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Several important multivariate probability inequalities can be formulated

in terms of multivariate convolutions of the form f fi(x)f2(x — θ)dx) where usu-

ally /i = Ic is the indicator of a region C C IRn, f2 is a probability density on

IRn, and θ is a translation parameter. Often f\ and J2 possess convexity, mono-

tonicity, and/or symmetry properties. More general multivariate compositions of

the form f h(x)f(x \ θ)μ(dx) also arise. Here several important convolution and

composition theorems will be reviewed; these provide comparisons of Prob(C)

under differing multivariate distributions. The convolution theorems are then

applied to obtain concentration inequalities for Prob(C) under Gaussian or el-

liptically contoured distributions with varying multivariate scale parameter Σ.

1. Introduction. In multivariate statistical analysis, the power function
of a hypothesis test and the confidence coefficient of a confidence region are
determined by the probability of a multivariate region C C ]Rn. Frequently
the region C possesses convexity, monotonicity, and/or symmetry properties
inherited from corresponding properties of the multivariate distributions in the
statistical model. In order to establish properties of the statistical procedure
such as unbiasedness, it is necessary to compare the probabilities of C under
different multivariate distributions in the model.

Several important multivariate probability inequalities can be formulated
in terms of convolutions of the form

φ(θ)= ί h{x)f2{x-θ)dx. (1.1)
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In most applications f\ = Ic is the indicator function of a region C C H n and

/2 is a probability density function (pdf) on Etn . For example, if C is the

acceptance region of a test of a statistical hypothesis concerning a translation

parameter 0, then 1 — φ is the power function of the test. It is desired to find

conditions on 0i,#2 which guarantee that

In Section 2 four such convolution theorems are discussed and several

applications are sketched. The first theorem, due to T. W. Anderson (1955),

gives sufficient conditions that the convolution φ be ray decreasing on R n . (A

function φ defined on Etn is ray decreasing if, for θ £ Etn and β 6 [0, oo), φ(βθ)

is a decreasing [= non-increasing] function of /?). Anderson placed convexity

and symmetry assumptions on f\ and / j . The symmetry assumption suggested

that invariance under a group of orthogonal transformations may be playing a

role. Mudholkar (1966) extended Anderson's original theorem by developing

this group-theoretic theme. Marshall and Olkin (1974) showed that the con-

vexity assumption in the Anderson-Mudholkar treatment could be weakened

in the important special case that the symmetry group under consideration

was the group Vn of n x n permutation matrices. The Marshall-Olkin work

was then extended to all reflection groups by Eaton and Perlman (1977a).

These four papers form the basis of the discussion in Section 2.

There are a number of important parametric multivariate statistical prob-

lems where the vector θ is not a translation parameter. In such cases the

convolution (1.1) is often replaced by the more general composition

φ(θ) = / h(x)f(x I θ)μ(dx), (1.2)
JΈίn

where μ is either Lebesgue measure on IR71 or counting measure on the integer

lattice points of H n , and where /(• | θ) is either a continuous or discrete pdf for

every θ £ H m . In general m and n need not be the same, although they will be

so here. In Section 3 we discuss composition theorems of Hollander, Proschan,

and Sethuraman (1977) and Proschan and Sethuraman(1977) which extend

the Marshall-Olkin and Eaton-Perlman convolution theorems. Application is

made to the case where f(x \ θ) is the joint density of independent Poisson

variates Xι,..., Xn with different intensity parameters 0i, . . . , θn.

If X ~ JVi(0,σ2) (the univariate normal distribution with mean 0 and

variance σ2) then Pσ{X G [-α,α]} is a decreasing function of σ for every

symmetric interval [—α,α]. This remains true for any univariate distribution

whose density is symmetric about 0: the probability of any symmetric interval

decreases as the scale parameter increases. In Sections 4 and 5 we discuss

extensions of these concentration inequalities to the multivariate case, first

for the multivariate normal (Gaussian) distribution and then for multivariate
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distributions with elliptically contoured densities. In each case one is con-
cerned with the behavior of the probability of symmetric multivariate sets as
a function of the multivariate scale parameter matrix Σ, which is (propor-
tional to) the covariance matrix for distributions with finite second moments.
In both the Gaussian case and (surprisingly) the elliptically contoured case,
the concentration inequalities are obtained as corollaries of the corresponding
convolution inequalities in Section 2.

