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ABSTRACT

We discuss the choice of smoothing parameter for the problem of
restoring two-dimensional pixellated images which have been degraded
by blur and noise. Some asymptotic comparisons are presented and
discussed. The methods are applied to a number of test images.
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1. Introduction

We consider the problem of restoring two-dimensional pixellated images which have
been degraded by a combination of blur and noise processes. We employ the method
of regularization in the solution of this problem; see Titterington (1985), Poggio et al.
(1985) and Davies and Andersson (1986) for further details. In mathematical terms, this
means that we choose as our restoration that f which solves the optimization problem

mfin(A(f, g9) + A8(f)} (1.1)

for a given A, where A(f, g) is a measure of the discrepancy between the “true scene” f
and the degraded scene g, ®(f) is a roughness penalty and A is the smoothing parameter.
The purpose of the ensuing discussion is to compare several ways of choosing A.

We assume an additive, linear structure for the observed image g i.e.
g=Hf+e¢ (1.2)

where H is a space-invariant point-spread matrix, ¢ represents additive, signal-independent,
noise and cov (¢) = o%I. (all matrices are of order n x n, where n = p? and the image
is of size p x p)

For the purpose of this discussion we take

AU,9) = ~llg - B (13)
and
a(f) = fcf (14

where C is a positive semi-definite smoothing matrix. It follows from an argument due
to Bates and Wahba (1983; Section 4) that the optimization problem (1.1), with the
specifications (1.2) and (1.3), may be written as

min{~lly ~ M| + A1) (15)

where the vectors y and @ are linear transformations of ¢ and f, respectively, and M is
of order r x r, where r = rank C(= O(n)).

The solution of the optimization problem (1.4) is then
B()) = (M™ + A1) 'MTy (1.6)
We now develop some notation which will be useful in the sequel.

9(\) = MB())
Rss() = [ly — g(V)I?

K(A\) = M(M™ + nA1)"'M”
EDF(A) = tr {I— K(A\)} = n — trK(}).

In Section 2 we define various choices of smoothing parameter while in Section 3
we present the problem in a canonical form which results in the derivation of simple
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algebraic forms for the various criteria involved. In Section 4 we discuss some asymptotic
results; see Kay (1988b) for proofs and further details. Finally in Section 5 we present
some numerical experiments using a number of test images; for further details, see Kay

(1988a).

2. Smoothing parameter choices

Perhaps the best known method for choosing the smoothing parameter in inverse
problems is the Chi-squared Choice defined by

RSS()) = no? (2.1)

This is also termed the Discrepancy Principle; see Groetsch (1984).

However this method has been generally recognized to impose too much smoothing;
see Hall and Titterington (1986, 1987) who proposed the Equivalent Degrees of Freedom
Choice (proposed independently by Turchin (1967, 1968)). Here X is defined as the

solution of the equation
RSS(A) = 0?EDF()) (2.2)

While both of these methods require the availability of an estimate for o2, the Gener-
alized Cross-Validation Choice, due to Golub et al. (1979), is entirely data-based; it is
defined as the minimizer of

Gcv()) = rss())/{EDF())}? (2.3)

As a means of comparison we also consider two “optimal” choices namely the Mean
Squared Errors for Prediction and Estimation. The Mean Squared Prediction Error
Choice, Arp, is defined as the solution of

min E{[[MA(}) — MBI’} (24)
whereas the Mean Squared Estimation Error Choice, Ayg, is defined as the solution of

min {150 - 811"} (2.5)

The choices defined in (2.1)—(2.5) will be used in some numerical experiments described
in Section 5. In order to develop an asymptotic comparison of the choices we now
consider deterministic versions of (2.1), (2.2) and (2.3) and define Acyy as the solution
of

E(RSS())) = no? (2.6)

Aepr as the solution of
E(RSS())) = 02EDF()) 2.7

and Agcv as the minimizer of

E(RSS)(A)/{EDF())}? (2.8)



166 J. W. Kay - XIII

3. Canonical characteristic

We employ a Singular-Value Decomposition
M = UDV”

where U,V are orthogonal; D = diag {m;,m3,...,m,} and {m?} are the eigenvalues
of MTM.

We denote by v;,y; and hg, the ith column of V, the jth element of UTy and the
kth element of VT, respectively (i,j,k=1,...,r).

