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Consider a stochastic allocation problem where a total resource

of R units are to be allocated among m competing facilities in a sys-

tem. An allocation of r, units to facility i results in a random response

Xi(n),i = l,...,m. The system response is then defined by the random

variable Y(r) = Λ(Xi(ri),... ,X m (r m ) ) where h : Έim -> R is the sys-

tem performance function. Let S C 1R+ be the set of all feasible al-

locations. We are then interested in the stochastic allocation problem

πύn{Eg(Y(r)) : Σ!ϊLiri = Λ,r G 5 } for some utility function g. The

aim of the paper is to obtain a partial or a full characterization of the op-

timal solution to this problem with minimal restriction on g. For this we

introduce notions of stochastic Schur convexity and stochastic transposition

increasingness and identify sufficient conditions on X, (rt ), i = 1,..., m and

h under which Y(r) will be either stochastically Schur convex or transpo-

sition increasing with respect to r. Then under appropriate condition on

g it can be shown that the stochastic Schur convexity of Y(r) will imply

the optimality of balanced resource allocation and the transposition in-

creasingness will imply a partial characterization of the optimal solution

thus reducing the computational effort needed to find the optimal solution.

Several examples in the telecommunication, manufacturing and reliabil-

ity /performability systems are presented to illustrate the main results of

this paper.

1. Introduction

Consider a system consisting of m facilities that compete for a limited
resource with a capacity of R units. An allocation of r, units to facility i re-
sults in a random response X t(r t ), i = 1,..., m. The overall system response
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is then defined by the random variable ^(r) = h(Xι(rι),... ^Xm(rm)) where
h : R m —> R is the system performance function. Let S C 1R+ be the set
of all feasible allocations. In this paper we are interested in the stochastic
allocation problem

m

(1.1) mm{Eg(Y(r)) : £ n = Λ, r G S},
i=l

where 5 is an appropriate utility function chosen by the decision maker. For
example consider a flexible manufacturing system consisting of m machine
cells. A total of R flexible machines are available that needs to be allocated
among the m machine cells. Let Xt (rt ) be the stationary number of parts in
cell i if T{ flexible machines are allocated to cell i, i = 1,..., m. Suppose the
performance of the system is measured by the total number of parts in it: i.e.
^( x ) = YAL\ ̂ ? X ^ -Z+' A stochastic allocation problem for this scenario is
then to obtain, if possible, an optimal allocation that minimizes Σ^=ι Xi(r{)
in the usual stochastic sense: i.e. we restrict g to be an increasing but an
arbitrary function.

The purpose of this paper is to obtain a partial or a full characterization
of the optimal solution to the stochastic allocation problem with minimal
restriction on g. For this we define notions of stochastic Schur convexity
(Section 2) and stochastic transposition increasingness (Section 3) and find
sufficient conditions on Xi(ri),i = l, . . . ,ra and h under which ϊ ^ r ) will
be either stochastically Schur convex or transposition increasing with re-
spect to r. Then under appropriate condition on g it will be shown that
the Schur convexity of Y(v) will imply the optimality of balanced resource
allocation (Section 2) and the transposition increasingness will imply a par-
tial characterization of the optimal solution thus reducing the computational
effort needed to obtain the optimal solution (Section 3). Several examples
in the telecommunication, manufacturing and reliability/performability sys-
tems are presented in Section 4 to illustrate the main results of this paper.

2. Stochastic Schur Convexity

In this section we will define stochastic Schur convexity and give sufficient
conditions on -X, (r t ), i = 1,. . . , m and h under which y ( r ) is stochastically
schur convex with respect to r. For this we will need the following definitions
of majorization and Schur functions (e.g. see Marshall and Olkin (1979)
for more details). For any x G IR 7 7 1 ,^] > x^2] > ••• > X[m] denotes the
decreasing rearrangement of the coordinates of x and for any x,y £ H m , x >
y denotes the usual coordinatewise ordering. Throughout this paper the
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terms 'increasing' and 'decreasing' are not used in the strict sense.

DEFINITION 2.1 Let x,y e IRm. Then x majorizes y if

k k m m

(2.1) J2χ\i] ^ Σywk = *> ' m > a n d Σxw = Σy\ih
ι = l i = l t = l ί = l

or equivalently

mm mm

(2.2) J ^ x H < ^ J^-J, fc = 1,..., m, and
t = l

We denote this x > m y. When the requirement of the equality X ^ ^ x\i] =
ΣiLi V\i] i s dropped from (2.1) [(2.2)] we say that x weakly sub-majorizes
[sup-majorizes] y and is denoted x >wm [>™m]y.

The following lemma (e.g. see Marshall and Olkin (1979)) allows one to
simplify the analysis of majorization, often making it sufficient to prove the
desired result just for the two dimensional case.

LEMMA 2.2

(i) x >m y & there exist a finite number (say k) of vectors iS%\i =
1,. . . , k such that x = x^1) >m >m χ(fc) = y and such that x ^ and
χ( ί + 1 ) differ in two coordinates only, i = 1, . . . , fc — 1.

(ii) x >wm y O there exists a vector z such that x > z and z >m y.

(Hi) x >wm y <& there exists a vector z such that x < z and z > m y.

