can then be completely ignored.

4.3.3 Random Censoring

To generalize the notion of censoring to include random censoring,

let λ € Λ be a censoring variable with probability density v on Λ. (To

avoid technicalities, discreteness of Λ and X will be assumed until the end

of the section.) Suppose that X and λ are independent (without which yery

little progress can be made), and that

Y = g(x,λ) ey

is observed. The actual experiment performed can thus be written

E
g , v

= (γ> θ> { f
g , v

} ) >

where the density of Y is

(4.3.9) f9' v (y) = I fθ(x)v(λ) .

ί(x,λ): g(x,λ) = y}

EXAMPLE 29. Suppose X represents the time at which a patient in a cancer

survival study would suffer death due to cancer, and let λ represent the

death time due to competing risks. (We will sidestep the issue of whether or

not X and λ can be well-defined.) The actual observation for the patient will

be

(4.3.10) Y = (Y
Ί
,Y

2
) = g(X,λ) = (min{X,λ}» I[

0 > λ
](

χ
))>

1 2
i.e., the actual time of death, Y , and an indicator, Y , as to the cause of

death. Generalization to involve data from n patients and a variety of
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competing risks is straightforward, and all the subsequent theory will apply

equally well to such a generalization.

The LP, of course, implies that the likelihood function, determined

from (4.3.9) for the observed y, contains all the information about θ available

from the experiment. The difficulty in utilizing this likelihood function lies

in the presence of
 v
 in the expression: typically, v will be unknown (and

complicated). If, however,
 v
 were judged to convey no information about Θ (see

Section 3.5 and Section 4.3.4) and f
9 > v

(y) could be shown to factor into
θ

separate terms involving Θ and
 v
, then the difficulty would disappear. This

would result in an enormous simplification of the analysis, and is another of

the great practical gains that can be realized through adoption of the LP.

The following definition gives the key characterization of censoring mechanisms

for which this program is possible.

DEFINITION. A censoring mechanism g: X x Λ -*- y is noninformative at y € y if

g (y) is a product set3 i.e.Λ
 if

g
- 1
(y) = A x B , where A c % and B c: Λ.

EXAMPLE 29 (continued). Here

g'W.y2))

(y1.-) x {y1} if y2 = o

{y1} x [y\ ) if y2 = l,

so that g is a noninformative censoring mechanism at all y €y.

EXAMPLE 27 (continued). Consider the situation in Example 27, but assume that

p is now a random variable (and, hence, replace g(X) by g(X,p)). Since

g'W.y2)) =
{y1} x Ely1!,-) if

{cy1: c > 1} x { | y ] | } i f y 2 = 1 ,

g is a noninformative censoring mechanism at all y € y.
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I f g is nonireformative a t y , then ( 4 . 3 . 9 ) becomes (employing also

the independence of X and λ)

(4.3.Π) f f v (y) = [ I f θ ( χ ) ] [ I v ( λ ) ] .

so that (for known v), the LP implies that all information concerning θ from

the experiment is contained in

(4.3.12) Λ*(Θ) = I f
θ
(x).

If v is unknown but "noninformative" for θ (see Sections 3.5 and 4.3.4), the

same conclusion follows from the NNPP in Section 3.5.5. These conclusions can

be summarized as follows.

CENSORING PRINCIPLE 2. If X and Λ are discrete, X and λ are independent, g is

noninformative at the observed y, and either v is known or it is unknown but

noninformative, then Ev(E^
>v
,y) depends only on l*{&) {from (4.3.12)).

Note that this principle does not say that censoring has no

effect on the analysis. Indeed, *,*(θ) will often fail to be proportional to

£
v
(θ) = f (x), which would be used if no censoring occurred. Another point isx Θ

that the only censoring mechanisms which can guarantee that Ev(E
9 > v

,y) does not

depend on v (for v as in the principle) are noninformative censoring mechanisms.

This is established in the following theorem.

THEOREM 6. If g: X x Λ + y is not a noninformative censoring mechanism at y,

then there exists {f } on X such that Ev(E
9 > v

,y) depends on v.
θ

Proof. I f g (y) is not a product set, i t follows that there exist two points

λ |i λ2 € Λ such that either

Ω1 = {x: g(x,λ Ί) = y and g(x,λ2) f y } ,

or

Ω2 = (x: gίx λ ^ t y and g(x,λ2) = y } ,

or both are nonempty. Consider v that are concentrated on { λ 1 , λ 2 } , and define
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Ωo = ίx: g(χ.λ,) = g(χ,λ
9
) = y}.

O I C

Equation (4.3.9) can then be written

fξj
ϊV
(y) = v(

λ l
)P

θ
(

Ω l
) + V U

2
) P

Θ
( Ω

2
) + P

Θ
( Ω

3
) .

= v(λ
1
)[P

Q
(Ω

1
) - P

α
(Ω

9
)] + P

Q
(Ω

9
 U Ω J .

Thus, as long as {fj is chosen so that [ P
Q
( Ω

1
) - P

O
( Ω

9
) ] and P . ( Ω

9
 U Ω-) are

σ b l o c Ό c. 0

not proportional as functions of θ, the likelihood function will depend on

Finally, we leave the discrete setting and develop a very general

version of Censoring Principle 2, based on the RLP. We will assume that Λ and

y are LCCB spaces, that v is a Borel probability measure, and that

g: X x Λ +y is a Borel function. The actual experiment of observing

Y = g(X,λ) is E
g > v

 = (Y, θ, {P
g
'

v
}), where

(4.3.13) p9>
v
(

C
) = (P

θ
χv)(ί(x,λ): g(x,λ) € C}).

The definition of a noninformative censoring mechanism at y remains unchanged,

and leads to the following principle.

CENSORING PRINCIPLE V . Let C c y be a Borel set such that g is a noninforma-

tive censoring mechanism at all y € C. Suppose v, and \>2 are Borel probability

measures (for λ) which are mutually absolutely continuous on C* = U B

y

(where g" (y) = A * B ). Then, if either (i) v, and v
2
 are known, or (ii)

they are unknown but noninformative (see Sections 3.5 and 4.3.4^ it should be

the case that

(4.3.14) Ev(E ',y) = Ev(E % y ) for {?
e
 '}-a.e. y € C.

