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The dependence structure of a multivariate normal distribution is char-
acterized by its covariance matrix. However, in contrast to the normal
case, discussion on dependence for a-stable random variables, 0 < a < 2,
requires more care because variances do not exist. We review in this paper
dependence concepts for a-stable random variables. A local measure of
dependence is proposed. Also we illustrate how product-type stable laws
arise naturally in applications.

1. Introduction

The study of dependence in random variables has yielded many useful
results in statistical applications. For normal distributions, the dependence
structure can be characterized by their covariance matrix. For example, Pitt
(1982), Joag-Dev, Perlman and Pitt (1983) show that jointly normal random
variables are associated if and only if their correlations are all nonnegative.

In contrast to normal vectors, a multivariate stable random vector cannot
be specified in general by a finite number of numerical parameters. More-
over, when 0 < a < 2, no a-stable random variable has a finite second
moment, and even the first moment does not exist when a < 1. Therefore
the investigation of dependence relationships among stable random variables
is nontrivial. Using spectral measure as a tool, Lee, Rachev and Samorod-
nitsky (1990) derived necessary and sufficient conditions for association of
stable random variables. In section 2, we will review some dependence re-
sults for stable random variables. Also we discuss the notion of geometric
stable random variables.

In section 3 we focus on symmetric stable sub-Gaussian random variables.
We show that except for the singular case, sub-Gaussian random vector
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cannot be associated. It is therefore of interest to derive a measure of local
strength of dependence based on Bjerve and Doksum (1990)’s correlation
curve. In section 4 we discuss the relationship between product-type stable
random vectors and subordinated processes.

2. Stable Random Vectors and Dependence
2.1 Association of Stable Vectors

Stable laws are very useful in statistical applications, they have been
used to model the distribution of stock price changes (see e.g. Akgiray and
Booth (1988), Du Mouchel (1983), Fama (1965), Mandelbrot (1963), and
Mittnik and Rachev (1991)), and the distribution of the frailty factor in the
context of biostatistics (see e.g. Hougaard (1986)).

A random vector X= (X1, X2,...,X,) is called a-stable, 0 < a < 2, if
for any constants A > 0,B > 0, there is a D € R™ such that

AX(®W 4 BX® £ (4= 4 p*)l/eX 4 D,

where X(), X(? are independent copies of X.
Normal distributions are special cases of stable distributions with index
of stability @ = 2. An o-stable random vector is called strictly a-stable if

D = 0 for every A and B. An a-stable random vector X satisfying X LI '
is called symmetric a-stable (SaS). Note that a S25 vector is a zero-mean
multivariate normal random vector.

Let ¢4(0) = ¢a(b1,...,0,) = Eexp{i(0,X)} = Eexp{i Y 7_, 0,;X;} de-
note the characteristic function of an a-stable random vector in R™, where
(6,X) denotes the inner product. When n = 1, the characteristic function
of an a-stable random variable, 0 < a < 2, has the form

1 0 — exp[—0®]0|%(1 — in(sign 0) tan 5*) + iuf] ifa #1
(1) 4al0) = exp[—o|0|(1 + inZ(sign 6)1n |6]) + ip.6] ifa=1.

where o > 0 is typically referred to as scale parameter, -1 < 9 < 1 is
skewness parameter and pg € R is location parameter (but do not rely too
much on these names in the case a = 1). Conversely, a random variable X
with characteristic function given by (1) is a-stable, and we say that X has
a stable distribution Sy(o,7,p).

When 7 = 1, the random variable X is said to be totally right skewed. If
also 0 < @< 1, and g = 0, then X has the positive real line as its support,
in which case it has the Laplace transform E[exp(—0X)] = exp(—co®8%),

where ¢ = (cos Z2)~1.
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In the case n > 2, there is a similar representation for the character-
istic function (ch.f) of a-stable vectors. Namely, a random vector X =
(X1,...,Xy) is a-stable, 0 < a < 2, if ane only if there is a finite Borel
measure m on the unit sphere S, of R™ and a vector p® = (p?,...,42) in
R"™ such that:

(afa#1

(2) 60(0) = exp{~ [ 1(0,5)[°(1 i sign((8,8)) tan T )m(ds) + i(6, u*)}

b)Ha=1
(2a) )
#(0) = exp(~ [ 1(8,)|(1+ = sign((6,5))1n|(8,5)m(ds) + i(8, u°)},

where s = (S1,...,8,) € Sp. The pair (m, ) is unique when 0 < a < 2, the
measure m is then called the spectral measure of the a-stable random vector

X.

