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THE VIRTUAL SYSTEM METHOD FOR
ESTIMATION OF PARAMETER IN SYSTEM TREE*

By ZHENG ZHONGGUO

Peking University

A machine, or other type of “system”, can often be divided into several
subsystems and these subsystems again can be divided into several subsystems
(second generation), - - -. This process forms a “system tree”. Suppose that the
distributions of the life spans of subsystems in the system tree are exponential
distributions. To estimate the parameter of the distribution of life span of the
equipment (the entire “system tree”) based on data collected from subsystems,
the virtual system method, an alternative to the obvious ML method, is presented
in this paper. It is proved that the series of estimators constructed by the virtual
system method is asymptotically efficient and that the calculation of the estimator

is quite simple while the likelihood equation of the system tree is complicated.

1. Introduction and Main Result. In practice, an equipment
(System) is usually divided into several subsystems and these subsystems again
can be divided into several subsystems, ---. Finally a system tree is formed.
In this paper a system tree is denoted by a finite set of indices M = {m =

(%1, ,1k)} satisfying
(i) m is a finite series of natural numbers,
(i) m = (41, - ,ip) E M =11 =1,

(lli) (i17"' ’ik) € M = (ila"' ’ik—l) € M’(i]_"“ 7ik—l7j) € M’ ] =
IPEEEN I

An example of the system tree is given in Figure 1. Later on, we also call
m (€ M) a subsystem.
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Figure 1. Example of system tree

DEFINITION 1.1. Let m, m € M. m is said to be a subsystem of
m, if m = (41, ,ik) and m = (i1, ,%k,--* ,4;). M is said to be the first
generation subsystem of m if m = (¢1,--- ,ix) and m = (41, , 1k, lk+1). M IS
said to be the last generation subsystem of the system tree M if no subsystem
in M is a first generation subsystem of m.

In Figure 1, (1,1,1), (1,2,1), (1,2,2), (1,3,1,1) are the last generation
subsystems of the system tree. Denote

My = {m : m is the last generation subsystem of M}, (1.1)

M(m) = {m : m is the first generation subsystem of m}. (1.2)

In [1], the lower confidence limit of the reliability of the system tree is
constructed based on binomial trials. In this paper we suppose that every
subsystem m in M has its own life span X,,.

DEFINITION 1.2. {X,, : m € M} is said to be an exponential system

if
(i) The marginal distribution of X, is exponential, i.e.,
P{Xme}zexp{—o—x—}, meM, z>0, (1.3)
m

(ii) For every m € M\My, the parameter 8,, depends on {f~,m €
M(m)}, ie.,
Om = Om (0, € M(m)), (1.4)
where the symbol 0,,(0~, m € M(m)) means that 0, is a function of the
arguments {0~, m € M(m)}.
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EXAMPLE 1.1. Let the subsystems be connected in series, i.e.,

Xp=_min {X=} (1.5)
meEM(m)

and the marginal distributions of X,,, m € M, are exponential distributions
with parameters 0,,, m € M. The parameters satisfy the following relation

bt = Y 6= (1.6)

meM(m)

According to Definition 1.2, {X,,, m € M} is an exponential system.

It is easy to show that the set of independent parameters of an exponential
system is {0, m € Mp}. In reliability engineering, people are interested
in estimating the parameter of the machine (the first generation m = (1)
in the system tree) from the lifespans of machines and the lifespans of the
components as well. All these lifespans are independently observed. Suppose
that {2y, m € M, i =1,--- ,np,} are independently observed data, i.e., the

joint density of {2,,;, m € M, ¢ =1,--+, ny} is in the form of
N
H 6. exp{—me‘/Hm} = H 0,7 exp { — Trn/Om }, (1.7)
meM i=1 meM
where
N
T 2 Zwm (1.8)
=1

Let n”=(0m,, -+ ,0m, ) be the independent parameters of the distribution fam-
ily (1.7), where {m1,---,my} = Mp. The information matrix of {zm,, m €
M,i=1,--- ,ny}is

N 00 06,

I77 = T———-—T—
menr Om 0N 0N

(1.9)
For the estimator of the parameter 6;), the Cramer lower bound of the vari-

ance of estimators is
99q1) ;-190)

o™ " on

where 61 is a composite function of 7 and 3;7(’1,) is a row vector of the partial

derivatives. In this paper we create a virtual system so that we can calculate
the Cramer lower bound of variance for estimators of 6(;) in the virtual system
instead of the original one.

