
3. Weak convergence of non-BOREL measures on a metric space.

Let S = (S,d) be a metric space with metric d and let B (S)
 Ξ
 B

b
(S,d) be

the σ-algebra in S generated by the open (d-) balls

B,(x,r) Ξ B(x,r) := {y€S: d(x,y)<r}, x€S, r>0.

Clearly, B, (S) is a sub-σ-algebra of the Borel σ-algebra B(S) in S (generated

by all open subsets of S).

In this section we will study a mode of weak convergence for nets of

finite measures which are defined at least on B, (S). Our formulation is a

slight modification of a concept which was introduced by R.M. Dudley (1966)

and further studied and extended by M.J. Wichura (1968); cf. also D. Pollard

(1979), where it is shown that some of the key results in that theory can be

deduced directly from the better known weak convergence theory for Borel

measures.

As in Wichura, our presentation here is made roughly along the lines of

Chapter I of Billingsley (1968) (see also P. Billingsley (1971), S I A M No. 5)

which treats similar aspects of the theory of weak convergence of probabili-

ties defined on all of B(S). The present theory is especially suited to cope

with measurability problems arising in the theory of empirical processes as

well as to allow for a proper formulation of functional central limit theorems

for empirical C-processes (cf. Section 4).

To start with, let us first establish some notation and terminology to be

*) This section represents and extends parts of a first draft of a "Diplomar-

beit" by J. Schattauer, University of Munich, 1981.
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used throughout this section.

If not stated otherwise, S = (S,d) is always a (possibly non-separable) metric

space. Let A be a d-algebra of subsets of S such that &(S)CACβ(s) then the

following spaces of real valued functions on S will be considered:

f (S) := {f: S -> ]R , f A ̂ -measurable}
a

C(S) :={f: S - > R , f bounded and continuous}

C
b
(S) :=1F (S)Π

C

b
(S)

a a

U ( S ) :={f: S -»• ]R , f bounded and uniformly continuous}

U
b
(S) := f (S)ΠU

b
(S).

a a

In case of B
b
(S) instead of A we shall write ̂ ( S ) , C

b
(S) and U

b
(S) instead of

ίF
a
(S)

9
 C

b
(S) and U

b
(S), respectively.

The following figure may help to visualize the different spaces, where

the largest box represents the class of all B(S), β-measurable functions

f: S -> ]R and where the smallest class UΓ(S) is represented by the shaded area:

FIGURE 3 for example is represented as that part of the & (S)-box

(marked by the bold arrows) which is left to the dotted line.)
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Furthermore, let M (S) be the space of all nonnegative finite measures defined
a

on A and write M, (S) for the space of all nonnegative finite measures on Bχ(
s
)

For f: S ->• ]R , we denote by D(f) the set of discontinuity points of f.

Finally, given any μEM (S) and any bounded f or ACS, respectively, let
a

*

J f dμ ;= infίjg dμ: g*f, g ef (S) and g bounded},

a

J f dμ := sup{Jg dμ: g^f, g Ef (S) and g bounded},
*
 a

* *
μ (A) := J l

Δ
dμ, and μ (A) := J 1 dμ.

*
 #

 A A

Note that μ^ and μ are inner and outer measures, respectively, i.e.,one has

for every ACS

(23) μ*(A) = infίμ(B): B^A, BEA} and μ
#
(A) = sup{μ(B): BCA, BGA}.

(In fact, as to the first equality in (23), "£" is obvious, since for any

B^A, BEA, g := 1 £1
Λ
, g EtF (S) and g bounded; as to the other inequality,

Jb A a

given any g^l.
9
 g Ef (S) and g bounded, choose for each ε>0 B := {g^l-ε} to

A a ε

get B EA with B DA and μ(B ) ύ J (g+ε)dμ ύ Jgdμ + εμ(S); since μ(S)<°°,

ε
 B ε

we obtain, taking ε = — and letting n-*°°, B := Π B , EA with B3A and
n
 n63N

 / n

μ(B) ^ Jgdμ, which proves the other inequality.)

The following lemma comprises some simple but still essential facts to be

used later on.

LEMMA 11. (i) B^S) = σ(ίd( ,x): xES}), where σ({d( ,x): xES}) denotes the

smallest σ-algebra in S w.r.t. which all of the functions d( ,x), for each

fixed xES, are measurable.

(ii) Let S CS be such that S = (S ,d) is a separable metric space, then for

d( ,S ) := inf{d( ,x): xES } we have min(d( ,S ),n)EUΓ(S) for each n;

O O O D

in this case also S := {xES: d(x,S )«5} E \(S) for every δ>0, and

S
C
EB

1
_(S), where S° denotes the closure of S in (S,d).

o b o o

(iii) /((S)CB (S), where /((S) denotes the class of all compact subsets of (S,d).
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(iv) If (S,d) is separable, then B^S) - B(S).

Proof. (i) is an immediate consequence of the identity B(x,r) = {yES: d(y,x)<r},

xES, r>0. To verify (ii), since d( ,A) is uniformly continuous for each ACS,

it suffices to show that d( ,S ) Gf, (S); for this, let T be a countable dense

o D o

subset of S . Then, since d(x,S ) = d(x,T ) = inf{d(x,y): yET }, d(x,S ) is a

countable infimum of B , (B-measurable functions, hence d( ,S ) 6f, (S). This

also shows that S 6 B,(S) implying that S° = Π S '
n
G B , (S). Since each

°
 b

 ° nEΈ °
 b

compact subset of S is closed and separable, (iii) is just a particular case

of (ii). Finally, if (S,d) is separable, then (S ,d) is separable for each

S Cs, especially for all closed subsets F of S, whence, by (ii), FEB,(S) for

all closed FCS and therefore 8(S)Cβ(s) which proves (iv). D

Remark. The converse of (iv) is not true, in general: Talagrand (1978) has

constructed an example of a non-separable metric space S for which B L(S)

coincides with B(S).

Now, our first subsection will be concerned with

SEPARABLE AND TIGHT MEASURES ON

DEFINITION 2. μEM, (S) is called separable iff there exists a separable subset

S of S (i.e., an S CS s.t. S = (S ,d) is a separable metric space) with
o o o o

μ(S°) = μ(S).

(Note that the closure S of a separable S is also separable.)

(24) REMARK. Let μEΛί(S) be separable; then there exists a unique

extension of μ to an (even τ-smooth) Borel measure μ on B(S)
f

Proof. By assumption there exists a closed and separable A Cs such that

μ(A ) = μ(S), where A EB
V
(S) by Lemma 11 (ii). Let V := ίBEB(S):

O O D

BΠA EB,(S)}; then V is a σ-algebra in S. But, since each closed subset belongs

to V (cf. Lemma 11 (ii) and notice that FΓ>A is again closed and separable),
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V equals B(S) and therefore μ(B) := μ(BΠA ) is well defined for all BGB(S).

Furthermore, for every BEB(S), μ(B) = μ(BΠA ) = μ(B)-μ(B\A ) = μ(B), since

μ(B\A ) = 0 according to μ(A ) = μ(S), showing that μ is a Borel extension of

μ (being even τ-smooth since μ concentrates on the separable subset A of S).

As to the uniqueness of μ, suppose that μ. are finite measures on B(S) with

rest
R
 /

C
\U. = μ, i=l»2; then μ-(A ) = μ

o
(A ) = μ(A ) = μ(S) and therefore

O. \ o y 1 _L O ^ O O

b
μ-(B) = μ.CBΠA ) =μ(BΠA ) = μo(BΠA ) = £_(B) for a l l B6B(S) showing t h a t

l l o o z o z

(Note: It can be shown by examples that the assumption in (24) of μ

being separable cannot be dispensed with, in general.)

DEFINITION 3. μEM (S) is called tight iff sup{μ(K): K6K(S)} = μ(S).

(Note that K(S)Cβ (S) according to Lemma 11 (iii).)

(25) REMARK. Any tight μEM, (S) is separable.

Proof. Note first that any KEK(S) is separable; now, since μ is tight, there

exists for every n a K 6fC(S) s.t. μ(K )>μ(S) - - then S := U K is

°
 n

separable and μ(S
C
) ̂  μ(S ) k μ(K ) > μ(S) - - for all n, whence μ(S

C
)=μ(S). O

o o n n o

As to the converse of (25) one has

(26) REMARK. If μGK(S) is separable and if S is topologically complete,

then μ is tight.

Proof. Use (24) to get the unique Borel extension μ of μ and apply Theorem 1,

Appendix III, p. 234, in Billingsley (1968). •

(Note: As shown by Billingsley (1968), Remark 2, p. 234, the hypothesis of

topological completeness cannot be suppressed in (26).)
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WEAK CONVERGENCE/PORTMANTEAU-THEOREM:

As before, let S = (S,d) be a (possibly non-separable) metric space, let

M (S) be the space of all nonnegative finite measures on a σ-algebra A with
a

B (S)CACβ(s) and let Aί(S) be the space of all nonnegative finite measures

on 8, (S).

D

Then, given a net (μ ) in M (S) and a μGλί (S), we define:

DEFINITION 4. (μ^) converges weakly to μ (denoted by μ —ζ μ) if

(i) μ is separable

(ii) lim Jfdμ
α
 = Jfdμ for all fGC^(S)

α

(where again μ is the unique Borel extension of μ, according to (24)).

(27) REMARKS. a) If (S,d) is a separable metric space, then Definition 4

coincides with the usual definition of weak convergence of Borel

measures (cf. Lemma 11 (iv)).

b) If (μ ) converges weakly in the sense of Wichura
!
s (1968)

definition, then (μ ) converges in the sense of our Definition

4 but not vice versa; both definitions are equivalent if (S,d)

is topologically complete (cf. (26) and our Portmanteau-Theorem

below).

LEMMA 12. Let f: S -> ΊR be such that O^f<n for some nGU then, for every

μGM (S),

n
 *

Jfdμ ύ μ(S) + Σ μ ({f^k}).

k=l

Proof. Since by (23), for every ACS, μ*(A) = infίμ(B): B3A, BGA}, it follows

that for every ε>0 and every l^k^n there exists a B GA s.t. B 3{f^k}

ε ,κ ε,κ

and μ ({fέk}) ^ μ(B ) - —. Put f := 1 + Σ 1 to get a bounded function
ε,κ n ε o i,—-i ^

n n

belonging to F (S) and dominating f (f £ Σ 1
J Λ
, , £ 1 + Σ 1 = f ),

k=0 k=l ε,k

whence
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Jfdμ = infίjgdμ: g£f, g 6f (S) and g bounded} ^ Jf dμ

s ε
n n

 *

= μ(S) + Σ μ(B _ ) £ μ(S) + Σ [μ ({f£k}) +
 £
]

k=i
 ε

'
k
 k=i

= μ(S) + Σ μ ({f£k}) + ε,

k=i

which implies the assertion since ε>0 was chosen arbitrary, D

In what follows, let G(S), resp. F(S), denote the class of all open, resp.

closed, subsets of S , also for ACS let A , A and 3A denote the interior,

closure and boundary of A, respectively.

(28) PORTMANTEAU-THEOREM.

Let (μ ) be a net in M (S) and let μEjlί (S) be separable with μ being

its unique Borel extension (cf. (24)).

Then the following assertions (a) - (h
1
) are all equivalent:

(a) lim μ (S) = μ(S) and lim inf (μ ) (G) έ μ(G) for all G€G(S)
Ot Ot «

α α

(a
!
) lim μ (S) = μ(S) and lim inf μ (G) k μ(G) for all GEG(S)ΠA

α α
α α

(b) lim μ (S) = μ(S) and lim sup μ*(F) ̂  μ(F) for all FGF(S)

α α

(b
1
) lim μ (S) = μ(S) and lim sup μ (F) ̂  μ(F) for all FeF(S)ΠA

α
 α

 α

(c) lim inf Jfdμ ^ Jfdμ for all bounded lower semicontinuous f: S -»• TR

α *
 a

(c
1
) lim inf Jfdμ ^ Jfdμ for all bounded lower semicontinuous f EtF (S)

ex a
α

•*

(d) lim sup Jfdμ ^ Jfdμ for all bounded upper semicontinuous f: S -> ]R

α

(d
1
) lim sup Jfdμ ύ Jfdμ for all bounded upper semicontinuous f Ef (S)

ot a
α

•*
(e) l im Jfdμ = lim Jfdμ = Jfdμ for a l l bounded B(S), fl5-measurable

α ot
α α *

f: S •*• ΊR which are μ-almost everywhere (μ-a.e.) continuous

(e
!
) lim Jfdμ = Jfdμ for all bounded f EtF (S) which are μ-a.e. continuous

α a
α
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(f) lim (μ )
#
(A) = lim μ*(A) = μ(A) for all AGB(S) with μ(9A) = 0

(f') lim μ (A) = μ(A) for all AGA with μ(3A) = 0

α

(g) lim Jfdμ = lim Jfdμ =Jfdμ for all fGC
b
(S)

α α
α α *

(g
f
) lim Jfdμ = Jfdμ for all fGC

b
(S) (cf. Definition 4, (ii))

ot a
α

*

(h) lim Jfdμ = lim Jfdμ = Jfdμ for all fGLΓ(S)
ot ot

α α *

(h
!
) lim Jfdμ = Jfdμ for all fGU

b
(S).

α b
α

Proof. The proof may be divided into 4 steps showing that the following

implications hold true, where 'Ί̂ l' indicates the non-trivial parts.

STEP 1: (a)<zφ(bΓ

STEP 2: (d)=> (d')=^ (c
!
)=> (a

!
)z=> (b

f
)βφ(b) (=^(d) by STEP 1)

STEP 3: (a) and (b)*φ(f) => (f
!
 ) (=φ (a) by STEP 1)

STEP 4: (e)z^ (g)n^(h)n^ (h
1
 ) (=>(e) by STEP 1).

We are going to prove the "•φ!
1
 parts; the others are either immediate or easy

to prove.

(b)—fr (d): 1. Let f: S -»• 3R be upper semicontinuous and assume for the moment

that 0<f<l; then, by Lemma 12, we have for every

*
 n

 *

lim sup Jnf dμ £ lim sup [μ (S) + Σ μ ({n

α α k=l

n
 *

 n
 -

^ lim sup μ (S) + Σ lim sup μ ({nf^k}) ύ μ(S) + Σ μ({nf^k})

α
 α

 k=l α
 α

 (b) k=l

ύ μ(S) + Jnfdμ,

whence

lim sup Jfdμ ^ ̂ ^ - + Jfdμ;
α

thus (for n-*») we obtain (d) for all upper semicontinuous f with 0<f<l.
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2. Let f: S -> ]R be upper semicontinuous and bounded, say a<f<b for some

-oo<
a
<b<oo then 0 < T—- < 1, and therefore it follows from part 1 that

JD a

lim sup J — — dμ ^ J r-— dμ,
D a d D—a

α

which implies (d), since lim μ (S) = μ(S) = μ(S).

α
 α

[(a)-(d)]—Ke): Let f: S -> ]R be bounded, B(S), β-measurable and μ-a.e.

continuous. It follows (cf. Gaenssler-Stute (1977), Satz 8.4.3) that

μ(if
#
<f*}) = 0,

where f := sup {g: g^f, g lower semicontinuous} and

f := inf {g: g^f, g upper semicontinuous};

therefore, since f ^ f S f , we obtain

(+) Jf
#
dμ = Jfdμ = Jf*dμ.