Specifically, if X is symmetric a-stable, then it has characteristic function
of the form

(3) da(0) = exp{—/s 16181 + ... + 0,8,|°m(ds)}
where T is a finite symmetric measure on the Borel subsets of the unit sphere
Sn-

Note that an a-stable random vector X has independent components if
and only if its spectral measure m is discrete and concentrated on the inter-
section of the axes with the unit sphere S,,. See Samorodnitsky and Taqqu
(1991) for a review on properties of multivariate stable random vectors.

Random variables X3,..., X, are called associated if for any functions
f,9:IR™ — R, nondecreasing in each argument, we have cov( f(X), (X)) > 0
whenever the covariance exists. The concept of association was introduced
by Esary, Proschan, and Walkup (1967) to obtain bounds related to coherent
functions(co-ordinatewise increasing) occurring in the theory of reliability.
In a completely different context, Fortuin, Kasteleyn, and Ginibre (1971),
considered the association concept for the Ising model of statistical physics.
Association represents a strong form of positive dependence.

Pitt (1982), Joag-Dev, Perlman and Pitt (1983) show that nonnegatively
correlated normal variables are associated. Inspired by their results, Lee,
Rachev and Samorodnitsky (1990) derive the following theorem.

THEOREM 1 Let X;,...,X, be jointly a-stable random variables, 0 < a <
2, with characteristic function given by (2). Then X1,..., X, are associated
if and only if the spectral measure m satisfies the condition

m(S,;)=0
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where S;; = {(s1,...,82) € Sp: for some i,j € {1,...,n},s; > 0 and s; <

0}.

Note that a result related to the sufficiency part of the above theorem was
obtained by Resnick (1988) in terms of Poisson representation of an infinitely
divisible random vector.

We list here some notions of dependence. A bivariate density function

f(z,y) of two arguments is said to be totally positive of order 2 (abbreviated
TP,) if for all z; < z2, and y; < y2,

flrim) feny)|s
f(z2,51) fz2,92)|™

A joint density function f(z,,...,z,) of n arguments is said to be TP, in
pairs if f(z1,...,2i,...,25,...,2,) is TPy in (;,z;) for all ¢ # j and all
fixed values of the remaining arguments. If a random vector has a T P,-in-
pairs density then it is associated. See Karlin (1968), Barlow and Proschan
(1981), and Tong (1990) for a review. Random variables Xi,...,X, are
called positive upper orthant dependent (PUOD) if

P(Xl > T1y...,Xp > (En) > P(X1 > (L‘l)P(Xn >$n)

for any zi1,...,Z,, and they are called positive lower orthant dependent

(PLOD) if
P(Xl S :cl,...,Xn S.’En) 2 P(X1 S (El)P(Xn an)

for any zq,...,2,. That is, if X;,...,X,, are PUOD or PLOD, then they
are more likely to take on larger values together or smaller values together.
Lehmann (1966) shows that for the bivariate case, X, X; are PUOD if and
only if they are PLOD; however, for higher dimensional cases, the equivalence
no longer holds. It is also well known that association implies both PUOD
and PLOD, but in general these implications cannot be reversed. For stable
random variables, Lee, Samorodnitsky and Rachev (1990) show, as a result
of theorem 1, that PLOD or PUOD implies association.

CoROLLARY 1  Let Xi,...,X, be jointly a-stable. Then the notion of
association is equivalent to PLOD or PUOD.