DEFINITION 2.3 A function φ : Etm -+ R is Schur convex [concave] if

x >m y implies φ(x) > [<]φ(y). It is increasing Schur convex [concave] if it

is increasing and Schur convex [concave]; i.e. (see Lemma 2.2 (ii) [(ϋi)]), if

x >wm [>wm]y implies <£(x) > [<]φ(y).

Note that all Schur convex and Schur concave functions are symmet-

ric: i.e. for any permutation π of {l,...,ra},x 6 R m and x π = (xv(i),i =

l , . . . , m ) one has φ{κπ) — </>(x). Recall that a random variable V is said

to be larger than a random variable W in the sense of the usual stochastic

[increasing convex, increasing concave] ordering if Eψ(V) > Eψ(W) for all

increasing [increasing and convex, increasing and concave] functions φ. We

denote this V >st [>icx,>icυ]W (e.g. see Ross (1983)).

DEFINITION 2.4 (Stochastic Schur Convexity): A real valued random vari-
able Z(x) parametrized by x E X C H m is stochastically Schur convex in the
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sense of the usual stochastic [increasing convex, increasing concave] ordering
if for any x,y E X,x > m y implies Z(x) >st [>iCχ<> >icv]Z(y)- We denote this
{Z(x),x e A'} G S-SchurCX(st)[S-SchurCX(icx),S-SchurCX(icv)].

If in addition Z(x) is stochastically increasing [decreasing] then Z(x)
is stochastically increasing [decreasing] and Schur convex. We denote this
{Z(x),x G X} G SI - SchurCX(st) [{Z(x),x eX}eSD- SchurCX(st)]
etc. That is (see Lemma 2.2 (ii) [(iii)]), for any x,y G X,x >wm [>wm]y
implies Z(x) >5* [>8t]Z(y) etc.

If — Z(x) is stochastically Schur convex then we say that Z{x) is stochas-
tically Schur concave.

As an immediate consequence of the definition of stochastic Schur con-
vexity one has the following characterization of the optimal solution to the
allocation problem (1.1).

THEOREM 2.5 LetY(r) = h(Xi(rι)9...,Xm(rm)). Suppose {Y(τ),τeS} E
S - SchurCX(st)[S - SchurCX(icx),S - SchurCX(icv)]. Then for any
increasing [increasing and convex, increasing and concave] function g and
r,sE«S one has,

r>ms^Ego h(X1(r1),... ,Xm(rm)) > Eg o tyX^),...,Xm(sm)).

Suppose {y(r),r E S} G SI - SchurCX{st)[SI - SchurCX(icx),SI -
SchurCX(icυ)]. Then for any increasing [increasing and convex, increasing
and concave] function g and r, s G S one has,

In either case if r* := (^,. . . , ~) is in S then

Egoh(X1(r1),...,Xm(rm))>Egoh(xA...,XmA),
TIL Tΐh

i.e. v* is an optimal solution to problem (1.1).
From the above theorem it is clear that it is worthwhile to search for suf-

ficient conditions on Xt (rt ), i = 1,..., m and h for Y(τ) to be stochastically
Schur convex. We shall do this next in this section (and examples where
such conditions are naturally satisfied are given in Section 4.) Before that
we note the following easily verified lemma.

LEMMA 2.6 Let Fz(t;x) = P{Z(x) < t} and Fz(t;x) = P{Z(x) > t} be
respectively, the cumulative and survival functions of Z(x). Then {Z(x),x G
X] G S - SchurCX(st)[S - SchurCX{icx),S - SchurCX(icv)] &
Fz(t;x)[ff° Fz(s;x)ds, - / ^ Fz(s;x)ds] is Schur convex in x.
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In the remainder of this section we will assume that {X{(θ),θ G Θ},i =
l,. . . ,ra are m probabilistically identical and mutually independent col-
lections of random variables. We will now present a result on stochastic
majorization that extends a result of Proschan and Sethuraman (1976) for
random variables with proportional hazard rates. We will need the follow-
ing definition for this result (see Example 4.3 of Shaked and Shanthikumar
(1990a)).

DEFINITION 2.7 (Stochastic Convexity in the Hazard Rate): Let {Z(θ),θ G
Θ} be a collection of absolutely continuous positive random variables with
hazard rate functions {Ί(-;Θ),Θ G Θ}. Then {Z(θ\θ G Θ} is said to be
stochastically increasing and convex in the sense of hazard rate ordering if
7(ί;0) is pointwise decreasing and concave in θ for each fixed t G Et+. We
denote this {Z(Θ)9Θ G Θ} G SΙCX(hr).

REMARK 2.8 Observe that since F(t;θ) = P{Z(Θ) > t} =
ezp{- /^= 0 "K

1^ θ)du), t G H+ from Theorem 3.16 of Shaked and Shanthiku-
mar (1990a) it follows that {Z(θ),θ e Θ} e SΙCX(hr) => {Z(θ),θ e Θ} e
s i c x ( s t ) =» {z(θ)9θ e θ } e s i c x ( s P ) =» {z(θ),θ e θ } e s i c x .

THEOREM 2.9 Suppose {X;(0),0 £ Θ} £ SICX(hr). Then for any in-
creasing and symmetric function h and Y(x) = Λ(Xi(#i),... ,Xm(xm)) one
has {y(x),x G Θm} G SI - SchurCX(st). That is for any x,y G Θ
increasing symmetric function h and increasing function g,

(2.3) x>«,my -+ Egoh(X1(x1),...,Xm(zm))

> Egoh(X1(y1),...JXm(ym)).

