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ON FKG-TYPE AND PERMANENTAL INEQUALITIES

By YOSEF RINOTT1 and MICHAEL SAKS2

University of California, San Diego

In this paper we survey results from Rinott and Saks (1990) on a "2m-
function" inequality which generalizes the FKG and associated inequalities.
We also present related conjectures and partial results on permanents and
sums of permutation matrices. We hope that the motivation given in the
first part of the paper, and the subsequent discussion will attract the at-
tention of problem solvers to our conjectures.

1. Introduction

The FKG inequality (Fortuin, Kasteleyn and Ginibre (1971)) has been
applied in many fields, including statistical mechanics, combinatorics, re-
liability theory and stochastic inequalities. In order to state it we need
the following notation and definition: for x = (a:i,X2? ,%k) and y =
(ί/i>2/29 ,yk) in IR*, x V y and x Λ y in Πt* are defined to have coordi-
nates (x V y)j = max(xj, yj) and (x Λ y)j = min(a; j , j/j), j = 1,..., k.

DEFINITION A σ-fίnite (nonnegative) measure μ on IR* is said to be an
FKG measure if μ has a density function φ with respect to some product
measure dσ on Πt*, (that is, e?σ(x) = Π^=1</σj(£j), and dμ(x) = <£(x)<fσ(x)),
satisfying for all x and y in IRfc,

(1) ^ ( y ) < ^ ( x V y M x Λ y ) .

Condition (1) is referred to as multiυariate total positiυity of order 2
(MTP2) in Karlin and Rinott (1980). It can be shown that if a positive
density φ is TP2 in every pair of variables, then (1) holds, i.e., φ is MTP2.
We now state the FKG inequality as follows:
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THEOREM 1.1 Let X be a random vector in ΊΆk whose distribution is an

FKG probability measure. Then for any pair of nondecreasing real valued

functions a and β defined on JR,k, we have

(2) E{a(X)β(X)} > Ea(X) Eβ(X).

Note that when (2) holds, X is said to be associated.

Sarkar (1969) discovered that if X is a random vector having a density

which is TP2 in pairs then it is associated, a result which is very close to the

FKG inequality.

Holley (1974) proved the following:

THEOREM 1.2 Let /i,/2, be probability densities with respect to some prod-
uct measure JR,k, satisfying /i(x)/2(y) < /i(xV y)/2(x Λ y). Let X and Y
be a random vectors in JR,k having distributions with the densities f\ and /2
respectively. Then for any nondecreasing function a defined on IR*

Ea(X) > Ea(Y).

Next came the "4-function" Theorem of Ahlswede and Daykin (1978):

THEOREM 1.3 Let f\,f<ι and 51,52 be nonnegative real valued functions de-
fined on TR,k that satisfy the following condition: /i(x)/2(y) < <7i(xVy)<jf2(xΛ
y). Then, for any FKG measure μ on ΊR,k:

(3) / /1(x)dμ(x) / /2(χ)^(x) < / gι(x)dμ(x) I Λ (
</R «/R «/R «/]R

It is an easy exercise to show that Ahlswede and Daykin's result implies
Holley's theorem, which in turn implies the FKG inequality. For details,
references and some examples and applications, see, e.g., Karlin and Rinott
(1980), Graham (1982).

In the presence of theorems involving a single density (FKG), two densi-

ties (Holley), four functions (Ahlswede and Daykin), and further studies by

Ahlswede and Daykin (1979) and Daykin (1980), it was natural to look for

a more general result. This was done in Rinott and Saks (1990). In order

to describe the next result we need the following notation. Given vectors

x* = (χ^,...,χ^.) G IR*, i = l , . . . , ra, define x^ to be the vector in 1R*

whose j th coordinate (1 < j < k) is the /th largest among x* , i = 1,..., m.

Formally we have x^ = \/s-.\s\=ιAiesχt> / = 1? ? ^ In particular note

that xW = V^x 1 ' , x [ m ] = Λg^x*.