Following Alam and Saxena (1981), we call random variables X3,...,X,
negatively associated if for any 1 < k < n, and f:IR¥* - R,g:R"* - R,
nondecreasing in each argument, cov(f(Y),9(Z)) < 0 whenever the covari-
ance exists, where Y and Z are any k and (n — k)-dimensional random vec-
tors correspondingly, representing a partition of the set (Xi,...,X,) into



Dependence of Stable Random Variables 223

two subset of sizes k and n — k accordingly. In the normal case, negative
association has been characterized by Joag-dev and Proschan (1983). Lee,
Samorodnitsky and Rachev (1990) derive the following theorem.

THEOREM 2 Let Xy,...,X, be jointly a-stable random variables0 < a < 2,
with characteristic function given by (2). Then X,,...,X, are negatively
associated if and only if the spectral measure m satisfies the condition

m(SH)=0
where S} = {(s1,...,8n) € Sn: for some i # j, si-s; > 0}.

Recently, some other properties related to dependence concepts of sta-
ble random vectors have also been discussed. Multiple regressions on sta-
ble random vectors have been considered by Wu and Cambanis (1991) and
Samorodnitsky and Taqqu (1991). A version of Slepian-type inequalities,
due to Fernique (1975), was extended to stable random vectors in terms of
Levy measures by Samorodnitsky and Taqqu (1990).

2.2. Geometric Stable Vectors

A random vector Y = (Y1,...,Y,)is called geometric stable if there exist
(1) a sequence of i.i.d. random vectors X(1), X(?) .. (2) independent of the
X’ a geometric r.v. T(p) with mean 1/p (0 < p < 1), and (3) constants
A(p) > 0 and C(p) € R" such that

T(p)
(4) AP) Y (XD +c(p) S Y, as p— 0

=1

Geometric stable random vectors (GSRV’s) are used in reliability queuing
theory, financial modelling and its study goes back to the works of A. Renyi,
H. Robbins and B. V. Gnedenko, see the surveys in Rachev (1991), and
Rachev and Sengupta (1991).

We now characterize the class of GSRV’s. The characterization is in
terms of “dual” representation (see (b) below) of the ch.f’s of GSRV, and
a-stable random vectors, which, as it follows (see (a)-(c)), share one and the
same domain of attraction.

LEMMA 1 For a random vector Y the following are equivalent:
(a) Y is GSRV.
(b) The characteristic function fy of Y admits the representation

1

e ' "

(5) fy(0) =
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where ¢o(0) is the ch.f of a-stable vector (see (2), (2a)).

(c) X() in (4) belongs to the domain of attraction of a-stable random vector
with ch.f. ¢ defined by (5).

(d) X() in (4) has polar coordinates p and © such that, as R — o,

P(p> R,0 € A)/P(p>kR,0 € B)

(6) — k*m(A)/m(B)

for any k > 0 and any Borel sets A and B of Sy, with m(B) # 0, 7 stands
for the spectral measure of ¢, in (5) rewritten in polar coordinates.

PRroOF The proof is essentially given in Mittnik and Rachev (1991). The
limit relation (6) follows from the characterization of the domain of attrac-
tion of multivariate a-stable law (see Rvaceva (1962), Resnick and Green-
wood (1979)).

Taking into account the characterization (5) of GSRV Y we say that Y
and ¢, share one and the same spectral measure I’ and index of stability a
given in (2), (2a).

Necessary conditions for association of GSRV’s follow from lemma 1 and
the condition for association of stable vectors in the previous section. Suffi-
cient conditions, however, are not obvious, and this problem is still open.

3. Product-type Stable Random Vectors
3.1. Stable Laws Derived from Products

Let Z = (Z4,...,Z,) be an arbitrary symmetric o’-stable random vector.
Let T be a positive a/a’-stable random variable, 0 < @ < @', independent of
Z and having Laplace transform E exp(—0T) = exp(—8°/"), 6 > 0. Then
the random vector defined by

(7) X =Tz

is symmetric a-stable. They are sometimes referred to as product-type stable
random vectors. In section 4, we will see that these product-type stable
random vectors can be obtained naturally from stable processes directed by
an operational time stable process.

