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REGULAR, SAMPLE PATH AND STRONG
STOCHASTIC CONVEXITY: A REVIEW

By MoOSHE SHAKED* AND J. GEORGE SHANTHIKUMAR
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Several notions of stochastic convexity and concavity and their properties
are described in this survey. The notion of sample path stochastic convexity is a
refinement of the well used notion of stochastic ordering, and it can be used to
construct, on a common probability space, random variables which have desirable
convexity (or concavity) properties with probability one.

Three open problems from the literature are described. These problems
could not be resolved until the introduction of the stochastic convexity notions
which are described in this survey. The solutions of these problems illustrate
the strength and the usefulness of these notions. Each notion is accompanied by
a description of some of its applications. References for more detailed study of
these notions are given. Indications of further work in this area are included.

1. Introduction. Regular, Sample Path and Strong Stochastic Convex-
ity notions are very valuable in many areas in probability and statistics such
as queueing and reliability theory. Consider, for example, the following three
open problems:

ProBLEM 1. Consider a single stage queueing system at which customers
arrive according to a doubly stochastic Poisson (DSP) process. The stochastic
intensity of the DSP is a Markov process on {A1,Az} (A; > 0,7 = 1,2). The
expected time this Markov process spends in state A; is Or;,% = 1,2 for some
r; > 0,i=1,2,and § > 0. The service times of the customers are independent
and identically distributed random variables. Let EW () be the average work
load in this DSP/G/1 queueing system.

CoNJECTURE 1. (Ross 1978). EW(6) is a decreasing function of 6.
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ProOBLEM 2. Let N () be a generic random variable representing the
stationary number of customers in a single stage M/M/c queueing system
with ¢ parallel servers, Poisson arrival process with rate  and exponentially
distributed service times with mean % We assume that y is fixed and 8 takes
on some value such that 0 < 6 < cp. Grassmann (1983) showed that EN(6)
is increasing and convex. Thus we are led to the following conjecture.

CoNJECTURE 2. The inveuntory carrying cost E f(N(6)) is increasing and
convex in 6 for all increasing and convex inventory carrying cost functions f.

ProBLEM 3. Consider a closed queueing network of the Gordon-Newell
type with m stations and k jobs. The number of parallel servers at station ¢ is
s8;, and the service times are independent and exponentially distributed with
mean %i,i =1,...,m. Jobs are served on a first come first served basis at each
service station. The k jobs are routed from one station to another according to
an irreducible stochastic matrix. Let TH(k) be the throughput of this closed
queueing network when all stations have ample waiting room so that no job
will be blocked. Dowdy, Eager, Gordon and Saxton (1984) showed that when
8; = 1,1 = 1,2,---,m, then TH(k) is an increasing concave function of k.
Thus we are led to the following conjecture.

CoNJECTURE 3. The throughput TH(k) is an increasing and concave
function of the job population size k.

These conjectures have been resolved using the notions of stochastic con-
vexity which are described in this survey. An outline to resolving these con-
jectures is given in Section 5.

Establishing convexity and concavity properties of the performance mea-
sures of stochastic systems is of great value in the optimal design and control
of these systems. Usually one analyzes the second derivative or the second
difference of the performance measures in order to establish these properties.
This requires the knowledge of the performance measures, often in the form
of an explicit function of the input parameters of the system (e.g., the mean
number of customers in an M/M/c queue with the input parameter being the
customer arrival rate — Grassmann 1983, Lee and Cohen 1983). Even then,
the algebra involved in establishing the convexity or the concavity property
is quite involved. Consequently convexity and concavity results of the perfor-
mance measures of stochastic systems are very limited. These difficulties can
be overcome by the use of the notions of stochastic convexity. The applications
described in the survey demonstrate that the notions of stochastic convexity
are very useful in establishing convexity properties of the performance mea-
sures of stochastic systems.

Bounds for the performance of stochastic system are very useful in the
study of complex stochastic systems that do not lend themselves for explicit
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solutions. As we see in this survey, stochastic convexity can play a crucial role
in obtaining such bounds.