The conclusion in Censoring Principle V is not quite as strong

as that in the original Censoring Principle 2, in that evidentiary equivalence

is only stated to hold among equivalence classes of v (on C). Of course, if

the possible v under consideration are known to be absolutely continuous with

respect to some measure u, then it can be stated that v is irrelevant (if it is
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noninformative). For instance, in Example 29 it may be reasonable to assume

that v is absolutely continuous with respect to Lebesgue measure, and is thus

ignorable (if noninformative).

It seems likely that Censoring Principle V is a general consequence

of the RLP. This is because one can define (see the RLP) U, = U
2
 = C, φ to be

the identity map, and

(4.3.15) c(y) = c((x,λ)) = v

and seek to show that (for any Borel subset, D, of C)

(4.3.16) P
Θ '

V 2 ( D ) >Vl

Since (4.3.16) is essentially (3.4.1) of the RLP (where 1/c has been replaced

by c for convenience in what follows), Censoring Principle 2
1
 would be an

immediate consequence of the RLP (and the NNPP of Section 3.5, if the v
Ί
 are

unknown but noninformative). And (4.3.16) seems to be a correct equation:

it can trivially be verified to hold in the discrete setting, for instance.

Unfortunately, severe measurabiϋty difficulties (due to the possible nasty

nature of g) prevented us from verifying (4.3.16), in general. Under

additional conditions, however, we were able to show that (4.3.16) does hold

for some positive c, which suffices, by the above argument, to establish

Censoring Principle 2' as a consequence of the RLP. Furthermore, though

somewhat technical, these additional conditions involve only the censoring

mechanism, g, and not the P
θ
 or v. This makes general verification of the

irrelevance of any specific censoring mechanism possible.

THEOREM 7. Let g be a noninformative censoring mechanism at all y € C, and

suppose that there exist sequences {φ } and {ψ } of measurable mappings

φ
p
: X + X and ψ : Λ -> Λ, such that the functions g (x,λ) = g(cp

n
(x) »Ψ

n
(λ))

are countably valued and the a-algebras, £
Λ
 3 , and J>, generated on % x Λ by

g(Xjλ), φ
n
(x)> and g (x

s
λ), respectively

Λ
 satisfy the conditions
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00 OO

ϋ) Π V Jr = ir.

m=l n=m

Then for any two probability measures v, and v« on A, which are mutually

absolutely continuous on C,

(4.3.17) /h(y)P
 2

(dy) = /h(y)c(y)P '^(dy)

for every bounded measurable function h ony and every probability measure P

onX. (Note that (4.3.16) follows trivially from (4.3.17). Hence, under the

above conditions, Censoring Principle V is a consequence of the RLPJ

Proof. We w i l l prove the theorem for C = y. The modifications needed f o r

a r b i t r a r y C are obvious. For n _> 1 l e t t y ? } - ^ ! be the countably many values

of g n ; the σ-algebra J<n is generated by the countable p a r t i t i o n

P n = {Λ!J χ B ^ ) o f Z χ Λ into the measurable rectangles (or product sets)

A*? x B? = g (y1?), where A" = φ (A J and B" = ψ" (B n ) ; here (as before) A
J 3 n j J n n j n y

J _ 1 J

and B are determined by the r e l a t i o n g (y) = A x B . For ( x , λ ) € X * Λ,

define

'ΛBΪJΛMB!?) if ^(B?) > 0,
(4.3.18) c

n
(x,λ) =

) = v ( B ) =I 1 if v^Bjϊ^ίBj) =

c(x,λ) = lim sup c (x,λ),

where j is determined by the relation gn(x,λ) = yn..

A direct computation verifies that, for any probability measure P

on χ9

( 4 3 1 9 ) " c n = E '

Indeed, to show this it is sufficient to take any bounded measurable function,

h, on x *y and note that
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/h(φ
n
(x),g

n
(x,λ))c

n
(x,λ)P(dx)v

1
(dλ)

Λ

= / /h(φ
n
(χ),g

n
(χ,λ))P(dχ)v

?
(dλ).

z A
 L

By (4.3.19) and Condition ( i ) , c is a uniformly integrable martingale on

(Z x Λ, ( 3 n v ^n)n>-|» Pxv^), for every P. Hence cp converges to c with

Pxvn-measure 1 for every P, and satisfies

PχvΊ

(4.3.20) I = E [c|3 n v ,* ] for every n > 1.
n π n —

Since we may take P to be concentrated on any single point x£ z> we have

actually shown that cn(x,λ) converges to c(x,λ) for every x e Z and v,-almost

every λ in Λ (where the exceptional set of v,-measure zero may depend on x).

I t is obvious from the definition of cn that cn(x,λ) depends on x and

λ only through y!? = g (x,λ), and therefore that c is & -measurable. I t
00

follows that c is measurable over v jr for each m, and so (by Condition ( i i ) )
n=m

c is measurable over A Since any ^-measurable function may be written as a

Borel-measurable function of g, there exists some positive function, c, on y

with

(4.3.21) c(x,λ) = cog(χ,λ).

Now let h be bounded and measurable on'J/, let P be the probability

measure on z, and set

Pχv
9

(4.3.22) h
n
 = E Ίhog|3

n
 v ^ ] .

Again the martingale convergence theorem implies that hn(x,λ) converges to

h°g(x,λ) for Pxv ,-almost every ( x , λ ) , since h°g is ^-measurable and

Conditions ( i ) and ( i i ) imply t h a t j ^ c v i c v (a?_ v i ). By Lebesgue's
n=l n

 n = l n n

dominated convergence theorem, (4.3.20), and (4.3.19),
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g.v,
/he dP ' = / /hog cog P(dxK(dλ)
V X Λ

= lim / /h
n
c P(dx)v,(dλ) (by DCT)

n-~> X A
 π
 '

= lim / /h
n
c

n
 Pίdxjv^dλ) (by (4.3.20))

n-*» X A

= lim / /h
n
 P(dx)v

2
(dλ) (by (4.3.19))

n-χ» X A

= / /hog P(dx)v
?
(dλ) (by DCT)

X A

= /h dP '
 2
.

This verifies (4.3.17) and completes the proof. ||

Remark 1. In case it is possible to find {φ } and {ψ } so that &c &.,,

Condition (i) in the theorem may be eliminated and Condition (ii) can be
00

simplified to v jr• - &.
n=l n

Remark 2. I f φ and ψ are themselves countably-valued, then obviously g is

also, so the theorem applies i f Conditions ( i ) and ( i i ) are satisfied.