Statistical applications of both concentration inequalities and the convo-
lution theorem for reflection groups can be found in Eaton (1988).

2 Multivariate Convolution Theorems. Anderson (1955) proved an
important inequality for the convolution of two symmetric unimodal functions
on IRn. A function / on Etn is said to be (centrally) symmetric if f(-x) = f(x)
for every #, while / is unimodal if the set {x \ f(x) > c} is convex for every
real number c. We shall deal only with nonnegative unimodal functions /, in
which case only nonnegative c need be considered.

THEOREM 2.1 (Anderson (1955)). Suppose that f\ and fa are nonnegative
symmetric unimodal functions on Etn. Then

(2.1)

is symmetric and is ray decreasing. In particular, φ is maximized at 0 = 0.

An important special case occurs when f2 is a symmetric unimodal prob-
ability density and /i is the indicator function of a convex symmetric set C
(hence — C = C). An immediate application of Theorem 2.1 yields that

C+βθ

is a symmetric unimodal function of the real variable β for each θ € H71. For
this reason, Anderson's result is often described as a moving set inequality.

To prove Theorem 2.1, first observe that (2.1) is linear in f\ and f2.
Further, an easy argument shows that if Theorem 2.1 holds when /i , /2 are
indicators of convex symmetric sets, then it holds not only for symmetric uni-
modal functions, but also for functions which can be approximated (in an
appropriate topology - see Sherman (1955)) by non-negative linear combina-
tions of indicators of convex symmetric sets. When j{ = /(?., i = 1,2, however,
(2.1) reduces to

φ(θ) = μ(d Π (C2 + θ)) (2.2)

where μ is Lebesgue measure. Obviously φ is a symmetric function of θ and an
application of the Brunn-Minkowski inequality shows that φ is ray decreasing
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(see Anderson (1955) or Perlman (1990) for details).

An interesting alternative proof of Theorem 2.1 follows by first noting
that φ(θ) in (2.2) is a log concave function. This observation derives from
Davidovic, Korenbljum and Hacet (1969) or from Prekopa (1973), who showed
that the convolution of two log concave functions is log concave. [For a dis-
cussion and proof of Prekopa's theorem based on an unpublished argument of
Brascamp and Lieb (1974), see Eaton (1987a). Other interesting treatments
may be found in Borell (1975), Das Gupta (1980), and Dharmadhikari and
Joag-dev (1988)]. The symmetry and log concavity of φ show that for β G R
and fixed x G Etn, Φ(βx) is log concave and symmetric in /?, hence φ is ray
decreasing.

The central symmetry assumption in Theorem 2.1 can be expressed in
terms of the two-element group G = {±/} which acts on H n , where I is
the n x n identity matrix. Symmetry of a function / is equivalent to its G-
invariance, i.e., f(gx) = f(x) for each g G G. The ray decreasing condition
(together with symmetry) can be expressed in terms of G by introducing a
pre-ordering on R n . Write x -<Q y iff a; is in the convex hull of {y, -y}, the
orbit of y under the action of G. It is easy to check that a function / is
symmetric and ray decreasing iff x -<Q V implies /(#) > /(y) - such functions
are called G-decreasing. Thus Theorem 2.1 asserts that the convolution of two
G-invariant unimodal functions is G-decreasing, where G = {±/}.

Mudholkar (1966) extended Theorem 2.1 by considering more general
groups G of orthogonal linear transformations. Let G be an arbitrary closed
subgroup of the group On of n x n orthogonal matrices. Given y G R n , let
Co(y) denote the convex hull of {gy \ g G G} (the G-orbit of y) and write
x <G V to denote that x G Gα(y). The relation -< = -<Q is easily shown
to be reflexive and transitive, and is sometimes called a pre-ordering (see the
discussion on page 13 of Marshall and Olkin (1979)).