2. Regular Stochastic Convexity. Let {Ps,0 € 0O} be a family
of univariate distributions. Throughout this paper © is a convex set (i.e.
an interval) of the real line R or of the set N} = {0,1,...,}. Let X(6)
denote a random variable with distribution P,. It is convenient and intuitive
to replace the notation {Ps,0 € O} by {X(6),0 € O} and this notation is
used throughout this paper. Note that when we write {X(),0 € O} we
do not assume (and often we are not concerned with) any dependence (or
independence) properties among the X (#)’s. We are only interested in the
‘marginal distributions’ {Py,0 € ©} of {X(0),0 € O} even when in some
circumstances {X(6),0 € O} is a well-defined stochastic process. Note also
that X (0) does not mean that X is a function of #; it only indicates that
the distribution of X(#) is Py. For example in an M/M/c queueing system
X (6) may be a generic random variable whose distribution is the stationary
distribution of the number of jobs in the system when the arrival rate is 6 or
of the number of jobs in the M/M/c queueing system at time §. The convexity
and concavity properties that are of interest are then of E¢(X (6)) with respect

to 6 for some suitably chosen (utility) function ¢ of the performance measure
X(6).

2.1. Definitions. In the following definitions SI, SCX, SCV, SICX, SD,
SDCV etc. stand, respectively, for stochastically increasing, stochastically
convex, stochastically concave, stochastically increasing and convex, stochas-
tically decreasing, stochastically decreasing and concave, etc.

DEFINITION 2.1. Let {X(),0 € ©} be a set of random variables. Denote

(a) {X(8),0 € ©} € SI (or SD) if E¢(X(0)) is increasing (or decreasing) for
all increasing functions ¢,

(b) {X(8),0 € B} € SCX (or SCV) if E¢(X(0)) is convex (or concave) for
all convex (or concave) functions ¢,

(c) {X(0),0 € ©} € SICX (or SICV) if {X(6),0 € ©} € SI and E¢(X(0)) is
increasing convex (or concave) in 8 for all increasing convex (or concave)
functions ¢, and

(d) {X(6),0 € ©} € SDCX (or SDCV) if {X(8),0 € ©} € SD and E¢(X(6))
is decreasing convex (or concave) in 6 for all increasing convex (or con-
cave) functions ¢.

2.2. Closure Properties. The closure properties of these notions serve as
the basis for studying the convexity and concavity properties of the perfor-
mance measures of stochastic systems. We present some of the basic closure
properties without proof.
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THEOREM 2.2. Suppose {X(8),0 € ©} and {Y(6),60 € O} are two collec-
tions of random variables such that, for each 8, X (0) and Y () are independent.
If{X(8),0 € ©} € SICX (or SICV) and {Y(0),0 € ©} € SICX (or SICV) then
{X(0)+Y(6),0 € O} € SICX (or SICV).

(See Theorem 5.6 of Shaked and Shanthikumar 1990a).

THEOREM 2.3. Let {X(0),0 € O} be a family of A-valued random vari-
ables where A C R is a convex set and let {Y()X),\ € A} be another family of
random variables.

(a) If{X(6),6 € O} € SICX (or SICV) and {Y()), A € A} € SICX (or SICV)
then {Y(X(0)),0 € ©} € SICX (or SICV).

(b) If {X(6),0 € ©} € SDCX (or SDCV) and {Y(A),A € A} € SDCX (or
SDCV) then {Y(X(8)),6 € ©} € SDCX (or SDCV).

(See Theorem 3.2 of Shaked and Shanthikumar 1988a).

2.3. Applications. We next look at some of the applications of the above
results to Markov chains. Let {X(n),n € N;} be a Markov chain with state
space S(S = R4 = [0,00) or V}). Let Y(z) and Z(z) denote generic random
variables representing [X(n + 1)|X(n) = 2] and [X(n + 1) — z|X(n) = 2]
respectively. [Here, and elsewhere in this paper, for a random variable U and
an event A, we denote by [U|A] any random variable whose distribution is the
conditional distribution of U given A.] Note that Y(z) =% z + Z(z),z € S,
where =¢ denotes equality in law. Then one has (see Theorem 4.3 of Shaked
and Shanthikumar (1988a)).

THEOREM 2.4. Suppose X(0) = 0 a.s. If {Z(z),z € S} € SD and
Z(z) > 0 a.s. for each z € S, then {X(n),n € N;} € SICV.