EXAMPLE 29 (continued). Letting <a> denote the closest integer to a (the

larger integer in case of a t i e ) , define

φn(x) = 2" n <2nx> and ψn(λ) = 2" n <2nχ>.

I t is straightforward to verify that Conditions ( i ) and ( i i ) in Theorem 7 are

satisfied, and hence that Censoring Principle 21 follows in complete

generality from the RLP (for this situation).

EXAMPLE 27 (continued). Let p = {A1?} be a sequence of partitions of the
i <ί 1

unit sphere (in Rn) into f i n i t e l y many Borel sets such that P n + 1 refines p p and

lim max diaπ^A1?) = 0.
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Let { ξ j } be a c o l l e c t i o n of points such that ξ? € A*?, and define

φ n ( x ) = i 2 " n ξ j i f i £ 2 n | x | < i+1 and x/|x| e A J ,

Ψ n ( P ) = k2~ n i f k <_ 2np < k+1.

Again the Conditions (i) and (ii) of Theorem 7 are easily verified, so that

this censoring mechanism is also generally irrelevant.

4.3.4 Informative Censoring

It is, of course, not always the case that the censoring mechanism or

distribution can be ignored. There are yery few instances of fixed censoring

wherein the mechanisms can be labeled informative, so we will concentrate in

this section on random censoring.

The most common reason for being unable to ignore the censoring

distribution, v, in random censoring is dependence of the random variable X

and the random censoring variable λ. In Example 29, for instance, one may

have a non-cancer death which occurred because cancer substantially lowered

overall health. Indeed in competing risk theory, in general, dependence

between X and the censoring variables may be the rule rather than the exception.

Such dependence makes Censoring Principle 2 inapplicable, and indeed i (θ)

will typically depend upon v in such situations. (The LP is still valid,

of course.)

A second possible reason that the censoring distribution might be

informative is that the censoring mechanism, g, might fail to be noninformative.

As a \/ery simple example, suppose the actual observation is

Y = g(X,λ) = X+λ,

where X € X = (0,~) and λ € Λ = (0,«). It is easy to check that g" (y) is not

a product set in X x Λ for any y, so that g clearly fails to be noninformative.

For such g, % (Θ) will typically depend on v.

A third reason that v might not be ignorable is that v will often be

unknown, and there could be some "prior" relationship between v and θ. Again,
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the notation of Section 3.5 is convenient here. Thus let θ stand for all

unknown aspects of the situation and write θ = (ξ,n), where ξ is of interest

and η is a nuisance variable (presumably containing unknown aspects of the

distribution, v, of λ). For instance, if X * P and λ ^ v
η
 are similar

competing risks, there might well be suspected relationships between ζ and η

which prevent v from being ignored (even if X and λ are independent and g is

noninformative). We will not repeat the discussion of Section 3.5 concerning

when and why η (and hence v ) can be ignored in such situations.

A final kind of informative censoring should be mentioned, even

though it is not censoring in the formal sense we have defined. This is

censoring in which censored data is simply not observed or recorded. Thus,

for the censoring mechanism described in (4.3.1) and (4.3.2), it could be the

case that an X. > 10 is not observed or even known to have existed. Such a

situation is easily dealt with by recognizing that the relevant probability

distribution of the observed X. is the conditional distribution, given that

X. _< 10. The censoring mechanism will usually enter into this conditional

distribution in a nonignorable fashion, however.

Interestingly enough, this omission of data due to censoring can

arise from the methods of reporting data (c.f. Dawid and Dickey (1977)). An

obvious example is that of a trade journal which only publishes results of

experiments which provide "significant" evidence according to some criteria.

The data of interest, for a given issue, would be all data from experiments on

that issue, but only that data leading to "significance" will become available;

the rest will be censored. This is a very complicated problem, and it is not

at all clear how to analyze the situation. The censoring of the journal

clearly can not be ignored, however.

4.4 SIGNIFICANCE TESTING

4.4.1 Conflict with the LP

Significance testing of a hypothesis (used here in the sense of

P-values, rather than α-level testing) is viewed by many as a crucial element
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of statistics, yet it provides a startling and practically serious example of

conflict with the LP. A significance test of the hypothesis H
Q
, that X has

distribution P , proceeds by defining some statistic T(X), where large values

of T supposedly cast doubt on H
Q
, and then calculating, for the given observa-

tion x, the significance level (or P-value) of x,

ίy:
J
T(y)

(4.4.1) p = P°(T(X) > T(x)) = f P°(dy)
ίv:

J
T(v) >T(x)>

(i.e., the probability under P of observing x or something more "extreme").

If this is small, then one supposedly doubts that H
Q
 could be true. General

discussions of significance testing (including discussions of important

practical issues such as "real" versus "statistical" significance) can be

found in Edwards, Lindman, and Savage (1963), Hacking (1965), Morrison and

Henkel (1970), Edwards (1972), Cox and Hinkley (1974), Dempster (1974a,b),

Pratt (1976,1977), Cox (1977), Barnard (1980), Good (1981), Barnett (1982),

Berger (1985), Hall and Selinger (1986), and Berger and Delampady (1987).

A very common setting for significance testing is the parametric

framework of testing H
Q
: θ = θ

Q
 versus H-j: θ f θ

Q
. Then the null distribution,

P , is simply P
Q
 in our usual notation (or f (•) if densities exist). In

this parametric setting it is clear that reporting significance levels violates

the LP, since significance levels involve averaging over sample points other

than just the observed x (see (4.4.1)). The extremely serious practical

problems that can result are discussed in Section 4.4.2.

Significance testing is also frequently used when only a single

model P is being contemplated. Testing of fit to a specified model is a

common example. Since only one probability distribution is then involved,

there is no likelihood function; it is hence often argued that the LP cannot

apply to such a situation. Arguments to the contrary will be given in

Section 4.4.3.

4.4.2 Averaging Over "More Extreme" Observations

The logic behind including all data "more extreme" than the given

x, when calculating p, is not particularly convincing. Consider the following
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artificial example, related to an example in Cox (1958).

EXAMPLE 30. Suppose, under P
Q
 and P

]
, respectively, that X has the

distributions given in the following table.