Since a Schur convex function is a symmetric function, one also has

(2.4) x>t,my -> (

m

>wm:st (Xlbll), ,Xm(ym))

Here V >wm:st W stands for the weak stochastic majorization order of two
random vectors V andW. That is Ef(V) > Ef(W) for all increasing Schur
convex function f (see Marshall and Olkin (1979, Chapter

PROOF We will first establish the theorem for the case m = 2 and x >m y.
Then the result for the case x >wm y will follow from Lemma 2.2 (ii) and the
stochastic monotonicity of Xχ{θ) in θ. Suppose, without a loss of generality,
#i < ί/i < ί/2 < #2 and x\ + X2 = ϊ/i + ί/2 Define

(2.5) 7(ί;ifr) = 7(ί;*i) + f ^ Γ ^
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and

(2.6) 7(t;jfe) = 7 ( t ;a ? 1 )+ 15—ϊi{ 7 (t;χ 2 ) - 7 (t; i c 1 )},t 6 R + .
a;2 - x\

From the concavity of the hazard rate function 7 ( ;0) in θ it is immediate
that

(2.7) η(t-yi) < 7 ( ί ; W ) , * e E f , i = 1,2.

Let Z t, Z,,i = 1,2 be four mutually independent random variables such that
Zi =st Xi(xi),i = 1,2 and Z{ has a hazard rate function η{;\y%\% = 1,2.
Then from (2.7) one sees that Z{ is larger than Xi(yi) in the hazard rate
ordering, ί = 1,2 (e.g. see Ross (1983)). That is

(2.8) Zi>hrXi(yi),i=lJ2.

Observe that the hazard rate function of min{2Ί,Z2} is X3<=i7(#;w) =
Σ?=i Ίί(mΊχi) which is the same as that for min{Zχ,Z2}. Therefore

(2.9) min{Zι,Z2} =st min{Zi,Z2}.

For any s,t G Et+ such that t > s, consider

(2.10) P{max{Zi,Z2} > t\mm{ZuZ2} = θ}

= f f(s;xι)F(s;x2)
X

1
f(s; x2)F(s; xi)* F(s; xx)

+ Ί(S; x2)exp{- fi η/(u; xχ)du}

Similarly one sees that

(2.11) (P{max{Zi,Z2} > t\min{ZuZ2} = s}

= τ(θ; yι)exp{- // 7 (u; y2)rfu} + η/(s; y2)exp{- f* 7 (M;

Since 7(w;xi) > τ(w yi) > ήf(u;y2) > η/(u;x2) and 7 ( ^ 1 ) + 7(
7(^5 2/i) + 7(w; y2) one has

rt rt
η{s-,xι)exp{- I η{u\x2)du} + 7(5;x2)exp{- I -y(u;xι)du}

Js Js
rt rt

- I η{u\y2)du) + η(s;y2)exp{- I i(u;yi)d
Js JsJs

for all u 6
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Therefore, from (2.10) and (2.11) one sees that

(2.12) P{max{Z!,Z2} > t\min{Zi,Z2} = s} >

P{max{Zi,Z2} > t\min{Zi,Z2} =

Now combining (2.9) and (2.12) one concludes that

(2.13) ( m i n ^ Z a ^ m a x ί Z ! , . ^ } ) > s t (mmiZ

Then from (2.8) one has

(min{Zx, Z2},mzx{Zx, Z2}) >st

and hence for any increasing symmetric function h

h{X1{x1),X2{x2)) >st

That is we have established the theorem for m = 2. Extension to the general

case can be routinely carried out using Lemma 2.2 (i) (e.g. see Marshall and

Olkin (1979), Shanthikumar (1987)).
Proschan and Sethuraman (1976) showed that if the random variables

{Xi(θ),θ G Θ} have proportional hazard rates, i.e. if η(u;θ) = θα(u),θ G Θ
for each fixed w, then (2.4) holds. Here we have established a stronger
conclusion (2.3) with a condition weaker than the proportionality of the
hazard rates.

For the above result we need the strong condition of stochastic convexity

in the hazard rate on {Xt (0),0 G Θ}. We will next present a result that is

weaker than Theorem 2.9, but requires only a weaker stochastic convexity

condition on {X{(θ),θ G Θ}. For this we will need the following definitions.

DEFINITION 2.10 (Stochastic Convexity in the Usual Stochastic Order-
ing): Let {Z(θ),θ G Θ} be a collection of random variables with survival
function F( θ). Then {Z(θ),θ G Θ} is said to be stochastically increasing
and linear [convex, concave] in the sense of usual stochastic ordering (see
Shaked and Shanthikumar 1990a) if F(t;θ) is pointwise increasing and lin-
ear [convex, concave] in θ for each fixed t. We denote this {Z(0),0 G Θ} G
SIL(st)[SICX(st), SICV(st)].