It is clear that components of the product-type stable vector X are con-
ditionally independent. If one further assumes that Z,,...,Z, are i.id.,
then components of X are positively dependent by mixture as considered by
Shaked (1977), Tong (1977, 1980), and Shaked and Tong (1985). We note
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that components of the derived vectors X can be strongly dependent. This
fact can be demonstrated by the following example.

ExAMPLE 1 For any fixed positive integers k; > 1 and k; > 1, assume
that {Z;, ¢« = 1,...,n} are n iid. totally right skewed strictly 1/k,-
stable random variables. Let T be a totally right skewed strictly 1/k;-
stable variable, independent of {Z;,i = 1,...,n}. Then the derived vector
(X1,...,Xy) = TV/Z, with o’ = 1/ky, is 1/k k; stable and its compo-
nents are TP, in pairs. See Theorem 6 in section 4 for general results. We
show in the following section that there are many cases where components
of a product-type stable random vector are neither associated nor positive
orthant dependent.

On the other hand, note that if X = EY*'Z where Z is a symmet-
ric a’-stable random vector and if (1) E is independent of Z, (2) E is an
exponential random variable then X is GSRU, see equation (4). If E has ar-
bitrary distribution on R, then X = EV/*'Z is called Robbins mixture: for
applications of Robbins mixtures to reliability theory, queueing and finance
modelling we refer to Szasz (1972), Szynal (1976), Karolev (1988), Melamed
(1988), Rachev and Ruschendorf (1991), Rachev and Samorodnitsky (1991).

3.2. Sub-Gaussian Random Vectors

When Z = G = (G1,...,Gy) is a zero mean Gaussian vector (i.e. $2.5)
in R, independent of the positive a/a’-stable random vector 7 in (7), then
the derived vector X = T'/2G is called a sub-Gaussian Sa.S random vector,
with governing Gaussian vector G. It is shown in section 4 that sub-Gaussian
vectors arise naturally in stable processes which are subordinated to Gaus-
sian processes. Sub-Gaussian vectors form a special class of stable vectors
which, unlike general stable vectors, can be characterized by finitely many
parameters. Specifically, the sub-Gaussian vector X derived above has a
characteristic function of the form

®) 8a(0) = exp{=13 3" 30,5 1""),

i1=1 j=1

where R;; = E(G;Gj), i,j = 1,...,n are the covariances of the underlying
Gaussian vector (G1,...,Gy).

Let mg be a uniform (i.e. rotationally invariant) finite Borel measure on
Sn. Then for some ¢ > 0

n 1 n o
J 1 bisilomo(ds) = e [5 3 717
=1

n =1
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Therefore, a SaS random vector , a < 2, is sub-Gaussian with a governing
Gaussian vector having i.i.d. components if and only if its spectral measure
is uniform on the unit sphere S,. A uniform spectral measure does not
satisfy the required condition for association as was stated in Theorem 1.
As a consequence, we have

COROLLARY 2 If a SaS random vector X is sub-Gaussian with a govern-
ing Gaussian vector having i.i.d. N(0,0?) components, then components of
X are positively dependent by mizture but they are neither associated nor
positively orthant dependent.

In general, the spectral measure of a sub-Gaussian vector is a transform
of the uniform measure mg on S,. Hence we have

THEOREM 3 A non-degenerate (i.e. having non-zero components) sub-
Gaussian vector (TY/?Gy,...,TV2G,) with governing Gaussian vector G, as
defined in equation (7), is associated if and only if G; = ¢oGy = ... = ¢,G,,
a.e. for somecy > 0,...,¢, > 0.