Furthermore, since f and f are also bounded with f being lower semicontin-

uous and f being upper semicontinuous, respectively, we obtain

Jf dμ ^ lim inf Jf^dμ ^ lim inf Jfdμ
(c) α * α *

* * * * * ~
^ lim inf j'fdμ ^ lim sup Jfdμ ^ lim sup Jf dμ ^ Jf dμ,

ot ot ot f j v
α α α (d)

whence, by (+), lim Jfdμ = Jfdμ.

α

On the other hand, one obtains in the same way that

Jf^dμ ύ lim inf Jf^dμ ^ lim sup Jfdμ
α * α *

£ lim sup Jfdμ £ lim sup Jf dμ
α
 ^ Jf dμ, whence, again by (+),

α α

lim Jfdμ = Jfdμ, which proves (e).

α *
 α

(f
τ
)βφ(g

!
): Given fGC (S), let fμ ( Ξμof" ) be the image measure that f

^ ^ a

induces on IB in R from μ (i.e.,fμ(B) = μCίfGB}) ,B eβ). Since f is bounded,

we have fμ([a,b]) = μ(S) for some -c°<a<b<«>; furthermore, since μ(S)<°°, we
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have fμ({t})>0 for at most countable many te[a,bl. Therefore, it follows that

for every ε>0 there exist t , t..,..., t such that

(1) a = t < t < . . . < t = b

o 1 m

(2) a<f(x)<b for all xes

(3) t.-t. <ε for all j=l,...,m

and (4) μ({xES: f(x) = t.}) = 0 for all j=O,l,..,,m.

Now, let A. := {xGS: t-i^f(
χ
) <t.} then A.GA, the A.'s being pairwise dis-

joint with union S, and 3A.C{χeS: f (x)G{t._. ,t.}}, whence (by (M-))

μOA.) = 0, j=l,. . ,,m.

Therefore it follows by (f') that

(+) lim μ (A.) = μ(A.) for j=l,..,,m.

Now, put g := Σ t. 1. to get a bounded function g 6?F (S) for which

j=l I'
1 A
j

(by (3))

(++) sup |f(x) - g(x)| < ε.

xES

Then, it follows that

|Jfdμα-Jfdμ| = |j(f-g)dμα + Jgdμ^ J(f-g)dμ -Jgdμ|

< J|f-g|dμ
α
 + J|f-g|dμ + |Jgdμ

α
 - Jgdμ|

m

εμ (S) + εϊ(S) + Σ |t ||y CA ) - μ(A )|,
α
 j=l 3"

1 α
 3 3

lim sup |jfdμ - J*fdμ| ύ 2εμ(S)

α

whence, by (+),

(note that SGA with μ(3S) = μ(0) = 0, and μ(S) = μ(S)).

Thus (for ε~K)) we have shown (g' ).

(h
τ
 )—^(b): Since f ΞlEU^(S), we obtain from (h

!
 ) at once lim μ (S) = μ(S).

α
Next, given an arbitrary FEF(S) and ε>0, let

F
ε
 := {xeS: d(x,F)<ε};
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then F ΨF as εΨO, and therefore, for every nE]N there exists an F
£n
GG(S) such

that μ(F
£ n
) ύ μ(F) + A.

Now, since by assumption μ is separable, there exists a separable S CS with

μ(S^) = μ(S); put, for each xES,

Γd(x,SCΠCFεn)/ε , i
f (x) := < ° Π

n [ l , if scn?F εn = 0;

i f SCΠCFεn Φ 0
o

then the function g := min(f ,1) has the following properties for every nG]N:

(1) g euf(S) (cf. Lemma 11 (ii) and note that
n b

separable),

g EU_ t s ; l e t . Lemma 11 ( n j and note t h a t S ni>F " i Sn b o

(2) rest g Ξ 0,
S Γ>CF

ε
n
 n

o

and (3) restp g^ = 1.

Therefore, for every nEΈ we obtain

lim sup μ (F) = lim sup J l p dμ ^ l im sup Jg dμ
oi r o t / / - , \ / - \ n o t

α α ( 3 ) , ( 1 ) α

= Jg dμ = J g dμ = f g dμ + f g dμ = J g dμ
( h ' ) , ( D Π SC n SCΠCFεn n S°ΠFεn n (2) S ° n F

£ n n

o o c c

^ ί ( S C Π F ε n ) = μ ( F £ n ) < Ϊ ( F ) + - ,

(g^D °

whence (for n-*
0
)̂ we obtain lim sup μ (F) ̂  μ(F), which proves (b).

α

(b
τ
 ) — ^ ( b ) : Given an arbitrary FEF(S), we have as before that for every nEϋN

there exists an F
Gn
EG(S) s.t. μ(F

ε n
) ^ μ(F) + ~.

Let g be defined as before and put F := {xES: g (x^tyjll} then

F EF(S)ΠB, (S), F 3F for all nE]N , and
n D n

( + ) F ΠS
C
 C F

ε n
ΠS

C
 for all nEIN.

no o

(As to (t), let xθF Πs°; then, if S°ΠδF
ε
n Φ 0, we have by construction of g

n
,

d(x,S^ΠCF
ε
n) ^ -^ > 0, whence xφS^ΠCF

εn
, and therefore xGF

£ri
ns^; if S^ΠCF

£n
 = 0
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(and therefore g = 1 ) , it follows that F
ε n
ΠS° = S° and therefore

n c o

F ns
c
cs

c
 = F

ε n
πs

c
.)

n o o o

We thus obtain

lim sup μ (F) ̂  lim sup μ (F ) ^ μ(F )

α
 α

 α
 α n

 (b
!
)

 n

μ(F) + p

whence (for n-*») lim sup μ (F) ύ μ(F), which proves (b).

α

(a) and (b)—^(f): Given an Ae8(S) with μ(3A) = 0, we have

μ(A°) ύ lim inf (μ
α
)

#
(A°) ̂ lim inf (y

α
>

#
(A) ^ lim inf μ*(A)

(a) α α α

^ lim sup μ (A) ύ lim sup μ (A ) ^ μ(A ) = μ(A ), whence

α α
 α

 (b)

lim μ*(A) = ϊί(A),
α

On the other hand, one obtains in the same way that

μ(A ) ̂  lim inf (μ ) (A) ύ lim sup (μ ) (A) ύ lim sup μ (A )

α α α

^ μ(A
C
) = μ(A°), whence also lim (μ )

<Jt
(A) = μ(A), which proves (f).

α

This concludes the proof of the Portmanteau theorem, •

IDENTIFICATION OF LIMITS:

Let C be the set of all closed balls in S = (S,d) and let C denote

the class of all subsets of S which are finite intersections of sets in C.

Then, since C is a Π-closed generator of 8 (S), we have for any two

μ.GR (S), i=l,2, that μ
χ
 = μ if μ

χ
(A) = μ

2
(A) for all AGC

Π f
 (cf. Gaenssler-

Stute (1977), Satz 1.4.10).

We will show below that for any net (μ ) in M (S) and any μ.eM, (S),

μ
α "b

 μ
i '

 i = 1
'

2
»

 i m
P

l i e s
 ^

1

 =
 ^

2
'

For this we need the following auxiliary result:
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(29) For any ACS, any ε>0, and any separable S Cs, there exists

o

an f
£
Oj£(S) such that 0£f£l,

reSt
C(AΠS^)ε

 f

ε

 Ξ
 °

 and r e s
W
 f

ε

 Ξ U

Proof. It follows from Lemma 11 (ii) that

d(x,AΠS
C
)

f (x) := max [(1 —)»θ], x€S,

has the stated properties. D

LEMMA 13. Let μ.GR(S) be separable, i=l,2, and suppose that

(+) Jfdμ
1
 = Jfdμ

2
 for all fβj£(S);

then μ
1
 = μ

2

Proof. Let S. be the separable subsets of S for which μ.(S.) = μ.(S), i=l,2;

put S := Ŝ UŜ j
 t o s e t a s e

P
a r a t ) l e

 subset of S for which μ.(S
C
) = μ.(S),

i=l,2. Now, given an arbitrary AGC and n£]N , choose f =f . according to

(29) to get a sequence (f )OJ (S) for which

lim f = l.
n ς O

; from this, by Lebesgue's theorem and (+)
n-*"

 n
 c

it follows that

^ ^ = μ ^ A ) . D

Lemma 13, together with the equivalence of (g
1
) and (h

1
) in (28) implies the

result announced above (cf. Definition 4 (i)):

Lemma 14. For any net (μ ) in M (S) with μ -rj μ., i=l,2, we have μ = μ .

WEAK CONVERGENCE AND MAPPINGS (Continuous Mapping Theorems):

Let S = (S,d) and S
f
 = (S

?
,d

!
) be two metric spaces and suppose again

that A is a σ-algebra of subsets of S such that B
b
(S) C A C B(S); let g: S + S

τ

be A,B (S
1
)~measurable and let μ 6M (S) and μE/^CS), respectively,μ separable.

Then μ and μ induce measures v and v on B, (S
!
), defined by

α α b
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v
α
(B') := μ

α
(g

 1
CB

t
)) and v(B

τ
) := £(g

 1
(B')) for B'dB^S

1
), where

g (B
1
) = lx6S: g(x)eB'} and where μ is again the unique Borel extension of

μ (cf. (24)).

We are interested in conditions on g under which μ —=*« μ implies

v = μ og —r* \) Ξ μog . it can be shown by examples that measurability of g

alone is not sufficient for preserving weak convergence. As we will see, some

continuity assumptions on g will be needed. The corresponding theorems are then

usually called CONTINUOUS MAPPING THEOREMS.

THEOREM 3.

Let S - (S,d) and S
f
 = (S

!
,d

f
) be metric spaces, let A be a σ-algebra of sub-

sets of S such that B (S) C A C B(S), and let g: S -> S
f
 be A,B (S

!
 )-measurable

and continuous. Let (μ^) be a net in M (S) and let \iEhί (S) be separable such

t h a t μ
α ~~b

 μ # T h e n V
α

 Ξ μ
α °

 g
~

±
 ~b

 V Ξ μ
 °

 g
"

±
'

Theorem 3 is a special case of the following result where the continuity

assumption on g is weakened:

THEOREM 4. Let S = (S,d) and S
τ
 = (S

τ
,d

!
) be metric spaces, let A be a σ-alge-

bra of subsets of S such that B, (S) C A C B(S), and let (μ ) be a net in

b α

M (S) and μEAl (S) be separable such that μ -£ μ; let g: S -> S
τ
 be A,B (S')~

measurable such that μ(D(g)) = 0. Then v Ξ μ g —ζ v Ξ μ«g

(Note that D(g) 6 B(S); cf. P. Billingsley (1968), p. 225-226.)

Proof. Note that v ^ M ^ S
1
) and \>ύl (S

!
), whence v^ -ζ v iff

(i) v is separable and (ii) lim J fdv = J fdv for all fθl(S
f
) where (ii)

α S
 α

 S'
 b

is equivalent to any of the conditions (a)-(h
1
) in (28) (with S replaced by S

1

and A replaced by A
!
 = B (S

f
)).

1.) v is separable:

since μ is separable, there exists a separable S Q5 such that μ(S ) = μ(S).
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Let T CS
Q
 be countable and dense in S (as well as in S ) and let T

f
 := g(T );

we will show that S
1
 := g(S^\D(g))UT

1
 is a separable subset of S

τ
 with

v((sυ°) = v(S').

For this we will show that T
τ
 (being countable) is dense in S

!
:

o o
in fact, l e t (w.l.o.g.) yGgtS^Dίg)), i . e . , y = g(x) for some xESC\D(g)f

Since T is dense in S there exists a sequence (x ) ^τ.τ

cT such that x -> xo o ^ n nEU o n

and therefore, since x f D(g), we have g(x ) -> g(x) = y, where g(x ) GT1 .

Next, since g
 X
( ( S M

C
) D g (g(S^\D(g))) D S^D(g) and since £(D(g)) = 0,

we have

v((S')
C
) = μ(g~ S M ) ) ϊ ( S ^ D ( g ) ) S ( S ) μ(

= £ ( S ° ) = μ ( S ^ ) = μ ( S ) = Ϊ ( S ) = ϊ ί g ' ^ S 1 ) ) = v ( S f ) .

2.) It remains to show (ii) lim J fdv = J fdv for all f6C?(S
f
).

α S
 α

 S
 b

For this, given any fEC, (S
f
), we have that f g: S -> ]R is a bounded function

belonging totF (S) which is μ-a.e. continuous, and therefore it follows from
a

(28) (cf. (e
1
)) that

lim / fdv = lim J (f g)dμ = J (f g)dμ = J fdv, which proves (ii). D

α S
f α

 α S
 α

 S S
!

The following lemma is in some sense an inverse result:

LEMMA 15. Let S = (S,d) be a metric space, (μ ) be a net in M (S) and let

ot a
μEK (S) be separable such that μ βf" -^ μ f" for all fEC (S). Then μ -Γ μ.

b a b a α D

Proof. Note that in the present case S
1
 = P. (a separable metric space), whence

— 1 ~ —1
v Ξ μ f and v Ξ μ f are separable Borel measures on C = B(IR). Now,

for any fEC^(S) and any gEC^(]R) = C
b
(]R) we have

lim J (g f)dμ = lim J gdv = J gdv = J (g f)dμ.
αS α

α ] R α ] R S

Furthermore, for any fEC (S) there exists a c>0 such that |f| ̂  c, whence for

a

r
-c, if t<-c

g(t) :=<^ t, if |t| ύ c,t6E,

I c, if t>c
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we have g6C (]R) and g f = f. Therefore it follows that lim Jfdμ = Jfdμ for all

fee (S) implying the assertion since μ is, by assumption, separable. D
a

For the next mapping theorem we need the following auxiliary lemma, the

proof of which is left to the reader.

LEMMA 16. Let S = (S,d) and S
1
 = (S

f
,d') be metric spaces; given g ,

g: S -> S
1
 , nG3N, let

E = E((g
n
),g) := {xeS: ^ ( x ^ ^

 c
 S s.t. x

n
 + x but g ^ x ^ y * g(x)}.

Then x£E iff for every ε>0 there exists a kE]N and a δ>0 such that n^k and

d(x,y) < 6 together imply d
f
(g(x),g

n
(y)) < ε.

THEOREM 5. Let S = (S,d) and S
1
 = (S'^d

1
) be metric spaces, A be a σ-algebra

of subsets of S such that 8
b
(S) C A C B(S), and let (μ ) be a sequence in

M (S) and μβί (S) be separable such that μ -g μ; let g , g: S •* S
f
 be

A,B (S
τ
)-measurable, nEU, such that

μ*(E) = inf{μ(B): B 3 E, B E A} = 0. Then V
n
 Ξ μ g^" -g v = μ g"

1
.

Proof, (cf. P. Billingsley (1968), Proof of Th. 5.5).

1.) v is separable: this is shown as in the proof of Theorem M , replacing

g(T
Q
) there by T := U g

n
(T ).

E]N

2.) We are going to show

(+) lim v (S
1
) = v(S

f
)

n
nχ»

and (++) lim inf v (G) ^ v(G) for all G 6 G(S') Π B, (S
1
).

n ^
 n b

(Note that (+) together with (++) imply the assertion according to (28) with

S replaced by S
1
 and A replaced by A

1
 = B (S

f
 ).)

ad (+): μ -^ μ implies (cf. (28)) μ (S) •> μ(S) and therefore
n Jb n

V
n
(S

f
) = μ

n
(g^(S')) = μ

n
(S) + μ(S) = μ(S) = μίg'^S')) = v(S').

ad (++); Given an arbitrary G 6 G(S') Π B (S')
9
 we have
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(a) g
 1
(G) C E U U τ° where T : = Π g ^ G ) E A,

kern
 k k

 n^k
 n

and

(b) v(G) = μ(g"
1
(G)) £ μ( U T°).

