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An exposition is given of results derived in James and Venables, Matrix

Weighting of Several Regression Coefficient Vectors (1993). The results show

that for small sample random effects models, an estimated random effects vari-

ance matrix may be used in weight matrices without causing undue error in the

weighted mean. Exact error variances are quoted for a mean with estimated

weights for the two sample case in one and two dimensions. Simulation is used to

determine errors for a practical example of six 5-variate samples. A curious range

anomaly is illustrated which arises if random effects are ignored when present.

1. Introduction. The random effects model of Henderson et al.

(1959) can combine the results of p + 1 similar regressions by specifying that

the regression parameter vectors, βi £ Rn, are random and multinormally dis-

tributed, βi G N(/3o, Δ ) . A sample regression vector, 6 ,̂ i = 1, ,£>+1, then

has a conditional distribution, bi\βi ~ N(/3^,Γ;), and a marginal distribution,

bi ~ N(/3,Γi + Δ ) . The Maximum Likelihood, ML, estimate of βo is then a

matrix weighted mean of the bi with weights, (I\ + Δ ) " 1 ,

t = l

If the variance matrices, Γ t , of the b{ are all equal, that is if the data is

balanced, then the weights are all equal and the ML estimate of βo is simply

the average of the 6t ,

βo = ϊ>

For unbalanced data, the ML estimate, /3o, will depend upon the between

regressions variance matrix, Δ , to the extent of the imbalance. Since there is
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usually no prior information about Δ, an estimate, A, has to be substituted
for Δ, in computing a weighted mean,

The sampling error of Δ naturally increases the error variance of the weighted
mean, /3o, over var(/3o), but it is generally very difficult to evaluate by how
much. When the number of regressions, p + 1, is small, the sampling error
of Δ will be so large that authors such as Gumpertz and Pantula (1989)
have concluded that a weighted mean based upon it would be unreliable and
advocated the sample average, 6, or in some cases, on the assumption that
Δ = 0, the use of Γ" 1 as weights.

The present paper presents theory and simulations that demonstrate in
some cases, and suggest in general, that the prejudice against the use of Δ
in weights, however few the regressions, p + 1, is unfounded. The paper also
illustrates a grave range anomaly that can arise in a weighted mean ignoring
Δ. This method, which weights by Γ" 1 is equivalent to an Ordinary Least
Squares, OLS, analysis of the pooled data vector, y, of the p+1 sets of original
observations. The method will be subsequently referred to as OLS.

A reason why errors in the weights are not as serious as one would sup-
pose at first sight, is that errors in the Δ and 6; are to some extent mutually
compensating. If for some contrast, λ'/3, the between regressions variance
component, λ 'Δλ, is fortuitously underestimated by λ 'Δλ, then this implies
that the λ'&i do not vary much and consequently the weighting is inconsequen-
tial. On the other hand, if λ 'Δλ overestimates λ'Δλ, then the weighting is
moving towards the equality which yields λ'6. As a result of the compen-
sation, the error of β is not as great as if the errors in Δ and the 6̂  were
independent.

Models for comparison of two or more mean vectors, or more general linear
models can be built up, but the inferential issues with which we are concerned
are the same as for the estimation of a single mean vector, /3, and between
regressions variance component matrix, Δ. Such models were expressed in
an algebraically equivalent form in terms of the original observations, t/, by
Henderson et al. (1959), namely,

where 6 ~ N(0,D) and ε ~ N(0,Γ). The weighted mean vector, /3o, is
then obtained by Generalized Least Squares, GLS, and if an estimate Δo is
substituted for Δ to yield, /3, the method is called Estimated GLS, EGLS.

The relative merit of b and β can be judged by comparing their error
variance matrices. For more than two samples, p > 1, the error variance
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matrix, var(/3), of β seems too complicated to compute mathematically, when
one allows for the effect of the error of Δ, because this Residual Maximum
Likelihood, REML, estimator has to be computed by iteration. By simulation,
however, one can estimate var(/3), for any particular value of Δ, and compare
it with var(6) as follows.

One can take β = 0 and compute a large number, TV, of indepen-
dent estimates, /3t , of it from random numbers. Their crude mean square,
Σ i l i βiβi/N•> is an estimate of var(/3) on N degrees of freedom.