We can now quote the main result from Rinott and Saks (1990).
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THEOREM 1.4 Let / i , . . . , / m and g\,..., gm be nonnegatiυe real valued func-
tions defined on Mk satisfying the following condition: for every sequence
x 1 , . . . , x m of elements from Mk

(4) Λ ί x 1 ) / ^ 2 ) /m(xm) < ffl(x[1])52(x[2]) Sm(x H )

Then, for any FKG measure μ on Πtfc;

/ Λ ( ) μ ( ) / /m(x)dμ(x) < / t
lR* JlRk JTRk

(5) . . .

We are not concerned with issues of integrability in this paper and so we
always assume that integrals are well-defined.

Note that in the case m = 2, condition (4) becomes /i(x)/2(y) < ji(xV
y)<72(xΛ y). In this case Theorem 1.4 reduces to the "4-function" Theorem
of Ahlswede and Daykin (1978).

The starting point of this paper is the one-dimensional version of Theo-

rem 1.4 which we now state, with (hopefully) simpler notation.

PROPOSITION 1.1 Let /i,/2,...,/m and ffi,P2? • ?ffm be nonnegative real
valued functions defined on 1R that satisfy the following condition: for every
sequence #i, #2? ? %m of elements from Ht,

(6) /l(a?l)/2(a?2) fm(Xm) < gi(xί)92(X2) ' 9m{x*m),

where {x\,x^...,x^) denotes the decreasing rearrangement of (#i, x2,...,
a:m). Then, assuming integrability,

ί h{x)dμ(x) I h(x)dμ(x) . ί fm{x)dμ{x)
Jn JJR JM

(7) < / gx(x)dμ(x) f g2(x)dμ(x) - ί gm(x)dμ(x),

for any σ-finite measure μ on IR.

Theorem 1.4 can be deduced from Proposition 1.1 by induction argu-

ments which may be of interest. However, they are quite standard and will

not be reproduced here. They involve showing that the "marginal" functions

defined by pί(x) = /R/i(x,x)d/i*(a?) and gt (x) = /Rffi(x,x)dμ*(x) satisfy

the hypothesis of Theorem 1.4 as functions of x 6 IR*""1. For details see

Rinott and Saks (1990). The important part of the proof is the basis case

n — 1, which is the content of Proposition 1.1.

In order to see the connection to permanents let us consider Proposition

1.1 in the simple case that m = 2, and dμ(x) = dx. It says that if for all

x.yeM

h(x)f2(y) < 9i(x V y)g2(x Λ y),
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then, assuming integrability,

(8) / h{x)dx I f2(x)dx < ί 9l(x)dx ί g2(x)dx.

Starting on the l.h.s. of (8) we have

= J J fi(x)f2(y)dxdy

χ<y

(9)
• / /

Per /1W/2W
Mv)h(v)

dxdy.

In the case that the integrals are taken with respect to a discrete measure
dμ, diagonal terms must also be considered, but as we shall see they do not
pose any difficulty. Permanental inequalities enter the story because it is
now clear that the inequality

( Λ0O h(χ) <Per

would imply (8). In the same way, we shall see that in order to prove (7) it
would suffice to show that

Per hM ••• fmfa)

h{Xm) ••• fm(Xm) )

(10) Per

\ 9l(Xm) ••• 9m(Xm) J

The latter inequality and related results and conjectures are the subject
of the next section.

2. Permanents: Results and Conjectures

First, observe that the permanent on the l.h.s. of (10) is equal to
Σπ65m Πί^i fi{χπ(ί)) At the end of the Introduction we said that (10)
would imply (7); we now restate this implication formally as
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LEMMA 2.1 Let fi and gι be real valued functions defined on IR, satisfying

m m

(ii) Σ Π/«(*.(,))< Σ Π «(**•))
π e S m 1=1 τr65m t=l

for any X{ in IR, i = 1,... ,ra. Then for any σ-finite measure μ on ΊR, we

have (assuming integrability)

fi(x)dμ(x) < ]J J^gi(x)dμ(x).