DEFINITION 2.1. A real-valued function / defined on H n is called G-decreasing
if x -<G y implies that f(x) > /(y). A subset C C Etn is called G-decreasing
if its indicator function Ic is G-decreasing.

Note that if / is G-decreasing, then necessarily / is G-invariant because
x -< gx -< x for all x G H n and all g G G. Also observe that if / is G-invariant
and log concave, then / is G-decreasing. [If x X y, then x = Σg αggy where the
weights OLg are nonnegative and add to one. Log concavity and G-invariance

yield /(*) = f(Σ«ggy) > τi[f(gy)]α9 = /(»)•]

THEOREM 2.2 (Mudholkar (1966)). Suppose that /i and f2 are nonneg-
ative G-invariant unimodal functions and define φ as in (2.1). Then φ is
G-decreasing.
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Because (2.1) is linear in both f\ and /2, it is again sufficient to establish
the theorem when / t = /<?., i = 1,2, where C\ and C2 are now convex G-
invariant sets. In this case φ is again given by (2.2). At this point Mudholkar
used the Brunn-Minkowski inequality in much the same manner as Anderson
to show that φ is G-decreasing. An alternative argument is to observe that φ
in (2.2) is clearly G-invariant and is log concave, being the convolution of two
log concave functions, hence φ is G-decreasing. Note that when G = {±J}9

Theorem 2.2 reduces to Theorem 2.1.

Now, suppose that / satisfies the conditions of Theorem 2.2, - that is,

/ is G-invariant and unimodal. Then it is not hard to show that / is G-

decreasing. Thus it is natural to ask if the assumptions in Theorem 2.2 can

be weakened to the simpler assumption that f\ and f2 are G-decreasing. In

other words, is it true that the convolution of two nonnegative G-decreasing

functions is G-decreasing? In general the answer is no, as it is easy to construct

counterexamples when G = {±7} as in Theorem 2.1. The first positive result

in this direction was established by Marshall and Olkin (1974) when G is the

group Vn of all n x n permutation matrices.

With G = Vπi the pre-ordering ^ = -<Q defined on lRn is the classi-

cal majorization pre-ordering (see Marshall and Olkin (1979) for a thorough

treatment of majorization ). In this case, the G-decreasing functions are often

called Schur-concaye functions.

THEOREM 2.3 (Marshall and Olkin (1974)). Suppose that /i and f2 are

nonnegative Vn-decreasing (Schur-concave) functions and define φ as in (2.1).

Then φ is a Vn~decreasing function.

Rather than indicate a proof of Theorem 2.3, it is instructive to first

give some background information which underlies both Theorem 2.3 and its

generalization, Theorem 2.4. For any vector t € H n with |/| = 1, let

Rt = / - 2tt'. (2.3)

It is easily seen that Rt is an orthogonal transformation which reflects vec-
tors across the (n - l)-dimensional subspace perpendicular to t. Any such
transformation is called a refiection. For i = 1 , . . . , n — 1, let ίt € Etn be the
unit vector with zth coordinate l/λ/2, (i + l)-th coordinate (—1)/\/2, and the

remaining coordinates zero. Also, let To = {^1,^2,.. .,tfn_i}.

Here are two basic facts.

(F.I) Vn is generated (algebraically) by {Rt \ t € To}, i.e., every element of
Vn can be written as a product of Rt's with t G To.

(F.2) A function / on R n is TVdecreasing (Schur concave) iff for each t 6 To
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and u G Btn with t'u = 0, f(u + βt) is a symmetric unimodal function of
βeΈL.

Assertion F.I simply states that every permutation can be written as
a product of adjacent transpositions. However, F.2 is somewhat deeper and
essentially relies on what is called a "path lemma" in Eaton and Perlman
(1977a). A direct proof of F.2 from first principles can be found in Eaton
(1987a), pages 15-30.