Let mo be a subsystem in M such that M (mg) C My. Denote

(1.10)

MO = M\M(mp). (1.11)
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Without loss of generality, suppose that Mo={m1,--,mx} and M(mg) =
{mig1, -+ ,mk}. Let .
Mé ) = {ml?'” amlamO}’ (112)

107 = By »Omiy s Omo )- (1.13)

It is easy to show that M(1 is a new system tree. Define

N, m € M1 \my,
02
nf,i) — Ny + (')E;) 292 m = mg. (1.14)
;GM(m) '7" n';;"

For the virtual system tree M (1), 5(1) is the vector of independent parameters
of the system. Define

L 06 00m
Ozn 377(1) 817(1)"

Ifq(l) = (1.15)

as the information matrix of the virtual system M (1), The Cramer lower bound
of variance of the estimator of f(;) in the new system is

90y .4 06
n()™ "1 gp(1)”

(1.16)

For the two bounds (1.16) and (1.10), we have

THEOREM 1.1.  For the system M and its virtual system M, the
following equality

) 1% _ 9 ., %
a7 " Tap  agh) M gpm

(1.17)

holds in the sense that when we substitute n) = 5(1)(n) into the right hand
side of (1.17), the two sides become identically equal.

REMARK 1.1. For the virtual system M(!) again we can construct a
new system M(?) and by using Theorem 1.1, we obtain

%) ;1990) _ 9w -1 9
8777 n 8"7 an(Z)T 77(2) 677(2).

Continuing this procedure, finally we obtain M) = {(1)} with only one
system as its member, where kps is an integer. For the virtual system tree
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ar)
M) = {(1)},nlkn) = (0))s Lny(knr) = n—;?)—. By repeatedly using Theo-
1
rem 1.1, we obtain

2
%) ;1% _ %

on™ " 9n kM)’
n n n4)

(1.18)

Before giving the definition of é(l), we first introduce the definition of the
virtual sample size N,, for every m € M. When m € My, N,, is defined by

Nm = N,

where n,, is the real sample size of the subsystem m. Suppose that m ¢ My
and that for every m € M(m), N~ is already defined, then N, is defined by

Nmznm‘}'ﬁma

_ 62,
Nm = P\ 0371, (1.19)
2 meM(m) -~ ) N~

where 0,, is a known function of its arguments {6~,m € M(m)}. It is easy
to know that for m ¢ My, N,, and n,, are defined recursively and that N,,
and 7, both are function of (6~,N~,m € M(m)). We denote them by
Np(0,N~,m € M(m)) and (0, N~,m € M(m)). The main interest of
this paper is to estimate the parameter 6,y of the top subsystem m = (1) ( the
parameter of the machine itself). The estimator é(l) of 6(1), and the related
quantities Ty, and N,, are defined recursively through the following steps.
(i) For m € My, they are defined by

- T

O = =, (1.20)
N,

T = T, (1.21)

Np = 1, (1.22)

where T, is the total time of test for the system m, n,, is the sample size of

the subsystem m.

(ii) m ¢ Mpy. Suppose that for every m € M(m), T;, N;; and é;ﬁ have
been defined. Then for the subsystem m, the corresponding estimators are
defined by

: (1.23)

Ton = Ton + TimOm, (1.24)
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N = o + i, (1.25)

where N )
020, (0~ 7 € M(m)), (1.26)
WimZ i (0, N, 70 € M(m)). (2.27)

For the estimator 67(1) of f(1),we obtain

THEOREM 1.2. Suppose that for every 6, as a function of (6, m
€ M(m)), (m ¢ M,), the following holds

06, .
Then, for the estimator (’)\(1) of 6(1) given by (1.23), we have

09 0y ~
(87(717) o a(;)) (@ - 60y) - N(0,1). (1.28)

REMARK 1.2. It is well known that it is very difficult to solve the
likelihood equation to obtain the ML estimator of 6. @\(1) is an alternative
estimator for 6(;y which is also asymptotically efficient.

Suppose that z1,z9,--+ ,2, ~ iid -156—%,0 > 0. It is well known that the
lower confidence limit with level 1 - « is given by

T

= — -
TRl -0)

(1.29)

where T = Y"1 | z; and I';1(1—a) is the (1 - a) quantile of the ' distribution
with parameter n,i.e. I'-1(1 — ) is the solution of the equation

R — e tdu=1-a.
I'(n) /0

For the exponential system {z,,m € M} with data { z,,,, m € M,
t=1,2,-+-,n, }, we would like to construct a lower confidence limit of the
parameter ;). We consider (N(y), (1)) as a virtual exponential system where

]V(l) is the sample size of the virtual system and f’(l) is the total experiment
time of the system. As in (1.29), we use

(1.30)

as an approximate lower confidence limit of f;). For Q(l), we have
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THEOREM 1.3. Under the condition of Theorem 1.2,
P {0(1) > Q(l)} —1-a, (1.31)

which shows that 0,y is level consistent.