DEFINITION 2.11 A function φ : IRm —> 1R is submodular [supermodular]

if for any x,y G H m we have

# x ) + Φ(Y) > [<]<K* V y) + φ(x Λ y).

HerexVy = (max{xi,ί/i},... ,max{xm,2/m» and xΛy = (min{zi,2/i},...,
min{#m,ym}). Now we can present the next theorem.
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THEOREM 2.12 Suppose {Xι{θ),θ G Θ} G SIL(st). Then for any increasing
symmetric submodular [supermodular] function h and Y(x) = /ι(Xi(xχ),...,
Xm(xm)) one Aω{Y(x),x G Θm} G SI-SchurCX(icυ)[SI-SchurCV(icx)].
That is for any x,y G Θ m

? increasing and symmetric submodular [super-
modular] function h and increasing and concave [convex] function g,

(2.14) x >wm[>wm] y^Egoh(X1(x1),...,Xm(xm))

>[<} Egoh{X1(y1),...,Xm(ym)).

PROOF We will first establish the theorem for the case m = 2 and x >TO y.
Then the result for the case x >wm [>wm]y will follow from Lemma 2.2 (ii)
[(iii)] and the stochastic monotonicity of Xi(θ) in 9. Suppose, without a loss
of generality, Xi < yι < y2 < x2 and x\ + x2 = Vi + V2 Then from Theorem
3.9 of Shaked and Shanthikumar (1990a) for a collection of SIL(st) random
variables, it is known that there exist four random variables {X, ; Yί, i = 1,2}
defined on a common probability space such that

(2.15) Xi =st X(xi);Ϋi=
stX(yi),i=l,2

Xi = mm{ΫuΫ2}

X2 = mΆχ{Ϋt,Ϋ2}.

Observe that Xi < X2. Therefore if {xj^;Ϋ} j),i = 1,2}, j = 1,2 are two
independent samples of {Xi;Ϋi,i = 1,2} one has,

(2.16) Xί 1 } < Xi1] and l { 2 ) < X(

2

2).

Consider specific realizations x\j) of XJj) and y\j) of Ϋ&\i = 1,2; j = 1,2.

Then by (2.16) one has x[1} < x2

Ύ) and xj2) < x2

2). There are only the

following four cases one may encounter:

(β) xi1* = y?>(* *?> = *?>), χί2) = y ? \ * 4 2 ) = y{?)
(b) x? = „?>(**?> = »?>), χS2) = y?>(* χ2

2) = y[2))
(C) X̂  = y£\*XM=yl% β « = y?\* X? = y f )
{d) ,W = y W ( ^ x W = yjD) t χ(2) = jff)^ XW = yW}.

It is easily verified that for cases (α) and (d) and any symmetric function φ,

So consider case (6). If <̂> is symmetric and submodular [supermodular] one

sees that

(2.18) φ{x(ϊ\x{

2

2)) + <Kx?\xP) = Φ(x{r\x(

2

2)) + Φ{x(

2\x(?)
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The first equality follows by the symmetry of φ, the second inequality follows

from the submodularity [supermodularity] of φ and x^' < x2\j = 1,2, the

third equality follows because of the conditions of case (6) and the final

equality follows by the symmetry of φ. Similarly it can be shown that under

case (c),

(2.19) ^WχS 2 ) ) + K'YKxP) > feW&Kv?) +
Therefore

Hence
(2.20) Eφ(X1(x1),X2(x2)) > [<]Eφ(X1(yι),X2(y2)).

Observing that if g is an increasing concave [convex] function and h is an
increasing submodular [supermodular] function then φ = g o h is a submod-
ular [supermodular] function the proof of the theorem for the case m = 2 is
complete. Extension to the general case can be routinely carried out using
Lemma 2.2 (i).

The following result then follows easily from Theorem 2.12.

THEOREM 2.13 Suppose {Xi(θ)9θ G Θ} G SICX(st)[SICV(st)]. Then for
any increasing symmetric submodular [supermodular] function h and Y(x) =
h(X1(x1),...,Xm(xm)) onehas{Y(x),x e Θm} G SI-SchurCX(icv)[SI-
SchurCV(icx)]. That is for any x,y G Θ m , increasing and symmetric sub-
modular [supermodular] function h and increasing and concave [convex] func-
tion g,

(2.21) x>wm [>wm] y-*Egoh(Xι(xi),...,Xm(xm))

>[<] Egoh(Xί(y1),...,Xm(ym)).

Consider the case where the system performance is measured by the max-
imum [minimum] of the individual responses (e.g. parallel [series] reliability
system.) That is Λ(x) = max{#t , i = 1,..., m} [= min{a;ί , i = 1,..., m}]. It
is easily verified that h in this case is a submodular [supermodular] function.
If we then apply the above result for this case we will have to restrict g to
be increasing and concave [convex]. But the following easily verified lemma
will allow us to strengthen this result.

LEMMA 2.14 For any increasing function φ : 1R —> R, the function φ :

Etm -» Πt defined by φ(x) = ψ(max{xi,...,a;m}) [= φ(min{xu... ,xm})]

for x G H m is symmetric, increasing and submodular [supermodular].
Combining Lemma 2.14 with Theorem 2.13 (Equation 2.20) one obtains
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THEOREM 2.15 Suppose {Xi(θ),θ € Θ} £ SICX(st)[SICV(st)]. Then if
we define Y(x) = max{Xi(xi),...,Xm(xm)} [= min{Xi(a?i),... ,Xm(xm)}]
one has {Y(x),x 6 Θm} 6 5 / - SchurCX{st)[SI - ScΛtιrCV(5ί)]. ΓΛα* is
/or any x j G Θm and increasing function </,

> Eg(mBx{X1(y1),...9Xm(ym)})

< Eg(min{X1(u1),...,Xm(vm)})]

REMARK 2.16 Since P{min{X1(x1)J...,Xm(zm)} > t} = U^Ffaxi) it
is immediate that F(t; θ) is increasing and logconcave in θ will imply that
{Y(x),x G Θm} e SI - SchurCV(st). This is a stronger conclusion than
that in theorem 2.15.