For speed of simulation, the moment estimator, Δ^m) of Δ was used
instead of the REML estimator, Δ. Since the coefficient of variation of an
estimated variance is y^2/iV, three figure accuracy requires up to N = 2
million simulations and two figure accuracy 20,000. And this is only for each
possible value of Δ and Γ i , . . . ,Γp+i. Consequently, the simulation needs
to be supplemented, if possible, by theory which gives a broad picture of the
relative accuracies of b and β over all the range of Δ and Γi , . . . , Γp+i.

At present the mathematical and computing problems seem tractable only
for the case of two samples, p = 1, and have been worked out only for the scalar
case, n = 1, and the two dimensional vector case, n = 2. The explicit theory
for the two cases, nevertheless, sheds much light on the general situation.

Firstly, since the sampling error of Δ increases with decreasing p, the case
p = 1 is the most unfavourable. We shall see that var(/3) < var(6) for small
Δ, in the sense of positive definite matrices, and only negligibly greater for
large Δ. This result in the least favourable case, p — 1, gives one confidence
in the estimate β for larger p.

Secondly, although even in the scalar case, var(/3) depends upon three
parameters, Γi,Γ2 and Δ, one can compare the magnitude of var(/3) with
var(δ) by means of a single function, Δ/(Γi + Γ2), of the three parameters.

In the two dimensional vector case, the theory points to two extreme
forms of imbalance:

a. scalar imbalance in which Γi is proportional to Γ2 but the eigenvalues of
Γj"1Γ2 are either both large or small.

b. eccentric imbalance in which one eigenvalue of ΓJ"1 Γ2 is large and the
other is small. In the case when this is due to numerically large cor-
relations of opposite sign, the OLS method can lead to a serious range
anomaly, as we shall illustrate.

2. Two Vectors. For two vectors, &i,62, with p = 1, the REML
estimator, Δ, is the moment estimator, A^m\ given explicitly by

\
° i f χ < i , .
(χ>-l)dd'/(2χ>) if χ2 > 1, l

where d = b2 - buχ
2 = d'T^d and Γ = Γi + Γ2.
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The mean with estimated weights is

β = b-Φc(d), (2.2)

where, what we shall call, the imbalance factor is

Φ = ( Γ 2 - Γ 1 ) Γ " 1 (2.3)

and cutoff function is

The variance of β is

var φ) = var (5) + Φ V*Φ', (2.5)

where VJt is the variance kernel, given by

Vk = var(c) - ^ Λ - ^ d c ' ] - ^E[cd']Λ-\ (2.6)

where Λ = Γ^Γ" 1 with Td = var (d) = Γ + 2Δ, and var (6) = Γd/4.

The variance kernel, V*, expresses the difference of the variances of β and

b in the most extreme cases of imbalance. Its positive or negative definiteness

and magnitude therefore express their relative accuracies.

2.1. The scalar case

When n = 1, we have

6 = 6 - Φc(d),

where the imbalance factor is Φ = (Γ2 - Γχ)/Γ and the cutoff function is

= f d/2 if |<t| <
C[ } I Γ/(2d) if \d\ >

Its graph is given in Figure 1.

Since

(var(6) - var(6))/var(6) = Φ2V*/var(6),

where the variance kernel is

V]b = var(c)-E[dc]/A

the variances of 6 and 6 can be compared by studying the function

= Vfc/var(6).
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The function / can be explicitly evaluated in terms of exponential func-
tions and normal integrals. Its graph is shown in Figure 2.

1.5-

1.0-

0 . 5 -

C(d) 0.0

-0.5-

-1.0-

-1.5-

c(d)

Figure 1. The cutoff function, c(d). For two-sample scalar random
effects models c multiplied by the imbalance factor,
(Γ2 — Γi)/( Γ2 + Γi), gives the correction substracted from
the average, 6, to give the empirically weighted mean, β

f(Δ/Γ)

-1.0

Δ/Γ

Figure 2. Difference of variance estimators as a percentage
of the variance of the average
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For comparison with other estimators, m, such as the least squares esti-
mator, m = /?, and the estimator, m = /?+ = (Γj"1/?! + Γ{"1/?2)/(Γj"1 + Γ^1),
based on the assumption Δ = 0, we also plot the functions corresponding to
/, namely,

-var(m)-_var(6)\ / Λ χ l 0 0 %

var(6) Jl )

Not knowing Δ, we cannot compute the least squares estimator, /?, but
its variance constitutes a lower bound for the variances of all estimators. The
abscissa in Figure 2 constitutes the curve for m = 6.