There are other well known groups where a similar analysis is valid. For
example, let Vn be the group o f n x n diagonal matrices where each diagonal
element is ±1. Obviously Vn has 2n elements. Let €χ,.. . ,c n be the standard
orthonormal basis for R n and set T\ = {ei,.. .,€n} Then

(F.3) Vn is generated algebraically by {Rt \ t G ϊ i } .

(F.4) A function / on Etn is Vn-decreasing iff for each t G 2i and u G H n with
t'u = 0, f(u + βt) is a symmetric unimodal function of β G H.

These observations suggest the possibility of developing an approach
which covers any group G C On that is generated by reflections. This was
done in Eaton and Perlman (1977a). To outline the results there, consider an
arbitrary set T of unit vectors in IRn and let G(T) be the closure of the group
generated algebraically by {Rt \ t £ Γ}; G{T) is called a reflection group. The
group G(T) is reducible if there exists a proper subspace M C ]Rn such that
gM = M for all g G G{T)\ otherwise G(T) is irreducible. The arguments
in Eaton and Perlman (1977a) show that attention can be restricted to the
irreducible case without loss of generality. There are then two cases. If G{T)
is infinite and irreducible, then G(T) = On (cf. Eaton and Perlman (1977b)),
a rather trivial case since the 0n-decreasing functions are just the radial de-
creasing functions. If G(T) is finite and irreducible, a complete listing of the
possibilities for G(T) is known - see Grove and Benson (1985).

In order to extend Theorem 2.3 from Vn to a general reflection group
G(T), one requires the following result, proved in Eaton and Perlman (1977a)
and Eaton (1987a):

PROPOSITION 2.1. Suppose that G(T) is an irreducible reflection group.
Given a real-valued function f on R n , the following are equivalent:

(i) f is G{T)-decreasing;

(ii) For each t £T and each u G IRn with t'u = 0, f(u + βt) is a symmetric
unimodal function of β G It .

THEOREM 2.4. (Eaton and Perlman (1977a)). Let G(T) be a reflection
group. Suppose that /i,/2 are nonnegative G(T)-decreasing functions and
define φ as in (2.1). Then φ is a G(T)-decreasing function.
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PROOF: It suffices to treat the irreducible case. For β G R,t € T, and
u G H n with t'u = 0, consider the function

ψ(β) = V>(* + βt) = J fi(x)f2(x -u- βt)dx.

By Proposition 2.1, it suffices to show that φ is a symmetric unimodal function

of β. Define M = {x \ x't = 0}. Then x may be uniquely decomposed as

x = v + ηt where 7 £ H and v'ΐ = 0. Thus we have that

/ /
M J-00

However, for u,v and t fixed, Proposition 2.1 implies that the inside integral

is the convolution of two symmetric unimodal functions on R, hence is a

symmetric unimodal function of β (cf. Wintner (1938)). Thus, ψ is symmetric

and unimodal and the result follows. I

As mentioned in Section 1, a common application of such convolution

theorems is to the study of power functions of tests in translation-parameter

problems. A sampling of specific applications can be found in Perlman (1990)

as well as Marshall and Olkin (1979), Tong (1980), Eaton (1987a), (1988), and

Dharmadhikari and Joag-dev (1988).

Finally, there are a number of open problems regarding G-decreasing

functions and the validity of Theorem 2.4 when G C On is not necessarily a

reflection group. For example, suppose that / is Cr-decreasing on H n and has

a differential V/. Then for all α G [0,1], g G G, and x G H n ,

-a)x + agx)>f(x)9

which yields the necessary condition

(gx)'(Vf)(χ) > *'(V/)(x) (2.4)

that / be G-decreasing. When G is a reflection group, (2.4) is also sufficient,

provided that / is G-invariant and has a differential. The sufficiency of this

condition for non-reflection groups is an open question.