3. Stochastic Transposition Increasingness

In this section we will define stochastic transposition increasingness and
give sufficient conditions on X, (rt ), i = 1,..., m and h under which Y(τ) :=
Λ(XL(ΓI), . . . , Xm(rm)) is stochastically transposition increasing with respect
to r. For this we will need the following definition of transposition increasing
functions (which is slightly different from that given in Hollander, Proschan
and Sethuraman (1981), and Marshall and Olkin (1979)).

DEFINITION 3.1 Let y e Πtm and x be a permutation of y. Then x is
more arranged than y if x can be obtained from y by a finite number of
successive pairwise interchanges of two coordinates at a time such that each
interchange results in a decreasing order for the interchanged elements. We
denote this x >α y. (e.g. (1,5,4,3) >α (1,5,3,4); (1,5,3,4) >a (1,4,3,5)
and (1,5,4,3) >α (1,4,3,5).)

Note that the above definition of the arrangement ordering (>α) allows
one to simplify the analysis of transposition increasingness, often making it
sufficient to prove the desired result just for the two dimensional case.

DEFINITION 3.2 A function φ : R m —• IR is transposition increasing [de-
creasing] if x >α y implies φ(x) > [<]

DEFINITION 3.3 (Stochastic Transposition Increasingness): A real val-
ued random variable Z(x) parametrized by x £ X C H m is stochasti-
cally transposition increasing in the sense of the usual stochastic [increasing
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convex, increasing concave] ordering if for any x,y G <V,x >a y implies
Z(x) >st [>.c*,>.«,]Z(y). We denote this {Z(x),x G ^ } G 5 - TI(st)[S -
TI(icx),S-TI(icv)].

If — Z(x) is stochastically transposition increasing then we say that Z(x)
is stochastically transposition decreasing (and denote S — TD(st) etc.)

As an immediate consequence of the definition of stochastic transposition
increasingness one has the following partial characterization of the optimal
solution to the allocation problem (1.1).

THEOREM 3.4 Let Y(τ) = h(X1(r1)9...,Xm(rm)). Suppose {Y(r)9τ G
S} G S - TI(st)[S - TΙ(icx), S - TI(icυ)]. Then
(i) for any increasing [increasing and convex, increasing and concave] func-
tion g and r, s G S one has,

(ii) If S = So := {r : Y%Lι rt = Ryr{ > 0}, then an optimal solution r* to
(1.1) will satisfy r\ < < r^.

Note that when we have a discrete resource of R units there can exist
a large number of feasible solutions for (1.1). For example with R = 10
and m = 10 there are total of 92,378 different possible solutions (i.e. |<So|
= 92,378). The number of solutions that satisfy the characterization given
above is only 42 (see Table 1 of Shanthikumar and Yao (1988)). From the
above discussion it is clear that it is worthwhile to search for sufficient condi-
tions on Xt (rt ), i = 1,..., m and h for ̂ (r) to be stochastically transposition
increasing. We shall do this next in this section (and examples where such
conditions are naturally satisfied are given in Section 4.) Before that we note
the following easily verified lemma.

LEMMA 3.5 Let Fz(t;x) = P{Z{κ) < t} and Fz(t;x) = P{Z(x) > t} be
respectively, the cumulative and survival functions of Z(x). Then {Z(x),x G
X} β S - TI(st)[S - TI{icx\S - TI(icv)] o Fz(ί;x)[/t°°Fz(θ;x)dθ,
— J ^ Fz(s; x)ds] is transposition increasing in x.

In the remainder of this section we will assume that {Xt (0),0 G Θ},i =
1,..., m are m mutually independent collections of random variables.

THEOREM 3.6 Let 7t ( ; θ) be the hazard rate function of the absolutely con-
tinuous positive random variable X{(θ),θ G Θ,i = l , . . . ,m. Suppose for
each t G 1R+, we have ^{(t θ) componentwise monotone and submodular in
(i, θ) G {1,..., m) X Θ. Then for any increasing and symmetric function h
andY(x) = h(X1(xi)J...,Xm(xm)) one has {y(x),x G Θm} G S-TD(st).
That is for any x,y G Θm, increasing symmetric function h and increasing
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function g,

(3.1) y >a x^Egoh(X1(y1),...9Xm(ym))

< Egoh(X1(x1),...,Xm(xm))

PROOF We will first establish the theorem for the case m = 2 and ηi(-',θ)

decreasing in i and θ. The other case where 7t( ; θ) is increasing in i and θ can

be similarly proved. Suppose, without a loss of generality, x\ = y2 < 2/i = #2-

Since for each t £ IR+, 7, (ί; 0) is componentwise decreasing and submodular

in (i, θ) E {1,..., m} x Θ one has

(3.2) 7i(*;*i) > 7i(*;yi) > 72(^^2); 7i(*;»i) > 72(̂ 2/2) > 72(^^2)

and

(3.3) 7 l ( ί ; Xl) + 7 2 ( ί ; x2) < 7i(*; 2/i) + 72(ί; 2/2).

