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MULTIVARIATE LIFE CLASSES AND INEQUALITIES

BY THOMAS H. SAVΓΓS1

University of Pittsburgh

In this paper we review some univariate life classes which are useful in reliability
theory. Recently some new characterizations of these classes have been given in terms of
integral inequalities with respect to certain classes of function. These characterizations and
their natural multivariate extensions are discussed. Some moment inequalities are then de-
duced.

1. Introduction. Various univariate classes of life distributions have been introduced

in the context of mathematical reliability theory. Most of these classes have intuitive ap-

peal, possess nice closure properties and lead to useful bound in estimating system reliabil-

ity. The book by Barlow and Proschan (1975) gives an excellent discussion of these classes

and their properties.

Recently there has been much interest in obtaining multivariate versions of these classes.

Although there have been many different approaches, this review paper will focus on only

three: the multivariate IFR class of Savits (1983); the multivariate IFRA class of Block and

Savits (1980); the multivariate NBU class of Marshall and Shaked (1982). All three are

based on recent characterizations which are expressable in terms of integral inequalities

for certain classes of functions. Also, more importantly, all three classes possess many

desirable closure properties.

All functions and sets in this paper are assumed to be Borel measurable. A subset A is

said to be an upper set if x € A and y ^ x implies that y e A. A nonnegative function h
is said to be log concave (on %£) if /ι[λx+(l-λ)y] ^ h\x)hx~\y) for all x,y ^ 0 and all

0 < λ < 1. A function ψ is said to be subhomogeneous (on J?\) if ψ(α x) ^ αψ(x) for

a l l x ^ θ a n d a l l θ < α < l .

2. Review of Univariate Life Classes. Let T be a nonnegative random variable with

survival function F(t) = P{T>t}. Set b = inf{ί^0; F(ή = 0} (inf φ = +oo). For simplicity

we assume F(0) = 1.

Definition 1. (i) T is said to have an increasing failure rate (IFR) distribution if

F(s+t)IF{i) is nonincreasing in t e [0,fc) for all s ^ 0. (ii) T is said to have an increasing

failure rate average (IFRA) distribution if F(at) ^ /*(*) for all t ^ 0, 0 < α < 1. (iii)

T is said to have a new better than used (NBU) distribution if F(s+t) ^ F(s)F(t) for all

s,t ^ 0. (iv) T is said to have a new better than used in expectation (NBUE) distribution

if μ = E[Γ] < oo and J°!F(x)dx ̂  μ F(t) for all t ^ 0.

These classes of distribution have been very useful in reliability theory (cf. Barlow and

Proschan (1975) for a detailed discussion of their properties). It is known that IFR -> IFRA

> NBU-^ NBUE.
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The next two theorems are well known and list some useful equivalent conditions (see

Barlow and Proschan (1975)).

THEOREM 1. The following are equivalent: (a) T is IFR. (b) F is a Pόlya frequency
function of order two (PF2); i.e.,F^0 and

F(t2-sλ) F(t2-s2)

forall-<*< tx<t2< oo,-oo < Sχ < s2 < α>. (c)logF(ί) is concave in ί ̂  0.

THEOREM 2. The following are equivalent: (a) T is IFRA. (b) Fllt(t) is nonincreasing
int>Q.(c)-l/t log F(t) is nondecreasing int>0.

Remark. If F has a density/, we define the hazard rate by r(t) = flt)IF(i). Then T

is IFR if and only if r(t) is nondecreasing in t € [0,b); T is IFRA if and only if (l/t)f(f(u)du

is nondecreasing in t e [0,b).

3. Some Recent Characterizations. Within the past several years, various other char-
acterizations of these classes have been discovered. The ones we list below are all expressed
via integral inequalities with respect to certain function classes. Many of the known proper-
ties of the univariate classes follow easily from these characterizations.

THEOREM 3. (i) T is IFR if and only ifE[h{x,T)] is log concave in xfor all functions
h(x,t) which are log concave in (x,ί) and nondecreasing in tfor each fixed x. (ii) T is IFRA

if and only ifE[h(T)] ^ El/ot[ha(T/a)]for all nonnegative nondecreasing functions h and

allθ<a<\. (Hi) T is NBU if and only ifE[h(T/(a+$))] ^ £[ΛΎ(77α)] E[hι/y(T/$)]for

all nonnegative nondecreasing functions h, all a, β > 0 and all 0 < 7 < 1.

The first result is due to Savits (1983); the second to Block and Savits (1976); the third

to Marshall and Shaked (1982). The IFRA characterizations given in Theorem 3. l(ii) was

particular useful in solving the IFRA convolution problem (Block and Savits (1976)).

Although the original intuitive appeal of the univariate life classes is lost in the abstract

characterizations given above, the multivariate extensions that naturally follow enjoy many

desirable closure properites, as we shall see in the next section.