X

P0(χ)

0

.75

.70

1

.14

.25

2

.04

.04

3

.037

.005

4

.033 .

.005

If T(x) = x were used as the test statistic for a significance test of either

PQ or P | (i.e., if large x were considered "extreme"), and if x = 2 were

observed, then the significance level against P
Q
 alone would be

p
o
 = P

0
(X>.2) = .11,

while the significance level against P-. alone would be

P
1
 = P^X >_2) = .05.

(We are not thinking here of testing P
Q
 versus P-j the focus is on comparing

significance tests of each separate hypothesis.) Thus x = 2 would provide

"significant evidence against P̂  at the 5% level," but would not even provide

"significant evidence against P
Q
 at the 10% level."

The concern here, of course, is that were P~ and P . being

considered simultaneously as possible models, likelihood reasoning would argue

that they are equally supported by x = 2; their likelihood ratio is then equal

to one. When considered in isolation therefore, it is definitely strange that

x = 2 provides such different significance levels for P
Q
 and P,.

Jeffreys (1961) clearly exposed the questionable logic behind

significance levels, stating

"...a hypothesis which may be true may be

rejected because it has not predicted

observable results which have not occurred."

In the example here, neither P
Q
 nor P

]
 "predicts" that x= 3 or x = 4 will

occur, and indeed they do not occur, but P
1
 would be rejected at the 5% level,

while P
Q
 would not, because P-j "predicts" these uviobλZΛvzd results even less

than P
Q
.
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Questionable logic could perhaps be overlooked if it made little

difference in practice, but here the averaging over other observations will

virtually always have a profound effect. Consider the following example from

Edwards, Lindman, and Savage (1963).

EXAMPLE 30.1. Suppose X= (X
Ί
,... , X

n
) , where the X

i
 are i.i.d. ?7(θ,σ

2
),

 σ

2

known. The usual test statistic for testing hL: θ = θ
Q
 versus H-,: θ / θ

Q
 is

T(X) = v^|X-θ
o
|/σ,

where X" is the sample mean. If t = T(x) is the observed test statistic, the

significance level is then

P = 2(1 -Φ(t)),

where Φ is the standard normal c.d.f..

Consider, now, this testing scenario from a likelihood perspective.

Were H , given by H,: θ = Θ-., it would have been natural to use, as the compar-

ative evidence for the two hypotheses, the observed likelihood ratio

L

θl
 = V

X ) /
S

( X )

Unfortunately, the actual H, consists of all θ f θ
Q
, making it difficult to

define a true likelihood ratio, L, of H
Q
 to H-,. It seems clear, however, that

a lower bound on L is

L = f (x)/sup f (x).
"
 θ

0 θ?θ
0

 θ

The evidence against H
Q
 is certainly no stronger than L_.

An easy calculation shows that, in this example,

t = exp{- J-t
2
}.

The following table gives values of 1̂  for various t, and also gives the

significance levels associated with these t. (The L.g row is discussed later.)
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Table 1. Likelihood Ratio Bounds and Significance Levels

t

P

k

kg

1.645

.10

.258

.644

1.960

.05

.146

.409

2.576

.01

.036

.123

3 .291

.001

.0044

.018

The surprise here is that ̂  is much larger than p. When p is .05

for instance, l_ is .146, indicating that the data provides no mofin than 1 to 7

evidence against H
Q
.

j^ itself can be argued to be misleadingly small because it is

based on maximizing the "likelihood of H-j." More reasonable is to use, as

the "likelihood of H-j", an average of f
θ
(x) over all θ f θ

Q
. This leads to

a MQsigktcd ZλkoJUkood haLLo

Lg = f
ft
 (x)/ J f

fl
(x) g(θ)dθ,

θ
0 { ^ } Θ

where g is some density (or "weight function"). A Bayesian would choose g

to be the conditional prior density on H j, in which case Lg would be the

Regardless of interpretation, one can gain insight into the

impact of such evidence measures by calculating lower bounds on Lg over

reasonable classes of g. For instance, in Berger and Sellke (1987) it is

shown that for any density g which is a nonincreasing function of |θ-θJ,

Lg is at least as large as Lg, given in the last row of Table 1. The

indication is thus that, when p= .05 say, the evidence against H
Q
 is actually

no stronger than 1 to 2̂ -. (And if one tried "natural" functions g, one would

find that Lg is typically 1 or more when p= .05; see, e.g., Jeffreys (1961).)

The above example is quite disturbing. It indicates that the

classical statistician and the conditionalist will often reach \/ery different

conclusions with the same data, precisely because one averages over all

"extreme" sample points while the other uses only the observed data. (Berger

and Sellke (1987) specifically show that this averaging is the source of the
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discrepancy.) Furthermore, the discrepancy between significance levels and

conditional measures of evidence (e.g., L_, Lg or Lg, the posterior probability

of HQ, and even conditional frequentist measures -cf. Berger and Sellke

(1987)) has been shown to hold in a huge variety of significance testing

problems involving a "precise" hypothesis. (H
Q
 need not be a point null for

the discrepancy to arise - see Berger and Sellke, 1987, and Berger and

Delampady, 1987 - but if H
Q
 is, say, a one-sided hypothesis, then the

discrepancy may not arise - see Casella and Berger, 1987.) Note also that

this discrepancy is very related (but not identical) to "Jeffreys's Paradox"

or "Lindley's Paradox". These issues are explored, in depth, in Edwards,

Lindman, and Savage (1963), Berger and Sellke (1987) and Berger and

Delampady (1987). Other relevant works include Lindley (1957, 1977),

Jeffreys (1961), DeGroot (1973), Dempster (1974b), Dickey (1977), Smith and

Spiegelhalter (1980), Good (1981, 1984), Shafer (1982), Zellner (1984),

Berger (1985), Delampady and Berger (1987), and Delampady (1986a,b).

One defense of averaging over other observations (and at the same

time an attack on the LP) that is sometimes advanced is the claim that it is

necessary to consider what observations might kave, occurred. It is, however,

a misconception to believe that the LP fails to do this. Indeed, in determin-

ing the likelihood function (or family of distributions for X), it is crucial

to consider and compare the possible x that might be observed. Once this has

been done, however, and the data obtained, the LP states that only the observed

a
v
(θ) is needed,x

4.4.3 Testing A Single Null Model

When only P has been formulated, it has been argued that signif-

icance testing does not violate the LP because nothing resembling a likelihood

function exists. Although correct in a certain formal sense, there are sever-

al weaknesses to the argument.