With regard to extending the convolution theorems, here is the appro-

priate question: under what conditions on G is it true that the convolution of

two nonneg&tive G-decreasing functions again be G-decreasing? Theorem 2.4

provides one condition, namely that G be a reflection group. Of course when

G = {i^} as in Anderson's theorem, then the convolution of G-decreasing (=

symmetric ray-decreasing) functions need not be G-decreasing. However, more

delicate counterexamples are also available. Let Gk denote the cyclic group of
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2x2 rotation matrices generated by the counterclockwise rotation through the

angle 2τr/&, k = 3,4, Thus Gk is an Abelian group with k elements acting

on R 2 . Eaton (1984) showed that the convolution of G^-decreasing functions

need not be G^-decreasing.

There are groups of interest, however, for which the argument used in

Eaton (1984) will not produce counterexamples. These groups, discussed in

some detail in Eaton (1987a, Chapter 6, Examples 6.3, 6.4 and 6.6), provide

interesting open questions concerning extensions of the convolution theorems

in this section.

3. Multivariate Composition Theorems. The convolution theorems
of the previous section give conditions under which various inequalities can be

obtained for parametric functions of the form

φ(θ) = ί h(x)f(x-θ)dx. (3.1)

In most applications / is a probability density on R n and h is the indicator

of a set. For example, Theorem 2.3 shows that if / is a Schur-concave density

and h is Schur concave, then φ is also Schur-concave. This establishes certain

inequalities for φ which are direct consequences of majorization results.

There are a number of important parametric families where the vector θ

is not a translation parameter. An interesting example is the Poisson distri-

bution. Suppose that Xi, . . . ,Xn

 a r e independent Poisson variables with the

density of X{ given by

p(χ

where 0, > 0. With Z = {0, ±1,. . . } , the joint density of X = (Xu..., Xn) is

given by

\θi) (3.2)

for x G Z n . Given a Schur convex function h defined on Z n (i.e., -h is Schur-

concave on Z n ), set

φ(θ) = jh(x)f(x\θ)μ(dx) (3.3)

where μ denotes counting measure on Z n . Rinott (1973) showed that φ in

(3.3) is Schur convex. His proof consisted of first establishing a corresponding

result for the multinomial distribution and then averaging the multinomial to

obtain the Poisson result. An alternative method was developed in Hollander,
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Proschan and Sethuraman (1977) and Proschan and Sethuraman (1977). It is
this alternative method which is of interest here because it involves reflections
and a composition theorem.

As in the previous section, let T be a set of unit vectors in lRn and let

n = n(τ) = {Rt\teτ}

be the corresponding set of reflections (cf. (2.3)).

DEFINITION 3.1. A function K(x,y) defined on K n x lRn is a decreasing
reflection (DR) kernel (relative to TZ) if

(i) for all x,y € IRn and t 6 T, K(x,y) = K(Rtx,Rty)

(ii) (t'x){t'y) > 0 implies K{x,y) > K{Rtx,y)

Condition (i) of Definition 3.1 implies that K is invariant under the group
G C On of all orthogonal transformations generated algebraically by TZ. That
is, (i) is equivalent to the condition that K(x, y) = K(gx,gy), for every g £ G.
Condition (ii) has a geometric interpretation. The inequality (t'x)(tfy) > 0 is
equivalent to the assertion that x and y lie on the same side of the hyperplane
Ht = {u\ t'u = 0} while Rtx and y are on opposite sides of Ht (at least when
(t'x)(t'y) > 0). Thus condition (ii) compares K at (x,y) [on the same side of
Ht] to K at (Rtx,y) [on opposite sides of Ht].

REMARK 3.1. In some cases K is not defined on R n x R n , but o n ^ x ^
where X and y are both 7£-invariant subsets of R n . There is no change in
Definition 3.1 or its interpretation in this case. The example below illustrates
the need for this generality.