4. Multivariate Extensions. There are many different ways of obtaining multivariate

extensions of the univariate life classes (e.g., see the review paper of Block and Savits

(1981)); however, it is desirable that any such extension satisfy certain properties. We list

below some such properties.

Let £ denote a multivariate extension of a univariate class of distributions £Q. By abuse

of notation, we say that a random vector T e £ if its distribution belongs to £.

Properties.

(PO) A random variable Te C if and only if Te Co.

(PI) If T € C, then all marginals belong to C>.
(P2) If S,T e C and are independent, then (S,T) e C.

(P3) If S,T e £ and are independent, then S + T € £ whenever it makes sense.

(P4) If Trt € £ for each n and TΛ -* T in distribution, then T € £.

(P5)If(Γ,, ... ,Tn)e£andai^O(l^i^ή),thcn(aίTu ... ,anTn)e£.

(P6) If (Γ l f ... , Tn) € £ and IT is any permutation on {1, ... , n}9 then ( Γ ^ D , ... , T<n))
e£.
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(P7) If T e £ and ψ), ... , ψm are nonnegative nondecreasing subhomogeneous functions,

(P8) If T e £ and ψj, ... , ψm are nonnegative nondecreasing concave functions, then

Property (P3) is included since all the univariate life classes described in Section 2 are

closed under convolution. For the IFRA and NBU classes, property (P7) is natural since

these classes are closed under the formation of coherent systems, which are included within

the class of subhomogeneous functions. This is not true for the IFR class, however. On

the other hand, the IFR class is closed under minimums and these are special examples

of concave functions. Properties (P5) and (P6) are not as essential as the others.

Definition 2. (i) T is MIFR (in the sense of Savits (1983)) if £[Λ(x,T)] is log concave

in x for all log concave functions h(x9t) which are nondecreasing and continuous in t for

each x. (ii) T is MIFRA (in the sense of Block and Savits (1980)) if E[h(Ύ)] ̂  E1/α(/ια(T/α)]

for all continuous nonnegative nondecreasing functions h and all 0 < α < 1. (iii) T is

MNBU (in the sense of Marshall and Shaked (1982)) if E[/ι(T/(α+β))] ^ E[/ιΎ(T/α)]

E[hι~y(Ύ/β)] for all continuous nonnegative nondecreasing functions h and all α,β > 0,

Remark. It is shown in the above papers that the continuity assumption on h is not

necessary.

THEOREM 4. (i) The MIFR class satisfies properties (P0)-(P6) and (P8). (ii) The MIFRA

and the MNBU class satisfy properties (P0)-(P7).

The proofs of this theorem and related results are contained in the above cited papers.

In particular, some useful equivalent formulations are given.

If T is a random vector, let μ(dy) = P(Ύ e dy) be its induced measure.

THEOREM 5. (i) T is MIFR if and only if μ[λA+(l-λ)£] ^ μ\A)μι-λ(B) for all upper

convex sets A,B and all 0 < λ < 1. (ii) T is MIFRA iffμ(aA) ^ μα(A) for all upper sets

A and all 0 < α < 1. (iii) T is MNBU if and only z/μ((α+β)A) ^ μ(αA)μ(βA) for all

upper sets A and all a, β > 0.

It is known that MIFRA -• MNBU, but the implication MIFR -> MIFRA remains a con-

jecture.

5. Some Moment Inequalities. Before we consider some multivariate moment in-

equalities, let us first discuss the univariate case. If T is a nonnegative random variable,

r = £ [ Γ ] f o r r > 0 .

Case (i). T is IFR. We consider functions of the form h(r,t) = ί7φ(r) where φ is to

be suitably chosen. In order to make use of Theorem 3(i) we need that h be log concave

in (r,ί) If φ is twice continuously differentiable, then a necessary and sufficient condition

is that

(5.1) r J/Jr[φ'(r)/φ(r)>l.

One can easily check that this is true for φ(r) = fe~r. Thus we conclude that the "nor-

malized moments" pΓ = μ^rV7") are log concave in r > 0.

It is interesting to note that (5.1) is true for φ(r) = Γ(r) but false for φ(r) = Γ(r+1),
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which is the classical normalization factor. The class of φ which satisfy (5.1) with inequal-

ity replaced by equality is given by φ(r) = a fe~hr for a > 0, -oo < b < °°.

Case (ii). T is IFRA. If we let h(x) = xr in Theorem 3. l(ii), it can be easily shown

that (p r)
1 / r is nonincreasing in r > 0, where p r are the same normalized moments given

above.

Case (Hi). T is NBU. Again letting h(x) = xr in Theorem 3. l(ii), we conclude that

It is convenient at this point to introduce some further definitions. A nonnegative func-

tion h is said to be log subhomogeneous (on 7P+) if h(ax) ^ /zα(x) for all x ^ 0 and

0 < α < 1; it is said to be log subadditive (on 7?"+) if /i((α+β)x) ^ Λ(αx)Λ(βx) for all

x ^ 0 , a n d α , β > 0 .