K

ad (a): It suffices to show that x E (JE and g(x) E G together imply x £ T° for

some k. Now, since G E G(S
f
) we have that for some ε>0 B,

t
(g(x),ε) C G; on the

other hand, by Lemma 16 x 6 &E implies that there exists a k E 3N and a δ>0 such

that d'(g(x),g (y)) < ε whenever n^k and d(x,y) < δ; therefore g (y) E G for

all n^k and all y E S with d(x
5
y) < <5 implying B

d
(x,d) C g"

1
^) for all

whence B (x,δ) C T , and therefore x 6 T°,

Q K JC

ad (b): μ(g"
1
(G)) Z μ*(E U U Ί?) ύ Ϊ*(E) + μ*( U τ°)

(a) ken
 K
 kEIN

 k

= μ*( U T°); note that for A E B(S), μ*(A) ̂  μ(A) by (23); we will show that
κ

even μ = μ on B(S) which proves (b).

For this, let A E B(S); it suffices to show that μ (A) ύ μ(A).

Now, μ(A) = μ(S
C
 Π A) = μ(S° n A

f
) for some A

1
 E B^ίS) (noticing that for

separable S° one has S° n A E B(S°) = B, (S
C
) = S

C
 Π B, (S))

s
 and thereforeF

 o o o b o o b
9

μ(S° Π A
1
) = μ(A

!
 U ζs°) Z μ*(A), since A C A

!
 U Cs° E B. (S) C A.

O O O D

Now, since T° C T° and therefore μ(T°) t μ( U T^), for every ε>0, there
k k+1 k k

exists a k E IN such that
o

μ( U T°) ύ μ(T°) + ε for all k ^ k ,

kern
 k k

 °

and therefore, by (b), we obtain

v(G) ̂  μ(T°) + ε for all k U ,
K o

But μ -7* μ implies (cf. (28)) that for every kEϋN
n b

Ϊ(T°) ύ lim inf (U
n
)

#
(T°),

and therefore, noticing that T° C g (G) for sufficiently large n, we obtain

K n
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μ(T°) έ lim inf μ ( g ^ C O ) = lira inf v (G),
k n n n

whence v(G) ύ lim inf v (G) + ε for every ε>0, which implies (++). D

n*»

WEAK CONVERGENCE CRITERIA AND COMPACTNESS:

As before, let S = (S,4)
 b e a

 (possibly non-separable) metric space, let

M (S) be the space of all p-measures on a σ-algebra A with EL(S) C A C B(S)

and let ̂ ί(S) be the space of all p-measures on β (S).

DEFINITION 5. Let (μ ) _. be a net in M
X
(S); then (μ )

 C Δ
 is called δ-tight

ot dcA a ot otfcA

iff

(30) sup inf lim inf μ (K
δ
) = 1.

δ>0 α€A α

(Note that K E B,(S) C A according to Lemma 11 (ii).)

The following two results were proved by M.J. Wichura (1968), Th. 1,3

and Th. 1.4; in view of (27) b) they can be restated as follows (where in

Theorem 7 the assumption of (S,d) being topologically complete cannot be dis-

pensed with, in general).

THEOREM 6 (Wichura). Let (μ )
 C Δ
 C M

1
(S) be δ-tight.

Ot Ottn. a

Then there exists a subnet (μ ,)
 f Δ T

 of (μ ) . and a separable μEM, (S) such
Ot Ot vzzΔ 01 OtvzΔ JD

that μ
α
, - - μ .

THEOREM 7 (Wichura). Let S = (S,d) be a topologically complete metric space

and (μ ) be a net in M (S); then there exists a separable μEM, (S) with

(a) lim inf Jfdμ = lim sup Jfdμ for all f e
Ot Ot D

α α

and (b) (μ ) is δ-tight.

We are going to prove here instead the following versions of Theorem 6 and

7 (cf. Remark (31) below):
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THEOREM 6*. Let (μ ) he a net in M
1
(S) fulfilling the following two con-

ditions:

(b ) For every (f ) __
τ
 C lί(S) with f Ψ 0 one has

1 n nEJN b n

lim sup Jf dμ -> 0 as n-x».

α

(b_) There exists a separable S C s such that
^ o

lim inf Jfdμ ^ 1 for all f G lf(S) with f
b

S
C

o

Then there exists a subnet (μ
 f
) ,^, of (μ ) and a separable μ G Λi(S)

with μ(S°) = 1 such that μ -r* μ.
o ΌL b

THEOREM 7*. Let S = (S,d) be an arbitrary metric space and (μ ) be a net in

M (S); then there exists a separable μ G Λί(S) with μ —=* μ iff the following

conditions are fulfilled:

(a) as in Theorem 7 and (b.), i=l,2, as in Theorem 6 , where in this connec-

tion the separable S with μ(S ) = 1 and the separable S occurring in (b~)

coincide.

Proof of Theorem 6*. Let μ (f) := Jfdμ for f G U (S) and consider the net

α~(u
α
(f»

£ θ J
b

( s )
e π [

b
 fθf(S)

b

where ||f|| := sup |f(x)|. Since the product space Π [- ||f||,||f|| 1

x G S
 fGU

b
(S)

is compact in the product topology (Tychonov
!
s theorem), there exists a con-

vergent subnet, say α
1
 ι—> (μ ι (

f
^£Qjb(

S
)» α

f
GA

τ
. Therefore lim μ

 t
(f)

exists for each f G
 u

b
( S ) .

Let μ(f) := lim μ ,(f) for f G U
b
(S);

then μ:
 u
 (S) — > ]R is positive, linear, and normed.

b
We are going to show that μ is also σ-smooth on U (S):
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for this, let (f ) ___C lί(S) with f Ψ 0; then it follows by (b.) that
n nfcJN b n

 J
 1

μ(f ) = lim μ
 t
(f ) = lim sup Jf dμ .

n
 α

, α' n
 α

, * n α'

^ lim sup Jf dμ -> 0 as n-*»,

α

Therefore, according to the Daniell-Stone representation theorem, there exists

one and only one μ E M, (S) such that

μ(f) = Jfdμ for all f E l£(S).

D

Hence, in view of (28) (cf. the equivalence of (g
!
) and (h

!
)) it follows that

μ , —£ μ, if we finally show that μ(S°) = 1 (i.e. μ separable).

For this we use (b^) according to which

(+) lim inf Jfdμ ^ 1 for all f G l£(S) with f * 1

α
 b

 S
C

o
taking

f (x) := max [l - nd(x,S^),0], xGS,

andwe obtain a sequence (f ) € CU (S) with 0 £ f £ 1

1 ^ f ^ 1
 Λ

 . , whence by the σ-smoothness of μ
s
c n

 ( s
c 1/n

o o

(note that S°,(S
C
)

1 / n
 G B, (S) by Lemma 11 (ii)),

O O D

μ(S
C
) = inf μ((S

C
)

1 / n
)^inf Jf dμ = inf lim Jf dμ ,

o .̂--T o n i n α
1

n£U n n α
f

^ inf lim inf Jf dμ ^ 1, whence μ(S
C
) = 1. D

n α
 n α

 ( + ) °

Proof of Theorem 7 . Only if-part: Suppose μ —£ μ;

then (a) is a consequence of (28) (cf. the equivalent statements (g
f
) and

(h
1
)).

ad (b,): Let (f )
 cnκτ

 Clf(S) with f 4- 0; then (cf. again the equivalence of
x — n ntjN JD n

(g
1
) and (h

!
) in (28)) lim sup Jf du = lim Jf

n
dμ

α
 = Jf

n
dμ -> 0 as n^°

α α

according to the σ-smoothness of μ on
 u

b
(S)

ad (b^): Since, by assumption, μ is separable, there exists a separable S C s
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such that μ(S°) = μ(S); therefore, for any f 6 uf(S) with f Π one has
o b

 s
c

o

lim inf Jfdμ = lim Jfdμ = Jfdμ ^ μ(S°) = μ(S) = 1.
α α o

α α

1 c

If-part: It suffices to show that there exists a μ E M. (S) with μ(S ) = 1

such that for any subnet (μ ,) of (μ ) there exists a further subnet (μ
 M
)

such that μ
 M
 —ζ μ.

For this, let (μ ,)
 l f = Δ t

 be an arbitrary subnet of (μ )
 a
 then it is easy to

α α tA α αtA

show that (μ ,)
 ! C : Δ I

 fulfills (b
Λ
) and (b

o
) and therefore, by Theorem 6 , there

α α tA -L 2.

exists a subnet (μ „)
 llc
.,, of (μ

 t
)

 ! C Δ
, and a μ

Δ f
 „ E Λl (S) with

Ot Ot vΞ*A Ot Ot vHxX Jt\ % ί\ iλϊ*

c.
y

Λ
ι Λif(S ) = 1

9
 s u c h t h a t μ „ — ^ μ

Λ f
 ....K

A
!
,A" o ' α" b A

f
, A

M

We are going to show that μ
Δ
,

 Δfl
 in fact does not depend on A

1
 or A", whence

A , A

for μ being the common value of all the μ
Λ l
 .„ we get μ -^ μ, which will

A , A Ot JD

conclude the proof.

For this, given any f E U (S), we have by (a)

lim inf Jfdμ ύ lim inf Jfdμ „ = Jfdμ
Δ! Δ M

αEA
 α

 α"EA"
 α

 '

= lim sup Jfdμ
 fl
 ̂  lim sup Jfdμ = lim inf Jfdμ ,

α"EA
M α

 αEA
 α

 αEA
 α

whence Jfdμ
A? A

,, = Jfdμ~
t
 -„, for all f E

 u

b
(S)

and any other subnet d
J
~
M
)~ιι^Tti of (vι~f)~tcAi

which is a subnet of (μ )
α Q

. , with μ~
π
 —£ μ~

t
 ~

tl
;

therefore Lemma 13 implies the assertion. D

(31) REMARK. Any «S-tight net (μ ) C M"
L
(S) fulfills (b.)

3
 i=l,2, but not vice

versa (look at μ Ξ μ with a separable μ E ^ί(S) which is not tight).

Proof, ad (b,): Let (f )
 C1λτ

 C UΓ(S) with f Ψ 0 and assume w.i.o.g. sup f ̂ 1 ;
i.— n ntJJN D n n

then for every n £ 3N , every δ>0, and every K E K(S) we have

lim sup Jf dμ = lim sup ( J
x
f dμ + J^f dμ )F

 n α
 r

 ' δ n α
 Γ v

δ n α
α α K CK
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^ lim sup J.f dμ + lim sup J~f dμ

α K
δ n a

 α CK
δ n α

^ (since f ^1) sup. f (x) + lim sup μ «JK ) ̂ sup~ f (x) + sup lim sup μ (£K ).
n
 xGK

ό n
 α

 α
 xGK

 n
 δ>0 α

 α

Now, given any ε>0, there exists by assumption (cf. (30) and look at com-

plements) a K 6 K(S) such that sup lim sup μ (£K ) ύ ε/3.

ε
 δ>0 α

 α ε

Therefore, for any ε>0 there exists a K 6 K(S) such that for all n G ΊX and δ>0

lim sup Jf dμ ^sup {f (x): x G K
6
} + ε/3.

α
 n α n

Furthermore, it is easy to show that for any ε>0 and n G IN there exists a

δ(ε,n) such that

sup if (x): x e K^
( ε
'

n )
} ύ sup if (x): x G K

£
} + ε/3.

We thus obtain that for any ε>0 there exists a K G K(S) such that for every

n G H

lim sup Jf dμ ^ sup {f (x): x G K } + ε/3 + ε/3.

α

But, since K is compact, sup {f (x): x G K } -> 0 as n->», whence

lim sup Jf dμ ύ ε for sufficiently large n, which implies (b^.

ad (b
o
): δ-tightness of (μ ) implies that for every n G U there exists a

2.— ot

K G K(S) such that inf lim inf μ (K
6
) £ 1 - -.

n
 Γ

^
Λ
 a n n

δ>0 a

Put S := U K to obtain a separable S C S; then, given any f G U^(S)

nGϋN

with f ^ 1 , we must show that

S
C

o

(+) lim inf Jfdμ ^ 1.
α

α

Since f ^ 1 for each n, it follows (by continuity of f) that for every n G
K
n

and every ε>0 there exists a δ = δ ( ε , n ) > 0 such thatJ
 o o

inf ίf(x): x G K^} ^ 1 - ε, whence Jfdμ
α
 ^ (1-ε) U

α
(

κ

n
°) Therefore, for

every ε>0 and every n E U w e have lim inf Jfdμ ^ (1-ε) lim inf ^ ( K ^ )

α α
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k (1-ε) inf lim inf μ (K ) ̂  (l-ε)(l--), which implies (b ). D
δ α

 α n n

(32) Remark. The proof of Theorem 7* shows that any net (μ )
 C Λ
 C M (S)

————————— ot oiviA a

which fulfills (b.), i=l,2, is a compact net in M (S) (i.e. for any subnet
I a

(
V

}
a'eA' °

f (μ
a

}
aeA

 t h e Γ e e x i s t S a f u r t h e r s u b n e t ( μ

α

 ι)
α"eA" °

f (
V

}
a'GA'

and a separable μ 6 Λί(S) such that μ
 u
 -£ μ).

The following lemma prepares for the next theorem (cf. M.J. Wichura

(1968), Theorem 1.2 (a)).

LEMMA 17. Let (μ ) be a net in M (S) and μ G R(S) be separable, i.e.,

μ(S ) = μ(S) for some separable S C S; let C C A be such that
o o

(33) for each x E S° fc € C: x G C°} is a neighborhood base

at x,

and let C denote the class of all finite intersections of members of C.

Suppose that

Then

~ Πf

( + ) lim μ (C) = μ(C) for all C G C .

α

lim inf μ (G) ̂  μ(G) for all G G G(S) n A.
α

α

(Here again μ denotes the unique Borel extension of μ and A is a σ-algebra of

subsets of S with B, (S) C A C 8(S).)

D

Proof. Given any G 6 G(S) n A, it follows by (33) that for every x E G n S°

there exists a C EC such that x G C C G C G, whence
x xx

G Π s° C U C°, which means that {C° Π S°: x G G Π s°} is an open covering
o
 χ e σ Ί s

c x' x o

of G Π S in the separable subspace (S ,d) of (S,d). Therefore (cf. Billings-

ley (1968), p. 216) there exists a countable subcovering of G ̂  S , i.e.,

G Π S C C U ( c ° Π S C ) w i t h x 6 G Π S C , n e i .
o -̂_τ x o n o

n G U n
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Put C := C , n eW; then U C C U C C G, whence

neu n xGens0 x

O

μ(G) ^ μ( U C ) = μ( U (C Π S°)) ̂  μ(G Π S°) = μ(G),
n n o o

n n

i .e., μ(G) = μ( U C ).
n

n

n-1
Put C* := C. and C! := C \ U C., n ^ 25 to get pairwise d i s j o i n t s e t s

C1 G A with U C1 = U c , for which one can eas i ly show (using the assump-
n nG]N n nGU n

tion (+)) that

lim μ (C
1
) = μ(C

f
) for all n GIN.

