*)

3. Weak convergence of non-BOREL measures on a metric space.

Let S = (S,d) be a metric space with metric d and let Bb(S) Bb(S,d) be
the o-algebra in S generated by the open (d-) balls

Bd(x,r) = B(x,r) := {y€S: d(x,y)<r}l, x€S, r>0.

Clearly, Bb(S) is a sub-o-algebra of the Borel o-algebra B(S) in S (generated

by all open subsets of S).

In this section we will study a mode of weak convergence for nets of
finite measures which are defined at least on Bb(S). Our formulation is a
slight modification of a concept which was introduced by R.M. Dudley (1966)
and further studied and extended by M.J. Wichura (1968); cf. also D. Pollard
(1979), where it is shown that some of the key results in that theory can be
deduced directly from the better known weak convergence theory for Borel

measures.

As in Wichura, our presentation here is made roughly along the lines of
Chapter I of Billingsley (1968) (see also P. Billingsley (1971), S I A M No. 5)
which treats similar aspects of the theory of weak convergence of probabili-
ties defined on all of B(S). The present theory is especially suited to cope
with measurability problems arising in the theory of empirical processes as
well as to allow for a proper formulation of functional central limit theorems

for empirical C-processes (cf. Section 4).

To start with, let us first establish some notation and terminology to be

%) This section represents and extends parts of a first draft of a "Diplomar-
beit" by J. Schattauer, University of Munich, 1981.

41
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used throughout this section.
If not stated otherwise, S = (S,d) is always a (possibly non-separable) metric
space. Let A be a c-algebra of subsets of S such that Bb(S)CACB(S); then the

following spaces of real valued functions on S will be considered:

fa(S) := {f: S > R, f A,B-measurable}
Cb(S) = {f: S > R, f bounded and continuous}
P(s) = F_(s)ncP(s)
a a
Ub(S) = {f: s » R, f bounded and uniformly continuous}
w(s) = F_(5)nu(s).
a a

In case of Bb(S) instead of A we shall write fb(S), CE(S) and UE(S) instead of

b b .
fa(S), Ca(S) and Ua(S), respectively.

The following figure may help to visualize the different spaces, where
the largest box represents the class of all B(S), B-measurable functions

f: S » R and where the smallest class Ui(S) is represented by the shaded area:

N "4

4
y Cb (S) E—

Y
]
!
1
1
1
1
'
!

HOIEAE

4

Ua(8).]

U‘(s')SJ

c(s)
2 LY

FIGURE 3 (fb(S) for example is represented as that part of the1fa(8)—box

(marked by the bold arrows) which is left to the dotted line.)
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Furthermore, let Ma(S) be the space of all nonnegative finite measures defined

on A and write Mb(S) for the space of all nonnegative finite measures on Bb(S).

For £f: S > R, we denote by D(f) the set of discontinuity points of f.

Finally, given any uGMa(S) and any bounded f or ACS, respectively, let

*
J £ du := inf{fg du: g2f, g(Efa(S) and g boundedl,
J £ du := sup{fg du: gsf, gEtFa(S) and g bounded},
*

* *
u*(A) i= i lAdu, and p (A) := [ 1Adu.

* . .
Note that u and p are inner and outer measures, respectively, i.e.,one has
for every ACS

(23) w¥@a) = influ(B): BDA, BEA} and n () = sup{u(B): BCA, BEA}.

(In fact, as to the first equality in (23), "<" is obvious, since for any

BOA, BEA, g := 1 21, g(Efa(S) and g bounded; as to the other inequality,

B
given any gzl1,, gEf;(S) and g bounded, choose for each €>0 B_ := {g21-¢e} to

get BEEA with BeDA and u(Bs) < J (gte)du < fgdu + eu(S); since u(S)<ew,

Be

we obtain, taking € = l-and letting n*~, B := N B_, €A with BDA and
n n€ElN 1/n

u(B) £ fgdu, which proves the other inequality.)

The following lemma comprises some simple but still essential facts to be

used later on.

LEMMA 11. (i) Bb(S) = o({d(*,x): x€S}), where o({d(-,x): x€S}) denotes the
smallest o-algebra in S w.r.t. which all of the functions d(-,x), for each
fixed x€S, are measurable.

(ii) Let SOCS be such that So = (So,d) is a separable metric space, then for
d(+,8_) := infld(-,x): x€S_} we have min(d(-,S_),n) euﬁ(s) for each n;

in this case also Sg .= {x€s: d(x,So)<6} € Bb(S) for every 6>0, and

SEEBb(S), where SE denotes the closure of So in (S,d).

(iii) K(S)CBb(S), where K(S) denotes the class of all compact subsets of (S,d).
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(iv) If (S,d) is separable, then Bb(S) = B(S).

Proof. (i) is an immediate consequence of the identity B(x,r) = {y€S: d(y,x)<r},
x€S, r>0. To verify (ii), since d(-,A) is uniformly continuous for each ACS,

it suffices to show that d(',So) € fb(S); for this, let To be a countable dense
subset of SO. Then, since d(x,So) = d(x,To) = inf{d(x,y): yGTO}, d(x,So) is a

countable infimum of B_, B-measurable functions, hence d(-,So) € fb(S). This

also shows that Sg € Bb(S) implying that Sg = N

s 1/n
neN °

EBb(S). Since each

compact subset of S is closed and separable, (iii) is just a particular case
of (ii). Finally, if (S,d) is separable, then (So,d) is separable for each
SOCS, especially for all closed subsets F of S, whence, by (ii), FEBb(S) for

all closed FCS and therefore B(S)CBb(S) which proves (iv). O

Remark. The converse of (iv) is not true, in general: Talagrand (1978) has

constructed an example of a non-separable metric space S for which Bb(S)

coincides with B(S).

Now, our first subsection will be concerned with

SEPARABLE AND TIGHT MEASURES ON B (S):

DEFINITION 2. uEMb(S) is called separable iff there exists a separable subset
So of S (i.e. an SOCS s.t. SO = (So,d) is a separable metric space) with

C -
U(So) = u(s).

(Note that the closure Sg of a separable SO is also separable.)

(2w) REMARK. Let uEMb(S) be separable; then there exists a unique

extension of u to an (even t-smooth) Borel measure p on B(S).

Proof. By assumption there exists a closed and separable AOCS such that
u(Ao) = u(S), where AOEBb(S) by Lemma 11 (ii). Let D := {B&B(S):
BﬂAOEBb(S)}; then D is a o-algebra in S. But, since each closed subset belongs

to D (cf. Lemma 11 (ii) and notice that FﬂAO is again closed and separable),
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D equals B(S) and therefore u(B) := u(BWAO) is well defined for all BEB(S).
Furthermore, for every BeB(S), ;(B) = u(BﬂAo) = u(B)-u(B\AO) = u(B), since
u(B\Ao) = 0 according to u(Ao) = p(S), showing that ; is a Borel extension of

u (being even t-smooth since I concentrates on the separable subset AO of 8).

As to the uniqueness of 1, suppose that ;i are finite measures on B(S) with

restBb(S)ui = u, i=1,2; then ul(Ao) = u2(Ao) = u(Ao) = u(S) and therefore

ul(B) = ul(BﬂAo) =u(BﬁA°) = uQ(BﬂAO) = uQ(B) for all BEB(S) showing that

(Note: It can be shown by examples that the assumption in (24) of u

being separable cannot be dispensed with, in general.)

DEFINITION 3. ueMb(s) is called tight iff sup{u(K): KeK(S)} = u(s).

(Note that K(S)CBb(S) according to Lemma 11 (iii).)
(25) REMARK. Any tight uEMb(S) is separable.

Proof. Note first that any K&K(S) is separable; now, since p is tight, there

%3 then So := U K is

exists for every n a K €K(S) s.t. u(K_ )>u(s)
n n neN P

separable and u(Sg) z u(SO) 2 u(Kn) > u(s) -

=N I

for all n, whence u(Sg)=u(S). ]

As to the converse of (25) one has
(26) REMARK. If uEMb(S) is separable and if S is topologically complete,

then u is tight.
Proof. Use (24) to get the unique Borel extension U of u and apply Theorem 1,
Appendix III, p. 234, in Billingsley (1968). O

(Note: As shown by Billingsley (1968), Remark 2, p. 234, the hypothesis of

topological completeness cannot be suppressed in (26).)
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WEAK CONVERGENCE/PORTMANTEAU-THEOREM:

As before, let S = (S,d) be a (possibly non-separable) metric space, let
Ma(S) be the space of all nonnegative finite measures on a g-algebra A with
Bb(S)CACB(S) and let Mb(S) be the space of all nonnegative finite measures
on Bb(S).

Then, given a net (uu)aEA in Ma(S) and a uEMb(S), we define:

DEFINITION 4, (ua) converges weakly to u (denoted by v, 5 ) if
(1) H is separable

(ii) Lim [fdu = S£dy for all fECZ(S)
o

(where again 3 is the unique Borel extension of y, according to (2u4)).

(27) REMARKS. a) If (S,d) is a separable metric space, then Definition 4
coincides with the usual definition of weak convergence of Borel
measures (cf. Lemma 11 (iv)).

b) If (ua) converges weakly in the sense of Wichura's (1968)
definition, then (ua) converges in the sense of our Definition
4 but not vice versa; both definitions are equivalent if (S,d)
is topologically complete (cf. (26) and our Portmanteau-Theorem

below).

LEMMA 12. Let £f: S + R be such that Osf<n for some n€EN ; then, for every

uEMa(S),
* no
JEdp € u(s) + = u ({fzk}).
k=1

* . .
Proof. Since by (23), for every ACS, u (A) = inf{u(B): BDA, BEA}, it follows

that for every €>0 and every lsksn there exists a B_ kGA s.t. B kD{fék}
bl

3
and u*({fgk}) 2 u(B8 k) - %u Put fE ;= 1.+ 1 to get a bounded function
2

n n
belonging to Fa(S) and dominating f (f S ¢ 1 + I 1 = fe)’

<1
2
k=0 {£2k} § " o1 Be’k

whence
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inf{fgdu: g2f, g(Efa(S) and g bounded} = Ifsdu

n n
*
=u(s) + I u(B_ ) sus)+ ¥ [w({£x}) + 7]
k=1 & k=1
0ox
= u(8) + I p ({fzk}) + e,
k=1
k4
which implies the assertion since €>0 was chosen arbitrary. O

closed, subsets of S; also for ACS let Ao, AC and 9A denote the interior,

47

In what follows, let G(S), resp. F(S), denote the class of all open, resp.

closure and boundary of A, respectively.

(28) PORTMANTEAU-THEOREM.

(a)

(a")

(b)

(")

(c)

(c")

(d)

(da")

(e)

(e")

Let (ua) be a net in Ma(S) and let uEMb(S) be separable with u being

its unique Borel extension (cf. (24)).

Then the following assertions (a) - (h') are all equivalent:

lim ua(S) = u(s)
o
lim ua(S) = u(s)
a
lim ua(S) = u(s)
o
lim p (S) = u(S)
. o
lim inf [fdu 2 [
a * ¢
lim inf [fduy 2 [
o a
*
lim sup Ifduu < J
a

lim sup [fdu s [
o a
*

and lim inf (ua)*(G) 2 1(G) for all GEG(S)

and
and
and
fdu
£du
£du

£4u

o

lim inf
o

1lim sup
a

lim sup
o
for all
for all

for all

for all

lim [fdu = lim [fdu = [fdu

o [e

f: S > R which are :—almost

1im Ifdua = JfdU for all bounded f:Efg(S) which are p-a.e. continuous

Q

u,(6) 2 H(G) for all GEG(S)MA

/AN

ur(F) < W(F) for all FeF(s)

u,(F) s u(F) for all FEF(S)M

bounded lower semicontinuous f: S > R
bounded lower semicontinuous f’EfA(S)
bounded upper semicontinuous f: S > R

bounded upper semicontinuous f‘Efa(S)

for all bounded B(S), B-measurable

everywhere (p-a.e.) continuous
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(£) Lim (u ) (A) = lim u:(A) = N(A) for all A€B(S) with n(3A) = O
ol a

W(A) for all AEA with n(dA) = O

(£f') 1lim ua(A)

*
(g) lim [fdu_ = lim [fdu_ = [£di for all FecP(s)
01 o *

(g') lim Ifdua J£dp for all fECZ(S) (cf. Definition 4, (ii))

o
*
(h) 1lim Ifdua = lim Ifdua = [fdu for all fEUb(S)
a a %

(h') lim Ifdua [fdu for all fEUi(S).

Proof. The proof may be divided into 4 steps showing that the following
implications hold true, where 'wfp' indicates the non-trivial parts.

STEP 1: (a)¢=)(b)

!' - (e) =D (") =D (£') mip(g") => (b") wm (b)
() (D)

STEP 2: (A) =P (") =p (c")=p (a')= (b')wwp(b) (= (d) by STEP 1)
STEP 3: (a) and (b)smp (£) =) (£f') (= (a) by STEP 1)
STEP 4: (e) =p (g) =p ()= (h') (=p(e) by STEP 1).

We are going to prove the 'wp' parts; the others are either immediate or easy

to prove.