We next see how Theorem 2.4 can be applied to record values. Let X(n)
be the nth record value of a sequence of independent and identically distributed
random variables {D,,n € N;}. That is X(n) = max{X(n — 1), D,}. Then
one has

THEOREM 2.5. If X (0) = 0 a.s. then {X(n),n € N;} € SICV.

ProoF. We apply Theorem 2.4. Here Y(z) =% max{D,,z} and Z(z) =¢
max{D, — z,0}. Clearly {Y(z),z > 0} and {Z(z),z > 0} satisfy the condi-
tions of Theorem 2.4. 1

3. Sample Path Convexity. Establishing closure properties for regu-
lar stochastic convexity is sometimes very difficult. For this reason we define
a notion of sample path stochastic convexity that is stronger than regular
stochastic convexity, but is easy to work with. In addition, several families of
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random variables such as exponential, normal and gamma random variables
possess sample path convexity properties with respect to the appropriate pa-
rameters.

3.1. Definitions. Consider a family {X(6),60 € O} of random variables.
Let 6; € ©, 1 = 1,2,3,4, be any four values such that 6; < 0; < 03 < 64 and
01+ 04 =03 + 65.

DerINITION 3.1. If there exist four random variables X,, t=1,2,3,4,
defined on a common probability space, such that X; =% X (6:),7=1,2,3,4,
and

(a) (i) max[X2z, Xs] < X4 a.s.and (ii) X2+X3 < X1+X4 as., then {X(0),0 €
O} is said to be stochastic increasing and convex in the sample path sense
(denoted {X(0),0 € ©} € SICX(sp));

(b) (i) X1 < min[X;, X3] a.s. and (ii) X; + X4 < X;+X;5 a.s., then {X(6),0 €
O} is said to be stochastically increasing and concave in the sample path

sense (denoted {X(6),0 € ©} € SICV (sp));

(c) (i) X1 > max[X,, X3 a.s. and (ii) X1+ X4 > X3+ X3 a.s., then {X(9),0 €
O} is said to be stochastically decreasing and convex in the sample path
sense (denoted {X(6),6 € O} € SDCX (sp));

(d) (i) X4 < min[X;, X3] a.s. and (ii) X1+ X4 < X3+ X5 a.s., then {X(6),0 €
0} is said to be stochastically decreasing and concave in the sample path
sense (denoted {X(6),0 € O} € SDCV(sp)).

Though Condition (i) in the above definitions requires stochastic monotonicity
in X;,71=1,2,3,4, we do not require the construction of X,, i = 2,3, to satisfy
any a.s. monotomc1ty property (i.e., we do not require either that X2 > X3
a.s. or X2 < X3 a.s. be satisfied).

The following proposition is then immediate (see Proposition 3.2 of Shaked
and Shanthikumar 1988b):

PROPOSITION 3.2.

(a) If {X(0),0 € O} € SICX (sp) [or SICV (sp)] and if ¢ is an increasing
convex [or concave] function, then {$(X(8)),0 € ©} € SICX (sp) [or
SICV (sp)].

(b) If {X(0),0 € O} € SDCX (sp) [or SDCV (sp)] and if ¢ is increasing
convex [or concave] function, then {¢(X(0)),0 € ©} € SDCX (sp) [or
SDCYV (sp)].

The above proposition shows that the sample path notions imply the
regular notions of stochastic concavity. Counterexamples can be constructed
to show that the reverse need not be true (e.g. see Counterexample 3.4 of
Shaked and Shanthikumar 1990a). Hence we have
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COROLLARY 3.3.

(i) SICX (sp) = SICX

(ii) SICV (sp) = SICV

(iii) SDCX (sp) = SDCX

(iv) SDCV (sp) = SDCV.

The sample path convexity notion has been used in Chang, Chao and
Pinedo (1988) and Shanthikumar (1990) to resolve Conjecture 1; used in
Shaked and Shanthikumar (1988b) to resolve Conjecture 2 and used in Shan-

thikumar and Yao (1988) to resolve Conjecture 3. For an outline to resolving
these conjectures see Section 5.