Therefore there exist 7i(tf;yi) and 72(^2/2) such that

(3.4) 72(ί;»2)<7i(*;yi)<7i(*;»i); 72(^2) < 72(^^2) < 72(^^2),

and

(3.5) 71 (ί; xι) + 72(ί; x2) = 7i(*; yi) + 72^; 2/2).

Let Zt , Zi,i = 1,2 be four mutually independent random variables such that
Zt =5* ^(xi) ,^ = 1,2 and Z{ has a hazard rate function 7;(*;y;),i = 1?2.
Then from (3.4) one sees that Zi is larger than Xi(yi) in the hazard rate
ordering, i = 1,2. That is

(3.6) ^t >Λr t̂-(yt-)»* = 1.2.

Now using a derivation same as that employed in the proof of Theorem 2.9
it can be shown that

(3.7) (min{Zi,Z2},max{Zi,Z2}) >st

Then from (3.6) one has

(min{Zi,Z2},max{Zi,Z2}) >st

(mm{X1(yι),X2(y2)},m^x{X1(yι),X2(y2)})

and hence for any increasing symmetric function h

h(X1(x1),X2(x2)) >st

That is we have established the theorem for m = 2. Extension to the gen-
eral case can be routinely carried out using the property of arrangement
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ordering > α as given in Definition 3.1 (e.g. see Marshall and Olkin (1979),

Shanthikumar (1987)).

For the above result we need the strong condition of submodularity of

the hazard rate of Xi(θ). We will next present a result that is weaker than

Theorem 3.6, but requires only the supermodularity [submodularity] of the

survival function of Xi(θ).

THEOREM 3.7 Let Fi(- θ) be the survival function of Xχ{θ\θ G θ , i =
l, . . . , ra. Suppose for each fixed t G H,F{(t]θ) is componentwise increas-
ing and supermodular [submodular] in (i,0) G {l,...,ra} x Θ. Then for
any increasing symmetric submodular [supermodular] function h and Y(x) =
h(X1(x1),...,Xm(xm)) onehas{Y(x),x G Θm} G S-TD(icυ)[S-TI(icx)].
That is for any x,y G Θm, increasing and symmetric submodular [super-
modular] function h and increasing and concave [convex] function #,

(3.8) y >α x^Egoh(X1(y1),...,Xm(ym))

<[>} Egoh(X1(x1),...,Xm(xm)).

PROOF We will first establish the theorem for the case m — 2. Sup-

pose, without a loss of generality, x\ = y2 < Vi = χ2- Since for each

/ G IR+, Fi(t;θ) is componentwise increasing and supermodular [submodu-

lar] in (i, θ) G {1,..., m) x Θ one has

(3.9) h{t\xi) < [Fl{t-y1),F2{t;y2)] < F2(t;x2)

and

(3.10) F1(t;x1) + F2{t;x2)>[<]F1(t;y1)] + F2(t;y2).

Therefore there exist ϊ\*(/;t/i) and F2(t;y2) such that

(3.11) F;(t;y1)>[<}F1(t;y1); Fϊ(t;y2) >[<}F2(t;y2),

and

(3.12) F1(t;x1) + F2(t;x2) = FΪ(t;y1) + FΪ(t;y2).

Let Z;,Zi,i = 1,2 be four mutually independent random variables such that

Zi =st X{(xi),i = 1,2 and Z{ has the survival function F*(-;yi),i = 1,2.

Then from (3.11) one sees that Z{ is larger [smaller] than Xi(yi) in the usual

stochastic ordering, i = 1,2. That is

(3.13) Zi>Bi[<st]Xi(yi),i = h2.

Now using a derivation similar to that employed in the proof of Theorem 3.4
of Shaked and Shanthikumar (1990a), it can be shown that there exist four
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random variables {Xi\Y{,i = 1,2} defined on a common probability space
such that

(3.14) Xi =st X{xi);Yi=stZi,i = 1,2

Xx = min{Fi,y2}

X2 = max{Ϋx,Ϋ2}.

Now using a derivation same as that employed in the proof of Theorem 2.12 it
can be shown that for any increasing symmetric submodular [supermodular]
function φ,

Therefore from (3.13) one sees that

(3.15) Eφ(X1(x1),X2(x2)) > [<}Eφ(X1(y1),X2(y2))

Observing that if g is an increasing concave [convex] function and h is an
increasing submodular [supermodular] function then φ = g o h is a submod-
ular [supermodular] function the proof of the theorem for the case m = 2 is
complete. Extension to the general case can be routinely carried out using
the property of arrangement ordering presented in Definition 3.1.

Combining Lemma 2.14 with the above Theorem 3.7 (Equation 3.15) one
obtains

THEOREM 3.8 Let Fi(-',θ) be the survival function of X{(θ),θ € Θ,i =
l, . . . ,m. Suppose for each fixed <GE,F{(t]θ) is componentwise increasing
and supermodular [submodular] in (i,θ) £ {1,..., rή) X Θ. Then if we define
F(x) = max{Xi(zi),...,Xm(zm)} [= min{Xi(xi),... ,Xm{xm)}\ one has
{Y(x),x e Θm} G S - TD(st)[S - TI(st)]. That is for any x,y E Θm and
increasing function 5,

y > α x -> Eg(m*x{X1(yi),...,Xm(ym)})

), . . . ,Xm(xm)})

-» Eg(min{Xι(yι),..., Xm(ym)})

> Eg(min{X1(xl)9...,Xm(xm)})].