(b)wmp (d): 1. Let f: S > R be upper semicontinuous and assume for the moment
that 0<f<1l; then, by Lemma 12, we have for every nEN

* n
lim sup /nf du_ < lim sup [u (S) + L w¥({nf2x 1]
o o o a oy @

n n
< lim sup ua(S) + I lim sup u*({nfgk}) < u(8) + I u({nf2k})
o k=1 a o (b) k=1

< u(s) + Snfdy,
whence

* (s) ~
lim sup [fdu s ol orfdy;

o

thus (for n+=) we obtain (d) for all upper semicontinuous f with O<f<1.
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2. Let f: S » R be upper semicontinuous and bounded, say a<f<b for some

-o<g<b<w; then 0 < %Eg < 1, and therefore it follows from part 1 that

H

*
3 -a < 1-a
llmasup f - dua < J = du,

o

which implies (d), since lim ua(S) = u(s) = u(s).
o

[(a)-(d)] smm(e): Let £f: S » R be bounded, B(S), B-measurable and p-a.e.

continuous. It follows (cf. Gaenssler-Stute (1977), Satz 8.4.3) that

BUE,<ED = o,

where £, sup {g: g=f, g lower semicontinuous} and

*

£ inf {g: g2f, g upper semicontinuous};

*
therefore, since f* s f £ f , we obtain
o~ ~ * ~
(+) Jf,du = [fdu = [f du.
Furthermore, since f* and £ are also bounded with f* being lower semicontin-

uous and £ being upper semicontinuous, respectively, we obtain

[f,du S lim inf if*dua s lim inf [fdu

(¢) «a a *
* * ® .~
£ lim inf jfdu <1im sup ffdua < lim sup Jf dua < [fdu,
a o o o (d)
*
whence, by (+), lim Ifdua = [fdu.
a

On the other hand, one obtains in the same way that

ff*du < lim inf Jf*dua < lim sup Ifdua
o * o *
* * . -
£ lim sup Ifdua < 1lim sup [f dua < Jf du, whence, again by (+),
o a

lim Ifdua = [£dl, which proves (e).
o %

(=2

(S), let £ ( anf—l) be the image measure that f

(f')wmp(g'): Given feC

induces on B in R from u (i.e.,f

LY

B(B) = u({£fE€B}),BeB). Since f is bounded,

we have fa([a,b]) = ﬁ(S) for some -»<a<b<w»; furthermore, since E(S)<m, we
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have fn({t})>0 for at most countable many t€[a,bl. Therefore, it follows that

for every €>0 there exist to’ t "tm such that

100

(1) a=t <t,<...<t_=b
o 1 m

(2) a<f(x)<b for all x€S

(3) tj-tj_ <g for all j=1,..,,m

1
and (4) u({=x€s: f(x) = tj}) = 0 for all j=0,1,...,m.

Now, let Aj 1= {x€8: tj_léf(x) <tj}; then AjEA, the Aj's being pairwise dis-

joint with union S, and aAjC{xES: f(X)E{tj-l’tj}}’ whence (by (4))

ﬁ(aAj) =0, 3=1,...,m.

Therefore it follows by (f') that

(+) Limu (ay) = E(Aj) for j=1,...,m.

a

m
Now, put g := I t. ;, 1, to get a bounded function g(Efa(S) for which

j=1? j
(by (3))

(++) sup |[f(x) - g(x)| < €.
xXES
Then, it follows that
|f£au, - J£au| = |[(£-g)an, + fgdu - [(E-g)du - | gdu]

s Jif-glan, + Jl£-glan + |fgdu - Jedu]

m
S en(S) +en(S) + T |t. .|lu (A - u(a)],
(++) ¢ j=p 37 e J
whence, by (+),

lim sup [ffdua - [fdu| < 2eu(s)
o

(note that SEA with n(3S) = u(@#) = 0, and n(S) = u(s)).

Thus (for £*0) we have shown (g').

(h')smap(b): Since fElEUE(S), we obtain from (h') at once lim ua(S) = u(s).
o
Next, given an arbitrary FEF(S) and >0, let

F® := {xes: d(x,F)<el;
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then FE4F as €40, and therefore, for every n€EN there exists an F'P€G(S) such
that W(FD) s W(F) + <.
Now, since by assumption p is separable, there exists a separable SOCS with

u(Sg) = u(S); put, for each x€S,

d(x,s°NEE*N) /e, if sSNer®n # ¢
£ (X) .= o] n o
n 1, if Sgﬂ.‘Fen = ¢,

then the function := min(f_,1) has the following properties for every nEN:
&, n g

(1) gn€U§(S) (cf. Lemma 11 (ii) and note that SgﬁCFen is
separable),

(2) rest g =0,
Sl

and (3) restp g = 1.

Therefore, for every n€EN we obtain

*
*
. R < .
lim sup ua(F) lim sup ledua < lim sup Igndua
a a (3),(1) «a
= Jjgdw= Jgdu= _J gdu+ [ _gdu = [ gdu
(h'),(1) s " scnegn " sonEn T (2) sZnP‘:“ n

< (sCAF®my = N(FED) < T(F) + %,
(gnél)

* ~ .
whence (for n»«) we obtain 1im sup ua(F) < u(F), which proves (b).
a

(b') emp(b): Given an arbitrary FEF(S), we have as before that for every n€EN
~ ~ 1
there exists an F*PEG(S) s.t. nW(F°M) < W(F) + >

1
Let g be defined as before and put F_ := {x€s: gn(x)€[§31]}; then

F €F(s)MB_(S), F OF for all nEN, and
n b n

(+) F.ns® c F*Ms® for all nEN.
n [o] (o]

(As to (+), let xEFnﬂSZ; then, if S?WQFED $# ¢, we have by construction of g,

€ €
d(x,SCOCPEn) 2 7; > 0, whence xésgﬂﬁFen, and therefore xEFenﬂsg; if SzﬁCF n=g
o



52 PETER GAENSSLER

(and therefore g, = 1), it follows that Fenﬂsz = Sg and therefore
F ns®cs® = F*mng®.)

n o o o

We thus obtain

lim sup u:(F) s lim sup u (F ) = u(F.)
a a "y P

~ ~ ~ 1
= u(Fnﬂsi) < u(FemSZ) = R(E*M) < T(F) + o
(+)

whence (for n»>«) lim sup u:(F) < ﬂ(F), which proves (b).
a

(a) and (b)wep(£f): Given an AEB(S) with n(da) = 0, we have

W(A%) s lim inf (uy),(A°) < lim inf (u ) (A) S lim inf u:(A)
(a) a o o

< lim sup u:(A) < lim sup u:(AC) < H(AC) = E(Ao), whence
a a (b)

Lin w¥(A) = H(A),
a

On the other hand, one obtains in the same way that

~OS" < 14 < 13 *, . C
u(A”) < llmalnf (ua)*(A) < llmasup (ua)*(A) < llmasup ua(A )

< ﬁ(AC) = E(Ao), whence also lim (ua)*(A) = ;(A), which proves (f).
a

This concludes the proof of the Portmanteau theorem, O

IDENTIFICATION OF LIMITS:

Let C be the set of all closed balls in S = (S,d) and let Cﬁf denote
the class of all subsets of S which are finite intersections of sets in C.
Then, since Cnf is a N-closed generator of Bh(S)’ we have for any two
uiEMb(S), i=1,2, that My T u

Stute (1977), Satz 1.4.10).

5 if ul(A) = uQ(A) for all AECnf (cf. Gaenssler-

We will show below that for any net (ua) in Ma(S) and any uiEMb(S),

ua _f ui, i=1,2, implies ul = u

9"

For this we need the following auxiliary result:
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(29) For any ACS, any €>0, and any separable SOCS, there exists
an fEEUE(S) such that Osf<1,

restc(Ansg)€ fE = 0 and restAnsg fe = 1.

Proof. It follows from Lemma 11 (ii) that

d(x,Ans%)
fe(x) := max [(1 - ———2),01, x€s,
€

has the stated properties. O

LEMMA 13. Let uiEMb(S) be separable, i=1,2, and suppose that

(+) Ifdul = Ifdu2 for all fEUE(S);

then ul = u

o
Proof. Let Si be the separable subsets of S for which ui(Sg) = ui(S), i=1,2;
put S0 1= siusg to get a separable subset of S for which ui(Sg) = ui(s),
i=1,2. Now, given an arbitrary AECnf and n€EN , choose anfl/n according to
(29) to get a sequence (fn)CUi(S) for which

lim fn = from this, by Lebesgue's theorem and (+)

l .

Ngo 2

n>e A Sc
it follows that

- cy _ cy _
ul(A) = ul(AﬁSo) = uQ(AﬁSO) = UQ(A)~ a

Lemma 13, together with the equivalence of (g') and (h') in (28) implies the

result announced above (cf. Definition 4 (i)):

Lemma 14. For any net (ua) in Ma(S) with He B Mio i=1,2, we have u, = u

1 2°

WEAK CONVERGENCE AND MAPPINGS (Continuous Mapping Theorems):

Let S = (S,d) and S' = (S',d') be two metric spaces and suppose again
that A is a o-algebra of subsets of S such that Bb(S) CACB(S); let g: S > 8'
be A,Bb(S')-measurable and let uaEMa(S) and uEMh(S), respectively,u separable.

Then Hy and p induce measures v, and v on Bb(S'), defined by
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v (B') := ua(g_l(B')) and v(B') := n(g N(B')) for B'€B_(S'), where

ghl(B')

{x€S: g(x)EB'} and where U is again the unique Borel extension of

u (cf. (2u4)).

We are interested in conditions on g under which H, M implies
vy Euaog-l _7; véiﬁog-l. It can be shown by examples that measurability of g
alone is not sufficient for preserving weak convergence. As we will see, some

continuity assumptions on g will be needed, The corresponding theorems are then

usually called CONTINUOUS MAPPING THEOREMS.

THEOREM 3.

Let S = (S,d) and S' = (S',d') be metric spaces, let A be a og-algebra of sub-

sets of S such that Bb(S) C ACB(S), and let g: S > S' be A,Bb(S‘)—measurable

and continuous. Let (u ) be a net in Ma(S) and let uEMb(S) be separable such

that ua s u. Then vOl

"
=
o
0Q
<
"
=1
9
[tje]

o b
Theorem 3 is a special case of the following result where the continuity

assumption on g is weakened:

THEOREM 4. Let S = (S,d) and S' = (S',d') be metric spaces, let A be a o-alge-
bra of subsets of S such that Bb(S) C A CB(S), and let (ua) be a net in

Ma(S) and uEMb(S) be separable such that My < M let g: S > S' be A,Bb(s')—

measurable such that G(D(g)) = 0. Then v = pa-g-l BV F Meg

(Note that D(g) € B(S); cf. P. Billingsley (1968), p. 225-226.)

1 1 3
Proof. Note that quMb(s ) and vEMb(S ), whence v, Vv iff

(1) v is separable and (ii) lim J fdva = [ fdv for all fECi(S') where (ii)
o S' S!'

is equivalent to any of the conditions (a)-(h') in (28) (with S replaced by S'

and A replaced by A' = Bb(S')).

1.) v is separable:

since u is separable, there exists a separable SOCS such that u(Sg) = u(s).
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Let T CS_ be countable and dense in S_ (as well as in S°) and let T' := (T )3
o o o o o o

we will show that Sé := g(Sg\D(g))LJTé is a separable subset of S' with

v((s1)%) = v(s").

For this we will show that Té (being countable) is dense in Sé:

in fact, let (w.l.o.g.) yEg(Sg\D(g)), i.e.,y = g(x) for some xESE\D(g),

Since T_ is dense in S° there exists a sequence (x_) CT such that x_ + x

o o n'nEN o n
and therefore, since x €D(g), we have g(xn) + g(x) = y, where g(xn) ET(’).
Next, since g_l((Sé)c) o} g_l(g(Sg\D(g))) ol Sg\D(g) and since u(D(g)) = O,

we have

v((s)%) = T N8 = WsAp(g)) = W(S) - H(sSD(g))
= WSS = u(sD) = u(s) = W(S) = g N (s")) = w(s").

2.) It remains to show (ii) 1lim [ fdva = [ fdv for all fECE(S').
a S' s!'

For this, given any fECi(S'), we have that feg: S > R is a bounded function
belonging to fa(S) which is y-a.e. continuous, and therefore it follows from
(28) (cf. (e')) that

lim | fdv, = lim J (f-g)dua = [ (feg)dW = [ £dv, which proves (ii). O
a S' a S S s!

The following lemma is in some sense an inverse result:

LEMMA 15. Let S = (S,d) be a metric space, (ua) be a net in Ma(S) and let

-1 ~ =1 b
uEMb(S) be separable such that u of ~ — uef = for all fECa(S). Then u  —~ .

Proof. Note that in the present case S' = R (a separable metric space), whence

vy = ua-f-l and v = ﬁ-f_l are separable Borel measures on 8 = B(R). Now,

for any fECi(S) and any gECﬁGR) = CbGR) we have

lim | (gvf)dua = lim J gdva = [ gdv =/ (geof)du.
a S a R R S

Furthermore, for any fECi(S) there exists a ¢>0 such that Ifl < ¢, whence for
'—c, if t<-c
g(t) ::4 t, if |t| £ c,t€R,

i c, if t>c
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we have gGCbGR) and gef = f. Therefore it follows that lim Ifdua = [fdp for all
o

fecg(s) implying the assertion since u is, by assumption, separable. U

For the next mapping theorem we need the following auxiliary lemma, the

proof of which is left to the reader.

LEMMA 16. Let S = (S,d) and S' = (S',d') be metric spaces; given g,
g: S > S', nEN, let

E = E((gn),g) 1= {x€s: El(xn)nE CS s.t. X, X but gn(xn)7h g(x)}.

N
Then X€E iff for every €>0 there exists a kEN and a 6>0 such that n2k and

d(x,y) < & together imply d'(g(x),gn(y)) < e.

THEOREM 5. Let S = (S,d) and S' = (S',d') be metric spaces, A be a o-algebra
of subsets of S such that Bb(S) C A C B(S), and let (1,ln)n€]N be a sequence in
Ma(S) and uEMb(S) be separable such that u_ — W3 let g, g: § > S' be
A,Bb(S')—measurable, n€EN, such that

~% ~ -1
= i : 2 = . = ° _ = °
w (E) = inf{u(B): B D E, B € A} = 0. Then VoS ueg T PV = ueg

Proof. (cf. P. Billingsley (1968), Proof of Th. 5.5).

1.) v is separable: this is shown as in the proof of Theorem 4, replacing

g(T ) there by T' := U g (T ).
o o nen ® ©

2.) We are going to show

(+) lim vn(S') = v(s")

n>re

and (++) 1im inf vn(G) 2 v(G) for all G € G(s') N Bb(S').