EXAMPLE 3.1. Let Γo be the set of reflections defined in Section 2 which
generate the group Vn of n x n permutation matrices. Thus, To = {<i,*2> ?
tn-i} where

/ 0 \

ti =

0

1

- 1

0

\ 0

, j = l , , n - l
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and 1 occurs as the ith coordinate. Consider a parametric family of densities
p(υ I η) denned for v € V C R and η € Γ C R. With A ' π F x x F C E 1 1

and Θ = Γ x x Γ C R n , define lίΓ on Λf x Θ by

t = l

Obviously K(gx,gθ) = K(xjθ) for all permutation matrices g so (i) of Defini-
tion 3.1 holds. It is not hard to show that (ii) of Definition 3.1 holds Ίfί p has
a monotone likelihood ratio (MLR) (Eaton (1967)). In particular, / in (3.2)
defined by the Poisson distribution is a DR kernel for the set of reflections
defined by To.

In the case of the permutation group Vn generated by reflections Rt,t 6
To, the use of the decreasing reflection properties of certain parametric densi-
ties was present implicitly in the work of Savage (1957). Later Eaton (1967)
isolated the DR property (in the case of Vn) in work related to ranking prob-
lems. The systematic development of these ideas by Hollander, Proschan and
Sethuraman (1977) showed the power and usefulness of such notions. Here
are two results from that paper which provide an elegant proof of the Schur-
convexity of φ defined in (3.3) (the Poisson case). These results are now stated
for Vn and the reflections generated by To.

PROPOSITION 3.1. Let X C IRn be a convex cone which is Vn-invariant.
A nonnegative function f denned on X is Schur-convex iffK(x,y) = f(x + y)
is DRonX x X.

THEOREM 3.1 (Hollander, Proschan, and Sethuraman (1977)). Let X,y,
and Z be Vn'invariant subsets of]Rn. Suppose that Kχ(x,y) and /^(j/?^) are
DR on X x y and y x Z, respectively. If μ is a Vn-invariant measure on y,
then

K3(x,z)= / K1(x,y)K2(y,z)μ(dy)
Jy

is DR on X x Z when the above integral exists.

The promised application to the Poisson case runs as follows. First ob-
serve that the Poisson family defined by the density (3.2) is a convolution
family, that is, the density given in (3.2) satisfies

f(x \θ + ξ) = / n f{x - u I θ)fiu I Oμ(Aι) (3.4)
J Li

where μ is counting measure on Z n .

PROPOSITION 3.2 (Proschan and Sethuraman (1977)). For the Poisson
family, the function φ defined by (3.3) is Schur-convex when h is Schur-convex.
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PROOF: By Proposition 3.1, it suffices to show that ψ(θ + ξ) is DR. But,
from (3.4) we have that

= / / h(x)f(x - u I θ)f(u I t)μ(du)μ(dx)

+ u)f(z\θ)μ(dz)]f(u\ξ)μ(du)

where the translation invariance of the measure μ has been used to obtain the
final equality. But Theorem 3.1 shows that

{z + u)f{z\θ)μ{dz)

is DR and a second application of Theorem 3.1 yields that

<ψ(θ + O = JKi(θ,u)f(u\ξ)μ(du)

is also DR. Thus by Proposition 3.1, φ is Schur-convex. I

The argument used to prove Proposition 3.2 is also valid for the Gamma
shape-parameter family. Discussions of this and many other interesting cases
can be found in Proschan and Sethuraman (1977), Marshall and Olkin (1979)
and Eaton (1982). Extensions and application of these ideas for groups other
than Vn are discussed in Eaton and Perlman (1977a) and in Eaton (1984,
1987a, 1987b, 1988). Extensions in another direction appear in Karlin and
Rinott (1988).

An important aspect of the proof of Proposition 3.2 is the convolution
property of the Poisson family. Without this, the conclusion of Proposition
3.2 may fail even though the density is DR.