Using these definitions we summarize the above univariate results on p r below.

(i) T IFR -» p r is log concave in r.

(5.2) (ii) T IFRA-> p ris log subhomogeneous in r.

(iii) T NBU -> pr is log subadditive in r.

A particularly interesting special case of (5.2) is the following. First note that in (5.2)

we may replace p r with p* = pre~r since they have exactly the same properties. Now consid-

er an exponential random variable with mean one. In this case p* = Γ(r+ \)lrr. Since the

exponential is in all life classes we deduce that

(i) Γ(r+ \)lr' is log concave in r.

(5.3) (ii) Γ(r+l)/r r is log subhomogeneous in r.

(iii) Γ(r+1 yf is log subadditive in r.

(Actually (i) -• (ii) -> (iii) but it is useful to list them separately). The result (5.3)(ii) was

already proven in Marshall, Olkin and Proschan (1967), but our proof is much simpler.

We now contrast the results in (5.2) with the known classical univariate results given

in Barlow and Proschan (1975). Let \r = μ,-/Γ(r+ 1). Then:

(i) T IFR -> λr is log concave in r.

(5.4) (ii) T IFRA -> λ r is log subhomogeneous in r.

(iii) T NBU -> λr is log subadditive in r.

Since ρr = λ,. [Γ(r+l)/r r] er, the results (5.2) follow by combining the results (5.3)

and (5.4). Hence the univariate results (5.2) are weaker than the univariate results (5.4).

However, in some sense, they are asymptotically equivalent because, e.g., (p,Jλr)
]/r -> 1

as r -> oo. This is the reason the irrelevant factor e~r was introduced into the normalized

moments p r.

Although in the univariate case the results (5.2) are weaker than those of (5.4), there

are no known generalizations of (5.4) in the multivariate setting. However, the results of

(5.2) do generalize. The following multivariate moment relations follow from Definition

2 in exactly the same way as those derived from Theorem 3. If r = (r,, ... , r ; ί), we let

μ r = E[7T ... T?] and set pΓ = μΛ^U, ή'e"').

THEOREM 6. Let T be a nonnegative random vector.

(i) If T is MIFR, then p r is log concave in r.

(5.5) (n)IfΎ is MIFRA, then p r is log subhomogeneous in r.

(iii) // T is MNBU, then p r is log subadditive in r.



MULΉVARIATE LIFE CLASSES AND INEQUALITIES 197

The results (5.5) are the best available at present. In particular they are valid for the MVE

of Marshall and Olkin (1967) since the MVE is MIFR, MIFRA and MNBU.

6. Some Other Classes. The recent successful use of log concave functions to charac-

terize the IFR class has suggested other variations on this theme. Although the full ramifica-

tions of this approach are being currently investigated, we illustrate with one interesting

example.

Recall that in section five we defined a nonnegative function h to be log subhomogeneous

if Λ(αx) 2£ ha(x) for all 0 < α < 1.

THEOREM 7. T is MIFRA if and only ifE[h(x9Ύ)] is log subhomogeneous in xfor all
functions h(x,t) which are log subhomogeneous in (x,t) and are nondecreasing in tfor each
fixed x.

Proof. Suppose T is MIFRA and let h(x,t) be a log subhomogeneous function which
is nondecreasing in t for each fixed x. Then

£α[/*(x,t)] ^ E[/ια(x,T/α)] SΞ E[h(ax,Ύ)l

The first inequality follows since T is MIFRA and the second follows since h is log sub-
homogeneous.

On the other hand suppose E[h(x,Ύ)] is log subhomogeneous in x for all log sub-

homogeneous functions Λ(x,t) which are nondecreasing in t for each fixed x. Let h(t) be

a nondecreasing function in t and define H(r,t) = hr(t/r) for r > 0. Then //(r,t) is log sub-

homogeneous in (r,t) and is nondecreasing in t for each fixed r. Hence E[H(r,Ύ)] is log

subhomogeneous in r, i.e.,

E[H(ar, T)] ^ £α[//(r, T)] or

E[Λαr(T/αr)] ^ Ea[hr(T/r)].

Now set r — 1 to conclude that T is MIFRA.
In Block and Savits (1978), a new characterization of the NBUE class was given.

THEOREM 8. T is NBUE if and only ifμ = E[T] is finite and

(6.1) f%h(z)F(z)dz ^ μ Joh(z)dF(z)

for all nonnegative nondecreasing functions h, where F(t) = P(T>t).

The author has recently proposed a multivariate extension of (6.1) and has shown that

the resulting multivariate class satisfies properties (P0)-(P6).
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