Perhaps the most serious weakness follows from the observations

in the previous section: if averaging over "extreme" sample points is
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virtually aJboay^ bad in testing a "precise" null when alternatives are given,

it seems incredibly optimistic to believe that such averaging will be reason-

able when alternatives are not given. The argument that "significance testing

is the only available statistical procedure" is hardly persuasive when it is

known that this available statistical procedure is bad for testing precise

hypotheses.

A second weakness of the argument that only P exists is that

implicit alternatives to P often are present. Indeed, alternatives must

enter, at least informally, into the choice of the test statistic T(x).

For instance, in Example 30 it seems justifiable to use T(x)=x to measure

"extreme" only if the alternatives that one has in mind are, say, alternatives

which are stochastically larger than P
Q
 (so that a large x tends to support

the alternatives more than it tends to support PQ.) AS another example of

the implicit presence of alternatives, consider chi-square testing of fit.

EXAMPLE 30.2. Consider a statistical experiment in which n independent and

identically distributed random quantities X-,, X2, ..., X
n
 are observed from

a distribution F. It is desired to conduct a significance test of the

hypothesis H
Q
: F = F

Q
, where F

Q
 is a specified distribution. A common test

procedure, when no alternatives are specified, is the chi-square test of fit.

Ckί-SguaΛe. TeΛt Pκoc^duΛ.2,: First, a partition ίa.^.Q of the real line is

selected. Then the sample frequencies of the n observations in the cells of

the partition are calculated. Let z = (zp ..., z
m
)

t
 denote these frequencies;

thus z
i
 = number of X ^ s in (a

i
 ,, a.]. Define

θ
1
 =F(a

i
) -Fίa^-,) =P

F
(a

i
_

1
 < X <

β
a

i
) ,

? °
and

Then the chi-square test procedure is to calculate the test statistic
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m (z. -nθj)
2

t = Σ
 Ί Ί

i=l nθV

and approximate the significance level by

2
where χ , is a chi-square random variable with m-1 degrees of freedom.

The implied alternatives here arise from the fact that Z has a

UixLtσiomlaJί (n,θ) distribution, so that basing the test on z is equivalent

to acknowledging the test to be that of H
Q
: θ = θ° versus H,: θ ^ θ

0
. (Use of

t can be argued to further imply that the alternatives, θf θ , are roughly
m
 0 2 0ordered in plausibility according to η = Σ (θ - θV) /ΘV, SO that one is

i=l
 Ί Ί Ί

really testing H
Q
: η = 0 versus H ,: η> 0.) But this is a parametric problem

with specified alternatives (and hence a likelihood function) so that

LP-compatible testing methods can apply. Indeed, in Delampady and Berger

(1987) it is shown that the same type of difficulty for significance testing,

that was discussed in Section 4.4.2, exists here: the significance level is

typically much smaller than sensible conditional measures of the evidence

for H
o
.

The above argument, that there are implicit alternatives in

significance testing, can actually be given a quite general formal foundation.

It has previously been mentioned that the actual sample space #will be

discrete in practice. But then, as discussed in Section 3.6.1, even the

set {P
Ω
} of oJUL distributions on X actually results in a definable likelihood

function. Furthermore, a significance test of P can be identified with a

test of H
n
: θ= θ

n
 versus H

Ί
: θ f θ

Λ
, where P

Λ
 = P . Thus the LP can apply,

u u i υ βη

and argues against the use of significance levels.

Although formally correct, we do not ascribe much practical

importance to this last argument, because the class of aZZ alternatives to

P is typically much too big to suggest a sensible analysis. In practice,

some consideration of the type of alternatives that are expected is necessary,

even in classical significance testing. In choosing a test statistic T(x),
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for instance, we earlier observed that it is often necessary to consider

alternatives when defining "extreme." It has been argued that it may be

easier to guess a reasonable T, reflecting intuitive judgements as to which

observations support H
Q
 and which support alternatives, than to attempt

explicit consideration of alternatives and construction of T by, say, likeli-

hood ratio comparisons of P with the alternatives. The argument that one

can do better by use of intuition, than by explicit consideration of important

relevant features of a problem (here, the alternatives), is difficult to

refute, but is an argument that we would feel yery uncomfortable having as a

basis for our approach to science and understanding. Even more troubling is

the fact that significance testing allows one to "hide" this use of personal

intuition. Thus, while Pratt (1965) admits that consideration of alternatives

can be hard and a source of controversy in many situations dealt with by

significance testing, he argues that

"Computing a P-value runs the danger of

hiding this real uncertainty and legitimate

disagreement behind a screen of irrelevant

precision."

As a final point, it has been extensively argued (cf. Hacking

(1965)) that one can never really reject P until one has something better,

namely another model P which is both "reasonable" and better supported by

the data. In Example 30, for instance, the observation x = 2 is quite unlikely

to occur under PQ, but it is equally unlikely to occur under P , thus if P
n

and P-j are knoωn to be the only possibilities, then x = 2 provides no evidence

against PQ. Thus consideration of alternatives is imperative if one actually

seeks to reject P .

4.4.4 Conclusions

What is to be concluded about significance testing? First of all,

it should be admitted that, as the significance level (or P-value) decreases,

the evidence against H
Q
 will be increasing (assuming that T has been chosen
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appropriately). Indeed, in a few special situations (primarily one-sided

testing situations) the significance level can correspond to a reasonable

conditional (Bayesian) measure of the validity of HQ (cf. Jeffreys (1961),

Pratt (1965), DeGroot (1973), Fraser and Mackay (1976), Dickey (1977),

Zellner (1982), and Casella and Berger (1987)). In general though, the

magnitude of a significance level need bear no relationship (from problem

to problem) to the actual amount of evidence against HQ, and significance

levels in testing precise hypotheses are typically so misleadingly small

that their use for actually rejecting a hypothesis is strongly contraindicated

Although a given significance level can mean vastly different

things in different situations, it can be argued that, through frequent use

in various situations, insight into its true strength of evidence against HQ

can be obtained. This is perhaps true: capable people can become yery good

at doing tasks with grossly inadequate tools. This is not to say, however,

that better tools should be ignored or, more importantly, that inexperienced

people will do well with the inadequate tools.