N>
(Note that (+) together with (++) imply the assertion according to (28) with

S replaced by S' and A replaced by A' = Bb(S').)
ad (+): WopoM implies (cf. (28)) un(S) -+ u(S) and therefore
v (S1) = u (g 1(8M) = u (8) > u(S) = W(S) = W(g™H(8") = w(s").

ad (++): Given an arbitrary G € G(S') N Bb(s'), we have
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(a) g_l(G) CEUVU UV TE, where Tk = N g*l(G) €A,
KEN nzk ©°
and
~ -l o
(b) v(G) = u(g “(G)) = u( Y Tk).
kEN

ad (a): It suffices to show that x € [E and g(x) € G together imply x € Ti for
some k. Now, since G € G(S') we have that for some e>0 Bd,(g(x),s) C G; on the
other hand, by Lemma 16 x € (E implies that there exists a k €N and a 6>0 such
that d'(g(x),gn(y)) < € whenever n2k and d(x,y) < &§; therefore gn(y) € G for
all nzk and all y € § with d(x,y) < 6 implying B(x,8) C g_'(6) for all nk,

whence Bd(x,é) c Tk’ and therefore x € Tﬁ.

ad (6): (g N6 s FHEU U 1) sTE) + T¥( U 19)
(a) KEN KEN

= ﬂ*( U Tz); note that for A € B(S), ﬁ*(A) > H(A) by (23); we will show that
keEN

even ﬁ* = u on B(S) which proves (b).

For this, let A € B(S); it suffices to show that g*(A) < u(a).

Now, n(a) = ﬂ(sg N Aa) = E(Sg N A') for some A' € Bb(S) (noticing that for

separable s one has s° N A € B(s®) = B (s%) =s°nB (S)), and therefore
o o o b o o b

H(SS N AT) = w(ar U (s)) 2 n¥(A), since A C A' U (s € B (S) € A.

(o]

~ 0 ~ o
U
K+l and therefore u(Tk) 4+ u( Tk)’ for every €>0, there

Now, since Ti CT
kEN

exists a ko € N such that

@S, TE) < E(TE) teforallk zk,
KEN

and therefore, by (b), we obtain

v
~

v(G) = ;(Ti) + € for all k

But u — ¥ implies (cf. (28)) that for every k€N

~ .0 .. o
u(Tk) < 11:+inf (un)*(Tk),

and therefore, noticing that Ti c g;l(G) for sufficiently large n, we obtain
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R(T2) S lim inf un(g;‘l(G)) = lim inf v_(6),
n>e n>e

whence v(G) £ 1im inf vn(G) + € for every e€>0, which implies (++). 0O
n->o

WEAK CONVERGENCE CRITERIA AND COMPACTNESS:

As before, let S = (S,d) be a (possibly non-separable) metric space, let
M;(S) be the space of all p-measures on a g-algebra A with Bb(S) C A C B(s)

and let M;(S) be the space of all p-measures on Bb(S)'

. 1 . .
DEFINITION 5. Let (ua)aEA be a net in Ma(S), then (ua)aEA is called §-tight
iff
. o 8
(30) sup inf 1lim inf ua(K ) = 1.
KeK(S) 6>0 a€A

(Note that K6 € Bb(S) C A according to Lemma 11 (ii).)

The following two results were proved by M.J. Wichura (1968), Th. 1,3
and Th. 1.4; in view of (27) b) they can be restated as follows (where in
Theorem 7 the assumption of (S,d) being topologically complete cannot be dis-

pensed with, in general).

1
. c s
THEOREM 6 (Wichura). Let (“a)aEA Ma(s) be §-tight.

. 1
Then there exists a subnet (uu')a'GA' of (ua)aGA and a separable uEMb(S) such

—
that Mot D M.

THEOREM 7 (Wichura). Let S = (S,d) be a topologically complete metric space

and (ua) be a net in Mi(S); then there exists a separable uEMé(S) with

ua —g y iff

(a) 1lim inf Ifducl = lim sup Ifdua for all £ € UE(S),
o o

and (b) (ua) is 8-tight.

We are going to prove here instead the following versions of Theorem 6 and

7 (cf. Remark (31) below):



EMPIRICAL PROCESSES

*
THEOREM 6 . Let (ua)aEA be a net in Mi(s) fulfilling the following two con-

ditions:

c -
(bl) For every (fn)n&_]N UE(S) with £ + 0 one has

llmasup IfnduOt -+ 0 as n>w,

(b2) There exists a separable S0 C S such that

lim inf Ifdua 2 1 for all f € UE(S) with £ 2 1 .

o S
o

Then there exists a subnet (ua, and a separable u € M;(s)

)a'EA' of (ua)aEA

. c
= p—y
with u(So) 1 such that My Tp M-

THEOREM 7" . Let S = (S,d) be an arbitrary metric space and (ua) be a net in
M;(S); then there exists a separable u € M;(s) with By —g u iff the following
conditions are fulfilled:

(a) as in Theorem 7 and (bi)’ i=1,2, as in Theorem 6*, where in this connec-

tion the separable So with u(Sg) = 1 and the separable SO occurring in (b2)

coincide.

Proof of Theorem 6. Let uu(f) := Ifdua for £ € UE(S) and consider the net

o — (ua(f))feulg(s) € Hb - el gl ]
eU
£ b(s)

where ||f]| := sup |£(x)|. Since the product space I - €l 0El 1
X€S seuP(s)
D
is compact in the product topology (Tychonov's theorem), there exists a con-

1 1 1 3
vergent subnet, say a' +— (ua'(f))fEUE(S)’ a'EA'. Therefore a%éx' ua,(f)

exists for each f € UE(S).

Let u(f) := limp ,(f) for f € UE(S);
a'EA' a

then u: UE(S) —> R is positive, linear, and normed.

. b
We are going to show that u is also o-smooth on Ub(S):

59
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for this, let (f ) C Ub(S) with £ + 0; then it follows by (b.) that
n’n€ b n 1

N

u(f) = l:T wa(ED) llma?up J£ du,

A

llmasup Ifndua + 0 as noe,

Therefore, according to the Daniell-Stone representation theorem, there exists

one and only one u € Mi(S) such that
u(f) = [fdp for all f € UE(S).

Hence, in view of (28) (cf. the equivalence of (g') and (h')) it follows that

Byt —p W» if we finally show that u(Sz) =1 (i.e. u separable).

0"

For this we use (b2) according to which

(+) 1lim inf Ifdua 2 1 for all £ € UE(S) with £ 2 1 o3
o So
taking

fn(x) := max [1 - nd(x,Sg),O], x€S,

i C i < <
we obtain a sequence (fn)ne UE(S) with 0 < fn <1 and

N

1 =sf =
c

0 1 c.1/n’ whence by the o-smoothness of u
S (s7)
o o

(note that Sg,(Sg)l/n € Bb(S) by Lemma 11 (ii)),

(%) = inf u((sH)Y®) 2 inf S£ dy = inf lim £ du,
° nEN ° n n n a' n

2 inf lim inf [f du 2 1, whence u(s°) = 1. O
n [0 o]
n o (+)

Proof of Theorem 7*. Only if-part: Suppose v, —3 M3

then (a) is a consequence of (28) (cf. the equivalent statements (g') and

(h')).

ad (blli Let (fn)nEN Cli(s) with fn ¥+ 0; then (cf. again the equivalence of

. 'y s . _oqs _
(g') and (h') in (28)) llmasup J'fnduOt = 1;m Ifndua = Ifndu + 0 as n¥»

according to the o-smoothness of u on UE(S).

ad (bzli Since, by assumption, u is separable, there exists a separable So cs
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such that u(Sg) = u(S); therefore, for any f € U§(S) with £ 2 1 . one has
S
o

lim inf [fdu, = lim [fdu = Jfdu 2 u(sg) = u(s) = 1.
o o

N . 1 . cy _
If-part: It suffices to show that there exists a u € Mb(S) with u(So) =1
such that for any subnet (ua,) of (ua) there exists a further subnet (ua")

such that Hon —g He

For this, let (ua,) be an arbitrary subnet of (ua)uGA; then it is easy to

o'€eA’

show that (ua,) fulfills (bl) and (b2) and therefore, by Theorem 6*, there

a'€A'

. 1 .
exists a subnet (uu")a"EA" of (ua')a'EA‘ and a X € Mb(S) with

c
uA',A"(So) = 1, such that By —g uA',A"'
We are going to show that Har an in fact does not depend on A' or A", whence
3
for p being the common value of all the Hpr an We get M, B M which will
bl
conclude the proof.

For this, given any f € UE(S), we have by (a)

lim inf [fdp < 1lim inf [fd = [fd
en .r ua AN I uan »r uAv LA"

= 1lim sup Ifdua" £ lim sup Ifdua lim inf [fdu ,
a''eA" aEA a€A o

b
whence IfduA',A" = Ifd“ﬁ',x"’ for all f € Ub(s)
and any other subnet (“E")E"eK" of (u;.)a.ex,
which is a subnet of (ua)aEA’ with wsy, — HRr Fns

therefore Lemma 13 implies the assertion. 0O

(31) REMARK. Any §-tight net (ua) C Mi(S) fulfills (bi), i=1,2, but not vice

. 1 . . .
versa (look at u, = u with a separable u € Mb(S) which is not tight).

: c i .l.o.g. <1,
Proof. ad (blll Let (fn)ne]N UE(S) with fn ¥ O and assume w.1.0.g sgp fn 1

then for every n € N, every 8>0, and every K € K(S) we have

lim sup Ifndua = lim sup ( Isfndua + Iandua)
a o K (K
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< lim sup J f du_ + lim sup [ .f du
o KG n o o cK6 n o

S (since f s1) sup, f (x) + lim sup u (CKG) Ssup, £ (x) + sup lim sup u (ﬂKG).
n § 'n o § "n o
XEK o xEK §>0 a

Now, given any €>0, there exists by assumption (cf. (30) and look at com-

plements) a K€ € K(S) such that sup lim sup ua(CKz) < e/3.
§>0 o

Therefore, for any €>0 there exists a Ke € K(S) such that for all n € N and 6§>0

. ()
llmusup Ifndua$sup {fn(x). x € Ke} + €/3.

Furthermore, it is easy to show that for any €>0 and n € N there exists a
8(e,n) such that

sup {fn(x): x € Ki(e,n)} < sup {fn(x): x € Ke} + €/3.

We thus obtain that for any €>0 there exists a K € K(s) such that for every

n EN

. < .
llmasup Ifndua < sup {fn(X)' x € Ke} + €/3 + €/3.

But, since K. is compact, sup {fn(x): x € Ke} > 0 as n>»®, whence

lim sup Ifnduu < ¢ for sufficiently large n, which implies (bl)'

a
ad (bz): S§-tightness of (ua) implies that for every n € N there exists a
o e 1
K € K(S) such that inf 1lim inf u (KG) 21 - =
n a n n
§>0 o
. b
Put So = U Kn to obtain a separable So C S; then, given any f € Ub(S)

n€N

with £ 2 1 o2 Me must show that
So
(+) 1lim inf ffdua 2 1.
a

Since f z 1, for each n, it follows (by continuity of f) that for every n €N
n

and every €>0 there exists a 60 = Go(e,n) > 0 such that

o

inf {f(x): x € Kn

} 2 1 - e, whence ,[fdu(lt 2 (1-¢) uu(Kgo). Therefore, for

e . 8
every €>0 and every n €N we have 1lim inf Ifdua 2 (1-€¢) 1lim inf uu(Kno)
a a
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2 (1-¢) inf lim inf ua(Ki) 2 (l—e)(l—%), which implies (b2). (m]
§ o

(32) Remark. The proof of Theorem 7 shows that any net (ua)ueA Cc Mi(S)
which fulfills (bi)’ i=1,2, is a compact net in Mi(s) (i.e. for any subnet
(ua.)

, of (ua)uEA there exists a further subnet (ua") , of (ua,)

a'EA O."EA' a'EA'

and a separable u € Mi(S) such that u . — u.

The following lemma prepares for the next theorem (cf. M.J. Wichura

(1968), Theorem 1.2 (a)).

LEMMA 17. Let (ua) be a net in Ma(S) and p € Mb(S) be separable, i.e.,

u(Sg) = u(S) for some separable So C S8; let C C A be such that

(33) for each x € SZ {ceC: xec’ is a neighborhood base

at x,
and let Cnf denote the class of all finite intersections of members of C.
Suppose that

(+)  limp (C) = 7(c) for a11 c € CE,
o

Then

lim inf u (6) 2 1(G) for all G € G(S) N A.
o

(Here again I denotes the unique Borel extension of u and A is a o-algebra of

subsets of S with Bb(S) C A CB(9).)

Proof. Given any G € G(S) N A, it follows by (33) that for every x € G N Sg

there exists a Cx € C such that x € C: C GX C G, whence

ens®c v c®, which means that {c° N s%: x € 6 N 5%} is an open covering
c x x o o
XEGISO

c . c e s
of G N So in the separable subspace (So,d) of (S,d). Therefore (cf. Billings-
ley (1968), p. 216) there exists a countable subcovering of G N Sz, i.e.,

cns®c u (c°
o] X

nsg) with x eGns‘;, n €N.
neEN “n n
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Put C :=C_, n €EN; then U Cn c v c Cx C G, whence
n *n nEN x€QNS_

~ - ~ c ~ c, _ ~
u(Ge) z u( : c ) = ul g (c,ns))zu@ns)) =u),

i.e., p(@) = p( V).

n
n
n-1
Put C! :=C,and C' :=C \ U C,, n2 2, to get pairwise disjoint sets
1 1 n n j=1
C' € Awith U C' = U C_, for which one can easily show (using the assump-
n n n
nEN n€EN

tion (+)) that

1im p_(C') = u(C') for all n € N.
s @ n

Therefore, for every n € N we have
n n n . n
(++) limp (VU C!) = 1im I w (C!) = u(c!) = u( v ch).
« %=1t o i=1 ¢t im0t i=1 *

Since ;(G) = ;( U c)=7pn(u C'), there exists for each €>0, ann = n(e) € N
n n
n€EN neEN

n
such that wp( VY Ci) 2 u(G) - €, and therefore (note also that G O U Ci)
i=1 i€EN

n n
lim inf ua(G) 2 lim inf ua( U ¢') = u(uU c') z2ulB) - ¢,
a a i=1 Y (++) i=1 *

which proves the assertion. O

THEOREM 8. Let (ua) be a net in Mi(S) and u € Mi(s) be separable

(i.e-,u(Sg) = u(S) = 1 for some separable So C s).