α n nα - "

Therefore, for every n G U we have

n n n n

(++) lim μ ( U C!_) = lim Σ μ (C!) = Σ μ(C!) = μ( U C ! ) .
α α i = l 1 α i = l α 1 i = l 1 i = l 1

Since μ(G) = μ( U C^) = μ( U C
!
) , there exists for each ε>0

5
 an n = n(ε) G 3N

nG]N

~
 n
 ~

such that μ( U C!) ̂  μ(G) - ε
5
 and therefore (note also that G 3 U cl)

1 x

lim inf μ (G) ̂  lim inf μ ( U C! ) = μ( U C|) k μ(G) - ε,

α
 α

 α
 α

 i=l
 X
 (++) i=l

 1

which proves the assertion. D

THEOREM 8. Let (μ ) be a net in M
1
(S) and μ G Mĵ (S) be separable

(i..e.,μ(S ) = μ(S) = 1 for some separable S C S).
o o

Suppose that C C {B G β (S): μ(3B) = 0} fulfills (33).

b

Then the following two assertions are equivalent:

(i) lim μ (C) = μ(C) for all C G C
Π f

α

(ii) μ.-eμ.

Proof, (i) =* (ii): Follows immediately from Lemma 17 and (28) (cf. the equi-

valence of (a
1
) and (g

1
) there); note that lim μ (S) = μ(S) is trivially

α
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fulfilled for p-measures μ and μ.

(ii) =» (i): Again (28) (cf. the equivalence of (g
τ
) and (f

1
)) yields

lim μ (B) = μ(B) for all B 6 {B 6 B, (S): μ(3B) = 0} =: R~ = R~
f
 D C

Π f
. D

α D μ μ

We will consider next a Cramer-type result which is useful in applica-

tions.

For this, let again S = (S,d) be a (possibly non-separable) metric space, A

be a σ-algebra of subsets of S such that 8, (S) C A C B(S), and let (ξ ) „.

D n ntJN

be a sequence of random elements in (S,A) and ξ be a random element in

(S,B,(S)), being all defined on a common p-space (Ω,FjP). Then

(34) ξ is said to converge in law to ξ (denoted by

L
ξ -=•* ξ) iff L{ξ } — e Hξ} (in the sense of
n n b

our Definition 4).

Now, let (η ) ™ be another sequence of random elements in (S,A) defined on

the same p-space (Ω,F ,P), and let

d(ξ
n
,n

n
)(ω) := d(ξ

n
(ω),n

n
(ω)), ω 6 Ω.

Note that for non-separable S, d(ξ ,n ) need not be a random variable.

THEOREM 9a. Suppose that in the setting just decribed

lim P*(d(ξ ,π ) > 6) = 0 for every 6 > 0,
n-χ»

where Έ denotes the outer p-measure pertaining to P.

Then ξ -2-> ξ iff η -^> ξ.
n n

Proof. By symmetry, it suffices to show that

ξ > ξ implies η ϊ ξ.

n n

L
 b

So, assume ξ > ξ and let f 6 U (S) be arbitrary but fixed;

n D

then according to (28) (cf. (h
!
)) it suffices to show that
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( + ) lim I E(f(ξ
n
)) -lE(f(n

n
))| = 0.

(Note that f(ξ ) and f(η ), as well as f(ξ), are random variables.)
n n

ad (+): Given an arbitrary ε>0 there exists (by uniform continuity of f)

a ό = δ(ε) > 0 such that |f(x) - f(y)| ̂  ε whenever d(x,y) ̂  6; also

||f|| = sup |f(x)| < co.

xes

Therefore,

I E(f(ξ
n
)) -E(f(n

n
))| ^ J|±r(€n) - f(nn)| dip

-- J#
|f(ξ

n
) - f(n

n
)| « s !\

άUΛ)>6}
 l«5

n
) - f(n

n
)|

^ 2 ||f || P*(d(ξ ,η ) > 6) + ε •> ε as n -> «,

whence lim sup | E(f(ξ )) - E(f(n ))| = ε for every ε > 0,

which implies (+). •

The following version of Theorem 9a is useful as well,

THEOREM 9a . Let (ξ ) ̂
T̂
 and (η ) __. be sequences of random elements in

n ΏEM n ntJN

(S,A), defined on a common p-space (Ω,F
>
1P) such that

(a) lim P*(d(ξ ,η ) > 6) = 0 for every δ > 0.
n-χ»

Let S
τ
 = (S

!
,d

!
) be another metric space and

H: S -> S
1
 be A,B

b
(S

!
 )-measurable

9

and such that

(b) d
τ
(H(x)

9
H(y)) ^ L d(x,y) for all x

5
y 6 S

and some constant 0 < L < °°.

Then, for any random element ζ in (S
!
,B

b
(S

!
))

s

H(ξ ) -2-> ζ iff H(η
n n
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Proof. H(ξ ) and H(η ) are random elements in (S
f
,B (S

1
)) for which by (a)

and (b)

]P*(d
f
(H(ξ ), H(η )) > δ) ̂ P*(d(ξ ,η ) > 6/L) •> 0

n n n n

for every δ>0, whence the assertion follows from Theorem 9a. D

REMARK. Instead of (b) it suffices to assume only that H is uniformly con-

tinuous.

THEOREM 9b. Let (ξ ) be a sequence of random elements in (S,A) and let ξ

be a random element in (S,8, (S)) being all defined on some common p-space

(Ω
9
FjP). Suppose that ξ iaP-a.s. constant; then ξ ? ξ implies

lim 3P*(d(ξ ,ξ) > δ) = 0 for every δ > 0.

Proof. We show first

( + ) lim E(|f ξ - f ξ|) = 0 for all f 6 t£(S).
b

UΓ(S) we have (cf. Theorem 3) that f ξ * fβξ,

D n

In fact, for each f E UΓ

D

f ξ and f ξ being real random variables such that f oξ is P-a.s. constant,

Έ ΊP

whence (by classical probability theory) f ξ -*- f ξ (where •> denotes con-

vergence in probability). Since f is bounded, ifo ξ : nEΈ } is uniformly

L
l

integrable and therefore f
 β
 ξ —f f

 β
ξ which proves ( + ).

We are going to show that (+) implies

lim P*(d(ξ ,ξ) > δ) = 0 for every δ > 0.
n
-xχ»

 n

For this, let δ>0 be arbitrary; since L{ξ}(S
C
) = 1 for some separable S C S

there exists a countable and dense subset {x.: iEΠN } of S and we have

1 O

E Ŝ ) = 1.

Then, for each iEU , there exists an fi E U (̂S) such that Ô  ^ i l and

{ 0 if x6B°(x.,6/4)

1 if xECB°(xi9δ/2),

where B°(x.,r) denotes the open ball with center x
i
 and radius r.
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In fact, take

d(x,B°(x.,δ/4)ΠS
C
)

f.(x) := 1 - max [(1 i —),θl
1
 6/4

to get such a function.

Now, let A
1
 := ίξ6B

o
(x

1
,δ/4)} and for i^2 let

then A. E F, the A.'s being pairwise disjoint and such that P( U A.) = 1
1 1 iE3N 1

a c c o r d i n g t o ( * ) . T h e r e f o r e

P * ( d ( ξ , ξ ) >δ ) £ Σ P * ( { d ( ξ , ξ ) > δ } Π A . )

i E K

^ Σ I P * ( { d ( ξ , x ) > h ] Π A . ) £ Σ J * l | f ξ - f . o ξ | d P
n i 4 i i e ] N A± i n i

= Σ / |f.o ξ - f. . ξ|dP
5

iE3N
 A
i

 1

where the last inequality follows from the fact that for all

ω E { d ( ξ , x . ) > - ^ δ } n A . o n e h a s f . ( ξ ( ω ) ) = 1 a n d f . ( ξ ( ω ) ) = 0
n l 4 l in l

by construction of the f . τ s .

If we put g ( i ) := J |f. o ξ - f. ξ jdF and g( i ) := P(A.)
n A l n i i

i

for each iEJJ, we o b t a i n funct ions g and g on Έ for which

O^g ^g and Σ g ( i ) = Σ P(A. ) = P ( U A.) = 1,
n iE]N iE]N X iEIN 1

i.e.
f
the g 's are integrable functions on U (integrable w.r.t. the counting

measure on U) being dominated by an integrable function g; since, by assumption

lim g (i) = 0 for all iEJN,

n̂ °°

it follows from Lebesgue's dominated convergence theorem that

l i m s u p P * ( d ( ξ , ξ ) > δ ) ^ l i m Σ g ( i ) = 0 . D

n-*°° n^°° i E ] N

Finally, concerning the speed of convergence we have the following

result:
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THEOREM 10. Let ξ 5 n£H , and η be random elements in (S,A) defined on a

common p-space (ΐl91rJP) such t h a t for some sequence a + 0

( a ' ) P * ( d ( ξ n , η ) > a n ) = < « a n ) .

Let H: S ->]R be A,β-measurable and such t h a t

( b f ) |H(x) - H(y) | £ L d(x,y) for a l l x 9 y 6 S

and some constant 0 < L < °°.

Assume further that L{H(η)} is absolutely continuous w.r.t. Lebesgue measure

λ such that

(c ) | | h | | = sup | h ( t ) | =: M<»fbr h
t6]R

Then

s u p jP(H(ξ ) ^ t ) - P ( H ( η ) £ t ) | = CT(a ) .

ten n n

Proof. Let tEJR be arbitrary but fixed; then

P(H(ξ
n
) ̂  t) -Γ(H(η) £ t)

]P*(H(ξ ) ̂  t, d(ξ ,η) ̂  a ) + σ(a ) - P(H(η) ̂  t)

n n n n

P(H(ξ
n
) ύ t, |H(ξ

n
) ~ H(η)| Z L a

n
) + «a

n
) -P(H(η) ύ t)ξ

n
)

P(H(η) ύ t + L a ) + tf(a ) - P(H(n) ̂  t)
n n

^ M L - a + CΓ(a ) = CΓ(a ).
(c ) n n n

In the same way one obtains that

whence also

so that in summary

3P(H(ξ
n
) > t) -P(H(η) > t) =

P(H(η) ύ t) -P(H(ξ ) ύ t) =

sup |P(H(ξ ) ύ t) -]P(H(η) ύ t)| = CΓ(a ). D

ten
 n n

SOME REMARKS ON PRODUCT SPACES:

Let S
f
 = (S

f

5
d

!
) and S" = (S",d

ff
) be two (possibly non-separable) metric
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spaces.

Let S := S
1
 * S " be the Cartesian product of S

!
 and S" and let d := max(d

!
,d"),

i.e.,

d((x
ι
,x"),(y',y")) := max(d' (χ ,y' ),d"(x'\y"))

for (x',x") 6 S and (y
!
,y") G S,

Then S = (S,d) is again a (possibly non-separable) metric space.

(1) B
b
(S) C B^S

1
 ) ©REMARK.

and (2) B(S
f
)® B(S") C B(S),

the inclusions being strict in general as can be shown by examples.

Let A
r
 and A" be σ-algebras of subsets of S

!
 and S", respectively, such that

B
b
(S

f
) c A' C 6(S

!
) and B^(S") c A" c B(S

M
).

Then

fi.(S) c B,(S') ®BAS") c A
!
 ©A" c B(s')©B(S") c B(s),

b
 (1)

 b b
 (2)

i.e.,putting e.g., A := B^S
1
) ® ^(S") ... (a)

or A := A' © A " ... (a
1
),

we have again

B
b
(S) C A C B(S) for the product space S = S

1
 x S".

Now, let ξ , nE3N, be random elements in (S',A
f
)

9

ξ be a random element in (S',B, (S'))
9

η , n θ ί , be random elements in (S",A
M
)

9n

and let η be a random element in (S",B, (S
f!
))

suppose that all these random elements are defined on a common p-space

Then (ξ ,n ), nEΠN , are random elements in (S,A) (for both choices of A as in
n n

(a) or (a
1
)) and

(ξ,η) is a random element in ( S ^ t S
1
 ) Θ

as well as in (S,B, (S)) (cf. (1) in the above remark).

Thus, considering (ξ,η) as a random element in (S,B, (S))
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is again defined in the sense of (34), i.e., as

L{(ξ ,n )} ( eM (s)) -^ L{(ξ,η)} ( eM. (s)),
n n a b b

Supplementing the results contained in Theorems 9a and 9b we can prove

within the setting just described the following Theorems 9c and 9d:

THEOREM 9c, Suppose that n equals P-a.s. some constant c;

L
b
 L

b
 L

h

then ξ > ξ and η * η. together imply (ξ ,n ) > (ξ,n).

Proof. According to Theorem 9b,

η > η and n = c P-a.s, imply lim P (d
π
(n ,n) > δ) = 0 for every δ>0.

S i n c e d ( ( ξ 5 η ) , ( ξ , η ) ) = m a x ( d f ( ξ , ξ ) , d " ( n , η ) ) = d f ! ( n , n ) ,
n n n n n n n

we thus have

lim P*(d((ξ ,η ),(ξ
s
η))>fi) = 0 for every <5>0.

nχ»

Therefore, by Theorem 9a, the assertion of the present theorem will follow if

we show

ad (+); 1.) L{(ξ,η)} is separable:

since L{ξ} is separable, there exists a separable S
1
 C S

1
 such that

L{ξ}(S
tC
) =1. Take S := S'

C
 x {c} to get a separable and closed subset

o o o

S = S
C
 of S for which

o o

U(ξ,n)}(s
o
) =p((ξ,η)es

Q
) =p((ξ,n)es^

c
 x {c})

= p((ξ,c)es
| C
 x {c}) =f(ξes'

c
) = L{ξ}(s

fC
) = l,

o Q o

2,) According to the Portmanteau theorem (cf. (h
f
) there) it remains to show

that

S f dμ ? J f dμ for all f € U?(S),

S n S
where μ := L{(ξ ,η)} and μ := ί-{(ξ,η)}.

n n
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Now, given any f: S. = S
!
 x S" •> ]R being hounded, d-uniformly continuous

and B, (S)-measurable, it follows from (1) in the remark made at the beginning

that f is also B (S
1
) 0 B,(S

n
)-measurable,

whence

f: S
!
 ->]R, defined by f'(x') := f(x

!
,c), x

!
E S

!
,

is B (S
!
 )-measurable, and thus f

!
 E IΓ(S

!
),

But now, with μ
1
 := L{ξ } and μ

!
 := L{ξ}, we obtain from ξ ψ ξ (using

n n n
a g a i n t h e P o r t m a n t e a u t h e o r e m ) :

/ f d μ n = J f o ( ξ n , η ) d I P = J f ( ξ n , c ) d I P = J f ! * ^ d P
S Ω Ω Ω

= J f ' d μ f > J f ! d μ ! = J f ! o ξ dlP = J f ( ξ , c ) dlP
S ! n S f Ω Ω

= J f < » ( ξ , n ) d P = J f dμ. D
Ω S

For sequences of independent random elements one gets

THEOREM 9d. Suppose that ξ and η are independent for each nEϋN and suppose

also that ξ and η are independent. Then the following two statements are

equivalent:

(i) ξ > ξ and n — * n

n n

Proof, (i) => (ii): 1.) L{U,n)) is separable;

since both, L{ξ} and L{η} are separable, there exist S^ C S
!
 and S^ C S"

such that (S',d
!
) and (S",d

M
) are separable and

o o

L{ξ}(S
 C
) = L{

n
}(S"

C
) = 1.

o o

c c
Put S := S

!
 x S" to get a separable and closed subspace of

S = (S,d) (S = S
1
 x S", d = max(d

!
,d")) for which

2.) According to the Portmanteau theorem (cf. (a
f
) there) it remains to show
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(+) lim inf L{(ξ ,n )>(G) ̂  U(ξ,η)}(G) for all G E G(S) Π A

(where A = A
f
 © A " ) . For this, let μ

1
 := L{ξ} and μ" := L{η} and let

C := {A' x A": A
f
 E A' , T'OA') = 0, A" 6 A", £"(3A") = 0};

then C is closed under finite intersections, i.e, C = C , and (33) holds

which means that

for each x E S { C E C x E C } is a neighborhood base at x.