One possibly valid use of significance testing is to provide an

alert that further investigation (in particular consideration of alternatives)

is needed. As Barnard (1981) says

"The question to be answered is whether

the feature (T(x)) presented is so

improbable on HQ as to justify the effort

involved in exercising our imagination to

produce an hypothesis that could account

for it."

There is no guarantee from a small significance level that P is wrong (i.e.,

that an alternative hypothesis can be found which is substantially more

supported by the data), but without a small significance level there may be

no need to look past P . This use of significance testing can be argued to

be important even to Bayesians, as extensively discussed in Box (1980): for

a given model and prior, the marginal (or predictive) density of X can be
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used to conduct a significance test which could alert one to question the

model or prior.

Of course, even this use of significance testing as an alert

could be questioned, because of the matter of averaging over unobserved x.

It is hard to see what else could be done with P alone., however, and it is

sometimes argued that time constraints preclude consideration of alternatives.

This may occasionally be true, but is probably fairly rare. Even cursory

consideration of alternatives and a few rough likelihood ratio calculations

will tend to give substantially more insight than will a significance level,

and will usually not be much more difficult than sensibly choosing T and

calculating the significance level. (See also Dempster (1974b).)

Admittedly, such an approach will be somewhat imprecise, but what is the

advantage of "irrelevant precision"?

4.5 RANDOMIZATION ANALYSIS

4.5.1 Introduction

In classical finite population sampling (or survey sampling) and

randomization testing, the randomization in the experimental design (used to

select the sample or allocate treatments) is a dominant factor in the

construction of measures of evidence about θ. These measures are

pre-experimental in nature, and their use directly violates the LP and RLP.

(The outcome of the randomization is usually known, and hence averaging over

samples or treatment allocations that might have occurred is supposedly

irrelevant.) Hence, belief in the LP would have a profound effect on one's

view of these areas of statistics.

Perhaps not surprisingly, it is in these areas, so drastically

affected by the LP, that some of the strongest intuitive arguments against

the LP can be raised. The issues involved are yery complex, so much so that

all we can hope to do is skim the surface of the subject. Indeed, we will

essentially restrict ourselves to a defence of the LP in a few simple

examples, trying to establish, as plausible, the argument that anything
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sensible in randomization analysis is sensible precisely because it has a

sensible interpretation from a likelihood viewpoint.

Although our main emphasis will not be on criticizing

randomization analysis, it is important to keep several issues in mind.

First, randomization analysis can clearly be \/ery silly conditionally, if

followed blindly. Even proper randomization can result (by bad luck) in

treatment groups unbalanced with respect to unanticipated (but observed to

be important) covariates, or in a sample which is clearly unrepresentative

of the population, and yet classical randomization analysis does not treat

such situations any differently than situations where the outcome of the

randomization is "good". Thus, if one randomly samples from the population

of voters in a survey on preference in the next Presidential election and

finds that, unfortunately, all members of the random sample happen to be

Republican, it is permissible (classically) to ignore this fact and proceed

with the usual analysis. A second problem with randomization analysis (or

at least randomization testing) is that it is often implemented through

significance testing, and the serious concerns of the previous section then

apply. The third, and most important, problem is that randomization analysis

dooΛ violate, the LP. In murky situations, where intuition stumbles, it seems

especially necessary to depend on foundations.

Because of the above (and various specific) criticisms of

randomization analysis, such analysis is usually advanced, not as an always

sound way of proceeding, but as the most useful practical method of obtaining

a reasonable answer. We will try to argue that the case for this is weak,

at best.

Of course, even though we argue that the basis of randomization

analysis is fundamentally in error, many of the specific procedures used in

survey sampling and randomization testing are perfectly satisfactory. (If so,

however, it is probably because they have some sensible interpretation

consistent with the LP.) Also, the value of randomization itself, in

treatment allocation and the choice of a sample, is not being addressed here.
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Such randomization is often argued to be valuable (even by many conditional -

ists) in helping to reduce systematic effects that perhaps might unwittingly

be introduced by the experimental design or sampling plan. An experiment

in which randomization is used properly will, most of the time, turn out

to be reasonably balanced with respect to experimentally induced (and

unanticipated) covariates. Randomization also helps greatly in convincing

others, who do not have access to the experimental setup or data, that no

systematic biases were present. Employing measures of evidence based on the

randomization probabilities is an entirely different matter, however.

Indeed, a conditionalist will not only ignore the randomization probabilities,

since the outcome of the randomization is known, but will also check to see

that balance with respect to important new covariates was indeed obtained.

4.5.2 Finite Population Sampling

A typical classical setup is that of having a population

V
 =
 {y-j,... ,y^} of N units, where each unit y. can be represented as a

vector y.j = (u ,v.)» u.j representing a label (or other known information)

about the unit and v
Ί
 representing something unknown (but observable). It

is desired to infer something about θ = (V-,,...,VM) € Θ, from a sample

V
s

 =
 (y

Ί
 > y j >...>yi )> which is a subset of % here s = {i-j». - -, i

m
} c l =

{1,...,N} indicates which units from the population are selected to be part

of the sample. Note that it is typically also possible to use the known

labels u = (u-j,...,u
N
) in making inferences about θ. Let S denote the

collection of all subsets of I, and suppose P is a probability distribution

on S. A procedure δ(^
s
,u) is to be used, and some criterion function

L(δ(^
s
,u),θ) employed. Finally, the overall statistical procedure (P,δ), by

which it is meant that s will be chosen according to the probability

distribution P on S and δ(^
s
,u) will be used, is evaluated classically by the

frequentist measure of performance

R(P,δ,θ) = Σ L(δ(v,u),θ)P(s).
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EXAMPLE 31. Suppose it is desired to estimate the population total λ = Σ v ,
i=l

 Ί

using an estimator δ(V»u) and squared error loss

L(θ(V
s5
u),θ) = (δ(V

s
,u)-λ)

2
. Suppose P(s) = 1/(JJ) for all s € S of size n,

corresponding to selection of a simple random sample of size n. The estimator

(4.5.1) δ(V
s
,u) = Jj- Σ v.

S
 ~

 n
 j=l

 Ί
j

(recall that % = ((u ,v ),...,(u. ,v_. ))) is unbiased in the sense that
s Ί

l
 Ί
l
 Ί

n
 Ί
n

Σ a(V,u)P(s) = λ,
st S

 s
 ~

and hence R(P,ό,θ) can be considered to be the variance of the procedure (P,ό),

were it repeatedly used.