Suppose that C C {B € Bb(S): u(3B) = 0} fulfills (33).
Then the following two assertions are equivalent:

(i) limu (C) = u(c) for all C € ¢t
o

(ii) M, TP M-

Proof. (i) = (ii): Follows immediately from Lemma 17 and (28) (cf. the equi-

valence of (a') and (g') there); note that lim ua(S) = p(S) is trivially
a
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fulfilled for p-measures M, and u.
(ii) = (i): Again (28) (cf. the equivalence of (g') and (f')) yields

nt

1lim ua(B) = u(B) for all B € {B € Bb(S): H(3B) = 0} =: Rﬁ = Rgf o C O

o

We will consider next a Cramér-type result which is useful in applica-
tions.
For this, let again S = (S,d) be a (possibly non-separable) metric space, A
be a o-algebra of subsets of S such that Bb(S) C A CB(S), and let (En)nE]N
be a sequence of random elements in (S,A) and & be a random element in

(S,Bb(S)), being all defined on a common p-space (f,F,JP). Then

(34) Er is said to converge in law to & (denoted by

by

L
€ >, g) iff L{En} - L{€} (in the sense of

our Definition 4).

Now, let (nn) be another sequence of random elements in (S,A) defined on

n€N
the same p-space (92,F,P), and let

d(En,nn)(w) 1= d(&n(w),nn(w)), w € Q.

Note that for non-separable S, d(En,nn) need not be a random variable.

THEOREM 9a. Suppose that in the setting just decribed

1lim P*(d(g ,n_) > 8) = 0 for every 8§ > O,
e n’'n

* o .
where P denotes the outer p-measure pertaining to P.

Lb Lb
Then En-——4 g iff n,— £.
Proof. By symmetry, it suffices to show that
Lb L
E ¢ implies n, —7r&-

L
So, assume En -29 £ and let f € UE(S) be arbitrary but fixed;

then according to (28) (cf. (h')) it suffices to show that
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(+) lim | B(£(£)) - E(£(n )] = O.

n->o

(Note that f(gn) and f(nn), as well as f(§¢), are random variables.)

ad (+): Given an arbitrary e>0 there exists (by uniform continuity of f)
a & = 8(e) > 0 such that |f(x) - £(y)| < ¢ whenever d(x,y) < §; also

li£ll = sup [£(x)] < w.
xES

Therefore,

| E(£(g)) -E(f(nn)){ s JI£€) - f(nn)l P

- (¥ *
= [Tl£€) - £(n )| dP s J l{d(gn’nn)>6} |£(g ) - £(n )| 4P

*
* I g yssy 1F() - £l aP

s 2 |£]] P*(d(ﬁn,nn) >68) +e>easn>w,

whence lim sup | E(f(&n)) - E(f(nn))l < ¢ for every € > O,
n->e

which implies (+). O
The following version of Theorem 9a is useful as well,

* .
THEOREM 9a . Let (En)nelN and (nn)rIGIN be sequences of random elements in

(S,A), defined on a common p-space (,F,P) such that

(a) 1lim IP*(d(E ,n_) > &8) = 0 for every § > O.
e n’'n
Let S' = (S',d') be another metric space and

H: S > S' be A,Bb(S')-measurable,
and such that
(b) d'(H(x),H(y)) £ L-d(x,y) for all x,y € S

and some constant O < L < =,

Then, for any random element ¢ in (S',Bb(S')),

L
H(E ) —> ¢ iff H(n ) 2y .
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Proof. H(En) and H(nn) are random elements in (S',Bb(S')) for which by (a)
and (b)

* *
P (d'(H(E ), H(nn)) >8) sP (d(in,nn) >38/L) >0
for every 6>0, whence the assertion follows from Theorem 9a. 0O

REMARK. Instead of (b) it suffices to assume only that H is uniformly con-

tinuous.

THEOREM 9b. Let (gn)nEIN be a sequence of random elements in (S,A) and let &
be a random element in (S,Bb(S)) being all defined on some common p-space

Q,F,P). Suppose that & is P-a.s. constant; then E;n —> & implies

lin P¥(d(¢_,E) > &) = O for every & > O.

n->c

Proof. We show first

(+) 1lim E(If’éjn-f°€|)=0for alleU];(S).

e
In fact, for each f € UE(S) we have (cf. Theorem 3) that f ogn —> fog,

fe En and f ¢ ¢ being real random variables such that f e£ is P-a.s. constant,
whence (by classical probability theory) f e En:g fo g (wherejg-denotes con-

vergence in probability). Since f is bounded, {feo En: nEN } is uniformly

1
integrable and therefore f o {’n L, ¢ e ¢ which proves (+).

We are going to show that (+) implies

lim ]P*(d(gn,g) > §8) = 0 for every & > O.

n->o
For this, let &>0 be arbitrary; since L{E}(Sz) = 1 for some separable S_ C S

there exists a countable and dense subset {xi: i€EN } of Sg and we have
(%) P(g € 8%) = 1.
o
Then, for each i€N, there exists an f, € U]lz(S) such that ngiél and

0 if xeB°(x,,6/4)
£.(x) = o
1 1 if x€0B™(x,,8/2),

where Bo(xi,r) denotes the open ball with center Xy and radius r.
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In fact, take

o c
d(x,B (Xi,5/4)nS°)

f.(x) :=1-max [(1 - ),0]
1 6/4

to get such a function.

Now, let A, := {EEBo(xl,G/u)} and for i22 let
_ (] o o .
A, 2= {E6B7(x,,8/1), EECB (x,,8/4),...,860B (x;_1,8/1)};

then Ai € F, the Ai's being pairwise disjoint and such that P( VU A,) =1
ien *
according to (#). Therefore

PHA(E ,6) 6 ) s 1 P¥({d(E ,E) > 8} N A.)
n i€EIN n 1

* 3 *
£z P ({d(g_,x,) >=6}NA,)s © ['1, |[f.e& - f, oE| dP
iEN n’ i 4 i iEN Ai i n i

= £ [ |f,eg_ - f, egldp,
ieNw A, * % 1
i
where the last inequality follows from the fact that for all
3
gl = =
w € {d(én,xi) > E6} A; onme has fi(En(m)) 1 and fi(g(w)) 0

by construction of the fi's .

If we put gn(l) 1= i |fi °& - f; “£|dP and g(i) :=IP(Ai)
i
for each iEN, we obtain functions g, and g on N for which

0sg sg and I g(i)= £ P(A,) =P(Y A,) =1,
iEN i€EN 1 ien *

i.e., the gn's are integrable functions on N (integrable w.r.t. the counting
measure on N) being dominated by an integrable function g; since, by assumption
(+),

lim gn(i) = 0 for all i€N,

nre

it follows from Lebesgue's dominated convergence theorem that

lim sup P*(d(én,é) >8) <1lim I g (i) = 0. O
n->e n>e 1EN n

Finally, concerning the speed of convergence we have the following

result:
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THEOREM 10. Let En’ nEN, and n be random elements in (S,A) defined on a
common p-space (i,F,P) such that for some sequence a, ¥+ 0
(a") PH(acg_,m) > a) = ola).
Let H: S >~ R be A,B-measurable and such that
(") |[H(x) - H(y)| € L -d(x,y) for all x,y € S
and some constant O <L <,

Assume further that L{H(n)} is absolutely continuous w.r.t. Lebesgue measure

A such that

(c") [|h]| = sup |h(t)| =: M<e for h Ed—l'{%rlﬁ.
tER

Then

sup [P(H(E ) < t) - P(H(n) s t)| = O(a ).
tER

Proof. Let tER be arbitrary but fixed; then
P(H(E ) S t) - P(H(N) S t)

< P*(H(gn) $t, d(£,n) sa) + 6(a) - P(H(n) < t)
(a")

(1§>') ]P(H(En) < t, ]I—I(En) - H(n)]| = L'an) + U(an) - P(H(n) £ t)

< P(H(n) £t + L-an) + or(an) P(H(n) £ t)

< M-L-a +6®&@a)=0a).
(c") n n n

In the same way one obtains that

P(H(E ) > ) - P(H(D) > ©) = 6(a ),
whence also
P(H(n) £ t) - P(H(En) <t) = G(an),
so that in summary
sup ]IP(H(En) < t) - P(H(n) s t)| = o(a). O

tER

SOME REMARKS ON PRODUCT SPACES:

Let S' = (S',d') and S" = (S",d") be two (possibly non-separable) metric
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spaces.
Let S := S' x S" be the Cartesian product of S' and S" and let d := max(d',d"),
i.e.,
dl(x',x"),(y',y")) := max(d'(x',y"),d"(x",y"))
for (x',x") € S and (y',y") € S,

Then S = (S,d) is again a (possibly non-separable) metric space,

REMARK. (1) By (S) Bb(S') ® Bb(S”)

and (2) B(S') @ B(s") C B(S),

the inclusions being strict in general as can be shown by examples.

Let A" and A" be g-algebras of subsets of S' and S", respectively, such that
Bb(S') C A" C B(s') and Bb(S") C A" C B(s").

Then

B (s) C B (S")®B (s") C A'® A" C B(s') ®B(s") < B(s),

(1) (2)
i,e.,putting e.g., A := Bb(S')() Bb(S”) oee (a)
or A :=A'@®@A" L. (@',

we have again

Bb(S) C A C B(S) for the product space S = S' x S",

Now, let En’ nEN, be random elements in (S',A'),

£ be a random element in (S',Bb(S')),

nn, nEN, be random elements in (S",A"),
and let n be a random element in (S",Bb(S"));
suppose that all these random elements are defined on a common p-space
(2,F,P).
Then (En,nn), n€EN, are random elements in (S,A) (for both choices of A as in
(a) or (a')) and

(£,n) is a random element in (S,Bb(S')GDBb(S"))

as well as in (S,Bb(S)) (cf. (1) in the above remark).

Thus, considering (£,n) as a random element in (S,Bb(S)),
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Lb
(En,nn) —_? (E,ﬂ)

is again defined in the sense of (34), i.e,,as

L{(gn,nn)} (eMa(s)) - L{(g,m)} (eMb(s)>.

Supplementing the results contained in Theorems 9a and 9b we can prove

within the setting just described the following Theorems 9c and 9d:

THEOREM 9c. Suppose that n equals P-a.s. some constant c;
Lb Lb Lh
then £ — & and n ——n together imply (En,nn) — (&,n).
Proof. According to Theorem 9b,
Lb %
n,——n and n=c P-a.s. imply lim P (d"(nn,n) >8) = 0 for every 6>0.
n->w
Since d((En,nn),(En,n)) = max (d'(En,ﬁn), d"(nn,n)) = d"(nn,n),

we thus have

lim P*(d((En,nn),(E,n)) >8) = 0 for every 6>0,.

n->«o
Therefore, by Theorem 9a, the assertion of the present theorem will follow if

we show
L

(+) (5 _»m) = (£,n).
ad (+): 1.) L{(g,n)} is separable:
since L{&} is separable, there exists a separable Sé C S' such that
L{i}(Séc) =1. Take S_ := Séc x {c} to get a separable and closed subset
s = 5% of S for which
o o
L{CE,m}(S,) = P((E,n) €8) = P((£,n) €8° x {c})

- 1 C - 1Cy = 1Cy -
—]P((E,C)GSO x {c}) —IP(EESO ) = L{E}(SO ) = 1.

2.) According to the Portmanteau theorem (cf. (h') there) it remains to show
that

f £fdu —> [ fdu for all f € Ub(S),
s 0 s b

where i3 L{(En,n)} and u := L{(g,n)}.
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Now, given any f: S = S§' x §" +R being bounded, d-uniformly continuous
and Bb(S)—measurable, it follows from (1) in the remark made at the beginning
that £ is also Bb(S') ® Bb(S")—measurable,
whence
£f': §8' > R, defined by £'(x') := £(x',c), x'€ S',

is Bb(S')—measurable, and thus f' € UE(S').
L

But now, with ué iz L{En} and u' := L{g}, we obtain from En —E+ £ (using

again the Portmanteau theorem):

£ du = ) fo(sn,n)dJP = [ fo (En,c)dIP = [ fte F,n dP

S Q Q Q
= J f'ap' —> [ f'dp' = [ f'ef dP= [ fe(g,c) dP
s! n st Q Q
= [ fe(g,m)dP= [ £ du, O
Q S

For sequences of independent random elements one gets

THEOREM 9d. Suppose that En and n_ are independent for each n€EN and suppose

also that & and n are independent. Then the following two statements are

equivalent:
L L
(i) £ b, & and n 2, n
n n
(ii) (E_»n ) = (£,n),

Proof. (i) = (ii): 1.) L{(g,n)} is separable:

since both, L{g} and L{n} are separable, there exist §, ¢ S'and sy Cs"
such that (Sé,d') and (S;,d") are separable and

1€y nCy -
L{t‘;}(So ) = L{n}(So ) = 1.

Put S0 i= Sgc x Sgc to get a separable and closed subspace of
S = (S,d) (S =28'"x 8", d=max(d',d")) for which

(¢}
LLCE,mI(sD)

(L{EY x L{n}) (5! x 8"%) = L{g}(S'®) - L{n}(s"®) = 1.
(o] (o) [o] o

2.) According to the Portmanteau theorem (cf. (a') there) it remains to show
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P e
(+) 1lim inf L{(En,nn)}(G) 2 L{1(g,n)}(G) for all G € G(S) N A

n->w©

(where A = A' ® A"). For this, let u' := L{g} and u" := L{n} and let

—~
C:= {A' x A" A" € A", W (3A') = 0, A" € A", W(3A") = 0};

- oNf

then C is closed under finite intersections, i.e, C , and (33) holds

which means that
for each x € SZ {cec: xec® isa neighborhood base at x.

Furthermore, by assumption and the Portmanteau theorem (cf, (f') there),

L{nn}

1 - "
we have for u! = L{En} and uw

~ ~
lim (ul X Ll")(A' X All) = li'lTl u'(A' )‘}.l"(A") = ul(Al),un(All)
oo n n now n n

~ ~ I N——— nf
= (u' x p")(A' x A") = u' x u"(A' x A") for all A' x A" € C=C",

whence (+) follows from Lemma 17.