3.2. Closure Properties. In this section we summarize two of the closure
properties of the sample path convexity notions. The proofs can be found in
Shaked and Shanthikumar (1988a Theorems 2.1 and 3.1 respectively).

THEOREM 3.4. Let {X(0),0 € O} and {Y(0),0 € ©} be two families of

random variables such that for each § € ©, X(0) and Y (0) are independent.
Then

(i) {X(6),0 € ©} € SICX (sp) and
{Y(9),6 € ©} € SICX (sp) =
{X(8)+Y(0),0 € O} € SICX (sp),
(ii) {X(0),0 € ©} € SICV (sp) and
{Y(9),6 € ©} € SICV (sp) =
{X(0)+Y(0),0 € ©} € SICV (sp),
(iii) {X(0),0 € ©} € SDCX (sp) and
{X(6),0 € ©6} € SDCX (sp) =
{X(6)+Y(8),0 € ©} € SDCX (sp), and
(iv) {X(8),0 € ©} € SDCV (sp) and
{Y(8),0 € ©} € SDCV (sp) =
{X(0)+Y(6),0 € ©} € SDCV (sp).
THEOREM 3.5. Let {X(0),0 € O} be a family of A-valued random vari-

ables, where A C R is a convex set. Also let {Y()), A € A} be another family
of random variables.

(a) If
(i) {X(8),6 € ©} € SICX (sp) [or SICV (sp)] and
(ii) {Y(X), A € A} € SICX (sp) [or SICV (sp)],
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then {Y(X(6)),0 € ©} € SICX (sp) [or SICV (sp)].
(b) If
(i) {X(0),6 € ©} € SDCX (sp) [or SDCV (sp)] and
(ii) {Y(X), A € A} € SICX (sp) [or SICV (sp)],
then {Y(X(0)),0 € ©} € SDCX (sp) [or SDCV (sp)].

3.3. Applications. Two applications of the sample path convexity notions
in Markov processes are given next. Let {X(n),n € N;} be a Markov chain
with state space S (S = Ry or Ny). Let Y(z) =? [X(n + 1)|X(n) = z]
and Z(z) = Y(z) — z,2 € S. Then one has (see Theorem 4.2 of Shaked and
Shanthikumar 1988a).

THEOREM 3.6. Suppose X (0) = z¢ a.s. If Z(z) > 0 for each z € S and
{Z(z),z € S} € SI, then {X(n),n € N;} € SICX (sp).

Next consider a Galton-Watson branching process {X(n),n € N N4} in
discrete time. Let D;,i = 1,2,..., be independent and identically distributed
random variables such that D; has the same distribution as the number of
offsprings of an ancestor. Then Y(z) =¢ 3°7_, D;,z € N,

THEOREM 3.7. Suppose D; > 1 a.s. and P{D; > 1} > 0. If X(0) > 1 a.s.,
then {X(n),n € N} € SICX (sp).

Proor. First condition on X(0) = zo. Since Z(z) = Y(z) — 2z =¢
Yii(Di—1)and D; > 1 a.s. one sees that Z(z) > 0 a.s. Also it is easily
seen that {Z(z),z € N;} € SL Then conditioned on X(0) = zq, the result of
Theorem 3.7 follows immediately from Theorem 3.6.

From the definition of sample path convexity, it is clear that by uncon-
ditioning with respect to X (0), the sample path convexity of {X(n),n € N}
is preserved (this is Theorem 3.9 of Shaked and Shanthikumar 1988b). |

4. Strong Stochastic Convexity. As we have pointed out earlier,
sample path stochastic convexity has proven to be a valuable notion in estab-
lishing convexity properties of stochastic systems. Since most of the analysis
uses sample path constructions, establishing closure properties for the sample
path notions become very easy. However, in order to apply these results one
has to first establish that the input family of random variables satisfies the
sample path stochastic convexity notion. At present we have to verify this
property for a family of random variables through a sample path construc-
tion (see Definition 3.1) which is not simple in some applications. It could be
useful to have a definition, equivalent to Definition 3.1, which is functional in
the sense that it defines the sample path convexity notion by monotonicity
and convexity properties of E¢(X(8)) as a function of § for some function ¢
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(such as Definition 2.1). So far our attempt to develop a functional definition
equivalent to Definition 3.1 has not been fruitful. For this reason a functional
definition of stochastic convexity that is stronger than the sample path notions
is introduced in Shaked and Shanthikumar (1990b). In this section we give the
definition of this strong stochastic convexity and present some of its closure
properties and applications.