PRrOOF Suppose P(G; = ¢2G3) = 0 for any ¢; € R . Assume that the sta-
ble random vector (Tl/ 2Gy,..., TY 2G,) is associated. Then the sub-vector
(TY2G,,TY2G,) is also associated. Hence (T1/2Gy,TY2G,) has a spectral
measure which is concentrated on the parts of the unit circle specified in
Theorem 1, namely, in the first and third quadrant of the unit circle. On
the other hand, any Gaussian vector can be written as a linear combination
of i.i.d. N(0,1)’s. The condition P(G; = ¢2G2) = 0 for any ¢; € R implies
that this linear transformation for the vector (G1,G?) is of full rank. There-
fore the spectral measure of (T'/2G;,T'/2G,) is a rigid transformation of
the uniform measure on the unit sphere, and it maps the unit sphere onto
the entire unit sphere. This leads to a contradiction. Similarly, the case
G1 = ¢2G, for some ¢; < 0 can be ruled out.

3.3. Conditional Moments for Sub-Gaussians Random Vectors

Samorodnitsky and Taqqu (1991) derived regression equations for gen-
eral stable random vectors. In particular, they show that when (X;,X;) =
(TY/2G,,TY/2G,) in equation (7) is a non-degenerate sub-Gaussian Sas,
(even when a < 1), random vector with governing Gaussian vector G,

COV(Gl, Gz)
VarGy

and E(X?|X; = z) < o0 ae. if 1 < a < 2 (note that the unconditional
second moment is infinite.).

(9) E(X3)X;=2)= z=RisRn" 'z ae.
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We can calculate the conditional variance as follows.

E(G2|G1) = Ri2Ri17'Gy,

Var(G3|G1) = Ry — RLR7L,
E(X|X;=z) = E(E(TGYT,G1)|T?G; = z)
= E(T|X; = «)Var (G4|Gy) + R%,R%, " '22.
Hence
(10) Var (X2|X1 = :l:) = E(Tle — $)(R22 _ R%2Rl_ll)'

Note that from equation (9) we see that the conditional mean of X, given
X is completely determined by their governing Gaussian vector G. Equa-
tion (10), however, demonstrates how the random variable 7 influences the
variance of the conditional law of X5 given Xj.

Wu and Cambanis (1991) show that

(102) vamxa=zr=umXRn—Ram?vunw*[:uﬂmawm

where f(z;a) is the density function of a S,(1,0,0) random variable (i.e.
having the characteristic function exp[—|t|?]).

Moreover, if T in X = /TG is standard exponentially distributed rather
than positive stable distributed, then X has a multivariate Laplace distri-
bution, that is, its ch.f has the form

1
1+ % Z?:l Z;’l:l oiajRij ’

See Feldman and Rachev (1991) and Rachev and Sengupta (1991) for appli-
cation of Laplace distributions in random fields, U-statistics and modelling
commodity prices.

$a(8) =

3.4. Local Correlation Functions

In an effort to characterize the dependence for sub-Gaussian vectors, we
derive in this section a notion of local correlation for sub-Gaussian random

vectors.
Bjerve and Doksum (1990) introduced a measure of local strength of
dependence by combining ideas from nonparametric regression and of Galton

(1888). They define the function

) oh(z)
" HoB@)Y + 0yl

(11) p(z)
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where 02 = Var(X1), 0%, x,=, = Var(X2| X1 = ), and f(z) = £ E(Xa| X, =
z) is the slope of the nonparametric regression. More generally, they note
that the conditional mean E(X,|X; = z) can be replaced by a location func-
tion. The variances 02 = Var(X;) and 0% x,_, = Var(X2|X1 = z) can be
replaced by squares of corresponding scale functions.

For an SaS random vector (X1, X2), Samorodnitsky and Taqqu (1991)
show that in many cases the first, and when 1 < a < 2, second conditional
moments exist if a certain integrability condition holds. When 1 < a < 2, the
covariation is designed to replace the covariance. It is a useful quantity and
it appears naturally in the context of regression for stable random variables.