For the efficiency of §;), we have

THEOREM 1.4. Under the condition of Theorem 1.2,

81y 08\ "/ d
(828 ) r

REMARK 1.3. In practice, we want to get the lower confidence limit
of the reliability R(;) = exp {—ei—L;)}. According to Theorem 1.4, the lower
confidence limit of R(y) is

toI' (1— a)}

N
Ry =exp{ — £
- T

In section 2, we will give the proofs.

2. The Proofs.
Proof of Theorem 1.1. Write

Uil
= , 2.1
7 (772) ( )
where
oml 0ml+1
h = ’ n = 5
Om, omk

Mo = {my,--- ,myi}, M(mg) = {muy1,- -+ ,mi}.
By using partitioned matrix calculations, we rewrite the matrix I, in the form

_ (D11 Dr
In = (DZI D22) ’ (22)
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where

Ny, 00, 00, )
Dy = E A A
mEMTAmo 6%, Om Onf
N, 00y, 00y, 00,
D= D G 0o O

meMM\my

D4y =D1,, (
om, 00 \* 00,y 00,

Du= Y o (g) Gl
mGM(l)\mo 0m aomo 8172 (917;

nm aemo aemo _l
0 + A ,
072710 6772 aﬂ% y

2
A= dla,g (__0m,+1 yoe ’?3”4) .

nml+1 nmk

Similarly, we write the matrix I, in the form

1 1
o= (B 7).
D21 ‘D22

where

D 99, 96 )
pW — m” O%m OYm _
11 Z 072n anl 877{ 11,

1) 99,. 98
D%;) - Z nl—m = ’
mEM T\ ma 6%, On 00,
1 1)7
Dy =Dy,
M 7 80, \?
D= % "L<_m) .
meM1) 01271 aomo )

By the inverse formula for partitioned matrices

;-1 [ Di + D' DA™ Doy Dt —Dij DipA~!
n —A_1D21D1—11 A1

where

A = Dyy — D21 Dfi! Dys.

(2.3)

(2.4)

(2.5)

(2.6)
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Hence

98 1% _ (39(1) 96(1) 39mo)

on™ " on on * 96m, 0n3
061)
. Dl_l1 + D1—11D12A_1D21D1_11 —Dl—ll.DlgA_l 8771
—A_1D21D1—11 A1 89(1) 80m0
00, O
_ (39(1) 30(1))
"\ O] 00m,
a6
Dt + D D1A= Dy D — D Dypa-1%me ) ZM)
90 0, 000 ( . )
_ ":0 A—IDZIDﬁl 77:-0 A-1"mo 60(1) (2-7)
on; on; one 00,
From the definition of D;; and DS) we know that
Dﬁ) = Dy,
09
DY = = Dy,
Substituting these formulas into (2.7), we obtain
900) ;1990 _ 990
an™ " on 9y
-1 -1 -1 -1
DY +0n) DYDY KDYDY T -p) DK )
~K D)D) K on)
where
I( é aemo A__l aemo .
o3 O

From the above equality we know that to prove (1.17), it suffices to prove

0y  —100m
A S
on3 one

1 )~~~ @)\t A -1
= (0f) - DYDY DR)  2a0T. (28)

By using the following identity for matrices

ATIUVTATY

T\=1 _ 4-1 _
(A+UV)" =A™ - vy

where U and V are vectors, we obtain

o6 Nm [ 00 \° 06,,, 00
K - mo A—l + _”TL ( m ) mo mo
ong ( mEA%\mo 62, \ 96, Ony 063
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Mo 0o Omo _ (1) P L g aomo)—l 30,
62, om ony 2 9ny o oy

_ 00, 00y, 6., (nm
0 A 0
- ong [A A Onz 0Om3 0?2

m ( 00m 1) o1~ HA)
+ Z @(yaamo) - Dy'Dyy Dy {1+ 02

meMM\mg

o ((00m \° (1) h(1)-1 M) 0o —1] 00m,
— | =] - D,
+ Z 6z, (39m0) Dy’ Dyy o

n 0 2
meM@)\mg L

62 02 \?2 m Tomg [ 00m \?
-2 () (e 2w ()
an an mo mEM(l)\mo m mo

1)~ (1 Ny, m [ 00m
oo o) (14 (s X p(am)
mo mGM(l)\ m mo

-1
_ ppm! D(1)> O )
nmo

02, Mg 02, Nn ( 00m

-1
T + Tim i ((90m \"_ D) po)
= ————°02 >+ Z 07(%—) — Dy’ Dy’ Dy
mEM(l)\mo m mo

1 1) (1)~ A1)\ !
= (0§ - DYDY DY)

where 7,,, and A are given by (1.19) and (2.4) respectively.