It is then straightforward to deduce the following simple algebraic forms.

B = Z ek (3.1)

+ n/\)
r nA 2
i=1 '
. n
i=1 i
E(RSS()) = n?)? Z m + 02n?)? z:(m,2 +nA)~? (34)

i=1

E{lIMB(A) - MB|[*} -n2*22m+ zgm (3.5)

r m?
E{":B()‘) - ,3”2 =n?)? Z (m2 + /\)2 0’2 ; m (3.6)

Using these simple forms, we then consider the situation where n is large and the
matrix M is ill-conditioned - in particular we assume that the eigenvalues of (1/n)M™M
tend to zero, as n — oo, under an algebraic decay. In image processing, n will tend to
be large (~ 216) and there will often be a sufficient degree of blurring to render M an
ill-conditioned matrix.

4. Asymptotic Comparisons

Theorem. For each method of choice of smoothing parameter, we assume that

m? =nc” i (c > 0)(r > 1)

As n — 0o, we assume that A — 0 in such a way that nA\l/¥ — co. For parts (a) - (b)
we assume also that

[e e}
bl = CZiuh? < 00.

i=1
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whereas for part (e), we require to assume

Then it follows that:

[02(2k: — k v/(2v+1)
(a) Achr = GGl k) ( nlb 2)] (14+0(1))
1
[o2(ky — k v/(2v+1)
(%) AEDF = 2z ( ;b 2)] (1+0(1))
| 1
[ o2k, v/(2v+1)
© ooy = 22 (14 (1)
[ o2k v/(2v+1)
(d) Atp = :—bg] (1+0(1))
1
P0'2k4 v/(3v+1)
(e) ATg = —ng (1+0(1))
where o(1) — 0 as n — oo, and k; — k4 are constants.
It follows, immediately, that
Corollary. As n — oo,
9 +1 v/(2v+1)
* e /v = |22 (1+0(1)
% v/(2v+1)
(y) AEDF/’\TP = [(U—_—i-)-] (1 + 0(1))
(h) Agev/Atp = 1+ 0o(1).
(¥) Acui/Aepr = (v + 1)v/(2v+1) (1+0(1))

If we use Atp as a yardstick, then it is clear that, asymptotically speaking,

(1) Acui tends to over-smooth.

(2) Aepr also tends to impose too much smoothing, but not as much as Acpr.

(3) Agcv is an asymptotically optimal choice.

(4) Arp and Arg are not equivalent, even asymptotically.

Of course, it is not entirely clear that Arp should be used in this way as an “optimal
measure” because the problem of image restoration is really a problem of estimation
rather than prediction, as pointed out by Rice (1986). The method of regularization

attempts to combine the tasks of noise removal and deconvolution by using a single
smoothing parameter. On the other hand one could propose an alternative procedure —
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that of Double Smoothing. Reverting to the notation of (1.1) - (1.4), if we let b = Hf,
(1.2) becomes
g= b+e¢

Now apply the method of regularization to find 3, given by
b=(1+AnC) g

where An is the smoothing parameter for noise-removal. Now apply the method of
regularization again to find f, given by

f=@ETH+ApD) 'HTH
where Ap is the smoothing parameter for the deconvolution phase of the restoration

process. This proposal is currently under investigation.

We have now considered theoretically several choices of smoothing parameters, so
let us now apply these methods to some test images.

5. Some restorations

Four test images were constructed and then degraded both by blurring and by the
addition of uncorrelated, homogeneous, Gaussian noise. These test images are displayed
in Figures 10.1-10.4.

The images were blurred by convolving each neighborhood with a b x b blurring
mask, except at the boundary of the image where a smaller mask was used. Two masks
were used:

(B1): the outer product uu™, u=[-3-4.3]T

(B2): the outer product uu™, u=[-04-12-18-32.18-12-04]T

~

Two levels of noise were employed viz. ¢ = 2.0,7.0
The smoothing matrix used was that obtained by passing the 3 x 3 Laplacian mask

0 -1 0
-1 4 -1
0 -1 0

over the image and convolving this mask with successive overlapping 3 x 3 windows of
the true scene.