DEFINITION Let X; and X2 be jointly SaS with a > 1 and let m be the
spectral measure of the random vector (X1, X3). The covariation of X; and
X is defined to be the real number

(X1, Xala = [ silealsign(s2)m(ds).
2

As a result, we have
X0, Xila = [ Isal"m(ds) = of,

where o, is the scale parameter of the SaS random variable X,. Let F,
be a linear space of jointly SaS random variables. Then when a > 1, the
covariation induces a norm on F, such that

I1X 1o = (X, X]a)"/

Convergence in ||.||o is equivalent to convergence in probability and conver-
gence in LP for any p < a. Moreover, for sub-Gaussian vector (Xi,...,X,)
with ch.f defined in (8), we have

[Xi’Xj]OI = 2—a/2Rin§‘;-2)/2, ,j=1,...,n, and
IXilla = 27 R,

Note that when a = 2, we have [X1, Xa]; = § Cov(X1,X3), and [X31, X1,
= 1 Var(X;) = o}. For an Sa$ random variable X, 1 < a < 2, we use
kol X ||o» with

ky = [aI‘(l - 1/01)]1/2
[(1/e)

to replace the notion of {Var(X)}!/? in the calculation of a notion of lo-

cal correlation function. Note that k; = v/2 is consistent with the above
computation.
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Hence we can define, for an SaS random vector (X;,X32), the local cor-
relation curve as

B(z)kal| X1l
T

[{B(z)kall X1lla}? + 03(2|X1=z]2
whenever the conditional variance is finite a.e. Note that, for the special case
when a = 2, p(z) = the correlation coefficient of (X1, X2).

For Sa$ sub-Gaussian vector (X;,X3) = (TY2G,, T'/2G,;) with gov-
erning Gaussian vector (G1,G3) we have by (9),(10) and (10a)

ko Rz

[k2R2, + (RuRaz — R3)f(z;0)7! [ uf(u; 0)du]'/?

(12) p(z) =

(13)  p(2) =

It follows that p(z) is an even function, p(0) = Rjz/(Ri1R2:)Y/? = the
correlation coefficient of G1 and G3. Observe that

ko - -
(14) p(z) ~ WRlz(RnRzz — R},) e as | — oo.

Furthermore, p(z) = 0 when G; and G, are independent; p(z) = 1, when
G1 = Ga.

4. Subordination

In this section we will show that product-type stable random vectors
considered in section 3 can appear naturally in applications. Let {X(¢)}
be a Markov process with continuous transition probabilities and {T(t)} a
process with nonnegative independent increments, then {X(T(t))} is again
a Markovian process. The process {X(T(t))} is said to be subordinate to the
parent process {X(t)} using the operational time T(t). The process {T(t)} is
called the directing process. The role of the directing process is to inject some
additional randomness into the parent process through its time parameter t.
In equipment usage, for example, {X(¢)} may represent cumulative wear on
a machine component after t hours of operation and {T(¢)} may represent
the number of hours that the machine has operated after t hours of calendar
time have passed. The process {T(t)} thereby captures the random delays
and accelerations of operational use of the machine over calendar time. The
term subordination was first introduced by Bochner (1955). Subordinated
processes have also been referred to as derived processes by Cohen (1962).
Various properties of derived processes were investigated by Stam (1965).
See Mandelbrot and Taylor (1967), Clark (1973), Rachev and Ruschendorf
(1991), Rachev and Samorodnitsky (1991), for modelling stock returns and
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option pricing via subordinated processes. Whitmore and Lee (1991) con-
sidered statistical inferences for subordinated processes and applications.

DEFINITION A stochastic process {X(t)} is called an a-stable Lévy motion
with skewness parameter 7 and scale parameter o if
(1) X(0) = 0.
(2) {X(t)} has stationary independent increments.
(3) X(t) — X(s) has the distribution S,(o(t — s)/*,n,0) for any o > 0,
0<s<t<oo,and forsome0 < a<2,and -1 <9< 1.
When o = 1, {X(t)} is said to be a standard a-stable Lévy motion. An a-
stable Lévy motion is 1/a-self similar unless both @ = 1 and  # 0. The role
that stable Lévy motion plays among stable processes is similar to the role
that Brownian motion plays among Gaussian processes. See Samorodnitsky
and Taqqu (1992) for properties of Lévy motions.