Furthermore, by assumption and the Portmanteau theorem (cf, (f
f
) there),

we have for μ
1
 = L{ξ } and μ" = L{η }
n n n n

lim (μ
1
 x μ")(A

f
 x A") = lim μ

1
 (A

1
 ) μ"(A

fl
) = μ"* (A

f
 ) μ"(A")

n n n n

= (μ
f
 x μ")(A

f
 x A") = μ

f
 x μ

l!
(A

f
 x A") for all A' x A" E C = C' ,

whence (+) follows from Lemma 17,

(ii) =» (i): 1.) Both L{ξ} and L{η.) are separable:

since L{(ξ,η)} is separable there exists a separable S C S = S
!
 x S"

such that L{(ξ,n)}(s£) = 1. Put

S^ := {x E S
f
: 3y E S" such that (x,y) E S

Q
}

to get a separable S
1
 C S' for which S° C π

τ
~ (S

!
°)

9
 whence

here π
1
 denotes the projection of S = S' x S" onto S

!
.

In the same way one shows that L{τ\] is separable.

2.) According to the Portmanteau theorem (cf. (a
!
) there) it remains to show

that for μ
1
 = L{ξ } and μ

τ
 = L{ξ}

n n

( + ) l i m i n f μ ' ( G f ) ^ V ^ ( G f ) f o r a l l G l 6 G ( S l ) Π A f

n

and that for μ" = L{x\ } and μ" = L{η}
n n



74 PETER GAENSSLER

(++) lim inf μ"(G") ^ μ"(G
M
) for all G" G G(S

Π
) Π A".

We will show (+); the proof of (++) runs analogously.

ad (+); Let G
1
 G G(S') Π A

f
 be arbitrary but fixed; then

π
t
"

1
(G

l
) = G

f
 x s

M
 G A n G(s) (A = A' (jpA")

and μ ' ( G ' ) = (μ1 x μ M ) ( π ' ~ 1 ( G I )) = ( μ ! x μ")(G f x S") for each nGlN.
n n n n n

By assumption and the Portmanteau theorem (cf. (a') there) we therefore obtain

lim inf μ
!
(G

!
) = lim inf (μ

1
 x μ")(G

f
 x S")

n n n

^ (μ
!
 x μ")(G

!
 x S") = μ

!
(G

f
) μ"(S

fl
) = μ

f
(G

!
). D

Remark. Using the continuous mapping theorem (Theorem 3) one easily gets an

alternative proof of "(ii) ** (i)
tτ
 in Theorem 9d, even without imposing the

independence assumptions,

SEQUENTIAL COMPACTNESS:

We have shown before (cf. (32)) that any net (μ ) C M (s) which fulfills

oi a

(b.), i=l,2, is a compact net in M (S). At this point we ask the question
I a

whether the same is true for sequences instead of nets, i.e.,whether for any

sequence (μ )
 clKr

 C M (S) fulfilling (b.), i=l,2, there exists a subsequence
n ntJiN a l

(μ ). ___ and a separable μ G M, (S) such that μ -^ μ (as k-x»).
n, kGϋN D n, b
k k

(Note that a subnet of a sequence need not be a sequence!)

If (b.), i=l,2, is replaced by the (stronger) assumption of (μ ) __, being <5-

tight (cf. (31)), then it follows that the answer is affirmative;

in fact, as shown by Dudley (1966), Theorem 1, the following is true:

(35) For any δ-tight sequence (μ ) _ C M (S) there exists a subsequence

(μ ).. ,_._
τ
 of (μ ) ̂ __

τ
 and a Borel p-measure μ (on B(S)) such that

n, kGH n nGϋN

(36) lim / fdμ = lim J fdμ = J fdμ for all f G C
b
(S).
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Based on this result we obtain in a first step the following theorem:

THEOREM 11. Let (μ ) C M (S) be ό-tight; then there exists a subsequence

• n nfcJΓi a

(μ \c™ o f (μ ) ^ and a s e p a r a b l e μ E ML(S) s u c h t h a t μ - τ * μ.
n k n k

Proof. Apply (35) to get a subsequence (μ ) of (μ ) and a Borel
n, KczJIM n nfcJN
K

p-measure μ for which (36) holds true. Then it can be shown as in the

"(h
1
) ** (b)'

f
 part of the proof of (28). that (36) implies

(+) lim sup μ* (F) ύ μ(F) for all F E F(S).

k-**>
 n

k

(In fact, given an arbitrary F E F(S), there exists for every nE]N an ε >0

~
 ε

n 1
such that μ(F ) ̂  μ(F) + — taking then

ε ε

} d(x,CF n ) / ε n i f CF Π * 0,

1 if (JF Π = 0,

x E S,

and g := min(f ,1), we obtain a sequence of functions g having the

following properties for every nEIN:

(l) g E C (S), (2) rest g = 0 and (5) rest_ g = 1.

•̂̂  n ^-^ tF
£ n n

 ^*^
 n

Therefore, for every nE]N we obtain

(F) li J llim sup μ (F) = lim sup J l
p
dμ ^ lim sup ί g dμ

A
ε
 ^ I

(F ) < (F) += J g d μ = J g d μ ^ μ ( F ) ύ μ ( F ) + — , w h i c h i m p l i e s ( + ) . )

(36),yJ QJ F n

Now, we are going to show that (due to the δ-tightness of (μ ))

(++) μ is necessarily tight,

whence μ := rest« /ςΛ^ i-
s
 also tight and therefore separable (cf. (25)) and

thus (noticing also (24-)) we can apply (28) (cf. the equivalent statements (g)

and (g
1
)) to obtain the result, i.e.,μ -^ μ.

K.

ad (++): Since (μ ) is δ-tight, it follows that for every nEIN there exists
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a K E K(S) such that
n

(+++) lim inf μ (K
 1 / 2 m

) ̂  1 - - for all m G I.
k+«

 n
k
 n

W.l.o.g. we may assume K f and therefore

μ( U K ) = lim Ϊ(K ) = lim (lim H(K
 1 / m

))
n

 n
-*χ>

 n

 n
-*χ>

 m
* »

 n

k lim (lim sup ί((K
 1 / 2 m

)
c
)) ;> ii

m
 ii

m s u p
 ii

m s u p μ
 *((

K
 ) )

n-x» m-**>
 n

 ( + ) n m k-*»
 n
k

 n

k lim lim sup lim inf μ (K
 1
'

2 m
) ^ 1. D

n m k \
 n
 (+++)

The proof of Theorem 11 also shows that the following result holds true:

THEOREM 11*. If S = (S
 5
d) is a separable subspace of S and if

1 Λ

(μ ) ™
 c
 M (S) is <S-tight w.r.t. S_ (i.e., if sup inf lim inf μ (K ) = 1),

n n E J N a °~ κeK(s ) δ>o n*» n

o

then there exists a subsequence (μ ). __
τ
 of (μ ) and a μ E R (S) with

n, KEJDM n nEJN b

μ(S°) = 1 such that μ -^ μ.

\
 b

As to our question raised at the beginning, it was shown by J. Schattauer

(1982) that the assertion of Theorem 11 even holds if the assumption of

δ-tightness of (μ ) is replaced by the (weaker) conditions (b.)
5
 i=l,2:

THEOREM lla). Let (μ ) be a sequence in M (S) fulfilling the following two

conditions:

(b,) For every sequence (f ) ̂
τ
 CU (s) with f 4- 0 one has

1 m mGB b m

l i m s u p J f d μ + O a s m + « > .r
 m n

n

(b^) There exists a separable S C s such that

lim inf J fμ £ 1 for all f 6^ ( S ) with f k 1

n b
 o

c
S
o

Then there exists a subsequence (μ ) of (μ ) and a μ G R(S) with

c
 k

μ(S ) = 1 such that μ -r* μ (as k •> »).

o n
k
 b

For the proof of this theorem we need an auxiliary result which is based on the

following
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DEFINITION. Let S = (S,d) be a metric space and A. C s, i=l,2; A and A are

said to be d-strictly separated if either A. 1 ΠA = 0 for some δ > 0 or

δo
A

1
 Π A

 Δ
 - 0 for some δ > 0,

where A. ^ := {x E S: d(x,A.) < δ.}, i=l,2.

PROPOSITION (cf. E. Hewitt (1947), Theorem 1).

Let S = (S,d) be a metric space, and let G be a subset of IT(S) such that for

every d-strictly separated pair F
1
,F E F(S) there exists a function g E G

such that sup g(x) < inf g(x) (or sup g(x) < inf g(x)). Then G is an

"analytic generator" of IT (S), i.e., for every f E u (S) and every positive real

number ε there exist functions f.,...,f E G and a polynomial P(z.,...,z ) Ξ

z (with real coefficients α )
K
 l "

f
 k

|| f - P(f ,...,f )|| := sup |f(x) - P(f .,f )(x)| < ε.
1 k

 xes i k

Proof of the proposition. This follows along the same lines as in Hewitt (1947)

noticing that the functions ψ,φ,h,h.. ,. . . ,h and

3 3 i 2 2 i~l
φ

9
 -(φ - h

1
) , (-) (φ - h

χ
 - - h

2
 -...-(-) h^^), 2 ^ i ύ n, respectively,

occurring there are uniformly continuous which implies that the sets

F^ := {x e S: f(x) ύ - -|} and F
2
 := {x 6 S: f(x) k - } ,

for f β {φ,(|)
1
(φ - h

J
_ - | h

2
 -.,. - ( f )

1
"

1
 h^.), 1 ^ i ^ n}

$

are d-strictly separated:

In fact, f E U (S) implies that for ε = — there exists a δ>0 such that

|f(x) - f(y)j < -g whenever d(x,y) < δ; thus given any x E (F
1
> , we have

d(x,x ) < δ for some x E F and therefore |f(x) - f(x ) I < "g"
 a n d f

(
χ
 ^ - " "3

(since x E F ) which implies f(x) ^ - -g- for all x E (F
1
) since f(x) ^ —

for all x E F^, we thus have (F^)
6
 Π F^ = 0. D

L l
Σ

such

Σ α

V° r <

that

a z i
' k
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Proof of Theorem lla). According to (t>
2
), let T C S

Q
 he countable and dense

i n S ( a s w e l l a s i n S ) , say T = (x , x 2 , . . . } , and l e t

G χ := ίmin(d( 9 x n ) 9 l ) : n G 1 0 ,

G := {f: S -*]R: f = min g . , g. G G , i = l , . , . , n , n G 3N} , and
2 l £ i £ n X X

G 3 := {f: S +]R: f = g ^ . . . g]^ for some g ± G G ^ i ^ , . . . , ^ G I U {0},

then G C G C G with G being a countable class of functions in U (S)

(cf. Lemma 11 (ii)).

Thereforej by the diagonal method, there exists a subsequence

(μ )τ,CΊKT of (μ ) such t h a t

n, kGUN n nG3N
K

( i) lim / fdμ exists for a l l f G G_.
k-χ» n k 3

Let G. := i f : S -> ]R: f = min(d( , F ε Π S C ) 9 1 ) f o r some F G F ( S C ) , ε>0};
4 o o

t h e n ( c f . Lemma 11 ( i i ) ) G^ C U^(S), and

( i i ) For any f G G, t h e r e e x i s t s a sequence ( f ) _-._ c G_ such t h a t f Ψ f
4 n nGUN 2 n

ad (ii): Let f 6 G. , i.e.,f = min(d(.
5
F

ε
 Π S°),l)

9
 Feres

0
), ε>0.

4 O O

It is easy to show that T Π F
ε
 is countable and dense in F

ε
 Π S°; let

T Π F
ε
 = ίz

l 5
z

2 5
...}; then d( ,F

£
 n s£) = inf d(

 5
z

n
) , and therefore

n
g := inf d( ,z.) ψ inf d( ,z.)

9
 i.e.,f := min(g ,1) Ψ f,

Xl * ̂  --- 1 1 il XI
l^i^n l

where f = min (min(d( ,z.),1)) GG for each n which proves (ii).
n
 l^i^n

 1

I k r,
Now, l e t G := if: S -* ]R: f = g . . . g for some g. G G ,

O -L K 1 4

£1,...,Ak e i u {o}, k e i } ;

then, since G C U (s), we have also

(iii) G
5
 C U^(S).

On the other hand, it follows from (ii) that
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(iv) For any f E G
c
 there exists a sequence (f ) ~-

T
C G

o
 such that

5 n nE]N 3

f Ψ f as n •> «\
n

Furthermore,

(v) lim / fdμ exists for all f € G_ .
* 5

ad (v): Let f € G then, by (iv), there exists a sequence (f )
 CΊ
.
T
 C G such

that f Ψ f as m •* °°. Since f - f Ψ 0 and f - f E uf(S), we obtain by (b )
m m m b 1

that lim sup J (f - f)dμ -> 0 as m •* °°, and therefore also

lim sup J (f - f )dμ ->- 0 as m •> °°. Since

k —
 m n

k

lim sup J" (f - f)dμ ^ lim sup J f dμ - lim sup J fdμ ^ 0,

k *k k
 m

 "k k
 n

k

it follows that lim sup J f dμ - lim sup J fdμ -> 0 as m •> °°,
, m n, . n,
k k k k

and therefore we obtain by (i)

(a) lim lim J f dμ = lim sup J fdμ
m
 \ k̂» \

On the other hand, since lim inf / (f - f )dμ = - lim sup J (f - f)dμ ,

k
 m n

k
 k

 m Π
k

we have lim inf J (f - f )dμ -> 0 as m -> °°. Since

k k

lim inf J (f - f )dμ ^ lim inf J fdμ - lim inf J f dμ £ 0,
, m n, , n, , m n,
k k k k k k

we thus obtain in the same way as before, using (i), that

lim lim J f dμ^ = lim inf J fdμ^ , whence together with (a) the assertion in

(v) follows.

n, . _^ n,
k k-**

5
 k

Finally, let G := {f: S ->B: f = P(g ,...,g ) for some g. E G , 1 ύ i £ k,

k E]N};

then, by (iii), G C U (S), and it can be easily shown that (v) implies

(vi) lim / fdμ exists for all f E G .

n o

k-χ» k

Now , let IΓ(S
C
) := {f: S° -> ]R: f bounded and uniformly (d-) continuous}

and consider G' := {rest_
o
f: f E G } C U

b
(S

C
).

M o M" O
C
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Let F ,F E F(S
C
) be a d-strictly separated pair of closed subsets in the

metric space S = (S ,d), i.e.,(w.l.o.g.) there exists a δ>0 such that

(Γ? n s
c
) n F,°= 0. °

_L O Z.

Put f := minCdC ^
7
 Π S

Q
) , 1 ) ; then f E G^ and g := rest

 Q
f E G^;

o

we will show that

(b) sup g(x) < inf g(x).

xEF xEF
1 2

ad (b): x E F, implies d(x,F/ Π S°) = 0 since F, C s°, and therefore
^"*— l 1 o i o

f(x) = 0 for all x E F whence sup g(x) = 0.

On the other hand, x E F
2
 together with (F^ Π S^) Π F

2
 = 0 implies d(x,F

1
) ̂  δ

and therefore d(x,F^ ) ̂  δ/2; thus d(x,F^
/2
 Π S°) ̂  δ/2 for all x E F

2
, i.e.,

inf g(x) ̂  min(δ/2,l) which proves (bJ.