PROOF Simply take an ra-fold integral with respect to the measure
ΠϊLιdμ(xi) on both sides of (11), to obtain m!Π£U fnfi(x)dμ(x) <

Lemma 2.1 and the above discussion show that in order to prove Propo-
sition 1.1, it would suffice to prove

CONJECTURE 2.1 Let / i ,/2,. . . ,/m and 51,52? .-^ffm be nonnegatiυe real
valued functions defined on IR that satisfy the following condition: for every
sequence #i , #2? ? ̂ m of elements from IR,

(12) /l(Zl)/2(z2) fm(Xm) < 5 l ( ^ ) 5 2 ( ^ ) ' ' 0 m « ) ,

where ( x ^ x ^ ixm) denotes the decreasing rearrangement of (x\,X2i •••?

x m ) . Then for any sequence X\,X2, - ,%m,

(13)

< Σ
»'=!

Conjecture 2.1 can be given a more appealing matrix formulation which

we now describe. Defining Aij = fj{x%) and Bij = ffj(xi), i , j = 1,2,... ,m,

we have

and

Per(B)=

Thus (13) is equivalent to Per(A) < Per(J9), where a?i,a?2? ^ m is a n

arbitrary sequence of real numbers. By the invariance of permanents under
row permutations we may, without loss of generality, assume that X\ > X2 >
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... > xm. Condition (12) applied to the sequence Xπ(i)iχπ(2)i ?xτr(m) f°r

any permutation π G 5 m , becomes

(14)

Note that in Conjecture 2.1, (12) is assumed also when (21,22? >#m) is
replaced by (2^, #t 2 , . . . , X{m) for any nondecreasing sequence 1 < i\ < %2 <
• < *m < m of integers. For this choice, which allows equalities among the
xt 's, condition (12) becomes

(15) < gi(χi1)g2(xi2)
m-9m{xim) = £ t i,iJ3t 2,2 £ t m , m .

This leads to

DEFINITION Let A and 5 be m x m nonnegative matrices. We say that
the relation
(16) A < B

holds if for any nondecreasing sequence 1 < i\ < %i < . . . < im < m of
integers and any permuation π of {1,2,... ,ra} :

(17) Aiπ(l)ΛAiπ(2)2 ' ' ' Aiπ(m)>™ < ^tl,l5*2,2 * ' ' #tm,m

Note that in (17) we allow equalities between the ij's. It is easily seen that
the relation <C is transitive and reflexive, and thus defines a quasi-order on
the set o f m x m matrices. Conjecture 2.1 reduces to

CONJECTURE 2.2 Let A and B be mxm nonnegative matrices. If A < B,
then

Per(A) < Per(B).

If the support of dμ in Proposition 1.1 consists of only two points, say
{0,1}, then the matrix A{j = fj{x%) defined above has only two distinct
rows: (/i(l), . . . ,/ m (l)), and (/i(0),... ,/m(0)). In this case we can prove
Conjecture 2.2. This is the content of the next lemma:

LEMMA 2.2 Conjecture 2.2 holds for the case that A is an mxm nonnegative
matrix such that for some r between 1 and m, A consists of r identical rows
followed by m — r identical rows, and B has the same structure.

We briefly discuss Lemma 2.2 before proving it. It turns out that Lemma
2.2 leads to a complete proof of Theorem 1.4 and Proposition 1.1. In fact,
as we saw, Lemma 2.2 suffices to prove Proposition 1.1 in the case that
the measure dμ has support on {0,1}. This is the basis for an induction
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argument (to which we briefly referred in the Introduction) which proves

Theorem 1.4 when the support of dμ is {0, l } n , for any n. In order to prove

Proposition 1.1 for the case that dμ has a finite support of cardinality s,

say, we embed this support in {0,1}4*"1 and apply the previous result. Thus,

even Proposition 1.1, which is one-dimensional, requires the multivariate

result and the induction argument. For dμ of infinite support a further

approximation argument is required. The details of these arguments are

given in Rinott and Saks (1990).

Recall that Proposition 1.1 would follow directly from either Conjecture

2.1, or Conjecture 2.2, without any need for induction, embedding, and

approximation. The rest of this paper concerns Conjecture 2.2. We hope

that the above discussion and the partial results and variations we present

next, will generate interest in our conjectures.

For the proof of Lemma 2.2 we need a simple majorization-type lemma.