4.1. Definitions. Let {X(6),6 € ©} be a family of random variables with
survival functions Fg(z) = P{X(0) > z},0 € O.

DeFINITION 4.1. {X(8),0 € O} is said to be (strongly) stochastically
increasing [decreasing] and convex [concave] in the sense of usual stochastic
ordering if E4(X(0)) is increasing [decreasing] and convex [concave] for all
increasing functions ¢. We denote this by {X(8),0 € ©} € SICX (st) [SICV
(st), SDCX (st), SDCV (st)].

It is easily seen that the following definition is equivalent.
ProposiTION 4.2. {X(0),0 € O} € SICX (st) [SICV (st), SDCX (st),

SDCV (st)] if and only if Fg(z) is increasing and convex [increasing and con-
cave, decreasing and convex, decreasing and concave] in 8 for each fixed z.

The following equivalent definition of these notions is established in Shaked
and Shanthikumar (1990b, Theorem 3.10):

THEOREM 4.3. {X(0),0 € ©} € SICX (st) [SICV (st), SDCX (st), SDCV
(st)] <= for any 6; € 0,i = 1,2,3,4, such that 6, < 6, < 63 < 04 and
0, + 64 = 03 + 03, there exist four randomAvariables )?,-,i =1,2,3,4, defined
on a common probability space such that X; =¢ X(6;), i = 1,2,3,4, and

X1 <[£,2,2]X; as.,

min{)?l,”X4} >[£,>,<] min{)?z,)?g,} a.s.,
max{)?l,)h} > [£,>,<] ma.x{)?z,)?s} a.s., and hence
X1+ X2 [<,2,<)%2+ X as.

Observing that {¥(6),0 € O} € SICX (sp) for any increasing convex
function 9, and that it is not SICX (st), it is immediate from Theorem 4.3
and Corollary 3.3 that one has

COROLLARY 4.4.

(i) SICX (st) = SICX (sp) = SICX

(ii) SICV (st) = SICV (sp) = SICV
(iii) SDCX (st) = SDCX (sp) = SDCX
(iv) SDCV (st) = SDCV (sp) => SDCV.

All the above implications are strict.



328 STOCHASTIC CONVEXITY

4.2. Closure Properties. Unlike the two previous notions, strong stochas-
tic convexity does not have many closure properties. For example there are no
counterparts to Theorems 2.2 and 2.3 or Theorems 3.4 and 3.5 for the strong
stochastic convexity notion. Instead we present some specialized closure prop-
erties under random summation.

THEOREM 4.5. Let {N(0),0 € O} be a family of discrete random vari-
ables on N and let {X(n),n = 1,2,---} be a sequence of independent and
identically distributed non-negative random variables and let X(0) = 0. Sup-
pose {N(6),0 € O} and {X(n),n € N} are mutually independent. Set
Y(0) = N9 x(n),0 € ©. If {N(6),0 € O} € SICX (st) [SICV (st), SDCX
(st), SDCV(st)] then {Y(6),0 € O} € SICX (st) [SICV (st), SDCX (st), SDCV
(st)].

Proor. Consider the case {N(6),0 € 0} € SICX (st). The other three
cases can be similarly proven. From Theorem 4.3 one knows that for any
0; €0,1=1,2,3,4, such tha:\t 0, <0,<63< 04, and 6, + 04 = 03 + 03, there
exist four ra,ndomAvaria,bles N;,1=1,2,3,4, defined on a common probability
space, such that N; =% N(6;),i=1,2,3,4and

Na> N as. (4.1)

min{ﬁl,ﬁ4} > min{ﬁz, ]V3} a.s. (4.2)
max{Ny, Ns} > max{N;, N3} a.s., and hence (4.3)
ﬁl + ﬁ4 > ﬁz + ﬁa a.s. (4.4)