(ii) = (i): 1.) Both L{g} and L{n} are separable:
since L{(£,n)} is separable there exists a separable So Ccs=2g'"xg"

such that L{(E,n)}(Sg) = 1, Put

Sé := {x € 8': 3y € 8" such that (x,y) € So}

-1

to get a separable Sé C S' for which Sz Co' (Séc), whence

LLgX(s!®) = (LLg) xL{n})(ﬂ'—l(Séc)) = L{(E,n)}(n'-l(Séc))

2 L{(E,n)}(sg) =1, i.e., L{g}(Séc) =1

here m' denotes the projection of S = S' x S" onto S'.

In the same way one shows that L{n} is separable.

2.) According to the Portmanteau theorem (cf. (a') there) it remains to show

that for ué = L{En} and p' = L{&}

~
(+) lim inf ué(G') 2 u'(G') for all G' € G(s') N A"

n->-eo

and that for u; = L{nn} and u" = L{n}

73
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~
(+t) lim inf u;(G") z u"(G") for all G" € G(s") N A",
n->r«

We will show (+); the proof of (++) runs analogously.
ad (+): Let G' € G(S') N A' be arbitrary but fixed; then
G =6 xSsTEANGS) (A=A ®AM
and u'(G') = (u' x u")(ﬂ'-l(G')) = (u' x u")(G' x 8") for each nEN.
n n n n n
By assumption and the Portmanteau theorem (cf. (a') there) we therefore obtain

lim inf u'(G') = lim inf (u' x p")(G' x S")
oo n - n n

N~—— ~ —~ ~
> (u| X Ll")(G' X SH) = U'(G') ’U"(S") = ]J'(G'). D

Remark. Using the continuous mapping theorem (Theorem 3) one easily gets an
alternative proof of "(ii) = (i)" in Theorem 9d, even without imposing the

independence assumptions,

SEQUENTIAL COMPACTNESS:

We have shown before (cf. (32)) that any net (ua) C Mi(S) which fulfills
(bi)’ i=1,2, is a compact net in Mi(S). At this point we ask the question
whether the same is true for sequences instead of nets, i.e.,whether for any

1
c c1qs . .
sequence (un)nEIN Ma(S) fulfilling (bi), i=1,2, there exists a subsequence

(un )

and a separable u € Mi(s) such that o — u (as kow),
k

" b

(Note that a subnet of a sequence need not be a sequence!)

kEN

If (bi), i=1,2, is replaced by the (stronger) assumption of (un)nE]N being 6-
tight (cf. (31)), then it follows that the answer is affirmative;

in fact, as shown by Dudley (1966), Theorem 1, the following is true:

(35) For any 6-tight sequence (un)nenfi Mi(S) there exists a subsequence
(unk)ke:lN of (un)nE]N and a Borel p-measure u (on B(S)) such that
* ~ b
(36) lim f fdu_ = lim | fdu = = J fdu for all £ € C(S).

k> ko> % k
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Based on this result we obtain in a first step the following theorem:

THEOREM 11. Let (un)nEEIC: M;(S) be §-tight; then there exists a subsequence

1
—
(unk)kejN of (un)nE]N and a separable u € Mb(S) such that unk o H

Proof. Apply (35) to get a subsequence (unk)ke]N

p-measure H for which (36) holds true. Then it can be shown as in the

of (un)naN and a Borel

"(h') = (b)" part of the proof of (28) that (36) implies

(+) 1lim sup u¥ (F) < W(F) for all F € F(S).
ke

(In fact, given an arbitrary F € F(S), there exists for every n€EN an e >0
~ %n ~ 1
such that u(F ) £ u(F) + o taking then
€ €
d(x,0F ")/e_ if CF " * g,
f (%) =: X €8,
n €n
1if 0F " = ¢,

and g := min(fn,l), we obtain a sequence of functions g, having the

following properties for every n€EN:

(:) g, € Cb(S), (:) rest g =0 and (:) resty g, =1,

CFen n

Therefore, for every n€EIN we obtain

et

lim sup u: (F) = lim sup I*leu < lim sup I*g du
) 3 Koo @ ke n

€
N ™) < WE) + %, which implies (+).)

A

= Jgdn = [ gdu
33,0 " @ r™ "

Now, we are going to show that (due to the §-tightness of (un))

(++) ¥ is necessarily tight,
whence u := reStBb(S); is also tight and therefore separable (cf. (25)) and
thus (noticing also (24)) we can apply (28) (cf. the equivalent statements (g)

and (g')) to obtain the result, i.e.,un < ¢
k

ad (++): Since (un)ne is 6-tight, it follows that for every nEN there exists

N
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a Kn € K(S) such that

(+++)  1im inf u (Knl/Qm

ke Tk

)21 - for all m € N.

W.l.o.g. we may assume Kn 4+ and therefore

PO U K = lim (K = lim (im 5k ™)
neN n n->eo n n>e  moe n
2 lim (lim sup 5((x ?™°)) 2 1lim lim sup lim sup »_*((x /2™°%)
N m n (+) n m ke Dy n
2 lim 1im sup lim inf u_ (K 1/2m) 2 1, O
n m k P P (+++)

The proof of Theorem 11 also shows that the following result holds true:

THEOREM 11%. If S, © (So,d) is a separable subspace of S and if

1 §
c A . . . .. -
(un)nEIJ Ma(S) is §-tight w.r.t. S (i.e.,if sup inf lim inf un(K )=1),

KEK(SO) §>0 nre

then there exists a subsequence (un )

1 .
. KEN of (un)ne]N and a u € Mb(S) with

u(sc) = 1 such that y. — u.
o nk b

As to our question raised at the beginning, it was shown by J. Schattauer
(1982) that the assertion of Theorem 11 even holds if the assumption of

§-tightness of (un)nE is replaced by the (weaker) conditions (bi)’ i=1,2:

N

THEOREM l1la). Let (un)ne be a sequence in Mi(S) fulfilling the following two

N

conditions:

b
Ccu i
(b,) For every sequence (fm)me b(S) with fm + 0 one has

1 N

llmnsup ) fmdun +>0asm~>®,

(b2) There exists a separable So C S such that
lim inf j fu_ 2 1 for all f € uP(s) with £z 1

n n b Sc

o

Then there exists a subsequence (unk)kEIN

u(SC) = 1 such that 4. — u (as k » =),
[) nkb

1 .
of (un)naN and a u € Mb(S) with

For the proof of this theorem we need an auxiliary result which is based on the

following
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DEFINITION. Let S = (S,d) be a metric space and Ai c s, i=1,2; A1 and A2 are

said to be d-strictly separated if either AlGl nA2 = @ for some 61 > 0 or

N 62 -
=
A] A2 ¢ for some 62 > O,

where A.di := {x € S: d(x,A.) < 8.}, i=1,2.
i i i

PROPOSITION (cf. E. Hewitt (1947), Theorem 1).
Let S = (S,d) be a metric space, and let G be a subset of Ub(S) such that for

every d-strictly separated pair F F2 € F(S) there exists a function g € G

l’
such that sup g(x) < inf g(x) (or sup g(x) < inf g(x)). Then G is an

XEFl xEF2 XEF2 xEFl

"analytic generator" of Ub(S), i.,e.,for every f € Ub(S) and every positive real

number € there exist functions fl""’fk € G and a polynomial P(zl,...,zk) =
Ly Ly % .
I ... I o o %1t (with real coefficients ay . )
2.=0 L, =0 17k 17" 7k
1 k
such that
£ - P(fl,...,fk)||:= :Eg | E(x) - P(fl,...,fk)(x)l < e.

Proof of the proposition. This follows along the same lines as in Hewitt (1947)

noticing that the functions w,w,h,hl,...,hn and

3 3.1 2 2,i-1 . .
@, §(w - hl)’ (5) (¢-h; -3h ..—(30 hi)’ 2 £ i £ n, respectively,

2‘.

occurring there are uniformly continuous which implies that the sets

£ 1 £ 1
= . - — = . > —
Fl := {x € 8: £(x) = 3} and F2 = {x €8: £f(x) 2 3},
3,1 2 2,i-1 .
—_ - - — - - (= < <
for f € {@,(2) (¢ - h; -3 h) v 3) hi)’ 1<1i<nl,

are d-strictly separated:
1 .
In fact, f € Ub(S) implies that for € = g'there exists a 6>0 such that

[E(x) - £(y)] < %-whenever d(x,y) < ¢&; thus given any x € (Ff)d, we have

A
[
w|

£ 1
d(x,xo) < 8§ for some x_ € F, and therefore [£(x) - f(xo)] <g and f(xo)

w|

[ .
) which implies f(x) £ - %-for all x € (Ff) ; since f(x) 2

£
2

(since x € F
o

£
1
£ -
5 =¢. 0O

for all x € F,, we thus have (Fi)6 N F
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Proof of Theorem lla). According to (b2), let TC SO be countable and dense

. . .C
in 8 (as well as in So), say T = {xl,x2,..,}, and let

Gl = {min(d(-,xn),l): n € N},
G, :={f: S>R: f = min g., g. €6, i=1,...,n, n €N}, and
2 . i i 1
1€isn
2 L

k
G3 = {f: S+R: f = g - B for some g; € G2, 21,...,£k eEN V {0},
k € N};

then Gl C G2 C G3 with G3 being a countable class of functions in UE(S)

(cf. Lemma 11 (ii)).

Therefore, by the diagonal method, there exists a subsequence

(unk)kEIi of (un)nE]N such that
(i) lim [ fdu exists for all f € G,.
n 3
k> k

Let Gq := {f: S>R: f = min(d(-,Fe N Sg),l) for some F € F(Sg), €>0};

then (cf. Lemma 11 (ii)) Gu C UE(S), and

(ii) For any f € G, there exists a sequence (f ) C G, such that £ + f
4 n'n€ 2 n

N

as n > o,

ad (ii): Let £ € G, i.e.,f = min(d(.,F° N sg),l), FeF(sg), €>0.

It is easy to show that T N F® is countable and dense in F° N Sg; let

TNE® = {zl,z2,...}; then d(',FE n Sz) = inf d(-,zn), and therefore

n

g_ = l;?in d(',zi) ¥ 1?f d(',zi), 1.e.,fn iz mln(gn,l) Vv £,

where £ = min (min(d(°,zi),1))€G2 for each n which proves (ii).
1sis<n

1 K
Now, let G5 = {f: S»>R: f = g, --- g for some g, € Gu,

[ )

. EN VU {0}, k €N};

k
then, since G4 C UE(S), we have also

e b
(iii) G5 C Ub(S).

On the other hand, it follows from (ii) that



EMPIRICAL PROCESSES

(iv) For any f € G5 there exists a sequence (fn)nEIQC G3 such that

f ¥ fasn >,
n

Furthermore,

(v) 1lim J fdu exists for all f € GS'
K> Pk

ad (v): Let f € Gs; then, by (iv), there exists a sequence (fm)me c G3 such

N
that f + f as m >, Since f - f+ O and f - f € Ug(S), we obtain by (b.)
m m m 1

that lim sup [ (fm - f)dun + 0 as m > », and therefore also
n>e

1lim sup [ (fm - f)dun + 0 as m > ®. Since

ko k
limsup [ (f - f)dp 2 limsup [/ £ du - limsup J fdu 2 O,
K n B K oy K P
it follows that limsup [ £du - 1lim sup [ fdu > 0 as m > o,
k oy K P

and therefore we obtain by (i)

® 1im lim [ £ dy = lim sup [ fdu .
e ke % Koo oy
On the other hand, since 1lim inf [ (f - £ )du = - lim sup [ (f - f)du ,
X m oy 5 m ny

we have lim inf [ (f - £ )du - 0 as m > =, Since
K oy

lim inf f (f - £ )dp £ lim inf [ fdy - lim inf [ £du <O,
K moony k T k mony

we thus obtain in the same way as before, using (i), that

lim lim [ £ du lim inf [ fdu_ , whence together with (:) the assertion in
m n n
m>e k- k ke k

(v) follows.

Finally, let GG := {f: S >R: £ = P(gl,...,gk) for some g; € Gu, 1<1i<k,
k € N},
then, by (iii), GB c UE(S), and it can be easily shown that (v) implies

(vi) lim j fdu exists for all f € GG'
Je>eo Oy

Now, let Ub(Sz) 1= {£f: Sz +R: f bounded and uniformly (d-)continuous}

b, .c
: C
{restsgf. f e Gu} §] (So).

and consider GL :

79
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Let F ,F_ € F(SE) be a d-strictly separated pair of closed subsets in the

1’72
metric space Sz = (Sg,d), i.e.s(w.l.0.g.) there exists a §>0 such that

§ c
N N =
(Fl So) F2 @.

Put f := l'ﬂin(d(',Fé/2 N Sc),l); then £ € G and g := rest f € G';
1 o L ¢ 4
we will show that ©
(:) sup g(x) < inf g(x).
xEFl xEF2
. . §/2 c, _ . c
ad !:2: x € F, implies d(x,F N S”) = 0 since F, C S, and therefore
1 1 o 1 [}
f(x) = 0 for all x € Fl whence sup g(x) = 0.
xEFl

On the other hand, x € F2 together with (Fi N Sg) N F2 = @ implies d(x,Fl) 2§

§/2 §/2

and therefore d(x,F1 1

) 2 8§/2; thus d(x,F N 82) 2 §/2 for all x € F2, i.e.,

inf g(x) 2 min(§/2,1) which proves (:).

xEF2

Therefore, by our proposition, GL is an analytic generator of Ub(SZ), i.e.,
Ub c .
for every h € (SO) there exists a sequence (gn)nEIJ such that

g

= i 1 <i<
- Pn(gnl’gnQ""’gnkn) with g € Gu, 1<izs kn’ and

sup_ |h(x) - g (x)| >0 as n + =,
) n
XGSc

3 1 -
Since S S Gq’ 83 restSc fni for some fni € Gu, whence

o
"fnkn) € GG with rest c fn = g, for each n € N.