For Δ/Γ < 2, the empirically weighted mean, /?, has lower variance than
the equally weighted mean, b and the difference is substantial for Δ/Γ < 1.
For Δ/Γ > 2, β has a slightly higher variance than b but from a practical
point of view, the difference is negligible. Hence estimated weighting is to be
recommended.

For Δ/Γ from 0 to 0.3, one would do best by weighting without random
effects. Unless one has definite information that Δ/Γ < 0.3, however, one
cannot be sure of this and estimated weighting should be used.

At about Δ/Γ = 1.5, there is 50:50 chance that random effects will be
significant, inferring that Δ > 0. Hence above 1.5, it is clear that random
effects must be specified, but in this range, b has about the same accuracy as

β.
For 0.5 < Δ/Γ < 1.5, there is low power in the significance test, but the

weighted mean without random effects, /?+ is highly inefficient. This is the
dangerous region if one ignores Δ in the hopes that there are no random effects.
Such a procedure is highly nonrobust. If the data is completely unbalanced
with Γ2 /Γi large, then if one is certain of no random effect, that is that Δ = 0,
one can ignore 62 and use b\ as the estimator of/?. It has a negligible variance,
and hence is 100% below the average, b — (bι + b2)/2. In the absence of certain
knowledge of no random effect, it is dangerous to ignore its possibility. If one
allows for a possible random effect when in fact Δ = 0, one pays a penalty
that the variance of β is only decreased by 70% of b instead of 100%.

Within the range 0 < Δ/Γ < 1.5, the empirically weighted mean, β, has
less error variance than the average, ϊ, and substantially less in the lowest part
of this range. The results confirm the use of estimated weighting.

2.2. The two dimensional case

In the case of two vectors 61,62 G R2, p= 1, n = 2, we can compare the
error variance matrices of the mean β obtained from estimated weights with
the average, 6, by making a nonsingular linear transformation

bi^Lbi, /3-+X/3, b-^Lb
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such that the induced congruence transformations map Γ to / and diagonalize

Γ -> LTL' = 1, A -> ZΔZ' = 0

The variance kernel, Vfc, given by equation (2.6) undergoes the same congru-
ence transformation and becomes a diagonal matrix

o
which is a function of 61,62 with = 21(62,6\).

Figure 3. Bivariate case (a). Contours for the function
Λ ) given by (2.7)

There are two extreme cases of imbalance:

a) Scalar imbalance due to different but proportionate variance matrices.

Γx = 0 , Γ2 = /, Γ2 - Γi = /.

This is analogous with the scalar case. Then

fi{6i,62) = (var()9i) - var(6.1))/var(6.1) = Az1(6u62)/(1 + 2ίx). (2.7)

b) Eccentric imbalance which can be produced by difference of correlation.
r 1

Γi =

'2

l η
i
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This is the case where OLS, which ignores Δ, leads to range anomaly.

We have

var(/?i)-var(6,i)
= —^TΓ— =

Figure 4. Bivariate case (b). Contours for the function
/2OM2) given by (2.8)

The function z\ was evaluated using Maple. Contour diagrams of /1
and ji are shown in Figures 3 and 4. For small #i,#2?/i &nd ji are highly
negative, showing that in these regions β is substantially more accurate than
6. For large δι, 62 the functions /1 and /2 become positive but not large.

3. An Example from Mitochondrial Experiments. Mitochondria
are numerous organelles within the cells of plants and animals which generate
the aerobic power. James, Wiskich and Conyers (1989, 1993) performed six
experiments to test a model. The results were fitted by nonlinear regression
giving rise to 6 sample regression vectors, five of whose components pertaining
to the mitochondria, are given as the row vectors, b'iy i = 1,2, , 6, of Table
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1 with accurately estimated standard errors. The imbalance of the data lies
in the large differences between the correlation matrices, and between the
standard errors for the 6 experiments.