4 Applications

Allocation problems of the kind (1.1) described in Section 1 arise in
many different areas (e.g. see Jean-Marie and Gun (1990), Shanthikumar
(1988), Shanthikumar and Stecke (1986), Shanthikumar and Yao (1988),
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Yao and Shanthikumar (1987) and the papers referenced in there). In these
papers each problem is analyzed and solved in its specific context. The
results presented in Sections 2 and 3 now provide a unified way to solve
many of these allocation problems. In this section we will present several
applications of the results derived in Sections 2 and 3 to problems arising in
telecommunication, manufacturing and reliability/performability systems.

4.1 Parallel Queues with Resequencing

Consider a single stage queueing system consisting of m parallel servers.

The n-th customer arrives at time An and requires a service of length Bn

if serviced by the i- th server, n = 1,2, Customers on its arrival are
assigned to one of the m parallel servers according to some assignment rule.
Suppose the n-th customer is assigned the server Unyn — 1,2, Each of
the m servers is assumed to have a buffer with an unlimited capacity to
store the waiting customers. Customers leaving this single stage are stored
in a resequencing area where each customer is allowed to leave as soon as
only after all the customers arrived to the system before it are released from
the resequencing area. Queueing systems of this kind serve as models of
telecommunication systems (e.g. see Baccelli, Makowski and Shwartz (1989),
Gun (1989), Harrus and Plateau (1982), Jean-Marie (1987), Jean-Marie and
Gun (1990)), of distributed database systems (e.g. see Kamoun, Kleinrock
and Muntz (1981)) and of flexible assembly systems (e.g. see Buzacott (1990),
Buzacott and Shanthikumar (1992)).

Let Vi(t) be the workload at server i at time t,t G IR+ i = l , . . . ,ra.
Then

(4.1) VUn(An) = ^ n ( Λ n - )

Define the maximum workload at time / by

(4.2) V(t) = m*x{V1(t),...,Vm(t)}9t e 1R+.

Then it is very easy to see that the sojourn time Sn of the n-th customer

through the single stage and the sojourn time Tn of the n-th customer

through the system (including the time spent, if any, at the resequencing

area) are given by

(4.3) Sn = VUn(An) and Tn = V(An), n = 1,2,...

Define Wn = V(An—),n = 1,2,... A typical portion of a sample path of

{V(t),t £ R+} is shown in Figure 1.
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Assuming their existence let Fτ,Fw and Fy be the stationary distribu-
tion of TnyWn and V(t). If the limit λ = limn-+oo{n/An}, and the density
fy of Fy exist, then equating the rates of up- and down-crossings over level
x (e.g. see Cohen (1977), Shanthikumar (1980)) one gets

(4.4)

Therefore

(4.5) Fτ(x) = Fw{x) + τ/v

Note that a similar relationship for a special case is derived in Jean-Marie and
Gun (1990). Particularly they assume that (i) {An - An_i,n = 1,2,...},
{Bn ,n = 1,2,...},i = l,. . . ,ra and {Un,n = 1,2,...} axe all mutually
independent sequences of i.i.d. random variables, that (ii) the arrival process
is Poisson and that (iii) {J7n, n = 1,2,...} is a sequence of multinomial trials
with P{Un = i} = pi,i = l,...,ra. Now we will make the same set of
assumptions and look at the allocation of the probabilities (pi,... ,pm) that
will stochastically minimize the stationary system sojourn time Γ(p). Since
Poisson arrivals see time averages (see Wolff (1982)) it is clear that when
these stationary distributions exist (i.e. when 0 < λpt < μt = 1/EBn ,i =
l,. . . ,ra), Fw(x) = Fγ(x),x E R+. Hence (4.5) reduces (after integrating)
t O oo oo

(4.6) / Fτ(x)dx = / Fw(x)dx + -ίw(t),t > 0.
Jt Jt A

Let W(p) be a generic random variable with distribution function F\γ-
Then from (4.6) and Lemma 2.6 one sees that if {W(p),p E X) G 5 -



Stochastic Allocation 269

SchurCX(st) then {Γ(p),p e X} £ S - SchurCX(icx), where X is the set
of values of p for which the stationary distributions exist. Since the station-
ary workloads at the m servers are independent because of Poisson arrival
process and multinomial splitting one sees that

(4.7) W(p) = mBxiX1(Pi)J...JXm(pm)}9

where X%(pϊ) is the stationary workload in an M/G/l queueing system with

arrival rate λpi and service times {Bn\n = 1,2,...} and {Xi(pi)},i =

l , . . . , ra are independent sequences. From Theorem 4.17 of Shaked and

Shanthikumar (1989) (also see Gun (1989)) it is known that {X, (pi),0 <

Pi < μi/λ} G SICX(st). Then from (4.6) and Theorem 2.15 one sees that if

{B^\i = 1,..., ra} are identical, then {Γ(p), p £ X} £ S - SchurCX(icx).

Therefore balancing the allocation probabilities will minimize Γ in the in-

creasing convex ordering. This conclusion was first derived by Jean-Marie

and Gun (1990). The stochastic Schur convexity result for T is, however,

new.