Therefore, by our proposition, G' is an analytic generator of U (S
C
), i.e.,

for every h E U (S°) there exists a sequence (g ) such that

Sn ~- V β n l ^ - S n k ^ w i t h ^n i f G i > H i S k n ' a n d

s u p | h ( x ) - g ( x ) | -> 0 a s n -> α>.
xES° n

c

Since g . E G' , g . = rest f . for some f . ̂  G.
t 9
 whence&

ni 4 ni c ni ni M
o
O

f := P (f
 i 9
f

 o
,...,f , ) E G

c
 with rest f = g for each n 6 W .

n n nl n2' nk 6 _c n
 &

n
n S

o

We thus obtain that

(vii) For any f E U, (S) there exists a sequence (f ) C G such that

sup |f(x) - f (x)| •> 0 as n

xES
c n

o

Furthermore, we will show that

(viii) lim J fdμ exists for all f E UΓ(S).
n

k

 b

ad (viii): Let f E U (S); then, by (vii), there exists a sequence (f )
 e
-

I N

c
 G

such that sup |f(x) - f^(x)| ->• 0 as n ->• °°; therefore, given an arbitrary

S
c

o
x6S

c n
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but fixed m G UN there exists ann = n (m) G U such that

o o

sup |f(x) - f (x)| < —. Since f and f are uniformly continuous, there

xGS
c n

o
 m n

o

o
exists a δ >0 such that |f(x) - f(y)| < - and |f (x) - f (y)| < -

m m n n m
o o

δ

whenever d(x,y) < δ . Now, let S := (S ) then, for any x G S there exists

a y G S such that d(x,y) < δ , and therefore
o m

|f (x) - f(x)| ̂  |f (x) - f (y)| + |f (y) - f(y)| + |f(y) - f(x)| < |
o o o

 n
o
 m

for all x G S, whence f(x) ύ f (x) + - and f(x) £ f (x) - - for all x G S.
n m n m
o o

Since S G δ (S) (cf. Lemma 11 (ii)), it follows that

© J fdμ £ J (f + -) dμ + I fdμ for all k €U, and
nk S Π

o
 m n

k GS
 n

k

(d) J fdμ ^ / (f - -) dμ + J fdμ for all k 6 1 ,

n
k S

 n
o
 m n

k CS
 n

k

Furthermore, it follows from (b ) that

(e) lim sup μ (CS) = 0,

k
 n

k
d ( f

'
S
o

}
 o b

ad Q) : l/»g =
 1
r(

S
C)

δ
m =

 m
i

n
 ( — £ — — , D =: f G IΓ(S), whence

lim sup μ (£S) ̂  lim sup J f dμ = lim sup (1 - /(I - f )dμ )

k
 n

k k
 n

k k
 n

k

= 1 - lim inf J (1 - f°)dμ ^ 0, since 1 - f° 2 1 and thus

lim inf J (1 - f°)dμ & 1 by (b
o
). This proves (e),

\
 2

Next, it can be easily shown that (<e) implies

(f\ lim ^fdμ = 0 for all f G ϋ

k+~ Cs
 n

k

But then, it follows from (c), Ql) and Qj that

lim sup J fdμ ^ lim sup J f dμ + —, and

k
 Π

k k S
 n

o
 n

k
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lim inf J f dμ ^ lim inf J f dμ .

k k k S o k

Furthermore, © together with (vi) imply easily that

lim sup ί f dμ = lim inf J f dμ = lim J f dμ

k S
 n

o \ k S
 n

o
 n

k k~> S
 n

o
 n

k

and therefore lim sup J fdμ - lim inf J fdμ ^ —

k \ k
 n

k
 ra

which implies the assertion in (viii) since we started with an arbitrary m.

But now, putting μ(f) := lim J fdμ for f E u£(S),

k-*°
 n

k

the assertion of Theorem 11 a) follows as in the proof of Theorem 6 applying

the Daniell-Stone representation theorem (cf. H. Bauer (1978), 3. Auflage,

S. 188) noticing that ^ ( S ) coincides with the smallest σ-algebra with respect

to which all f E U, (S) are measurable.

D

This concludes the proof of Theorem 11 a). D

SKOROKHOD-DUDLEY-WICHURA REPRESENTATION THEOREM:

Let again S = (S,d) be a (possibly non-separable) metric space and suppose

that A is a σ-algebra of subsets of S such that B, (S) C A C B(S): let (ξ ) ^

D n nEJN

be a sequence of random elements in (S,A) and ξ be a random element in

(S,B
b
(S)) such that ξ -^-» ξ (cf. (34)).

Then the Skorokhod-Dudley-Wichura Representation Theorem states:

THEOREM 12. ξ r ξ implies that there exists a sequence ξ , n E U, of random

elements in (S,A) and a random element ξ in (S,B (S)) being all defined on an

appropriate p-space (Ω,?^) such that L{ξ } = Lίξ } (on A) for all n G I ,

HO = ί-{ξ} (on B (S)) and ξ -> ξ P-almost surely as n •> °° (i.e., there exists

an Ω C Ω with ?l E ΐ and ί(Ω ) = 1 such that for all ώ E Ω
o o o o

lim d(ξ (ω), ξ(ω)) = 0).
n

For complete and separable metric spaces this result was proved by

A.V. Skorokhod (1956); it was generalized to arbitrary separable metric spaces
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by R.M. Dudley (1968), and in its present form (for arbitrary metric spaces)

it was first proved by M.J. Wichura (1970); cf. also R.M. Dudley (1976),

Lectures 19 and 24.

Our proof will be based on the one given by Dudley (1976). For this, we need

the following proposition.

Proposition. Let S = (S,d) be a metric space, μ E RCS) be separable, i.e.,

μ(S
Q
) = 1 for some separable S

 c
 S; then, given any ε>0, there exists a

sequence (A ) „ of pairwise disjoint subsets A of S having the following

properties:

(i) S° C U A

° new
 n

(ii) u(3A ) = 0 for all n E U (where μ denotes the unique

Borel extension of μ (cf. (24)))

(iii) diam(A ) := sup d(x,y) < ε for all n E U , and
x,yEA

n

(iv) A E B, (S) for all n 6 3N.

n D

Proof. Let {x ,x ,...} be dense in S . For each n EϋN, the open ball B(x ,δ)
1 z o n

is a μ-continuity set (i.e., μ(3B(x ,δ)) =0) except for at most countably many

values of δ; hence, given any ε>0, for each n E U there exists an ε such that

ε/4 < ε < ε/2 and μθB(x ,ε )) = 0. Now, let A := B(x ,£.), and recursively

for n>l A := B(x ,ε ) \ U B(x.,ε.). Then (i) - (iv) are fulfilled:
n n

 j < n 3 3

In fact, (iii) and (iv) follow at once by construction, (ii) holds since the

class of all μ-continuity sets forms an algebra containing each B(x ,ε );

finally, given any x E S there exists an x^ such that d(x,x^) < ε/4 whence

k

x E B(x^,εA) C B(x
k
,ε ) C U A , implying (i). D

n=l

Proof of Theorem 12. Let us start by giving a description of the basic steps

along which the proof will go, postponing some details to its end. For this,

let P := L{ξ} on B^tS) with P(S°) = 1 for some separable S C S, and let
b o o
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P := L{ξ } on A, n 6]N.
n n

STEP 1. For each k 6]N, by the proposition take a sequence (A^

~ 1

disjoint P-continuity sets A . 6 B,(S) such that diam(A ) < -r- for all j 6 H .

Since U A , 3 S
c
 and P(S

C
) = 1, there exists a J < » such that

j6W k] o o k

(a) Λ
-k

Σ P(A .) > 1 - 2 (where w.l.o.g. we may assume

P(A ) > 0 for all 1 ύ j ύ J ).

Applying (28) (cf. (f
τ
) there) we obtain

(b) For each k 6 1 there exists an n 6 1 such that for

1 £ j £ J, |P (A. .) - P(A. . ) | < 2~
k
 min P(A. .) for

k

all n ^ n .

We may assume w . l . o . g . l < n < n < . . . .

STEP 2. For each n 6 1 l e t S := S, I := I := L θ , l ] , T := S χ I ,
n ' n n n n '

8 := A ® B ( I ) (with 8(1 ) := I Π β ) and Q := P x λ, λ being Lebesgue
n n n n n n

measure on 8(1 ) ; furthermore, l e t T := S x I , 8 := B ^ ( S ) © B ( I ) and
n o o D

Q := P x λ.
o

For each k 6 U, 1 ύ j ύ J and n k n l e t

f(n,k,j) :- n kj

1 o therwise ,

i f P
n

( A
k j

)

J

g ( n , k , j ) : = < P ( \ j } '

1 o therwise ,

if P (A. .) < P(A
V
.),

B ,. := A^. x [θ,f(n,k,j)]
:(
 considered as a subset of T , and

nK] }c ~2 n

C ^ . := A . x [O,g(n,k,j)l, considered as a subset of T , i.e.,

B . 6 6 and C 6 8 then, by the definition of f and g, we have
nK ~2 n nK j o
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( C ) Q
n

( B
n k

j

)
 =

 Q
o

( C
n k j

) = ffi

it follows from (b) that

(d) min(g(n,k
5
j), f(n,k

9
j)) S I - 2~

k
,

Let B . := T \ U B , . and C , = T \ U C , .
fnko n ^ . ^ nk

3
 nko o ^ . ^ nk

:

For k = 0 let J := 0, B := T and C := T .
o noo n noo o

Let n := 1 and for each n G I, let k(n) G U U {0} be the unique k such that

IL ύ n <
 n

k + 1
; then T is the disjoint union of sets D . : = B . x., i.e.,

(e) T = Σ D .; likewise T = Σ E . with
11 n3

 ° ^

E . := C
 w
 v ..

nj nk(n)3

It follows from (c) and (d) that

(f) Q (D .) = Q (E .) > 0 if j S 1.

n nj o nj
 J

STEP 3. For each n G I , given any x (Ξ T
 9
 let j = j(n,x) be the j such that

———~— o

x 6 E . (cf. (e)). Let

A := ίx G T : Q (E ., J > 0 Vn G3N}.
o
 x

o n3(n,x)

Then CA = U {
x
 G T : Q (E ., ) = 0} = U E

n o
 G B

n G B
 o o n:(n,x)

 { n e Έ ( E
 nθ

Q } o

o no

and Q ((/A) = 0, whence

(g) A G B
Q
 and Q

Q
( A ) = 1.

Therefore, Q (A Π B) := Q (B), B G B , is a well defined p-measure on A Π B .
o o o o

For x G A and any B G B let

P (B) := Q (B Π D ., J/Q (E ., J .
nx

 x
n n](n,x)

 x
o n3(n,x)

It follows from (f) that

(h) the P , x G A, are p-measures on B , belonging to a finite

set {P
n j
>, where P

n j
 s= P

n χ
 if

, os j s J
k(n)

.

For x G A let
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μ := x P be the product measure of the P on the product σ-algebra
x n X n X

B :- (S) B in the product space T : = x T .
n n

n£]N

Let μ: A x B •> [θ,ll be defined by μ(x,B) := μ (B) for x E A and B E δ ; then μ

is a "transition probability (or Markov kernel) from (A,A Π B ) into (T,B)",

i.e. ,

(i) (1) For each x € A μ(x, ) is a p-measure on B, and

(2) For each B 6 B μ( ,B): A + I = [O.ll is A n B
Q

B(I)-measurable.

Of course, (1) holds true here and (2) will be shown later.

Therefore (cf. Gaenssler-Stute (1977), Satz 1.8.10)

]P := Q x μ defines a p~measure on

f := (A Π B )(χ)B in
o

Ω := A x T, where (cf. Gaenssler-Stute (1977),

1.8.7 and 1,8.9)

(j) #(C) = J J 1 (x,y)μ(x,dy)Q (dx) = J μ(x,C )Q (dx)

A T
 L
 ° A

 X
 °

for C e f ; note that C := {y 6 T: (x,y) e C} E B.

STEP M , (Ω,F^) as obtained before being the desired p-space, let, for n 6 1 ,

ξ Ω •> S be the natural projection of Ω = A x [ x (S x I )] onto S = S;

then the ξ
 !
s are random elements in (S,A) and

n

(k) Ul } = L{ξ } (on A) for all n 6 « .
n n

In fact, for any A
1
 G A, l{\ }(A

f
) = ί(ξ ~

1
(A

f
))

n n

= / μ (T x . . . x T x (A
1
 x I ) x T x . . . )Q (dx)

,.x . x 1 n-1 n n+1 o
(3) A

= J P (A
f
 x I )Q (dx) Σ P .(A

f
 x I )Q (A Π E .)

. nx n o f.y. ̂.^-r nj n o nj
A (h) 0 ^ J

k ( n )

= Σ P .(A
1
 x I )Q (E .) = Σ Q ((A

!
 x I ) Π D .) = Q (A

1
 x I )

nj n o ni n n nj , s n n
: 3 (e)

= P (A
f
) = L{ξ }(A').

n n
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T

Next, let ξ := Π ° © i(A) Π
A
: Ω -> S, where Π

A
 is the natural projection of

T

Ω = A x T onto A, i(A) is the injection of A into T , and Π ° is the natural
O o

projection of T = S x I onto S; then ξ is a random element in (S,B, (S)) and

U) L{ξ} = L{ξ} (on B. (S)).

D

In fact, for any B e B
b
(S), L{ξ}(B) = P(ξ"

1
(B))

A
 T ~

= P((π")""
1
 c (i(A))"

1
 o (Π

S
°)"

1
(B)) ^((II")"

1
 o (i(A))'"

1
(B x I))

^-
1
(A Π (B x I)))=£( [A Π (B x I)] x T) = J μ (T)Q (dx)

A
 (j) AΠ(BxI)

 X
 °

= Q (A Π (B x I)) = Q (B x I) = P(B) = L{ξ}(B).
o o

Now, let Ω := lim inf Ω , where

°
n

k(n)

then Ω £ F and
o

(m) lim d(ξ (ω), ξ(ω)) = 0 for all ω € Ω ,
n o

n-*»

In fact, for any ώ £ Ω there exists an n E l such that for all n ^ n there

o o o

exists a j(n), 1 ^ j(n) ύ J . ., such that

a n d *k(n)j(n) < ™ t β that ή t t ) 6 A Π E
n j ( n )

"(ίSimplies i(A)(Π^(ω)) € E n ( n ) whence Πs
°(i(A)(π"(ίS))) β

 A

k
(

n
) (

n
))'

cf. the definition of the sets D . and E ., respectively.

Therefore, for all n ^ n , d(ξ (ω), ξ(ω)) £ diam(Aj, Λ / \) ̂  F Γ T "*"

n -> °° (since k(n) -*• °° as n •> »).

Next we will show that ]P(Ω ) = 1. For this we will prove later that

(n) Q (lim sup E ) = 0.
o no

n
-xχ)

Now,

C " o , n = * ( [ A n E n j ] X T l X X T n - l x C D n j X T n + 1 :

k ( n )
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+ ([A Π E 1 x T x . . . x T x . ..)
no 1 n

= Ω. + Ω^ , say,
l,n 2,n

where P(8 ) = Σ J P (CD . )Q (dx) = Σ P . (JD . )Q (A Π E .)
j AΠE

nj

 n x n
3 ° j

 n
3 n

3
 o n

D

Q ((CD .)ΠD .)

r Σ — ^ £3_ Q (E .) = 0 for all n E JJ, and therefore

ί ( l im sup CΩ ) = ]P(lim sup ίL ) = ί([A n lim sup E 1 x T)
n ~ °'n n-~ 2 ' n n ~ n o

= Q (A Π l i m s u p E ) = Q ( l i m s u p E ) = 0 b y ( n ) .
° n o ° n~° n o

I t follows that P(Ω ) = H l i m inf Ω ) = 1 - P(lim sup Cfi ) = 1.