LEMMA 2.3 Let on and β\ be nonnegatiυe numbers, I = l , . . . , n . Assume

that for anyV C {1,. . . ,n} there exists a set W C {1,. . . , n} with \V\ = \W\

and Uiev <*/ < Γ W A- τh™ ΣΓ=i *i < Σ?=i βι

P R O O F This follows readily from Theorem 3.C.l.b. in Marshall and Olkin
(1979) and the fact that the conditions of the Lemma are equivalent to
(log(αi),.. . ,log(αn)) being weakly majorized by (log(/?i),... ,log(/?n)).

P R O O F OF LEMMA 2.2 For π e Sm define α π = Π^1A7 Γ( ί ) t l , βΈ =

Π£=iJBπ(t ) | t .
 τ h e n > Per(A) < Per(J9) is equivalent to Σ π α * < Σ π Ar %

Lemma 2.3 it suffices to show that for any V C Sm there exists a set W C Sm

with |V| = |WΊ and

(18) Π ^ < Π AT-

Recall that A has (at most) two distinct rows, (θi ,S2, . . . , s m )

(*i»*2ϊ ?*m)> s aY Then α π = Π j L i 5 j J * / ' where αj and δj are either 0
or 1 and aj + bj = 1. Therefore

(19)

for some nonnegative integers satisfying kj + lj = |V|, j = 1,. . . , m. Denote

the two distinct rows of B by u — (^i,U2> ? um) &nd v = (^i,^25 ?^m)?

with u preceding v. Let η G Sm be such that A^) > ^(2) > . . . > ^(m)

We can rewrite the r.h.s. of (19) as βJjg> *$>$$ ί j^j Now ob-
serve that the latter expression can be written as a product of terms of the

form Sφ) sη(r)tη(r+i)''' tη(m)- Condition (17) applied to the present case
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becomes sη^ sη(r)tη(r+i)''* tη(m) < t*i urυr+ι vm. We thus obtain

(20)
m

Finally, note that the quantity on the r.h.s. of (20) equals Ππ€W βv for the
coset W = VΊ/ = {πη : π E V}. Thus (18) is established and the proof is
complete.

In view of Lemma 2.3 and the subsequent discussion (see (18)), the fol-
lowing conjecture would imply Conjecture 2.2.

CONJECTURE 2.3 Let A and B be m x m nonnegatiυe matrices satisfying
A < B. Then for every subset V of the permutation group Sm there exists
a subset W of Sm with \V\ = \W\ and

(21) Π * * * Π &>
πξV πeW

where α π = Π ^ Aπ(i)ti and β* = Π ^ 1 5 7 r ( 0 , ι .

The case m = 2 of Conjecture 2.3 is already covered in the proof of

Lemma 2.2. However let us verify it directly. As usual, for distinct indices

1 < hihi "fira 5ί m> let {hihi' yim) denote the permutation TΓ with

7τ(j) = ij,j = l , . . . , m . In the case m = 2 of Conjecture 2.3 we have to

consider three possible sets V: {(1,2)}, {(2,1)} and {(1,2), (2,1)}. It is very

easy to see that for the first two, Conjecture 2.3 holds with W = {(1,2)}. For

the last take W = V and use the fact that for any i, ΠjLi Λ\j < Il]Li B%ji s o

Π ( X ) ( ) ( )
= Ππ€52 β*i w ^ e r e *h e inequality is obtained by applying (17) twice. We
note that for m > 2, we have examples showing that the set W in Conjecture
2.3 need not be unique.

In order to discuss Conjecture 2.3 for m > 2, we need some notation.
A vector s = ( έ i , . . . , θ m ) 6 Htm is an m-sequence if all of its entries are
integers in the range 1 to m. We use lower case Greek letters to denote
m sequences whose entries are distinct, i.e., that represent permutations.
Each m-sequence s is associated to a matrix Φ s which has a 1 in position
(si,i) for each i = l , . . . , r a , and all other entries are 0. In particular, for
a permutation π, Φ π is its associated permutation matrix. If Γ is a set of
m-sequences, we set Φy = Σseχ Φs

Let Cm,k denote the class of m x m nonnegative integer matrices with

all row and column sums equal to k. It can be shown that this class con-

sists of all matrices that can be written as a sum of k m x m permuta-

tion matrices (which need not be distinct). This is proved in the same

way as the well known theorem of Birkhoff and Von Neumann about dou-

bly stochastic matrices, see, e.g., Marshall and Olkin (1979, p. 36 2.F.I).
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We denote by Um^ the subset of Cmik consisting of matrices which can

be expressed as the sum of k distinct permutation matrices. Note that

Hm,* = {*v : VCSm,\V\ = k}.