For the proof of the Theorem 1.2, some preliminary lemmas are first

developed

LEMMA 2.1. Let {Xm,m € M} be an exponential system and
{Tmi, m € M, i =1,2,--- ,n,} be independently observed data. Suppose
that for every m ¢ My, m, as a function of {0~,m € M(m)}, satisfles the

condition

(g—%, € M(m)) £0
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Then, as min {n,,m € M} — oo,

O
R 1, wpl, (2.9)
= — O, wpl, 2.10
7 m> WP (2.10)
N,
M -4, N(0,1), (2.12)
v/ N2,

O — O,

LR N(0,1), m ¢ Mp. (2.13)
V% [ 7om

Proof of Lemma 2.1. We prove the lemma by induction. When m € M,
according to the definition of 8, T, Nm (see (1.20)-(1.22)), it is straight-
forward that (2.9)—(2.12) hold. Now suppose that (2.9)—(2.13) hold for all
m € M(m) (when m € My, we only require that (2.9)-(2.12) hold for m,,).
According to the definition of §m, we have

0, = T_m_'f_nm_gm (2.14)

N + fim
By the definition of 5,,1 we know that

O = O(0~,7 € M(m))| o~ — Om(8=,7 € M(m)),wpl, (2.15)
9~=,¢m_
m N~

from which, combining the consistency of Ty, /%y, we know that (2.15) implies
that 6, — 6,,, wpl and T, /Ny, — O, wpl, ice. (2.9) and (2.10) hold for
m. By the definition of N,, and N,,, we have

N 62 62
N 170 (00 O 2(—80"1)2"0’%
Xlge- | 7o 96~ ) N-

From this expression, together with the facts that

9.\ -
Z %’: #0, N;_L‘—“N;L(I-I'O(l)),wpl,
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and ’0?;;1 = 6~(1+ (1)), wpl, we obtain

which shows that (2.11) holds for m. Using a Taylor expansion, we obtain

O — O, o, A;L ~ .
Tom 80,,\ [ T~
=4[ E — =2 -0~ |- -(14+0,(1
62, (39;1) (N;z m) ( Op( ))

< N(0,1),

which shows that (2.13) holds. From (2.13), we know that

T = Nbm _ /Am ( L (1 s ))
N R RS
\/hi (@(ém—om)) <, N(0,1),

+

N \ O
i.e., (2.12) holds. By induction, we know that the conclusion of the lemma
follows.
Proof of Theorem 1.2. Examining the definition of the numbers N(y)
and nfl"; given in (1.18) and (1.25) respectively, we know that n%f)M) = Ng).
Therefore (1.28) follows from (2.12), i.e.

06 901\ "% ~ B1y — 6
(_@1—1&) By —8y) = 2000 2, g1,

T N
On On Vo /N

Proof of Theorem 1.3. Let U be a random variable with conditional
distribution

z A
P{U < z|Ny)} = ,} / uNO~1e=% gy,
P(N(l)) 0

It is easy to show that

U—-Nqy o~
——=D Ny L N(0,1),wpl

Vio
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from which it follows that

(1 - a) N(l)

= — ul—aawpl’ (216)
VN

where u;_, is the 1 — a quantile of the standard normal distribution. From
(2.12), we obtain

N(:)

-~ N(0,1). (2.17)

Combining (2.16), (2.17), we obtain

(1)
P{ ————<0
{ (l)(l ) ( )}

o+ { (R ) Vi< (13,000~ 50) /|

—1 —a.
Proof of Theorem 1.4. First we have

5 -1
~ - - 0 - AT
T /T3, 0= =00 7y)/8) - 00

vV 0(21)/ﬁ(1) \/ 031)/N(1)

Tay/T3! (1-a) - Tw)/N,
/Tg, A=) =Twm/Na

8/ Nay (2.18)

+

From (2.16), we obtain

Ty /T2 (1—a) - T/ N,
(1) / fo, 1~ ~Tw/Nw

V 0(21)/N(1)
Ty /(ﬁ(n +4/ Naywi—a(1+0(1))) = Ty /Ny
V& /Nay
Towm-o(1+0(1)) 1

Ny + 4/ Nayu—a(1 + 0(1)) ba)
— — Uy, wpl. (2.19)
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According to Theorem 1.3, we have

T, 0;
(R2-0) /|2 < v,
Nay Nay
which, together with (2.19), implies that (1.32) holds.
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