°
Π
 °

n

It remains to show (i) (2) and (n):

ad (i) (2): We have to show that

( + ) V := {B e 8: μ( ,B): A -> I = [θ,l], is A Π B , B(I)-measurable} = B.

If B = T x ... x T - x B x T x ... for some B 6 B , then for each t G I
1 n-1 n n+1 n n

{x E A: μ(x,B) £ t} = {x G A: μ (B) ̂  t} = {x G A: P (B ) ̂  t} =

x nx n
 ( h )

U A Π E . G A Π B , whence B E 1? f or a l l these s e t s .

From this and the product form of μ it follows that the class C of finite

intersections of sets B just considered is also contained in P. Since C is a

Π-closed generator of B, we get (+) as in Gaenssler-Stute (1977), 1.8.5.

ad (n): It follows from (a) that Σ P(S \ U \.) ̂  Σ 2~
k
 < «

9

k
 l ύ

^
k

 k

whence, by the Borel^Cantelli lemma

P(lim sup(S\ U A )) = 0, i . e . , P(lim inf U A ) = 1

and thus

P(lim inf U A .) = 1 as k(n) -> °° for n •*
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Furthermore,

λ(lim inf [0, min g(n,k(n),j)1) =1, since for any t 6 I = [θ,ll

with t < l , min g(n,k(n)
5
j) ^ 1 - 2 > t for all large enough n.

1
^

J ( )

Since lim inf U E . D (lim inf U A. ,
 Λ
.) x

n D k ( n > 3

(lim inf [0, min g(n,k(n),j)]),

we thus obtain Q (lim inf U E .) = 1 which implies (n) since

°
 n3

C(
 u
 E .) = E .

ni no

This concludes the proof of Theorem 12. D

Following a suggestion of Ron Pyke, let us demonstrate at this place the

usefulness of the representation theorem for proving the following version

of Theorem 5 (cf. Lemma 16 for the definition of the set E).

THEOREM 5'. Let S = (S,d) and S
1
 = (S

!

5
d

f
) be metric spaces, and A a σ-algebra

of subsets of S such that ^ ( S ) C A C B(S). For n G Έ let g : S -> S
τ
 be

A,8 (S
f
 )-measurable and let g: S -> S

!
 be 8

h
(S), B (S

f
 )-measurable.

Let (ξ ) ̂ ^ be a sequence of random elements in (S,A) and ξ be a random ele-

L , ,
ment in (S,B, (S)) such that ξ -=•• ξ and L{ξ} (E) = 0 . Then

D n

(Note that g (ξ ) and g(ξ) are random elements in (S
f
,B

b
(S

!
)).)

Proof. As in the proof of Theorem *+ it is shown that

ί.{g(ξ)} = Lίί} ° g ( = ί{ξ}
 β
g ) is separable. Now according to Theorem 12,

there exists a p-space (Ω,F,P) and on it random elements ξ in (S,A) and a

random element ξ in (S,B, (S)) such that
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U ξ } = L{ξ } (on A) for all n 6 lί, L{ξ} = L{ξ} (on B, (S)),
n n Jb

and

ξ (ω) •> ξ(ω) (as n -> «) for all ω G Ω , where Ω 6 F with P(Ω ) = 1.
n o o o

Let Ω. := {ξ G C E } and Ω
o
 : = Ω n Ω : then for all ω 6 Ω_,

1 z o 1 Z

g (ξ (ώ)) -* g(ξ(ω)) (as n -> «). Since ί(Ω ) = 1 and ί^C^) = 1

(note that L{ξ}^ (ffE) = L{ξ}^ (CE) = 1) we have i
#
(Ω

2
> = 1, whence there

exists Ω
3
 e F such that Ω

3
 C Ω

2
 and P(Ω

3
> = 1. It follows that for ft G Ω

3
 and

each f e uh
b

f eg ξ(ώ)-> fβgβξ(ω) (as n ->- »)

whence, by Lebesgue's theorem,

E ( f β g
n
β g ^ i ( f

ί g
o ξ )

5
 i.e., JfdL{g

n
(ξ

n
)} -• JfdL{g(ξ)} (as n -* »).

Since Lig
n
(ξ

n
)} = Litjo^ = Lίξ^-g^

1
 = Lίg^ζJ}

and L{g(ξ)} = L{ξ} g"
1
 = L(ξ} g"

1
 = Hg(ξ)}, the assertion follows by (28)

(cf. (h
1
) there). D

Next, we want to make some specific remarks concerning the special case

S = D[θ,ll reviewing at the same time some of the key results from Billings-

ley's (1968) book (cf. Appendix A in G, Shorack (1979)).

THE SPACE D[0,l]:

Let D Ξ D[θ,ll be the space of all right continuous functions on the unit

interval [θ,l] that have left hand limits at all points t G (0,1]. Cf. P.

Billingsley (1968), Lemma 1, p. 110, and its consequences concerning specific

properties of functions x G D; among others, sup |x(t) | < °° for all x G D.

te[o,i]

If not stated otherwise, the space D will be equipped with the supremum

metric p, i.e.

ρ(x,y) := sup |x(t) - y(t)| for x,y G D.

tG[0,l]

(By the way, (D,p) is a linear topological space whereas (D,s), with s being
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the Skorokhod metric, is not (cf, P. Billingsley (1968), p. 123, 3.)). Note

that (S,d) = (D,p) is a non-separable metric space (in fact, look at

x := lr -I, s E (0,1), to obtain an uncountable set of functions in D for
s L s

9
±J

which p(x ,x ,) = 1 for s Φ s').
s s

Also, as pointed out by D.M. Chibisov (1965), (cf. P. Billingsley (1968),

Section 18), the empirical df U (based on independent random variables (on

some p-space (Ω,F^P)) being uniformly distributed on [θ,l]) cannot be con-

sidered as a random element in (D,B(D,p)) (i.e. U : Ω •* D is not F,B(D,p)-

n ———

measurable), where B(D,p) denotes the Borel σ-algebra in (D,p). But, consider-

ing instead the smaller σ-algebra B .(D) Ξ B (D,ρ) generated by the open (p-)

balls we have

(37) B
b
(D) = σ({π

t
: t E [0,1]}),

where σ({π : t E [0,1]}) denotes the σ-algebra generated by

the coordinate projections π = π (D) from D onto ]R, defined

by π (x) := x(t) for x E D.

(Note that (37) implies that U is F,B (D)-measurable since

F, σ({π : t E [O,l]})-measurability of U is equivalent with F,β-measurability

of π.(U ) = U (t) for each fixed t E [θ,l] where the latter is satisfied since
t n n

U (t) is a random variable.)
n

Proof of (37). Let T := Q Π [θ,l] be the set of rational numbers in [θ,ll;

then, by the right continuity of each x E D one has

(a) ρ(x ,x ) = sup |x-(t) - x
Q
(t)| for every x ,x E D.

1 ι
 ter

Therefore, for any x ED and any r > 0

{x E D: p(x,x ) ύ r} = Π {x E D: |x(t) - x (t)j ̂  r}

° tGT °

=
 n
 Tr'^tx (t) - r, x (t) +r]) E σ({π^; t E [0,1]}); thus
tET

 t
 ° °

 t

B, (D) C
 σ
({τr : t E [0,1]}); (note that {x E D: p(x,x ) < r}

Jb t o

= U {x E D: p(x,x ) ύ r - -}).
^-«τ o m

mEIN



92 PETER GAENSSLER

To verify the other inclusion it suffices to show that for every fixed

t E [θ,l] and r E ]R one has

(b) {x E D: π
t
(x) < r} G B ^ D ) .

For this we define, given the fixed t and r, for any n, k E IN and s E [θ,l]

0, if s < t

χ
k
(s) := < r - ̂  - n, if s E [t,t + £) Π [θ,U

o, if s 6 [t + p «) n [o,il.

Then x E D and it follows that
n

(c) {x E D: TΓ (x) < r} = U U {x E D: p(x,χ
k
) ύ n},

nEΠN kE]N
 n

which proves (b).

As to (c), let x E U U {
x
 E D: p(x,χ

k
) ̂  n}; then

° nEU kEIN
 n

p(x ,x ) ύ n for some n and k, whence

n έ |x (t) - χ
k
(t)| = |x (t) - r + i + n|

o n o K

^ x ( t ) - r + — + n , and therefore
o K

x (t) ύ r - — < r, i.e. π (x ) < r.
o K to

On the other hand, if x (t) < r, x E D , choose n EH such that

sup |x (t)| ύ min(n ,n - r); then it can be easily shown that

te[o,i] ° ° °

x € U {x e D: p(x,χk
 ) S n },

° ken

which proves (c). D

(38) REMARK. Comparing (37) with the known result that the Borel σ-algebra

B(D,s) in (D,s), equipped with the Skorokhod metric s (cf, P, Billingsley

(1968), Chapter 3), coincides also with σ({τr : t E [θ
9
ll}), we obtain that

8(D,s) = B
b
(D,p).

It is also known, that for any sequence (x ) £.™
c D
 and x E D,

lim ρ(x ,x) = 0 always implies lim s(x ,x) = 0;
^^oo n ^

 n
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on the other hand, if lim s(x ,x) = 0 for some continuous x, then

lim p(x ,x) = 0 (hence the Skorokhod topology relativized to the space of all

continuous functions on [θ
3
l] coincides with the uniform topology there).

Let C Ξ C[θ,l] be the space of all continuous functions on [θ,l] and consider

again the supremum metric p on C.

Then (S ,d) = (C,p) is a separable metric space being here a closed subspace

of (D,p), i.e., we have S = S in the present situation, (Note that x E C is

even uniformly continuous,)

Therefore, denoting by B(C,p) the Borel σ-algebra in (C,p) we have (cf,

Lemma 11)

c n B(D,p) = B(c,p) = B
b
(c,p) c c n B

b
(D,p) c c n B ( D ,

P
) ,

and C E B^(D,p), i.e.,

(39) B(C,p) = 8, (C,p) = C Π B (D,p) and C € B_(D,p).
D D D

In what follows let ξ , n E II, and ξ be random elements in (D,B(D,p))

which are all defined on a common p-space (Ω
9
F,P), Following (34) we write

ξ > ξ iff L{ξ } —r* L{ξ} in which case (by our definition of —r* - convergen-

ce) L{ξ} is assumed to be separable.

On the other hand, in view of (38), ί.{ξ } and L{ξ} may also be considered as

Borel measures on B(D,s), whence the usual concept of weak convergence of Borel

measures can also be used, which means that

ξ > ξ iff, by definition, L{ξ } on B(D,s) converges weakly to L{ξ}

on B(D,s) in the sense of Billingsley (1968),

L
h / L

LEMMA 18. If ξ -=-> ξ, then ξ > ξ; on the other hand, if ξ > ξ and
n n n

H ξ K C ) = 1, then ξ^ -^> ξ.

Proof. Note first that (D,s) is a separable metric space whence we can use (28)

with B,(D,s) = A = B(D,s), which gives us
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(+) ξ - ^ ξ * lim E(f(ξ )) = E(f(ξ)) for all hounded

B(D,s), /B-measurable functions f: D ->• ]R

which are L{ξ}-a,e, continuous.

1. ) Consider an f: D -*]R; then:

i f f i s s - c o n t i n u o u s , i t i s a l s o p - c o n t i n u o u s a n d ( c f . ( 3 8 ) ) ίL ( D , p ) , i B - m e a s u -

rable. Therefore

L
b

ξ > ξ implies that lim E(f(ξ )) = E(f(ξ)) for all bounded s-continuous
n
 n^o

 n

f: D •* ]R, whence ξ > ξ.

n

2.) ξ ?ξ implies, according to ( + ), that lim E(f(ξ )) =E(f(ξ)) for all

bounded β(D,s), β-measurable f: D •> "R which are L{ξ}-a.e. continuous. Since

i-{ξ}(C) = 1 implies (cf. (38)) that any p-continuous f is also L{ξ}-a.e.

s-continuous, we obtain, using again that B(D,s) = 8, (D,p), that

lim E(f(ξ )) =E(f(ξ)) for all bounded, p-continuous, and Bτ(D
9
p)j β-measu-

n
->oo

rable f: D -*]R; furthermore, since C = (C,p) is a closed separable subspace

of (D,p) with L{ξ}(C) = 1, we finally obtain (cf, (28)(h
f
)) that

Now we are going on in reviewing here some of the key results of Billings-

ley's (1968) book. The following lemma is well known (cf. Yu.V. Prohorov

(1956));

LEMMA 19. Let F: [θ,l] •> E be a continuous function and a>l, b>0 be constants

such that for some random element ξ in

( K
[
° >

l ]
, β

Γ
 O ( β := © 8 with B =β)
LO,1J LO.1J

 t(E
[o,i]

 t t

(40) E(|ξ(t) - ξ(s)|
b
) ύ |F(t) - F(s)|

a
 for all 0 ύ s ύ t ύ 1;

then there exists a random element ξ in (D,8 (D,p)) such that L{ξ}|IBr
0
 .-. = L{ξ}

and (L{ξ}|B
b
(D,p))(C) = 1. (Note that D Π ^ ^ z B^D.p) (cf. (37)) and
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C e B
b
(D,p) (cf. (39)).)

In what follows we shall write ξ -=—f ξ, if the finite dimensional distri-

n r .α,

butions (fidis) of ξ converge weakly to the corresponding fidis of ξ.

(Recall that, given a r.e. ξ in (D,B (D,p)), the fidis of ξ (or L{ξ}, respec-

k
tively) are defined as the image measures that π (D): D ->]R induce

o n ^ from L{ξ} on B
b
(D,p) (= σ({π

t
(D): t E [0,1].})) for each fixed

t
i 5
...

3
t E [0,1], k k 1, where π. (D) (x) :- (x(t ),...,χ(t, )) for

1 K L^5. . . , L ± K

x E D; note that π. is B (D,ρ)
9
 β -measurable,)

DEFINITION 6. Let (ξ ) ,
τ
 be a sequence of random elements in

n nEJN

(D,B
b
(D,p)) = (D,B(D,s));

(i) (ξ ) is said to be relatively L-sequentially compact
9
 iff for any sub-

sequence (L{ξ ,}) of (L{ξ }) there exists a further subsequence (L{ξ ,,}) of

(L{ξ
 t
}) and a p-measure μ on B(D,s) such that L{ξ ,,} converges weakly to μ

in the sense of Billingsley (1968),

(ii) (ξ ) is said to be relatively L
v
-sequentially compact, iff for any sub-

n Ό

sequence (Hξ ,}) of (L{ξ }) there exists a further subsequence (/-{ξ „}) of

(L{ξ ,}) and a separable p-measure μ on B,(D
9
p) (in (D,p)I) such that

The following theorem is well known (cf. P. Billingsley (1968), Th. 15.1).

THEOREM 13. Let (ξ ) be relatively /.-sequentially compact and suppose that

The next theorem gives sufficient conditions for (ξ ) to be relatively

L-sequentially compact.

For this, given any x E D and B E [θ,l] Π β
}
 let

| |x | | := sup | x ( t ) | ,
tE[0, l ]
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and

THEOREM

iλ) (B) := sup jx(t) - x(s) I .
X s,t€B

14. Let (ξ ) be a sequence of random elements in (D,B (D,p))
9
 all

defined on a common p-space (Ω,F,P), and satisfying the following set of con-

ditions ^p-(S):

(A): lim sup 3P(||ξ || > m) -* 0 as m -»- «.