S
o

f :=P (f
n n

nl’an"'
We thus obtain that

(vii) For any f € UE(S) there exists a sequence (fn)ne C GG such that

N

sup |f(x) - £ (x)| >0 as n > =,
x€sS 0

Furthermore, we will show that

(viii) lim [ fdp  exists for all f € UE(S).
Ko A

. b
. . .. . c
ad (viii): Let f € Ub(S), then, by (vii), there exists a sequence (fn)nGIJ GB

such that sup [£(x) - fn(x)| > 0 as n > «; therefore, given an arbitrary
XES
[
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but fixed m € N there exists an n = no(m) € N such that

sup |£(x) - fn (x)] < %. Since f and £ are uniformly continuous, there
xesg o S

. 1 1
exists a 6m>0 such that |f(x) - f(y)l < = and Ifno(x) - fno(y)| < =

whenever d(x,y) < 6m. Now, let S := (Sg) m; then, for any x € S there exists
a y€ Si such that d(x,y) < Gm, and therefore

I, 0 - £l s ]2, (0 - g, W+ 1E, ) - £+ 8w - £ <2

for all x € S, whence f(x) = fn (x) + % and f(x) z fn (x) - % for all x € S.
o o

Since S € Bb(S) (cf. Lemma 11 (ii)), it follows that

. 3
© Jfaw s J (f +3)du_ + J fau_ for all k €N, and
T Y ¢S ¥

%

@ Joga

fdu  for all k €N,
" n

"
=}

o

=

D

Furthermore, it follows from (b2) that
@ lim sup u_ (€S) = 0.
k “x
d("sz) o
ad @: leg = lC(SC)Gm smin ( ———,1) =: £ € UE(S), whence
o m

lim sup u (Cg) < lim sup [ £4u = lim sup (1 - (1 - fo)dun )
K oy K "k K k

=1- lim inf [ (1 - fo)du £ 0, since 1 - £ 21 c and thus

k So

1lim inf [ (1 - fo)dunk 2 1 by (b2). This proves (:).
k

Next, it can be easily shown that (:) implies

(:) 1lim { fdu =0 for all f € UE(S).
ke (S Tk

But then, it follows from @, @ and (f) that

glw

lim sup fdu < 1lim sup { fn dpy_ + =, and

k k k § " ™
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lim inf [ fdu_ 2 lim inf J £ du -
k k k S "o 'k

glw

Furthermore, (:) together with (vi) imply easily that

lim sup £ £f dup = lim inf { £f du = lim £ f du
k S "o ™ kK § % "k x=35 % %

and therefore 1lim sup f fdp - lim inf J fdu_ =
k O k O

glo

which implies the assertion in (viii) since we started with an arbitrary m.

But now, putting u(f) := 1lim [ fdu_ for f € Ub(S),
n b
ko k

the assertion of Theorem 11 a) follows as in the proof of Theorem 6* applying
the Daniell-Stone representation theorem (cf. H. Bauer (1978), 3. Auflage,

S. 188) noticing that Bb(S) coincides with the smallest o-algebra with respect
to which all f € UE(S) are measurable.

This concludes the proof of Theorem 11 a). O

SKOROKHOD-DUDLEY-WICHURA REPRESENTATION THEOREM:

Let again S = (S,d) be a (possibly non-separable) metric space and suppose
that A is a o-algebra of subsets of S such that Bb(S) C ACB(S); let (En)nem
be a sequence of random elements in (S,A) and £ be a random element in
(S,Bb(s)) such that En EE’ £ (cf. (34)).

Then the Skorokhod-Dudley-Wichura Representation Theorem states:

L -
THEOREM 12. gn —517 ¢ implies that there exists a sequence En, n € N, of random
elements in (S,A) and a random element & in (S,Bb(S)) being all defined on an
appropriate p-space (2,F,P) such that L{En} = L{En} (on A) for all n €N,

-~ -

L{E} = L{£} (on B, (S)) and En + £ P-almost surely as n > ® (i.e.,there exists
an ﬁo CQ with ﬁo € F and f(ﬁo) = 1 such that for all & € ﬁo
lin d(E_(8), £(@)) = 0).

o 1

For complete and separable metric spaces this result was proved by

A.V. Skorokhod (1956); it was generalized to arbitrary separable metric spaces
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by R.M. Dudley (1968), and in its present form (for arbitrary metric spaces)
it was first proved by M.J. Wichura (1970); cf, also R.M. Dudley (1976),
Lectures 19 and 24.

Our proof will be based on the one given by Dudley (1976). For this, we need

the following proposition.

Proposition. Let S = (S,d) be a metric space, u € Mﬁ(S) be separable, i.e.,
u(Sg) = 1 for some separable S C S; then, given any >0, there exists a

sequence (An)ne of pairwise disjoint subsets An of S having the following

N
properties:
(1) sc u a
° neN ™
(ii) ﬂ(BAn) = 0 for all n €N (where 1 denotes the unique

Borel extension of u (cf. (24)))

(iii) diam(An) :=  sup d(x,y) < € for all n €N, and
X,yEA
n
(iv) An € Bb(S) for all n EN.

Proof. Let {xl,x2,...} be dense in 82. For each n € N, the open ball B(xn,é)
is a p-continuity set (i.e.,a(BB(xn,S)) =0) except for at most countably many
values of 6; hence, given any €>0, for each n € N there exists an en such that

e/4 < e, < e/2 and ;(BB(xn,en)) = 0. Now, let A, := B(xl,sl), and recursively

1

for n>1 An 1= B(xn,en)\ V) B(x.,ej). Then (i) - (iv) are fulfilled:
j<n

In fact, (iii) and (iv) follow at once by construction, (ii) holds since the
class of all E-continuity sets forms an algebra containing each B(xn,en);

finally, given any x € Sg there exists an % such that d(x,xk) < €/4 whence

k
x € B(Xk,e/u) c B(Xk,ek) C ngl A implying (i). O

Proof of Theorem 12. Let us start by giving a description of the basic steps

along which the proof will go, postponing some details to its end. For this,

let P := L{€} on Bb(S) with P(Sg) = 1 for some separable S, C S, and let
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P := L{¢ } on A, n EN.
n n

STEP 1. For each k € N, by the proposition take a sequence (Akj)jEDJ of

disjoint g—continuity sets A . € Bb(S) such that diam(Akj) < % for all j EN.

kj
Since U A . D s® and P(s°) = 1, there exists a J, < « such that
JEN k3j [} o k

(a) T P(Akj) >1- 27K (where w.l.0.g. we may assume

<5<
1_]_Jk

<4< .
P(Akj) >0 for all 1 £ 3 < Jk)

Applying (28) (cf. (f') there) we obtain

(b) For each k € N there exists an nk € N such that for

[y
A

(5]
A

S
I, an(Akj) - Ry ] <2 lz;rékaP(A.kj) for

all n

v

nk.

We may assume w.l.o.g. 1 < n; < n, < e

STEP 2. For each n €N let S := 8§, I :=1 := fo,11, T :=s x1I

n n n n’

B (= A® B(In) (with B(In)

n I N B), and Q =P

> A, A being Lebesgue

measure on B(In); furthermore, let To 1= S x I, Bo 1= Bb(S)C)B(I) and

= X .
Q, =P xA

For each k EN, 1 £ j < Jk and n 2 o let

,

P(Ak.)
—Jd — iFP (A .) >P(A ) (>0)
£(n,k,j) :=< Pn(Akj) n Akj Akj

L 1 otherwise,

Pn(Ak.)
21 ifP (A .) < P(A_.),
g(nk,i) =€ Plhy) a3 ks

| 1 otherwise,

B

nk3 Akj x [0,f(n,k,j)], considered as a subset of Tn, and

anj := Akj x [0,g(n,k,3)], considered as a subset of To’ ie.,

Bnkj € Bn and anj € Bo; then, by the definition of f and g, we have
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(c) Q (B

A nkj) = Qo(anj) = min(Pn(Akj), P(Akj)); furthermore,

it follows from (b) that

(d) min(g(n,k,3), £(n,k,3)) 2 1 - 27,
Let B :=T \ U B _ . andC =T \ U .
nko n 1€550 nkj nko o 15§20 nkj
k k
For k =0 let g :=0, B := T and C = T .
o noo n noo o

Let n  := 1 and for each n €N, let k(n) €N U {0} be the unique k such that

<< A . o s s . ) Pe.
nk n<ns then Tn is the disjoint union of sets Dn] s 1.e.,

= Bnk(n)j
(e) T = % Dnj; likewise T = I E . with
<5<
O‘j_Jk(n)
Es % Cak(n)ge

It follows from (c) and (d) that

(£) Qn(Dnj) = Qo(Enj) >0 if § 2 1.

STEP 3. For each n €N, given any x € To’ let j = j(n,x) be the j such that
x €EE . (cf. (e)). Let
nj

A:={x€T: Q(E ) >0 Vn €N},
o' o

nj(n,x)

0} = Y) E € B

Then A= U {x€T:Q(E no
°© ©° (£) {n€N,Q (E_)=0}
[e] no

n€EN °

nj(n,x)) :
and QO(CA) = 0, whence

(g) A€ Bo and QO(A) = 1.

Therefore, ao(A N B) := QO(B), B € Bo’ is a well defined p-measure on A N BO.

For x € A and any B € Bn let

iz N . E . .

an(B) Qn(B Dnj(n,x))/Qo( n](n,x))

It follows from (f) that

(h) the an, X € A, are p-measures on Bn’ belonging to a finite

set {P .}, where P_. := P__ if
nj nj nx

N N <3 £ .
x €EANE € ANB, 05353,

For x € A let

85
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U := x P __ be the product measure of the P__ on the product o-algebra
x nx nx
nEN
B := ® B_ in the product space T := x T,
neEN ° neN "

Let fi: A x B> [0,1] be defined by {i(x,B) := ux(B) for x € A and B € B; then {i
is a "transition probability (or Markov kernel) from (A,A N Bo) into (T,B)",
i.e.,
(1) (1) For each x € A {i(x,*) is a p-measure on B, and
(2) For each B € B fi(-,B): A >~ I =[0,1] is A N Bo
B(I)-measurable.

Of course, (1) holds true here and (2) will be shown later,

Therefore (cf. Gaenssler-Stute (1977), Satz 1.8.10)

P := 50 x 1i defines a p-measure on
F:=@an Bo)®B in
5 := A x T, where (cf. Gaenssler-Stute (1977),
1.8.7 and 1.8.9)
(1) B(c) = {\ {~ 1 (x,y)7(x,dy)Q_(dx) = {\ A(x,C,)Q_(dx)

-~

for C € F; note that C, = {y € T: (x,y) € C} € B.

-~ a

STEP 4, (Q,F,IE) as obtained before being the desired p-space, let, for n €N,

E : ﬁ -+ S be the natural projection of §=ax [ x (8 xI )] ontoS_ =S,
n hEN P n n

then the En's are random elements in (S,A) and
(k) L{En} = L{En} (on A) for all n € N.
In fact, for any A' € A, L{En}(A‘) =1§(§n-1(A'))
= J uX(T X oo XT o 0% (A" x In) xT .

1% ...)ao(dx)

I P (A' x I)Q (dx) = z P (A' x I )Q(ANE.)
A ™ O (h) 08358, () no nJ

TP .(A'xI)QI(E .)=XQ(A'"xI)ND .)= Q (A" xTI)
5 nj n° o nj i n n nj (e) n n

P_(A') = L{g_}(a").
n n
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-~

: ﬁ -+ S, where HX

T ~
- . & . .
Next, let & := HSO o i(A) * HA is the natural projection of

T
Q= A x Tonto A, 1(A) is the injection of A into To’ and HSO is the natural

projection of To =S x I onto S; then £ is a random element in (S,Bb(S)) and
(1) L{E} = L{e} (on B (8)).

In fact, for any B € Bb(S)’ L{E}(B) =I§(E—1(B))

»

T ~
=BEH ™ e @™ e () 7He) = BUrH ™ e 1) THE x 1))
=RAEDTHAN B DN=BAN B x D] xD = | (DY (dx)

(3) AN(BxI)

= Q (AN (B x1))=0Q(Bx1I)=P®B)=L{EIB).

Now, let Q@ := lim inf & ,» where
o - 0,0
I n D, xT L) EF
an ];iJ ([a %d]lex xarlx njx mix ) EF
=32 (n)
then ﬁo € F and
(m) lim d(E_(8), €(@)) = 0 for all & € ﬁo.

n>ew

87

In fact, for any & € ﬁo there exists an n, € N such that for all n 2 ng there

. . < s <
exists a j(n), 1 £ j(n) = Jk(n)’ such that

. an Q.
Sn(w) S Ak(n)j(n) and E&(B) € Ak(n)j(n) (note that HA(w) EAN Enj(n)

- T -
. . . Qa o, Q/a .
implies 1(A)(HA(w)) € Enj(n) whence Ig (1(A)(HA(m))) € Ak(n)j(n))’
cf. the definition of the sets Dnj and Enj’ respectively.

2 A JaN . 1
> < < —
Therefore, for all n 2 n, d(En(m), E(w)) = dlam(Ak(n)j(n)) ey -0 as

n > « (since k(n) » © as n » «),

Next we will show that IP(QO) = 1. For this we will prove later that

(n) Q (lim sup E_ ) = O.
o T no
Now,
= N . )
CQO,D iy b ([a Enj] x T % x T 1 ><17DnJ x Tn+l>< )
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N cen e
+ ([A Enol X Tlx xTnx )

= Ql,n + QQ,n’ say,

where P(Ql,n) = § f an(CDnj)Qo(dx) = ? Pnj(CDnj)Qo(A N Enj)
j ANE_. Jj
nj
Qn((GD .)nDn.)
=y &2 o) oJ Qo(En.) = 0 for all n €N, and therefore
3 Q) J

P(lim sup (& ) =B(limsup &, ) =B([AN limsup E_ ] x T)
e 0,0 oo 2,n oo no

=Q(AN1limsup E_) = Q (limsup E_) = 0 by (n).
() o no (o] o no

It follows that (8 ) = P(lim inf & ) = 1 - P(lim sup Ce ) = 1.
o o,n o,n

N> ? n->o 4

It remains to show (i) (2) and (n):

ad (i) (2): We have to show that
(+) D :={B€B: {i(+,B): A>1I=7[0,1], is AN Bo, B(I)-measurable} = B.