Define ¥; = ZN‘ X(n), 1 = 1,2,3,4. Then, clearly, Y =¢ Y(6,),i=

n=0

1,2,3,4. Furthermore, from (4.1) to (4.4), one sees that

u> % as. (4.5)

min{Y;, ¥;} > min{¥;, ¥s}  as. (4.6)

ma.x{?l, f’4} > ma.x{l?z,?%} a.s., and hence (4.7)
Vi+V>%+¥  as (4.8)

Theorem 4.5 then follows from Theorem 4.3. 1

THEOREM 4.6. Consider {X(0),0 € ©} and {Y(6),0 € ©} and suppose
that for each 6, X(0) and Y(6) are independent. Define

V(8) = max{X(6), Y(6)}

and

W (6) = min{X(6),Y(6)}.
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(i) If {X(9),6 € ©} and {Y(6),0 € O} € SICX (st) [SDCX (st)] then
{W(8),0 € ©} € SICX (st) [SDCX (st)].
(ii) If {X(6),0 € O} and {Y(8),0 € O} € SICV (st) [SDCV (st)] then
{V(6),6 € O} € SICV (st) [SDCV (st)].
Proor. The desired results follow immediately from the observation that
(i) the survival function of W(#) at z is equal to P{X(8) > z} P{Y(6) > =},

(ii) the survival function of V(8) at z is equal to 1 — (1 — P{X(8) > z})(1 -
P{Y(0) > z}), and Proposition 4.2. ]

4.3. Applications. In this section we consider two applications of strong
stochastic convexity in queueing and reliability theory. First consider a single
server queueing system M/G/1 where jobs arrive according to Poisson process
with rate A and the service times X,,,n = 1,2, - are independent and identi-
cally distributed random variables with mean one. Let W()A),for 0 < A < 1,
represent the stationary waiting time of an arbitrary job. It is then well known

that
N()

W)= > ¥, (4.9)
n=0
where Yy = 0,{Y,,n = 1,2,---} is a sequence of independent and identically
distributed non-negative random variables with distribution equal to the dis-
tribution of the stationary excess life of {X,,n = 1,2,...} (i.e. the density
function of Yy, fy(z) = P{X, > ¢}/E[X,]), and N(}) is a geometric random
variable such that P{N(A\) >k} = (1 -A)A*,0< A < 1.

THEOREM 4.7. {W(A),0< X < 1} € SICX (st).

Proor. It is clear that {N()A),0 < A < 1} € SICX(st). The result then
follows from (4.9) and Theorem 4.5. ]

REMARK 4.8. This result, for the special case of the M/G/1 queue, is
stronger than that given in Shaked and Shanthikumar (1988b, Theorem 5.1)
for GI/G/1 queues.

Next consider the imperfect repair model of Cleroux et al. (1979). A
new item with an absolutely continuous survival function F undergoes an
imperfect repair upon each time it fails before it is scrapped. With probability
p the repair is unsuccessful and the item is scrapped. With probability 1 — p
the repair is successful and minimal, that is, after a successful repair at time
t the item is as good as a working item at age t¢.

If X (p) denote the time to scrap then the survival function of X(p) is F*
(Berg and Cleroux 1982). Then the following result is immediate:
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THEOREM 4.9. Let F be an absolutely continuous survival function such

that F(0) = 1. Then {X(p),p € (0,1)} € SDCX (st).

5. Resolving the Conjectures To resolve Conjecture 1 we need addi-
tional notions and results than what we have described here. The following
stochastic convexity properties of the workload process {V(t),t > 0} of an
M/G/1 queueing system plays a crucial role in resolving Conjecture 1: let
V(t: z,)) be the workload in an M/G/1 queueing system at time ¢ when the
customer arrival rate is A and the initial workload V(0 : z, ) at time 0 is z.
Then {V(t : z,A),A > 0} € SICX(sp), {V(t: z,A),z > 0} € SICX(sp), and
before the first arrival time T, {V (¢ : 2,)),T > t > 0} € SDCX(sp). For the
details of the application of these results to resolve Conjecture 1, see Chao,
Chang and Pinedo (1988) and Shanthikumar (1990).