To investigate this situation from the viewpoint of likelihood,

note that the only randomness here is in the generation of s, and hence that

P(s)

0 otherwise,

where Ω
Q
 is the set of all possible vectors, ^

s
> which could arise as samples

for the given u and θ. (Note that the implicit sample space is the union,

over all θ, of such Ω .) Thus the likelihood function for θ, when ^
s
 is

observed, is simply

fP(s) i f U
(4.5.2) P (I) = J

 S

1

( 4 . 5 . 3 )

where ( f o r ^ s = ( ( u ,v ) , . . . , ( u i ,v i ) ) )
1 1 m m

Λ ( V ) = ί θ G Θ : f o r j = l , . . . , m , the i component of θ equals v } .
J
 j

Since λ(θ) is constant for Θ G Λ ( ^ ), it conveys no information about θ,

other than that the part of θ observed (in ̂
$
) is known. This is deemed by

some to be a failure of the LP, in that the statistical procedure is thought

to provide considerable information about that part of θ not observed in ̂
s
,

call it θ*.
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The likelihood (or maybe Bayesian) view is indeed, that the data

contains no inherent information about θ*, and that the only way of infering

anything about θ* is to relate it somehow to the observed sample. Various

relationships which might be deemed reasonable are:

(i) All v. are thought to be similar, and the labels u
i
 contain no

information. Of the many ways to model this, a simple (often too

simple) possibility is to presume that the v- are independent

2 2

observations from a 7ϊ(μ,τ ) distribution. Then estimate μ and τ ,

using the sample y , and infer whatever is desired about θ. In the

situation of Example 31, the answers would be essentially the same

as the classical answers,

(ii) Suppose the v are thought to be linearly related to the u , say

v
i
 = α + 3u

i
 + ε

i 9

where the ε are presumed to have some distribution. Clearly a quite

different analysis would be appropriate.

(iii) Suppose two distinct similar groups within the population can be

identified from ^ Knowledge about each group can be obtained

from V , as in (i), and the proportion of each group in the population

estimated. (Of course, a stratified sample would probably have been

desirable had the groups been identifiable solely from the labels.)

(iv) Suppose it is felt that the sample does not look typical of the

remainder of the population. (An unlucky sample was drawn, or the

sample revealed an unanticipated bias in the sampling plan.) It is

not clear what to do, but it certainly cannot be right to proceed

with a classical analysis, as if the sample was satisfactory.

In the situations above, classical sampling theorists would, of

course, recommend different procedures for the various presumed models. The

point of the discussion is to indicate that the data, 'y
 9
 really doesn't say

anything about θ*, unless there is some background information relating the
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data to the population. It might be argued that, even when nothing is known

about the population, a simple random sample will probably produce a represen-

tative subset of the population, so that an estimator such as (4.5.1) is

reasonable for the population total. We do not disagree, but judge that

(4.5.1) is then reasonable precisely because the sample is thought to be

representative, in which case (4.5.1) would be justifiable from a variety of

Bayesian arguments. The randomization may help to convince one that the

sample is representative, but, once convinced of that fact, there is no

further need to consider the sample selection probabilities.

Modeling the population is often called the superpopulation

approach to survey sampling. Although we have presented it as Bayesian in

nature, the modeling of the population can also be argued to be as "objective"

as any modeling usually done in statistics (cf. the discussion by Royal! of

Basu (1971)), in which case one can argue that a directly meaningful likeli-

hood function for the superpopulation parameters will exist. To a Bayesian,

the choice of a model is just part of the prior specification (and often the

most important and uncertain part), so the distinction seems unnecessary.

This discussion has assumed that the selection probabilities,

P(s), are known. If they are partially unknown and depend on θ or on an

informative nuisance parameter (see Section 3.5) they could be relevant to

conclusions about θ. Rubin (1984) addresses this issue, distinguishing

between "ignorable" and "nonignorable" sample selection mechanisms, and

raises the related point that the P(s) may be useful as crude covariates in

certain situations of stratified sampling.

Another issue that has been raised is the possibility of involving

the P(s) by purposely ignoring the randomization outcome. Indeed, Rao (1971)

argues that one can obtain an "informative" likelihood function by ignoring

the labels u
Ί
 in the sample ^. The available data is then only v, an

m-vector of the observed v , with no record of which elements of the popula-

tion it is associated with. It is easy to calculate, using (4.5.2) and
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(4.5.3), that the likelihood function corresponding to y is

(4.5.4) £(θ) = Σ P(s)I , v(θ).

all ^
s
 of size m

 M
* s '

This likelihood function may seem to contain more information about θ. In

Example 31, for instance, it is easy to see that, if N/m is an integer, the

M.L.E. for θ is any vector containing N/m copies of v. The M.L.E. for λ

would thus be (4.5.1).

In discussing the reasonableness of the above proposal, it is

important to first note that ignoring data is often a sensible practical

necessity, as the following example indicates.

EXAMPLE 32. Suppose we observe (X,Y) having a joint density f(x|θ)g(y|θ)

(i.e., X and Y are independent), but that f is known while g is completely

unknown. If we have very little prior information about g, so little that

y conveys no clear knowledge about θ, then basing the analysis on x alone

seems reasonable. Of course, ignoring y can be viewed as a formal violation

of the LP, since it essentially involves integrating y out of the joint

density of X and Y. It is not a violation of the spirit of the LP, however,

providing &(θ) = f(xlθ) is felt to be reasonably close to what would have
X

been obtained were y included (say, by putting a prior distribution on g and

integrating out over this prior). Further discussion and references on this

issue can be found in Pratt (1965), who calls X an "insufficient statistic,"

and in Berger (1983).

While ignoring data may often be a practical necessity, there is

a crucial difference between doing so in Example 32 and doing so in the

sample survey problem. In Example 32 an unknown element g was eliminated by

ignoring data, while Rao (1971) suggests replacing the known likelihood

function in (4.5.3) by the version in (4.5.4) that would result if the labels

in s were ignored. No real simplification is involved in the latter

situation; indeed (4.5.4) seems more complicated than (4.5.3). In some
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situations a non-Bayesian likelihood analysis of (4.5.4) may seem easier

than a similar analysis of (4.5.3), but such is probably only the case in

simple situations like that of Example 31 where P(s) is constant, (and then

direct reasoning of a model construction or Bayesian nature with (4.5.3) is

also easy). And it is easy to construct examples where the use of (4.5.4)

with highly variable P(s) can give completely unreasonable answers for

particular observed y.