If B=T, x...xT xB xT x,.. for some BL € B , then for each t € I
1 n-1 n ntl n n

{x € A: fi(x,B) £t} = {x € A: uX(B) <t} = {x€A: an(Bn) < t} (=
h)

U ANE.EAN Bo’ whence B € U for all these sets.
{3:p_.(B )st} ™
nj n

From this and the product form of My it follows that the class C of finite

intersections of sets B just considered is also contained in D. Since C is a

N-closed generator of B, we get (+) as in Gaenssler-Stute (1977), 1.8.5.

ad (n): It follows from (a) that I P(S\ U Akj) <3z Q—k < o,
k
k

k 153y

whence, by the Borel-Cantelli lemma

P(lim sup(S\ U Akj)) =0, i.e., P(liminf U A ,) =1

pa 15§53, koo 1893, 9
and thus
P(lim inf U Ak( ).) =1 as k(n) »» for n > =,
e 1<9<J nJJ
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Furthermore,

A(lim inf [0,  min g(n,k(n),3)1) =1, since for any t € I = [0,1]
e 1s9<d
k(n)
-k(n)

with t<1, min g(n,k(n),j) 2 1 - 2 >t for all large enough n.
1sngk(n) (d)

Since 1lim inf U E . D (1lim inf UV A
nre  1Sj5J n>®  1£9<d

x (lim inf [0, min g(n,k(n),i)1),
no>e JEG )
k(n)

we thus obtain Qo(lim inf U E .) = 1 which implies (n) since
n-e léjéJk(n)

6 v E.)=E

. nj no”
<9<
l':"Jk(n)

This concludes the proof of Theorem 12. O

Following a suggestion of Ron Pyke, let us demonstrate at this place the
usefulness of the representation theorem for proving the following version

of Theorem 5 (cf. Lemma 16 for the definition of the set E).

THEOREM 5'. Let S = (S,d) and S' = (S',d') be metric spaces, and A a o-algebra
of subsets of S such that Bb(S) CACB(S). For n EN let g 8> S' be
A,Bb(S')-measurable and let g: S > S' be Bb(S), Bb(S')-measurable.

Let (En)ne:lN be a sequence of random elements in (S,A) and £ be a random ele-

L —~

ment in (S,B (S)) such that En —Ea &£ and L{E}*(E) = 0. Then

Lb
gn(ﬁn) S-S g(g) = gekt.

(Note that gn(gn) and g(&) are random elements in (S',Bb(S')).)

Proof. As in the proof of Theorem 4 it is shown that

_l —~~ _l . .
L{g(g)} = L{g} eg = ( = L{g} e g ~) is separable, Now according to Theorem 12,
there exists a p-space (ﬁ,?;@) and on it random elements En in (S,A) and a

random element & in (S,Bb(S)) such that
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L{En} = L{g_} (on A) for all n €N, L{E} = L{&} (on B, (5)),
and

En(&) > g(&) (as n > ») for all & € Qo, where ﬁo € F with ﬁ(ﬁo) = 1.

e S A a5 -
Let & := {¢ € CE} and 2, := 8 NQ; then for all & € 9,

gn(zn(m)) > g(E(®)) (as n > ®). Since ﬁ(ﬁo) =1 and P (d) =1
~~ —~ “ -
(note that L{E}* (CE) = L{€}* (CE) = 1) we have P*(Qz) = 1, whence there

exists 53 € F such that 93 C Q. and P(QS) = 1, It follows that for & € Q. and

2 3

each £ € UE(S')
feg of (3) »fogef(d) (as n > )
n n

whence, by Lebesgue's theorem,

]E(fvgn"gn) +E(fegok), i.e., Ide{gn(gn)} + ffdl{g(€)} (as n > =),

since Lig (£ )} = LIE }e g;l = Lig ) egr‘f = Lig ()}

and L{g(g)} = L{E} - g_l = L{&} Og_l = L{g(&)}, the assertion follows by (28)

(cf. (h') there). O

Next, we want to make some specific remarks concerning the special case
S = D[0,1] reviewing at the same time some of the key results from Billings-

ley's (1968) book (cf. Appendix A in G, Shorack (1979)).

THE SPACE D[0,1]:

Let D = D[0,1] be the space of all right continuous functions on the unit
interval [0,1] that have left hand limits at all points t € (0,1]. Cf. P.
Billingsley (1968), Lemma 1, p. 110, and its consequences concerning specific

properties of functions x € D; among others, sup Ix(t)] < « for all x € D.
t€[0,1]

If not stated otherwise, the space D will be equipped with the supremum

metric p, i.e.

p(x,y) := sup |x(t) - y(t)| for x,y € D.
t€[0,1]

(By the way, (D,p) is a linear topological space whereas (D,s), with s being
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the Skorokhod metric, is not (cf, P. Billingsley (1968), p. 123, 3.)). Note
that (S,d) = (D,p) is a non-separable metric space (in fact, look at

Xy iF l[s 177 S € (0,1), to obtain an uncountable set of functions in D for
2

which p(xs,xs,) =1 for s ¥ s').
Also, as pointed out by D.M. Chibisov (1965), (cf. P. Billingsley (1968),
Section 18), the empirical df Un (based on independent random variables (on
some p-space (2,F,P)) being uniformly distributed on [0,1]) cannot be con-
sidered as a random element in (D,B(D,p)) (i.e. Un: £ > D is not F,B(D,p)-
measurable), where B(D,p) denotes the Borel o-algebra in (D,p). But, consider-
ing instead the smaller o-algebra Bb(D) = Bb(D,p) generated by the open (p-)
balls we have
(37) Bb(D) = 0({nt: t € [0,1]}),

where 0({nt: t € [0,1]}) denotes the o-algebra generated by

the coordinate projections ", = nt(D) from D onto R, defined

by nt(x) := x(t) for x € D.

(Note that (37) implies that Un is F,Bb(D)_measurable since
F, G({ﬂt: t € [0,1]})-measurability of U is equivalent with F,B-measurability
of nt(Un) = Un(t) for each fixed t € [0,1] where the latter is satisfied since

Un(t) is a random variable.)

Proof of (37). Let T := @ N [0,1] be the set of rational numbers in [0,1];
then, by the right continuity of each x € D one has

(a) p(Xl’XQ) = iéﬁ [xl(t) - x2(t)| for every x,,x, € D.

Therefore, for any X €Dand any r > 0

{x €D: p(x,x ) sr} = N {x €D: [x(t) - x (£} £ r}
° t€T °

th w;l([xo(t) -r, xo(t) +r]) € 0({wt: t € [0,1]}); thus

Bb(D) C 0({ﬂt: t € [0,1]}); (note that {x € D: p(x,xo) < r}

1
= U {x €D: p(x,xo) <7p - ;}).
mEN
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To verify the other inclusion it suffices to show that for every fixed

t € [0,1] and r € R one has
(b) {x € D: nt(x) <r} e Bb(D).

For this we define, given the fixed t and r, for any n, k €N and s € [0,1]

0, if s < t
XE(S) 1= r - % -n, if s € [t,t + %) n [0,1]

0, ifs € [t + %, « N [0,1].
Then xﬁ € D and it follows that

(c) {x € D: nt(x) <r}= VU U {x € D: p(x,xk) < nl,
nEN kEN o

which proves (b).

As to (c), let x € U U {x €D: p(x,xi) < n}; then
nElN keN

p(xo,xi) < n for some n and k, whence

k 1

P4 - = - =
nz |xo(t) xn(t)l Ixo(t) vt n|

P xo(t) -r+ ES + n, and therefore

k

1 .
< - =
xo(t) Sr-p<r, de. ﬂt(xo) < r.

On the other hand, if xo(t) < T, X € D, choose ng € N such that

sup |x (t)| £ min(n_,n_ - r); then it can be easily shown that
o o’ o
t€[0,1]

x € U {x €D: p(x,xk ) <nl,
°  keEN S °

which proves (c). O

(38) REMARK. Comparing (37) with the known result that the Borel o-algebra

B(D,s) in (D,s), equipped with the Skorokhod metric s (cf, P, Billingsley

(1968), Chapter 3), coincides also with 0({ﬂt: t € [0,1]}), we obtain that
B(D,s) = Bb(D,p).

It is also known, that for any sequence (xn) CDand x €D,

nEN

lim p(x_,x) = O always implies lim s(x_,x) = 0;
n- n now n
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on the other hand, if lim s(xn,x) = 0 for some continuous x, then
n->«e

1lim p(xn,x) = 0 (hence the Skorokhod topology relativized to the space of all
n—>-e

continuous functions on [0,1] coincides with the uniform topology there).

Let ¢ = C[0,1] be the space of all continuous functions on [0,1] and consider
again the supremum metric p on C.

Then (So,d) = (C,p) is a separable metric space being here a closed subspace
of (D,p), i.e.,we have Sg = So in the present situation, (Note that x € C is
even uniformly continuous,)

Therefore, denoting by B(C,p) the Borel ag-algebra in (C,p) we have (cf.

Lemma 11)
C N B(D,p) = B(C,p) = Bb(C,p) cecn Bb(D,p) C C N B(D,p),
and C € Bb(D,p), i.e.,
(39) B(C,p) = Bb(C,p) =CcnN Bb(D,p) and C € Bb(D,p).

In what follows let §n, n €EN, and & be random elements in (D,Bb(D,p))

which are all defined on a common p-space (2,F,P), Following (34) we write

Lb

gn —3 £ iff L{En} =< L{g} in which case (by our definition of-j; - convergen-

ce) L{g} is assumed to be separable.

On the other hand, in view of (38), L{gn} and L{£} may also be considered as
Borel measures on B(D,s), whence the usual concept of weak convergence of Borel
measures can also be used, which means that

£ —Le g§ iff, by definition, L{En} on B(D,s) converges weakly to L{g}

on B(D,s) in the sense of Billingsley (1968),

L L
LEMMA 18, If En —Eﬁ £, then En —£+ £; on the other hand, if En — & and

Lb
L{g}(Cc) = 1, then gn-——e g.

Proof. Note first that (D,s) is a separable metric space whence we can use (28)

with Bb(D,s) = A = B(D,s), which gives us
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(1) & Lo g e lin E(£(6)) = E(£(6)) for all hounded

n->°
B(D,s), B-measurable functions f: D + R

which are L{¢}-a,e. continuous.

1.) Consider an f: D > R; then:

if f is s-continuous, it is also p-continuous and (cf. (38)) Bb(D,p), B-measu-

rable. Therefore

L
En —E+ g implies that lim E(f(En)) = E(f(g)) for all bounded s-continuous

n->c
L
f: D >~ R, whence gn —> £.

2.) in —£4 ¢ implies, according to (+), that lim E(f(En)) = E(f(g)) for all

N>

bounded B(D,s), B-measurable f: D > R which are L{£}-a.e. continuous. Since
L{g}(C) = 1 implies (cf. (38)) that any p-continuous f is also L{g}-a.e.
s-continuous, we obtain, using again that B(D,s) = Bb(D,p), that

lim E(f(in)) = E(£(g)) for all bounded, p-continuous, and Bb(D,p), B-measu-
nre

rable f: D » R; furthermore, since C = (C,p) is a closed separable subspace

of (D,p) with L{g}(C) = 1, we finally obtain (cf. (28)(h')) that

Now we are going on in reviewing here some of the key results of Billings-
ley's (1968) book. The following lemma is well known (cf, Yu.V. Prohorov

(1956)):

LEMMA 19. Let F: [0,1] » R be a continuous function and a>1, b>0 be constants

such that for some random element & in

[0,1] - : =
(40) E(|g(t) - E(s)lb) < |F(t) - F(s)la for all 0 £ s £t £ 1;

then there exists a random element E in (D,Bb(D,p)) such that L{£}B = L{¢}

[0,1]

and (L{g}le(D,D))(C) = 1. (Note that D N B = Bb(D,p) (cf. (37)) and

[0,1]
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cCe Bb(D,p) (cf. (39)).)

In what follows we shall write €n §£3 g, if the finite dimensional distri-
butions (fidis) of En converge weakly to the corresponding fidis of £.
(Recall that, given a r.e. & in (D,Bb(D,p)), the fidis of & (or L{¢}, respec-

. k .
tively) are defined as the image measures that ™ £ (D): D >R induce
pree ety

on Bk from L{£} on Bb(D,p) (= o({nt(D): t € [0,1]})) for each fixed

t,s...,t, € [0,1], k 2 1, where 7 (D) (x) := (x(tl),...,x(tk)) for

k

is B (D,p), B -measurable,)
" b k

12" k toaee.,t

1°°

X € D; note that =

t .»t

l,o.

DEFINITION 6. Let (En)nEIi be a sequence of random elements in

(D,Bb(D,p)) = (D,B(D,s));

(1) (En) is said to be relatively L-sequentially compact, iff for any sub-

sequence (L{En,}) of (L{gn}) there exists a further subsequence (L{En"}) of
(L{gn,})and a p-measure u on B(D,s) such that L{En"} converges weakly to u

in the sense of Billingsley (1968),

(ii) (En) is said to be relatively L, -sequentially compact, iff for any sub-
sequence (L{En,}) of (L{En}) there exists a further subsequence (L{En"}) of
(L{En,}) and a separable p-measure W on Bb(D,p) (in (D,p)!) such that

L{En..} - H

The following theorem is well known (cf. P. Billingsley (1968), Th, 15.1).

THEOREM 13. Let (En) be relatively L-sequentially compact and suppose that

L L
En ﬁ.i; then En —> &,

The next theorem gives sufficient conditions for (En) to be relatively
L-sequentially compact.

For this, given any x € D and B € [0,1] N B, let

[[xl] := sup [x(t)],
tE[O,l]
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and

wX(B) := sup [x(t) - x(s)].
s,tEB

THEOREM 14. Let (F’n)nEJN be a sequence of random elements in (D,Eb(D,p)), all
defined on a common p-space (2,F,P), and satisfying the following set of con-
ditions @—@:

@: lim sup P(|le || >m) >0 as m > =,
n¥e n

IV

: For every €>0, lim sup IP(WE ([0,8)) 2e) »0as § »~ 0

n->ew n

v

and 1lim sup II:"(M)‘E ([8,1)) 2€) 0as 8§ > 1,
n-e n

@: There exist constants a>1l, b>0 and, for every n € N there exist monotone

increasing functions Fn: [O,l] + R such that for every €>0 and any

Osrss

IA

ts1l

-b
P(le (s) - & (@] ze, [g (£) - ()] 2e) s e (R (¢) - Fn(r))a.