For P e Cm>*, set Ap = Πtj Aΐjj - N o t e t h a t for a subset V of Smj we

have

(22) A** = Π **

We can now rewrite Conjecture 2.3 as follows:

CONJECTURE 2.4 Let A and B be rax m nonnegatiυe matrices satisfying
A < B. Then for every subset V of Sm there exists a subset W of Sm, with
\V\ = \W\, such that
(23) A*v < B**,

Given an ra-sequence s, let s* denote its increasing (more precisely, non-
decreasing) rearrangement. The set of defining conditions for A < B is
easily seen to be equivalent to the set of conditions: AΦ s < 5 Φ s * for all m-
sequences s. Furthermore, it is clear that if {(Pi^Qi)} is any indexed family
of matrix pairs for which APi < B®* and α; are nonnegative constants, then

AΣiaiPi < βΣiaiQi τ h i s s u g g e s t s the following

DEFINITION Let V denote the convex cone (in IR™2 x IR™2) consisting of

all pairs of matrices of the form ( Σ α sΦs?Σ αsΦs*) where the sum extends
over all ra-sequences s, and all α s axe nonnegative.

Our next goal is to show that Conjectures 2.3-2.4 can be recast in terms
of the cone V without involving the relation < . For this purpose we need the
following straightforward Proposition which provides an alternative charac-
terization of the relation <C.

PROPOSITION 2.1 A < B if and only if Ap < BQ for all (P,Q) is in V.

REMARK If (P,Q) is a pair of matrices such that Ap < BQ holds when-
ever A and B are matrices satisfying A < 5 , then (PjQ) must belong to
V. To see this, note that A < B if and only if the 2ra2-dimensional vec-
tor (— logA,logJ9) has nonnegative dot-product with every vector in V. Now
apply a separating hyperplane argument (e.g., Farkas' Lemma, see Papadim-
itriou and Steiglitz (1982, p. 74)): If C is a cone and D is the set of vectors
whose dot-product with each vector in C is non-negative, then any vector v
whose dot-product with every vector in D is non-negative belongs to C.

In view of Proposition 2.1 and the remark following it, verifying Conjec-
ture 2.4 is equivalent to proving that for any P = Φy in Umik there exists a
matrix Q = Ψw in Um^ such that (P,Q) G V. We thus avoid the condition
< and reduce Conjectures 2.3-2.4 to a conjecture on sums of permutation
matrices:
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CONJECTURE 2.5 For every matrix P in Um^ there is a matrix Q in Um^

such that (P,Q)eV.

Clearly, this last conjecture would imply all the previous ones.

In order to prove Conjecture 2.5 it would be sufficient to show:

(*) any matrix P in Um^ has a representation P = Σ?=i ^s(0>
where s ^ are m-sequences, such that the matrix

Q = Σϊ=i * (0 is also in Um%k.
° *

It is easy to see that any P in Cm^ can be represented as P = Σ?=i *s(0-

Generally the representation is not unique. However we do not have a way

of constructing a representation that guarantees that if P is in ZYm ,̂ then

so is Q = Σ L i Φ (0- Thus, we cannot prove Conjecture 2.5 in general. For

m = 2 and m = 3we can verify (*) by exhausting all cases of P £ ZVm,fc, and

constructing for each P a suitable matrix Q. Since UkUm,k = {^v V C

Sm}, an exhaustive search oίUm^ for all k requires checking 2 m ! subsets V of

Sm. Such a search is not hard for m =• 3, but becomes very time consuming

for larger values of m.

REMARK It is not hard to show that any matrix P in Cm^ has a (unique)
representation of the form P = Σ / = 1 Φs(o where s ^ are m-sequences sat-
isfying sW < s(2) < . . . < s ^ . This representation appeared to us to be
a natural candidate for satisfying (*). However, we have examples showing
that the resulting Q matrix need not be in Umjι,

REMARK Results similar to ours were obtained independently by R. Aha-

roni and U. Keich about a year after we obtained our results. We benefited

from discussions of the subject with them.
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