(β): For every ε>0, lim sup Έ> (u) ([θ,δ)) ̂  ε) + 0 as δ -> 0

and lim sup ]P (u) ([δ,l)) k ε) •> 0 as δ •> 1,

n-*» n

(S): There exist constants a>l, b>0 and, for every n 6 IN there exist monotone

increasing functions F : [0,1] -»• ]R such that for every ε>0 and any

P(|ξ (s) - ζ (r)| 2 ε, |ζ (t) - ξ (s)| 2 e) S
11 11 11 11 ii xx

(5) : There exists a monotone increasing and continuous function F: [θ,l] -> ]R

such that for the F ' s occurring in (^ and any 0 ̂  s S t ̂  1

lim sup (F (t) - F (s)) ̂  F(t) - F(s).
n n

n-χ»

Then (ξ ) is relatively L-sequentially compact.

(41) REMARK. Given any x E D and δ>0, let

UJ
M
(δ) := sup min ί|x(s) - x(r)|, |x(t) - x(s)|}

t-r^δ

Then @ and (^ together imply

(cjj) : For every ε>0, lim sup Γ(M;'
!
 ( ό ) ^ ε ) ^ O a s δ - ^ O .

ir*» n

As to Theorem 14, it is shown in Billingsley (1968), Theorem 15.3 that @

and (cjj) together imply the assertion of Theorem 14,

So we will prove here only the statement made in (41).

For notational convenience we shall write ξ (s,t] instead of ξ (t) - ξ (s)

n n n
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for 0 ^ s £ t ύ 1,

a) Given an arbitrary ε>0, t 6 [0,1) and δ ^ 1 - t, it follows from Theorem

12.5 in Billingsley (1968) together with (c) that for every n 6 UN and every

m 6 Ή

P( ^ {min [ jξ (t + — δ,t + — δ] I , |ξ(t+-^-δ,t+ — δ]|]^ε})

ύ K(a,b)'ε (
F

n
('

t
 + θ ) - F ( t ) ) , where K(a,b) is a constant depending only on

a and b.

Therefore, due to the right-continuity of the sample paths of ξ , putting

u;"(Lt,t + 6]) : = sup min { |x(r ,s] |, |x(s,t' 11}
X

for x β D, δ>0 and t ^ 1 - 6,

it follows that P(itf" ([t,t + δ]) ^ ε)

n

^ K(a,b).ε"*
b
(F

n
(t + δ) -

 n

b) Let, for any δ>0, m = m(δ) ;= [^j] (where [xl stands for the integer part

of x ) ; then, for every n EB
9

P(M;" (δ) ̂ ε) ύ Σ p(wy ([-,—1) ̂  ε) + Σ p(wy a—
1
, %^1) ̂  ε)

n i=0 n i=0 n

\ , [
 n n

φ ^ ^ ^ ] ,
a) i=0 i=0

which implies by (5) that

lim sup P(M;" (δ) ̂  ε) ύ K(a,b) ε""
b
. 2 ( W

F
φ )

a
"

1
. (F(l) - F(0))

t

n-̂
00
 n

where υίΛ-) := sup {F(t) - F(s): s £ t, t - s ^ -}
F m m

= M;
TΠ
(

 / f
v) •»• 0 as δ -> 0 (since F is uniformly continuous),

r m(.ό

This proves (C^) , D

(42) REMARK. Let us consider in Theorem 14 instead of (^ and @ the following

conditions y&j and ^J/ , respectively:
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: For every ε>0, lim sup P(|ξ (d) - ξ (0)j ̂  ε) -> 0 as δ -> 0

and lira sup P(|ξ
n
(l) - ξ U ) | ̂  ε) + 0 as δ + 1;

j) : There exist constants a.,b. > 0, i=l,2, such that a
1
 + a

o
 > 1 and, for

every n E U there exist monotone increasing functions F :[θ
9
ll •*• ]R such

that for any O ^ r ^ s ^ t ^ l

E( |ξ
n
(s) - ξ

n
(r) |

b
L |ξ

n
(t) - ξ

n
(s) |

b 2
) ύ (F^s) -ξ

n
() ξ

n
(r) | |ξ

n
(

then (?j) together with ^) imply ^ ^ , and (c]) implies

THEOREM 15, Let ξ , n 6 E , and ξ be random elements in (D,B (D,ρ))
f
 all defined

on a common p-space (Ω^^IP), and suppose that ζ^ (or ζcj) ) and (ϋ) together

with the following conditions ( g ) and Q ) are fulfilled:

φ : L{ξ}({x E D: x(l) * x(l-0)}) = 0;

then ξ > ξ,

n

Proof, As remarked in (M-2), ^j) implies (c) which together with ^ ) implies

Qcjj according to (M-l), But ζ y together with ^ ^ and (c^) imply the assertion

according to Theorem 1 5 Λ in Billingsley (1968) (cf, also Gaenssler-Stute

(1977), Satz 8,5.6.). D

In view of Lemma 18 we thus obtain the following L ^convergence theorem:

THEOREM 16. Let ξ , n β Jί, and ξ be random elements in (D,B (D,p))
f
 all defined

on a common p-space (Ω,F^P), and suppose that L{ξ}(C) = 1,

I
Then (c) (or (cj) ) together with (^ and (E) imply ξ ?- ξ.

The following result is used in G. Shorack's (1979) paper concerning ξ 's

of a special nature.
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THEOREM 17. Let, for every n G U, T := {t
n
, t^

9
,..,t

n
 } be such that

n o 1 m

0 = t ^ t
1
 ̂  . . . ̂ t

m
 = 1. Let (^^e^ke

 a
 sequence of random elements in

n

(D,B, (D,p)) such that for all n and i ^ m ξ is constant on [ t ^ ^ t . ) , i.e
M

ω
ζ

 ( [ t
i-i'

t
i

) ) =
 °

 a
'

s

n

Furthermore, assume that the following conditions (i) - (iii) are fulfilled:

(i) max (t? - t?_
1
) -> 0 as n -> »;

î m
 1

(ii) There exists a sequence (F ) of monotone increasing functions

F : [0,1] ->]R such that for some a>l and b>0

P(|ξ
n
(s) - ξ

n
(r)| ̂  ε, |ξ

n
(t) - ξ

n
(s)| 2 ε) έ ε~"

b
(F

n
(t) - Fjr))

3

for every ε>0 and any set {r,s,t} C T with r^s^t;

(iii) There exists a monotone increasing and continuous function F: [θ,l]

such that for the F 's occurring in (ii)

either (a) F (t) - F (s) ̂  F(t) - F(s) for every n and any O ^ s ^ t ^
^•^ n n

or Q) F (t) + F(t) as n -> °° for every t G [θ,ll.

Then (ξ ) satisfies (c) and (ϋ).

Proof. Let, for each n G U, φ : [θ
3
l] ->T be defined by

φ (t) := max {r ^ t: r G T }, t 6 [θ,ll.

Then, according to (i), lim φ (t) = t for every t G [θ,l].

Now, put F
1
 := F oφ , n 6 1 , to get a sequence of monotone increasing func-

tions on [θ,l]; we are going to show that (Q and ζg) are satisfied with F
τ

(instead of F there):
n

As to (c), by the assumed nature of the ξ
 f
s, we have for any 0 ^ t^ ^ t^ ύ

which implies by (ii) that for every ε>0 and any O

P(|ξ
n
(s) - ξ

n
(r)| Z ε, |ξ

n
(t) - ξ^Cs)| ^ ε) £ ε"



100 PETER GAENSSLER

which proves (Q,

As to ^ ) , we have to show that for any 0 ύ s £t ̂  1

(+) lim sup (F
f
(t) - F

f
(s)) ̂  F(t) - F(s).

n -
 n

But this follows easily from (iii); in fact, (iii) (a) implies that for any

O^s^t^l F'(t) - F'(s) = F (φ (t)) - F (φ (s))

n n n n n n

ύ F(φ (t)) - F(φ (s)) -*- F(t) - F(s) as n •> «>, which implies ( + ),

On the other hand, (iii) Q ) implies by the Polya-Cantelli theorem that

sup jF (t) - F(t)| + 0 as n ->°° and therefore,

te[o,i]
 n

for any t <Ξ [θ,l], |F'(t) - F(t)| ̂  |F(t) - F(φ (t))|
n
 n

+ JF(φ (t)) - F (φ (t))| -> 0 as n -> °°, which implies ( + ), D

This concludes our short review of some of the key results in Billings-

ley's (1968) book to be used in Section 4 when proving functional central limit

theorems for weighted empirical processes along the lines of Shorack
τ
s (1979)

paper; concerning the L -statements there (cf. Theorem 18 and 19 in Section 4)

it is possible to modify the above mentioned criteria in Billingsley's book

in such a way that they allow for proofs working totally within the theory of

L -convergence (cf. Remark (73)(b) in Section 4) as it will be the case for

the following example concerning Donsker's functional central limit theorem

for the uniform empirical process α = (α (ΐ) )-
t̂
ΓQ ii> defined by

α
n
(t) := n

1 / 2
(U

n
(t) - t ) , t e [θ,ll,

where U is the empirical distribution function based on independent random

variables having uniform distribution on [θ,l].

According to (37), α can be considered as a random element in (D,8, (D,p))
n D

as well as in (D,B(D,s)) (cf, (38)) and it follows from the multidimensional

Central Limit Theorem that
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(43) α :Λf
n f .d.

where B = (B ("t̂ +.cΓo ii ^
s
 "

t
^
ie
 Brownian bridge.

As to B , having all its sample paths in the separable and closed subspace

C = (C,p) of D = (D,p), it follows from (39) that L{B°}, being originally de-

fined on 8(C,p), may be considered as well on 8 (D,p) having the additional

property that L{B }(C) = 1. Therefore, B may be considered as a random element

in (D,8,(D,p)), too, with L{B } being concentrated on C, whence by Lemma 18 one

has

L

(44) (i) α -t* B° iff (ii) α -^» B°.

n n

It was conjectured by J.L. Doob (1949) and shown by M.D, Donsker (1952) that

(44)(i) holds true. There are various ways of proving this result which is

known as Donsker
τ
s functional central limit theorem for the uniform empirical

process:

One may e.g. use Theorem 15 by showing that the hypotheses © and (D) are

fulfilled (cf. Gaenssler-Stute (1977), Lemma 10,2.2) or one may apply Theorem

15.5 in Billingsley's (1968) book; as to the latter one has to show that

(45) For each positive ε and η there exist a δ, 0 < δ < 1,

er n such tha
o

(fi) > ε) < η,

and an integer n such that for all n ^ n
o o

n

where u) (6) := sup |x(t) - x(s)| for x E D,
X
 |t-sj«5

t,se[o,i]

(By the way, it follows from Theorem 15,5 in Billingsley (1968) together with

Lemma 18 that (45) is a sufficient condition for (α ) _, to be relatively

L -sequentially compact.)

As to (45), this can be shown either by using Donker's invariance prin-

ciple for partial sum processes (in case of independent exponential random

variables) (cf. L. Breiman (1968), problem 9, p. 296) or by more direct com-
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putations using the structural properties of empirical measures as presented in

Section 1 (cf. W. Stute (1982)) yielding at the same time an independent proof

of (M-M-)(ii) within the theory of 1. -convergence in (D,p); in fact, it can be

shown (cf. Proposition B
9
 in Section 4) that (45) implies δ-tightness of

(L{α }) w.r.t. S - C[θ,ll, and therefore Theorem 11* together with an

application of Theorem 3 yields (44)(ii) in view of (43). This also indicates

the way to prove Functional Central Limit Theorems for more general empirical

processes (empirical C-processes indexed by classes C of sets) in the setting

of L -convergence of random elements in appropriately chosen metric spaces.

Before doing this in the next section we want to supplement the present

one by some remarks on random change of time (cf. Billingsley (1968), Chapter

3,17.).

RANDOM CHANGE OF TIME:

Following Billingsley (1968) we will briefly indicate here that so-called

random change of time arguments are valid also within the context of L -conver-

gence (even with simplified proofs not relying on Skorokhod's topology); in

this connection the reader should remind our remarks on product spaces,

For this, let D consist of those elements φ of D Ξ D[θ,l] that are in-

creasing and satisfy 0 ύ φ(t) ύ 1 for all t. Such a φ represents a transforma-

tion of the time interval [θ,l].

We topologize D by relativizing the uniform topology of D,

Then (37) implies that D 6 B
L
(ϋ) and therefore

o D

BΛΏ ) C A := D Π 3R (D) = {B C D : B E B. (D)} C B(D ).
b o o o b o b o

For x E D and φ 6 D , let

x φ: [0,1] •* E

be defined by (x * φ)(t) := x(φ(t)), t E [θ,l]. Then x © φ lies in D and, if

ψ: D x D -> D
o
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is defined by ψ(x,φ) := xoφ, then ψ is B, (D)(χ)A , 8 (D)-measurable,

i.e. one has

( + ) ψ"
1
(8

b
(D)) c A := B

b
(D)6)A

o

where A is a σ-algebra in the product space S = D x D (being equipped with the

maximum metric d (cf. our remarks on product spaces)) such that

B
b
(s) c A c 8(S).

ad (+): cf. Billingsley (1968) p, 232 for a proof being based on the fact that

B
b
(D) = σ(ίπ

t
: t 6 [0,1]}) by (37). D

Now , let ξ , n £ 1 , and ξ be random elements in (D,B (D)) and, in addition,

let η , n € K , and η be random elements in (D ,A ) all defined on a common

p-space (Ω,FjP).

Then (ξ ,η ), n 6 1 , and (ξ,n) are random elements in

(S,A) = (D x D , B.(D)®A )
O D O

and so, by (+),

ξ o η = ψ(ξ ,ii ), n E E , and ξ » η = ψ(ξ,η) are random elements in (D,B, (D))

resulting from subjecting ξ and ξ to the random change of time represented

by η and η, respectively.

Concerning a "(ξ ,η ) * (ξ,η)"-statement, (ξ,n) may be considered as a

random element in (S,8 (S)), since BjtS)
 c
 A> thus being in accordance with

our definition of L -convergence.

When asking for conditions under which

L
b
 L

b

(++) (ξ ,η ) > (ξ,η) implies ξ o n > ξ n

n n n n

we know from the continuous mapping theorem (Theorem 4) that (++) holds if

ψ is A,8 (D)-measurable and L{(ξ,η)}-a.e. d-continuous.

Now, the required measurability of ψ is guaranteed by (+) and it follows as

in Billingsley (1968), p. 145, that ψ is also L{(ξ,η)}-a.e. d-continuous if

L{ξ}(C) = L{η)(C) = 1 for C Ξ C[θ,l]; in fact, if L{ξ} and L{η} concentrate
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on C, then L{(ξ,n)}(C x ( C Π D )) = 1, and it is easy to show that ψ is d-con-

tinuous on C x (C Π D ).

It remains of course the question of when

holds and here Theorem 9c can be used leading to the following result on

stability of L -convergence in D Ξ D[θ,ll under random change of time:

THEOREM. Suppose that ξ , n GIN, and ξ are random elements in (D,BL (D)) such

ί-
b

that ξ > ξ and L{ξ}(C) = 1. Let η , n E U, and n. be random elements in

L
h

(D
 5
A ) such that η > η and n equals P-a

f
s, some function belonging to

C Ξ C[0
9
l]*

}
.

Then ξ o η , n EϋN, and ξ © η are random elements in (D,B (D)) for which

This last assumption may be omitted by considering instead the set

C x {c} as separable support of L{(ξ,n)} if Π
 =
 c P-a,s,