@: There exists a monotone increasing and continuous function F: [0,1] » R
such that for the Fn's occurring in @ and any O0Sssts1l

lim sup (F (t) - F (s)) £ F(x) - F(s).
n n

N>

Then (En) is relatively L-sequentially compact,

(41) REMARK. Given any x € D and 6>0, let

w'(s) := sup min {|x(s) - x(r)|, |=(t) - x(s)]|}.
% Osrssstsl
t-rsd

Then @ and @ together imply

@: For every €>0, lim sup P(w" (§) 2e) 0 as § > 0,
o0 g
n n

As to Theorvem 14, it is shown in Billingsley (1968), Theorem 15.3 that (&),
and @ together imply the assertion of Theorem 14,
So we will prove here only the statement made in (41).

For notational convenience we shall write En(s,t] instead of gn(t) - En(S)
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for 0 s s <ts1,

a) Given an arbitrary €>0, t € [0,1) and § £ 1 - t, it follows from Theorem
12.5 in Billingsley (1968) together with @ that for every n € N and every
m EN

P( V) {mln[]&(t+—6t+ 6]| |£(t+—6t+—6]l]_e})
Osisjsksom 2" 2™ ™

< K(a,b)oe_b(Fn(t + 8) - Fn(t))a, where K(a,b) is a constant depending only on
a and b.

Therefore, due to the right-continuity of the sample paths of gn, putting

w'([t,t + 8]) := sup min {|x(r,s]|,|x(s,t"]1|}
x tSrssst'st+d

for x €D, 60 and t £ 1 - §,

it follows that P(wg ([t,t + 8]) 2 €)
n

< K(a,b) e P(F (t + §) - F_(£)?
n n

b) Let, for any 6>0, m = m(§8) := [2—16] (where [x] stands for the integer part

of x); then, for every n €N,

m-1 m-2
PW! (8) z€) s I P (E2Dhz o)+ x P(wy (32, 283 ;o
En i=0 n i=0 n
m-1 . .
< K@p)-e® [z (F (Eh -k E)? 4 " (F (22 - p (2T,
a) i=0 i=0

which implies by @ that

Lin sup P(W) (8) 2 ) 5 K(a,b) e 20 (3)* L (F(1) - F(0)),
n>w n m

1 1
=) .= - . - < =
where wF(m) := sup {F(t) - F(s): sst,t-s s m}
= w (-—l—) + 0 as 6 > 0 (since F is uniformly continuous),
F'm(§)
This proves @ . 0O

(42) REMARK. Let us consider in Theorem 14 instead of and @ the following

conditions and @ , respectively:
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: For every €>0, lim sup ]P(lEn(G) - En(O)i 2e)>0as 8§ +0

n->w

and 1lim sup ]P(lEn(l) - En(ﬁ)l 2€e)>0as § > 1;

n->e

@: There exist constants a]._,]ai > 0, i=1,2, such that a, + a, > 1 and, for

1 2

every n € N there exist monotone increasing functions Fn:[O,l] *+ R such

that for any Osrss<tsl

E(le (s)-g (0)[PL-[g_(1) £ () [°2) 2 (F_(s) - F_(2))PL.(F_(¥) -F ()23
then @ together with imply , and @ implies @

THEOREM 15, Let En’ n €N, and £ be random elements in (D,Bb(D,o)), all defined

on a common p-space (,F,P), and suppose that @ (or @ ) and @ together

with the following conditions @ and @ are fulfilled:
®@: & e
) n £.d.”°?

®: L{g}({x € D: x(1) # x(1-0)}) = 0;

then En -i> £.

Proof, As remarked in (42), @ implies @ which together with @ implies
@ according to (41). But @ together with @ and @ imply the assertion
according to Theorem 15.4 in Billingsley (1968) (cf. also Gaenssler-Stute

(1977), Satz 8,5.6,). O

In view of Lemma 18 we thus obtain the following Lb—convergence theorem:

THEOREM 16. Let £ , n €N, and & be random elements in (D,Bb(D,p)), all defined

on a common p-space (2,F,P), and suppose that L{g}(C) = 1,

Then @ (or @ ) together with @ and @ imply En —b—> £,

The following result is used in G, Shorack's (1979) paper concerning En's

of a special nature.



EMPIRICAL PROCESSES

THEOREM 17. Let, for every n €N, T_ := {tz, t?,...,t: } be such that
n
_ n n n - .
0 = to < tl'é... gtmn = 1. Let (En)nEIJbe a sequence of random elements in

(D,Bb(D,p)) such that for all n and i = m En is constant on [t? t?), i.e,,

-1?

n n,, _
wgn([ti—l’ti)) =0 a.s.

Furthermore, assume that the following conditions (i) - (iii) are fulfilled:

(i) max (t? - t?_l) >0 as n > =
ism
n

(ii) There exists a sequence (Fn)ne of monotone increasing functions

N
Fn: [0,1] > R such that for some a>1 and b>0

P(JE (s) - £ ()] 2 e, [g (1) - £ ()] 2 ) s e(F (0) = F (2))?
for every €>0 and any set {r,s,t} C T with rssst;

(iii) There exists a monotone increasing and continuous function F: fo,1] » R
such that for the Fn’s occurring in (ii)
either (@ Fn(t) - F (s) s F(t) - F(s) for every n and any 0Ss=<t=1

or (:) Fn(t) + F(t) as n > = for every t € [0,1].

Then (En)nelN satisfies (:) and (:).

Proof. Let, for each n €N, ¢ : [0,1]-+Tn be defined by

mn(t) :=max {r £ t: v € Tn}’ t € [0,1].

Then, according to (i), lim ¢ (t)
n
now

t for every t € [0,1].

Now, put F; HS Fno @0 € N, to get a sequence of monotone increasing func-

tions on [0,1]; we are going to show that (:) and (:) are satisfied with F!

(instead of Fn there):

As to (:), by the assumed nature of the En's, we have for any O £ t1 < 1:2 <1
En(tz) - En(tl) = En(mn(tQ)) - En(wn(tl)),

which implies by (ii) that for every €>0 and any O £ r £ s st £ 1

P([E (s) - € (r)| 2 ¢, |€ (1) -5 (s)] 2 €)% eP(F1 (1) - B @)?,

99
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which proves (:).
As to @, we have to show that for any Ossst=s1l

(+) 1lim sup (Fé(t) - Fé(s)) < F(t) - F(s).

n->e
But this follows easily from (iii); in fact, (iii) (:) implies that for any

0sssts1 F'(t) - F'(s) = F (o (t)) - F_(o_(s))
n n n 'n n 'n
s F(On(t)) - F(wn(s)) > F(t) - F(s) as n » «, which implies (4),
On the other hand, (iii) (:) implies by the Polya-Cantelli theorem that

sup iFn(t) - F(t)] > 0 as n > » and therefore,
t€[0,1]

for any t € [0,1], IF;(t) - F(t)| s |F(e) - F(mn(t))l

+ lF(wn(t)) - Fn(wn(t))l - 0 as n + «, which implies (+)., O

This concludes our short review of some of the key results in Billings-
ley's (1968) book to be used in Section 4 when proving functional central limit
theorems for weighted empirical processes along the lines of Shorack's (1979)
paper; concerning the Lb—statements there (cf. Theorem 18 and 19 in Section 4)
it is possible to modify the above mentioned criteria in Billingsley's book
in such a way that they allow for proofs working totally within the theory of
Lb-convergence (cf. Remark (73)(b) in Section 4) as it will be the case for
the following example concerning Donsker's functional central limit theorem

for the uniform empirical process a = (qn(t))tE[O,l]’ defined by

o (t) i= 02U () - ©), t € [0,1],
n n

where Un is the empirical distribution function based on independent random

variables having uniform distribution on [0,1].

According to (37), a can be considered as a random element in (D,Bb(D,p))
as well as in (D,B(D,s)) (cf, (38)) and it follows from the multidimensional

Central Limit Theorem that
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(43) “n ?Tg.B ?

where B® = (B°(t)) is the Brownian bridge.

t€[0,1]

As to B°, having all its sample paths in the separable and closed subspace

C = (C,p) of D = (D,p), it follows from (39) that L{B°}, being originally de-
fined on B(C,p), may be considered as well on Bb(D,p) having the additional
property that L{B®}(c) = 1. Therefore, B® may be considered as a random element
in (D,Bb(D,p)), too, with L{B°} being concentrated on C, whence by Lemma 18 one
has

(44) (1) o -5 B° iff  (i1) o -2538°

It was conjectured by J.L. Doob (19439) and shown by M,D, Donsker (1952) that
(44)(i) holds true. There are various ways of proving this result which is

known as Donsker's functional central limit theorem for the uniform empirical

process:
One may e.g. use Theorem 15 by showing that the hypotheses (:) and (:) are

fulfilled (cf. Gaenssler-Stute (1977), Lemma 10,2.2) or one may apply Theorem

15.5 in Billingsley's (1968) book; as to the latter one has to show that

(45) For each positive € and n there exist a §, 0 < § < 1,
and an integer n, such that for all n 2 o,

P(w. (8) >¢e) <n,
0‘n

where wx(é) 1= sup |x(t) - x(s)| for x €D,

|t-s|<6
t,s€[0,1]

(By the way, it follows from Theorem 15,5 in Billingsley (1968) together with
Lemma 18 that (45) is a sufficient condition for (ov.n)n€:IN to be relatively

Lb-sequentially compact.)

As to (45), this can be shown either by using Donker's invariance prin-
ciple for partial sum processes (in case of independent exponential random

variables) (cf. L. Breiman (1968), problem 9, p. 296) or by more direct com-
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putations using the structural properties of empirical measures as presented in
Section 1 (cf. W. Stute (1982)) yielding at the same time an independent procf

of (44)(ii) within the theory of L -convergence in (D,p): in fact, it can be

shown (cf. Proposition B, in Section 4) that (45) implies S8-tightness of
(L{czn})neN w.r.t. S0 = c[o,1], and therefore Theorem 11% together with an
application of Theorem 3 yields (u44)(ii) in view of (43). This also indicates
the way to prove Functional Central Limit Theorems for more general empirical
processes (empirical C-processes indexed by classes C of sets) in the setting

of Lb-convergence of random elements in appropriately chosen metric spaces.

Before doing this in the next section we want to supplement the present
one by some remarks on random change of time (cf. Billingsley (1968), Chapter

3,17.).

RANDOM CHANGE OF TIME:

Following Billingsley (1968) we will briefly indicate here that so-called
random change of time arguments are valid also within the context of Lb-conver—
gence (even with simplified proofs not relying on Skorokhod's topology); in

this connection the reader should remind our remarks on product spaces,

D[0,1] that are in-

For this, let DO consist of those elements ¢ of D

creasing and satisfy O € ¢(t) £ 1 for all t. Such a ¢ represents a transforma-

tion of the time interval [0,1].
We topologize Do by relativizing the uniform topology of D,
Then (37) implies that D € Bb(D) and therefore
B (D) < A := D NB (D) ={BCD:BEB (D)} CBOD).
For x € D and ¢ € Do’ let
x o @: [0,1] > R

be defined by (x ¢ @)(t) := x(e(t)), t € [0,1]. Then x o ¢ lies in D and, if

: X >
: D xD_>D
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is defined by y(%,9) := xeq@, then ¥ is Bb(D)(:)AO, Bb(D)—measurable,
i.e. one has

(+) v HB(D) CA =B (@A

where A is a o-algebra in the product space S = D x DO (being equipped with the
maximum metric d (cf. our remarks on product spaces)) such that

Bb(S) C A C B(s).

ad (+): cf. Billingsley (1968) p. 232 for a proof being based on the fact that

Bb(D) = 0({Trt: t € [0,1]}) by (37), O

Now, let En, n €N, and £ be random elements in (D,Bb(D)) and, in addition,
let nn, n € N, and n be random elements in (DO,AO) all defined on a common
p-space (Q,F,P).

Then (En,nn), n €N, and (£,n) are random elements in
(8,A) = (D x D_, Bb(D)®AO)

and so, by (+),
€°on, = W(En,nn), n €N, and £en = Y(&,n) are random elements in (D,Bb(D))

resulting from subjecting En and £ to the random change of time represented

by n and n, respectively.

Concerning a "(&n,nn) 5, (g,n)"-statement, (£,n) may be considered as a
random element in (S,Bb(S)), since Bb(S) C A, thus being in accordance with
our definition of Lb—convergence.

When asking for conditions under which

L
b . s b
(++) (En,nn) —> (&,n) implies Een, — Eeon

we know from the continuous mapping theorem (Theorem 4) that (++) holds if

’\_/
¥ is A,Bb(D)—measurable and L{(g,n)}-a.e. d-continuous.

Now, the required measurability of ¢y is guaranteed by (+) and it follows as
TN
in Billingsley (1968), p. 145, that ¢ is also L{(g,n)}-a.e. d-continuous if

L{g}(c) = L{n}(c) = 1 for ¢ = c[0,1]; in fact, if L{&} and L{n} concentrate
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on C, then L{(g,n)}(C x (C N Do)) = 1, and it is easy to show that ¢ is d-con-

tinuous on C x (C N Do).

It remains of course the question of when

Lb
(En,nn) —> (&,n)

holds and here Theorem 9c can be used leading to the following result on

stability of Lb—convergence in D = D[0,1] under random change of time:

THEOREM. Suppose that En, n €N, and £ are random elements in (D,Bb(D)) such

L
that & —Eﬁ £ and L{g}(C) = 1. Let n > n €N, and n be random elements in

L
(DO,AO) such that n —Eﬁ n and n equals P-a.,s, some function belonging to

n

C c[o,1]*).

Then gno ns D EN, and £ en are random elements in (D,Bb(D)) for which

L

Ene nn—H: en.

*)

This last assumption may be omitted by considering instead the set

C x {c} as separable support of L{(&,n)} if n = ¢ P-a,s.