Table 1. Six independent row vectors of five regression coefficients with their
standard errors, and four types of mean vectors. ei,e2,β3 are potentials
and ri, T2 are resistances measuring mitochondrial performance

Rat

number, i

Hexokinase

1

2

3

4

5

6

In units

4.249±0.055

4.380±0.048

4.556±0.090

4.424±0.066

4.537±0.047

4.391±0.038

In units

4.786±0.065

4.985±0.057

5.145±0.095

4.976±0.073

5.016±0.057

4.899±0.043

In units

5.538±0.080

5.401±0.064

5.913±0.112

5.567±0.079

5.700±0.069

5.370±0.048

In units% 1

0.775±0.144

1.408±0.158

1.943±0.303

0.864±0.172

1.292±0.118

0.861±0.118

1007*2

In units%

1.078±0.056

1.072±0.078

1.176±0.107

1.023±0.068

0.794±0.044

1.076±0.046

Mean Vector

(Weight)

Average

(I)

Simulated Error

Matrix

(Γ"1)
REML

Moment

4.423±0.046 4.968±0.049 5.582±0.082 1.191±0.184 1 .037±0.053

0.042 0.043 0.071 0.164 0.057

4.283±0.019 4.780±0.022 5.348±0.025 0.842±0.056 0.945±0.023

4.407±0.041 4.946±0.041 5.557±0.070 1.144±0.161 1.027±0.055

4.415±0.046 4.954±0.049 5.567±0.082 1.164±0.182 1.031±0.052

Simulated Error 0.042 0.043 0.071 0.161 0.056

A biological interpretation of these results requires the 6 regression coeffi-
cient vectors to be summarized by a single vector. For a coherent multivariate
analysis, matrix weights given by the inverses of the variance matrices should
be used. When this was done using matrix weights Γ" 1 , because the estimate
of Δ was so much subject to error, the matrix weighted means shown in Table
1 were obtained whose second and third components lay outside the range of
the 6 values of which they are supposed to form a summary! This is what we
refer to as the potential range anomaly of OLS.

In Section 4, we illustrate by an artificial example just how it comes about,
and how it does not appear to occur under the more realistic random effects
model.
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4. Matrix-Weighted Mean Displacement. Suppose two indepen-
dent bivariate sample vectors had the following values with known variance
matrices given by

1 -0.9 0
Γ 2 =

1
θ.9

0.9

It looks highly artificial to take both observed abscissae as zero, but it makes
the figure described below easier to comprehend. One could rotate it a little
and displace it from zero without altering the essential argument.

We begin by treating this 'data' by OLS which ignores random effects, to
illustrate the consequences.

Figure 5. Likelihood contours for two separate bivariate likelihoods
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Figure 5 shows the contours of the separate likelihood functions for the
expectation vector, obtained from each observed vector. One sees how two
ridges of high likelihood extend out from the observed vectors when the corre-
lations are numerically large, and how, when the correlations are very unequal,
the ridges will intersect in a region of high product of their likelihoods. If it
can be assumed that the two observed vectors have a common expectation
vector, its likelihood function is the product of their likelihoods. This func-
tion is illustrated graphically by the surface shown in Figure 6. Hence one
can see how a matrix weighted mean can be well away from a scalar weighted
mean, due to the first of the two variates having a strong covariance on the
second.

(0.-2)

Figure 6. Likelihood surface given by the product
of the likelihoods in Figure 5

If it is reasonable to assume that the expectations of the two vectors are
equal, and if the region of the intersection of the two ridges of high likelihood
is well within the two confidence intervals of the expectation obtained from the
individual observed vectors, then the matrix weighted mean is acceptable. The
considerable displacement and high accuracy are due to the extra information
from the strong covariance.

On the other hand, if the observed vectors differ significantly as tested by

where d = 62 - &i> then the assumption underlying OLS is significantly re-
jected. A random effects model, however, will fit the 'data'. A variance
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component matrix must be estimated even though it is only on one degree of
freedom. It is given for the n dimensional case by equation (2.1).

We now come to a common situation in which random effects may possibly
be zero or negligible but this cannot be assumed. Suppose there is no a priori
certainty that the expectations are equal, but χl is below significance, as for
example, χ\ = 3.5 when a = ^/3.5/2 = 1.32. If, in an attempt to use OLS,
we persist in specifying a model of equal expectations on the basis that the
estimates do not differ significantly at the 5% level, then the ML estimate of
the mean vector, with standard errors, is

1.19 ±0.31
0 ±0.31

On this specification, the first element is highly significantly different from
zero. But this inference depends entirely upon the assumption of no random
effect. If the assumption is doubtful, the inference is correspondingly dubious.