The following results was given in Lee and Whitmore (1991). Related

results can also be found in Stam (1966, p. 137-138), and Samorodnitsky
and Taqqu (1992).

THEOREM 4 Assume that {X(t)} is a standard a-stable Lévy motion with
a # 1 and skewness parameter 7, and that {T(t)} is a standard (-stable
Lévy motion with 0 < B < 1 and the skewness parameter 1. Assume also
that processes {X(t)} and {T(t)} are independent. Then

(a) If aB # 1, then the process {X(T(t))} is an af3-stable Lévy motion such
that

X(T(2)) = X(T(s)) ~ Sap((s(t - 5))/%7,£,0),

with £ = tan({B)/(tan 9‘%—’5), k = (cos (B)(1 + n? tan? %)ﬂﬂ(cos )1, and
¢ = arctan(ntan 5¥).

(b) If aB = 1 then the process {X(T(t))} is of the form k(L(t) + ttan (),
where L is a standard symmetric 1-stable (Cauchy) motion, and k and ¢ are
as in (a).

(c) The process {X(T(t))} has the same one-dimensional distributions as
that of the process {(T(t))"/*X(1)}.

As a special case of Theorem 4, consider k£ independent Brownian mo-
tions {X;(t)},7 = 1,2,...,k, such that X;(0) = 0 and X;(t) ~ N(0,t/c)
for j = 1,2,...,k, where ¢ = (cos Z2)~! and a < 2. Assume that {T(¢)}
is a standard totally right skewed a/2 stable Lévy motion, independent of
processes {X;(t)},5 = 1,2,...,k. Then for any t > 0 fixed, the random vec-
tor (X1(T(t)),...,Xk(T(?))) equals in distribution the symmetric a-stable
random vector (T'(¢)/2X;(1),...,T(t)"/2Xy(1)). The latter vector is a sub-
Gaussian vector with a governing Gaussian vector having i.i.d. N(0,t/c)
components as was discussed in section 3.
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Markov processes with TP, transition densities are useful in shock mod-
els. For example, inverse Gaussian processes, gamma processes and some
right skewed stable processes have T P, transition densities. Lee and Whit-
more (1991) show that if the transition densities of both the parent process
and the operational time process are T P;, then transition density of the
derived subordinated process is also T P,. They have the following results.

THEOREM 5  Assume that the process {X;(t)} has a transition density
function f;(z) which is TP, int and z, for j = 1,...,k, and that {T(t)}
has a transition density function u;(s) which is TP, int and s. If the process
{T(t)} is independent of processes {X;(t)},7 = 1,2,...,k, then

(a) The transition density function hji(x) of the subordinated process
{X;(T(t))} isTP, int and z, for j = 1,...,k.

(b) For any t > 0 fized, the random vector (X1(T(t)),...,Xk(T(t))) is TP,
in pairs.

THEOREM 6  For any two positive integers ky > 1,k; > 1 fired, as-
sume that {X;(t)} are n i.i.d. totally right skewed 1/kz-stable Lévy motions,
i=1,...,n. Let {T(t)} be a totally right skewed 1/k,-stable Lévy motion
independent of processes {Xi(t)}, i = 1,...,n. Then, for any t > 0 fized,
the vector {X1(T(t)),...,Xn(T(2))) is 1/(k1ks)-stable and is T P; in pairs.

Finally, as a special case of subordination, consider an exponential time-
change of a-stable Lévy motion {X(t)}. Let Y(t) = X(Et), t > 0 where
E is standard exponential random variable independent of X. Then by the
self-similarity of Lévy motion, Y L gV X, unless @ = 1 and n # 0. The
finite dimensional distributions of the process {Y(t)} are geometric stable.
In fact, readily from Lemma 1 (c) we get

1
1+ fS,. |(0’ S)lartlr---ytk (ds)’

where my, 4, is the spectral measure of (X(#;),...,X(#x)). See Rachev
and Resnick (1991) for similar results on max-stable random processes and
exponential time change leading to geometric max-stable processes.

Eexp(i{(Y(t1),---,Y(t)),0}) =
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