Consequently, the matrices H and C of (1.3) and (1.4) are of Block-Toeplitz form,
and each block is also a Toeplitz matrix.

These matrices were approximated by Block Circulant matrices so that Fourier
computation might be used. This effectively reduces the computational burden of image
restoration to three 2D FFTs and an inverse 2D FFT; for further details, see Kay
(1988a).
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Fig. 10.3 Fig. 10.4

Figures 10.1-10.4. GALAXY, SURFACE, PLANES and CIRCLES: true images.
GALAXY is the sum of four bivariate Gaussian probability density functions. SUR-
FACE is a single bivariate Gaussian probability density function. PLANES and
CURCLES are piecewise constant images.

The degraded images were restored using each of the five methods described in
(2.1-2.5) and also for a range of values of the smoothing parameter A, including the
“No Smoothing” case (A = 0).

The noise estimate used for o was the standard deviation of the data obtained from
the random number generator; clearly this tends to favour the CHI and EDF methods.
Kay (1988a) proposed a neighborhood noise estimator” for o and work is currently
underway to attempt to eliminate its bias.

The various restorations obtained are shown in Figures. 2.1-9.4. All of the
smoothed restorations of GALAXY are similar in quality except for Figure 3.4, which
appears to be “over-smoothed” while the TP and TE restorations are reasonable and,
perhaps surprisingly, Figures 5.3, 5.4 have a better likeness to the original.

The CHI, EDF and GCV restorations of PLANES are under-smoothed relative to
TP and TE, while Figures. 7.3, 7.4 show “over-smoothing”. Similar comments apply
also to the restorations of CIRCLES.

For these “single-realisation” experiments, EDF tends to impose too little smooth-
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Fig. 1.1 Fig. 1.2

Fig. 1.3 Fig 1.4

Figures 1.1-1.4 GALAXY with blur Bl and ¢ = 7.0; SURFACE with blur B2 and
o = 2.0; PLANES with blur Bl and ¢ = 7.0; CIRCLES with blur Bl and ¢ = 2.0.

ing; apart from this the restorations obtained using CHI, GCV, TP and TE are of a
similar quality — this is also indicated by crude measures of pixel-wise error rates.

It is difficult to escape the conclusion, based on these limited experiments, that
while the actual value of the smoothing parameter obtained by the various methods
is different — even by a different order of magnitude, in some cases — there appears to
be rather little difference in quality between the different methods (apart from EDF).
It appears that there is a window of values of A within which the restorations are of
comparable quality. Hence what really matters is obtaining a value of A in this window.
Generally speaking the CHI and GCV methods yields a value of A within the critical
window, which can be rather wide.

Another point to emerge from the experiments was that, contrary to the exper-
iments of Rice (1986), the restorations obtained using TP and TE were generally of
similar quality; also the actual values of A obtained were almost identical.
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Fig. 2.1 Fig. 3.1

Fig.2.2 Fig. 3.2

Fig. 2.3 Fig. 3.3

Fig. 2.4 Fig. 3.4

Figures 2.1-2.4. GALAXY restored using CHI, EDF, GCV and No Smoothing.
Figures 3.1-3.4. GALAXY restored using TP, TE, (A = 2.0) and (A = 10.0).
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Fig. 4.1 Fig. 5.1

Fig. 4.4 Fig. 5.4

Figures 4.1-4.4. SURFACE restored using CHI, EDFF, GCV and No Smoothing.
Figures 5.1-5.4. SURFACE restored using TP, TE, (A = 10.0) and (A = 100.0).
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Fig. 6.1 Fig. 7.1

Fig. 6.2 Fig. 7.2

Fig. 6.3 Fig.7.3

Fig. 6.4 Fig. 7.4

Figures 6.1-6.4 PLANES restored using CHI, EDF, GCV and No Smoothing.
Figures 7.1-7.4 PLANES restored using TP, TE, (A = 1.0) and (A = 10.0).
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Fig. 8.1 Fig. 9.1

Fig. 8.2 Fig. 9.2

Fig. 9.3

Fig. 8.4 Fig. 9.4

Figures 8.1-8.4 CIRCLES restored using CHI, EDF, GCV and No Smoothing.
Figures 9.1-9.4 CIRCLES restored using TP, TE, (A = 0.1) and (A = 10.0).
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