4.2 Flexible Assembly Line

Consider an ra-stage serial assembly line. Parts arrive at this assembly
line according to a Poisson process with rate λ. The nominal processing
times (i.e. if only one standard worker is used) at stage i are ί.i.d. exponential
random variables with mean l/μz,i = 1,... ,m. Suppose we have a total of
R workers available and that we can assign them among the ra stages of
the assembly line. Problem of this kind arise naturally in many settings
in the manufacturing systems (e.g. see Buzacott and Shanthikumar (1992),
Shanthikumar and Yao (1988)). We will consider two typical problems that
arise in this context (see Chapter 6 of Buzacott and Shanthikumar (1992)).

PROBLEM 1 Suppose the average workload assigned per stage is the same
for all stages (i.e. μt = μ,i = l , . . . , ra) . The number of workers available
is more than the number of stages (i.e. R > ra). If we allocate r workers
to the same stage the collective processing rate is c(r),r = 1,.. .R. In an
ideal case we would expect c(n) = n, but for the sake of generality, we will
assume that c(n) is increasing and concave in n. Let T(r) be the stationary
sojourn time of an arbitrary part through the assembly line if we allocate
V{ workers to stage i,i = l, . . . ,ra. Let Xi(n) be an exponential random
variable with constant hazard rate ηi{n) = c(n)μ - λ > 0. Also assume that
{Xi(n)},i = l , . . . , m are mutually independent. Then (e.g. see Jackson
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(1963))

(4.8) T(τ) = ΣXi(n), n : c(n) > λ/μ.

Since {Xt (n),n : c(n) > λ/μ} E SDCX(hr) from Theorem 2.9 one sees
that {T(r),r; : c(rt ) > λ/μ,i = 1,... ,ra} G 52? - SchurCX(st). Therefore
a balanced worker allocation will stochastically minimize the total sojourn
time T in the usual stochastic ordering.

PROBLEM 2 Suppose the stages are numbered such that the average work-
load assigned to stage i is larger than that assigned to stage i + 1 (i.e.
l//*t > 1/μi+i) ,i = 1,..., m. The number of workers available is more than
the number of stages (i.e. R > m). If we allocate r workers to the stage i the
collective processing rate is Ci(r),r = 1,... R. Note that ct (l) = μt . Let T(r)
be the stationary sojourn time of an arbitrary part through the assembly line
if we allocate r, workers to stage i,i = 1,... ,m. Let Xi(n) be an exponen-
tial random variable with constant hazard rate 7i(n) = Ci(n) — λ > 0. Also
assume that {Xt (n)}, i = 1,..., m are mutually independent. Then (e.g. see
Jackson (1963))

(4.9) T(r) = £ X , - ( r O , rt : c (r f ) > λ , i = l , . . . , m .
t = l

Suppose Ci(n) is componentwise increasing and submodular in (i, n). Then
one finds that 7 t(n) is componentwise increasing and submodular. Then from
Theorem 3.6 one sees that {Γ(r), r{ : Ci(ri) > λ, i = 1,..., m} 6 5 - TD(st).
Therefore allocating more workers to the stages with smaller indices (i.e.,
stages with more workload) will stochastically reduce the total sojourn time
T in the usual stochastic ordering.

4.3 Reliability/Performability System

Consider a reliability/performability system (e.g., see Shaked and Shan-
thikumar (1990b)) consisting of m components. Suppose a total budget of
R dollars is to be allocated among the m components. Suppose Xi(ji) is the
lifetime of component i if rt dollars is allocated for it. Suppose the performa-
bility function is c(n) (i.e. when n components are alive the rate at which
performance is accumulated is c(n)). For example c(n) could be the pro-
duction rate of a manufacturing system when n machines are working. We
assume that c(0) = 0. The total performance as a function of the component
lifetimes is

(4.10) Y(r)
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where

(4.11) Λ(χ) = / c(£l{x{ > t})Λ,χ G K £ .
J θ ι = lι = l

We will need the following characterization of ft.

LEMMA 4.1 Let h be defined as in (4.11). If c is an increasing and con-
cave [convex] function, then h is an increasing submodular [supermodular]
function.

PROOF Observe that

j m m

(4.12) _-Λ(χ) = C (l
axiaxi t=i ί=i

Observing that c(l + n) - c(n) is decreasing [increasing] in n if c is concave
[convex] and that Y^Li I{xi > Xj} is increasing in xt it can be concluded
that h is submodular [supermodular].

For example if c(0) = 0,c(n) = l ,π = 1,2,... [c(n) = 0,n = 0 , l , . . . m -
1; c(n) = n + 1 - ra,n = m, m + 1,...], then F(r) will be the lifetime of a
parallel [series] reliability system (e.g. see Barlow and Proschan (1975)). As
expected since c(n) is concave [convex] in n, the lifetime of a parallel [series]
reliability system is submodular [supermodular] in the component lifetimes.
Combining Theorem 2.13 with Lemma 4.1 one obtains

THEOREM 4.2 Suppose the families {X;(rt )} of the lifetimes of the compo-
nents of the reliability/performability system are independent and identical.
Then if {X;(rt )} G SICX(st)[SICV(st)] and the performability function is
concave [convex], then {Y(r)} G SI - SchurCX(icv) [SI - SchurCV(icx)].
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