We have barely touched the surface of survey sampling. Deeper

discussions of these issues and other references can be found in Godambe

(1966, 1982a, 1982b), Cornfield (1969), Basu (1969, 1971, 1978), Ericson

(1969), Kalbfleisch and Sprott (1969), Rao (1971), Royall (1971, 1976),

Godambe and Thompson (1976), Smith (1976), Cassel et. al. (1977), and

Thompson (1980). A particularly convincing case for the Bayesian view can

be found in Basu (1978).

4.5.3 Randomization Testing

Randomization testing was introduced by Fisher (cf. Fisher (I960))

and was further developed by Kempthorne and others. (See Kempthorne and

Folkes (1971) and Basu (1980) for some of these developments and other

references). The basis of randomization testing is using the randomization

mechanism involved in treatment allocation to experimental units to form

probability assessments of evidence. The following simple example exhibits

the key features of the approach. See Basu (1980), and the discussants

thereof, for a more general discussion.

EXAMPLE 33. In an experiment, n independent pairs of matched subjects

ί(S?,s]),..., (S^Sjίj)} are to be utilized to compare two treatments, T
Q
 (the

"standard") and T j (the "new treatment"). Within each pair, the two treat-

ments are randomly assigned: let r
Ί
 equal 0 or 1 as treatment T

Q
 or T^,

respectively, is assigned to sV (so that treatment T ^
 r
 \ is assigned to S^),

and define r = (r
] f
...,r

n
). Note that P(r = 0) = P(r

Ί
 = 1) = \. The result
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of the experiment will be a vector X = (X-i,. . , X
n
) , where, for the ith pair,

0 if TQ is judged to have worked better

1 if T-j is judged to have worked better.

(For simplicity of discussion, we assume that equality of treatments is not

a possible observation, and that only the crude measures X
Ί
 are observable.)

Randomization testing, here, would involve consideration of the

hypothesis (H
Q
) that the treatments have an identical effect, in the sense

δ.

that a given subject in each pair, say subject S (δ = 0 or 1), would do

best no matter which treatment it received. It is easy to check that H
Q
 can

be written mathematically as

(4.5.5) H
Q
: X. = (η+δ ) ^

 2
 for i = l,...,n.

Also, lett ing δ = ( δ p . . . , δ n ) , i t is clear that, ph.Q.-zxp<LnJjn<Lvvtallij9 X has

density (under HQ) f f i (x) = 2"n (since there is only one assignment r which

wi l l match x to δ, and each r has probability 2"n of occurring).

Suppose that it is desired to perform a significance test of HQ

against the one-sided alternative that T . is a better treatment than TQ. The
n

natural test stat ist ic would be X = Σ X , with large values of X providing

evidence against HQ. The significance level (or P-value) of an observation,

x, would then be

α = Pu Λ(X > X = Σ X,) = Σ (")2"Π.
π0'2 i=l j=χ J

If, for example, all x = 1, then α = 2
 n
 which, for large n, would seem to

cast doubt on H
Q
.

The pre-experimental measure of evidence, α, in the above example

is based on the randomization probabilities. Since the actual randomization

outcome r becomes known, however, conditional reasoning would argue that such

probabilities are irrelevant. A conditional analysis of the problem might

go as follows.
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EXAMPLE 33 (continued). Because of the pairing (and the randomization) it

might be deemed reasonable to pretend that the subjects within each pair are

identical. If the pairs can be considered to be a random sample from the

entire population of pairs, and θ denotes the (hypothetical) proportion of

the population for which treatment T , would be better than T
Q
, then one

could write the joint density of x and r as

f
θ
(x,r) =

A likelihood analysis could then be performed, based on this (binomial)

likelihood for θ. (Of course, a significance test of θ = ^ would give the

same result as the randomization analysis, and we will argue that this is

really why the randomization analysis is, at all, sensible.)

The randomization mechanism plays no direct role in the above

likelihood argument. Indeed, the use of randomization is limited to making

more believable the assumption that the paired subjects are equivalent: the

randomization hopefully eliminates the possibility of experimenter induced

bias that might be introduced by, say, giving treatment T
Q
 to the subjects

(perhaps subconsciously) thought to be healthiest. It might be argued, by

some, that the classical randomization analysis seems intuitively more

sensible than the modeled likelihood analysis. The following illustration

of biased randomization (as discussed in Basu (1980)) casts doubt on the

validity of such an argument.

EXAMPLE 33 (continued). Suppose the treatments are assigned by a randomiza-

tion mechanism having the property that the subjects S^ (independently)

receive treatment T
Q
 with probability ^ and treatment T-j with probability -̂.

Suppose, further, that the randomization outcome happens to be that each S
Ί

receives treatment T
Ω
, and the experimental outcome happens to be that each

x = 1. If the null hypothesis is true, then it must be the case that δ
i
 = 1

for all i (see (4.5.5)). But it follows that the significance level against

H
Q
 is
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°=V = (1 1)(Xlx = n) = P(all r, - 0) = 4"".

This significance level seems misleadingly low, due to the "unlikely11

randomization outcome. The evidence against HQ certainly seems no stronger

than it would have been had an unbiased randomizer been used. The modeled

likelihood analysis would, of course, be unaffected by the use of the biased

randomizer. Thus it seems that the randomization analysis may be rather

suspect, unless it corresponds to a sensible modeled likelihood analysis.

As with finite population sampling, the likelihood approach tends

to involve further modeling of the situation under investigation. While to

some extent unappealing (more assumptions must be introduced), there seems

to be little choice. In Example 33, if one were not comfortable in treating

the subjects within a pair as identical, or the pairs as representative of

the population, then the randomization analysis would also be yery suspect.

(If it so happened that a certain subject in each pair could be identified

as "healthier", a careful investigation of the matchups of treatments and

subjects would be indicated.) Extensive discussions of these issues can be

found (with other references) in Savage et. al. (1962), Hill (1970),

Good (1976), Rubin (1978), Lindley and Novick (1981), and especially

Basu (1980).