If on the other hand one specifies a random effects model, then the esti-
mated variance component matrix is

- i f i _ J _ U ° ° 1 - Γ ° ° 1
" 2 V1 2a* ) [O 4α2J " [o 5/2J

giving a weighted mean of β = °*o4±i"i6 ^ w e i g n o r e the sampling error of

Δ. If we allow for the sampling error of Δ according to theory developed in
Section 2.2 but evaluate the error at Δ = Δ, we obtain

_ [0.34±0.67]
" [ 0 ± 1.25 J '

This seems a far more reasonable inference. This weighted mean is the value

at which the likelihood surface for the random coefficients model, shown in

Figure 7, has its maximum. The surface also shows high likelihood at ^ . At

Δ = Δ, this estimate, /3, has a smaller error than the average

[0 ± 0.71]
~ [o ± 1.32J '

The range anomaly comes about by treating data with a nonzero Δ as if
it were zero. But Δ is not the direct cause of the range anomaly, it is an
indirect cause. Δ operates only through a large difference, d = b2 - δi, which
is reflected in Δ as a function of d. If d is fortuitously small, then there is no
range anomaly when Δ is ignored. Likewise, when the use of weights ignoring
Δ produces a range anomaly, it is Δ as a function d which rectifies it. In
dimensions in which Δ is singular, there are no differences to create a range
anomaly.
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(0.34,2)
(2.0)

(0.-1.32)
(0,-2) v w *—•

Figure 7. Likelihood surface for the parameter vector
in the random coefficients model

On the other hand, if A fortuitously overestimates Δ, then the weights
move conservatively towards the equality which gives the average, 6.

These considerations led us to question a widely held belief that large
errors in Δ would produce excessive errors if it was used in weighting of means,
and hence to investigate mathematically what would otherwise be regarded
as the hopelessly inaccurate situation of two samples, which fortunately was
mathematically tractable.

5. Simulation. For the mitochondrial data, N — 600000 simulations
were done, at Δ = Δ,

The variances are given in Table 2.

One sees that the variances of the components of the average vector, 6,
are about 2-3% higher than for the moment estimator, β(m\ which in turn is
about the same amount higher than for the least squares estimator, β.

The variance matrices, var(6) and var(/3^m^) can be compared by the
eigenvalues of the inverse of the first times the second, because if a is an eigen-
vector corresponding to the eigenvalue, λ, that is var(6)α = var(/3(m))αλ, then
λ = (α/var(/3(m^)α)/(α/var(fe)α) is the ratio of the variances of the estimates of
the contrast, α'/3, that is the efficiency of a'b relative to α'/3 . The absolute
efficiencies are found by eigenvalues relative to the least squares estimator, /3,



294 NORMAL MULTIVARIATE ANALYSIS OF FAMILIES

as in Table 3.

Table 2. Variances of estimators X 100

Theoretical Least

Average

Simulated Least

Moment

Average

Squares

Squares

0.1672

0.1777

0.1677

0.1734

0.1784

0.1709

0.1817

0.1714

0.1776

0.1825

0.4942

0.5089

0.4945

0.5031

0.5097

2.5988

2.6778

2.6057

2.6498

2.6871

0.3040

0.3241

0.3050

0.3151

0.3254

Table 3. Eigenvalues measuring efficiencies and relative effici encies

varφ^varOSt"1))

var(/3(m))-1var(/3)

var(6)-1var(/3)

0.869

0.853

0.741

0.965

0.950

0.916

0.985

0.980

0.965

1.000

0.998

0.997

0.999

0.999

0.999

One sees that all the eigenvalues are close to 1 except for the first, for

which the efficiency of b relative to β^ is 0.869.

6. Conclusions. Estimated weights can always be used in unbalanced

small sample random effects models.

There is never any appreciable loss of accuracy compared with a simple

average, but there can be a considerable gain if the random effects are small.

OLS should not be used unless one has definite prior knowledge that there

are no random effects.

Simulation can be used to find the error variance of a moment estimator

of a mean.
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