To resolve Conjecture 2 let N(¢) be the number of customers at time ¢
in an M/M/c queueing system with arrival rate A and service rate u. Then
{N(t),t > 0} is a continuous time Markov process. Let {N,,n = 0,1,...}
be the Markov chain obtained from {N(t),t > 0} by uniformizing it with
rate . > A + cu. For any four values of X € Ry, i = 1,2,3,4, such
that A < [A@,A0G)] < A@ and AW 4 X@) = X@) 4 A\O) Jet {N,(J N =
0,1,2,...}, i = 1,2,3,4, be the corresponding uniformized Markov chains.
Then sample path construction is used in Shaked and Shanthikumar (1988b)
to show that there exist four processes {N,S),n =0,1,2,..}, ¢ = 1,23,4,
defined on a common probability space such that {Np v ),n =0,1,2,...} =¢
{N,(: ,n=0,1,2,...},1 = 1,2,3,4, and (a) N,(;l) < [N,(,z),ﬁ,(ls)] < ]V,£4) and
(b) JV,S" + ﬁ,(,4) > ﬁ,@ + JV,?), n = 0,1,2,... The latter two inequalities
are proved through induction starting with ]Vé') = N(0),: = 1,2,3,4, which
trivially satisfy these inequalities. The conjecture then follows from Corollary
3.3.

To resolve Conjecture 3 consider a two station (say stations 1 and 2)
cyclic queueing network with state dependent service rates 7;,¢ = 1,2, and let
D;(t) be the number of customers departed from station ¢ during (0,¢];: =
1,2. Then given the number of customers at stations 1 and 2 at time 0,
{(Dl(t), Dq(t)),t > 0} is a continuous time Markov chain. Let {(Dy:n, D2:n),n =

..} be the Markov chain obtained from {(D;(t), D2(t)),t > 0} by uni-
formlzmg it with rate A >> 7y +1,. For any four values of k; € N+, 1= 1 2,3,4,
such that ky < [ke,ks] < k4 and ky + kg = ko + k3 let {(D1 n’DZ n),n =
0,1,...},7=1,2,3,4, be the corresponding uniformized Markov chains. Then
sample path construction is used in Shanthikumar and Yao (1988) to show that
if n; is mcreasm§ and concave for both ¢ =1 and 2 then there exist four pro-
cesses {(D1 o Dzjn y,m=0,1,...},7 =1,2,3,4,defined on a common probabil-



M. SHAKED and J. G. SHANTHIKUMAR 331

ity space such that {(Dijr)l,D(J)),n =0,1,...} =¢ {(ng,)l,D(])),n =0,1,...},
Jj = 1,2,3,4, and (a) Dg:) < [D(2) (3)] < D(4) and (b) D( ) 4 D(4) <
D(2) + D'(,z,z =1,2;n = 0,1,2,.... The latter two mequahtles are proved
through induction starting with D(J) = D;(0), 1 = 1,2;5 = 1,2,3,4 which
trivially satisfy these inequalities. The conjecture for a two station closed
queueing network then follows from the observation that for ¢ = 1,2, the
throughput TH (k) = limi—o E[D;(t)]/t and that 7;(!) = min{s;,}u; is in-
creasing and concave in I. Then Norton’s reduction can be used to extend this
result to any number of stations.

6. Summary and Conclusions. In this paper we have reviewed three
(regular, sample path and strong) notions of stochastic convexity. Some of
their closure properties are presented and a sample of applications are given.
While the notion of regular stochastic convexity seems to be the most natural
one we found it technically convenient to work with sample path stochastic
convexity. To verify sample path convexity of a given family of random vari-
ables, the notions of strong stochastic convexity is technically the most useful.
The following implications play a crucial role in the usage of these notions:

Strong stochastic convexity =
Sample path stochastic convexity —
Regular stochastic convexity.

All the examples and applications discussed in this paper are restricted
to a single parameter and univariate random variables. In attempting to ex-
tend these notions to multiple parameters we found the notion of directional
convexity (see Chang, Chao, Pinedo and Shanthikumar 1990, Meester 1990,
Meester and Shanthikumar 1990b, Shaked and Shanthikumar 1990a and Shan-
thikumar 1990) technically very useful. Also the notions of strong (sample
path) stochastic convexity introduced in Meester and Shanthikumar (1990a),
and Shanthikumar and Yao (1989, 1991) are technically well suited to handle
multiple parameters as well as multivariate random variables.
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