EXAMPLE 3.2. Let X\ and X2 be independent exponential random vari-
ables with densities

f £ e - * / ' S x > 0
P{x I θi) = ' '

I 0, x < 0

where 0, > 0, i = 1,2. Then it is easy to show that

= p(x1\θ1)p(x2\θ2)

is DR on X x X, where X = {(xi,x2) | a?i > 0,x2 > 0}. Let A = {x € H2 |
x\ + X2 < 1} Then h{x) = IA(X) is both Schur-convex and Schur-concave on
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X, but

φ(θ) = I h(x)f(x I θ)dx
Jx

is neither Schur-convex nor Schur-concave. However, a change of variables to
ηi = log0{, i = 1,2, yields a function which is Schur-concave, i.e., φ\{η) =
ψ(eT)1,er?2) is Schur-concave (cf. Marshall and Olkin (1979)). This example
raises many questions concerning choice of coordinate systems and the validity
of Proposition 3.2 for non-convolution families. This area of investigation
appears not to have been explored.

Both Proposition 3.1 and Theorem 3.1 have extentions to reflection groups
other than Vn- These extensions are discussed in Chapter 6 of Eaton (1987).
However, applications of these ideas to interesting statistical problems have
been far less numerous than in the case of the permutation group. From the
point of view of applications, a most intriguing problem is that of providing
general conditions under which φ in (3.1) is Schur-convex (concave) whenever
h is Schur-convex (concave). Example 3.2 shows that / being a DR kernel
(for the group Vn) is not sufficient, but the DR assumption is perhaps a good
starting place. The work of Ruschendorf (1981) provides some general theory,
but seems not to be directly applicable to this problem.

4. Multivariate Concentration Inequalities: the Gaussian Case,
Suppose that X ~ JVΛ(0, Σ), the n-variate normal (= Gaussian) distribution
with mean vector 0 and covariance matrix Σ. Write Σ2 > Σi to denote that
Σ2 - Σi is positive semidefinite. For any subset C C IRn let

PΣ(C) = Prob(X e C).

We seek to determine classes C of subsets of R n such that Σ2 > Σi implies
that PΣI is more concentrated than P Σ 2 relative to C, i.e., such that

Σ 2 > Σ i ^ P Σ 2 ( C ) < P Σ l ( C ) V C e C (4.1)

We shall study group symmetry (= invariance) conditions on C and on Σi, Σ2,
as well as convexity or monotonicity conditions on C, under which (4.1) is valid.

Let C\ denote the class of all convex, centrally symmetric (i.e., —C = C)
subsets C of R n . Anderson (1955) showed that (4.1) is valid for C = C\
with no additional symmetry conditions on Σi or Σ2. His approach uses the
convolution (= additive) property of the multivariate normal distribution and
a conditioning argument.

THEOREM 4.1 Anderson (1955)). When C = Ci, (4.1) is valid.
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PROOF: Let Δ = Σ2 - Σi and X ~ Nn(0, Σ2). Then we have the repre-

sentation

X=Y + Z (4.2)

where Y ~ Nn(0, Σ x ) , Z ~ Nn(0, Δ), and Y is independent of Z. Thus

(4.3)

by Theorem 2.1, Anderson's convolution theorem, since the multivariate nor-

mal density is symmetric and unimodal. Thus (3.1) is established. |

We shall now show that results complementing Theorem 4.1 may be ob-

tained by this argument provided that Anderson's convolution theorem is re-

placed by those of Mudholkar (1966) or Eaton and Perlman (1977a). In each

case the symmetry condition —C = C is replaced by the invariance of C under

a group G of n x n orthogonal matrices as in Section 2. Corresponding invari-

ance conditions on Σi (but not Σ2!) are also required. When G is a reflection

group, convexity of C can be replaced by a weaker monotonicity condition.

As in Section 2, let G be a finite (or, more generally, compact) subgroup

of C?n, the group of all n x n orthogonal matrices acting on H n . Let AAG

denote the class of all G-decreasing subsets of IRn (cf. Definition 2.1), and

let CQ denote the class of all convex and G-invariant subsets C, i.e., gC = C

\/g G G. Note that ΛΛQ 3 CQ* the inclusion is clear, while strict inclusion

follows from the fact that MQ is closed under unions while CQ is not. Every

C G MG is necessarily G-inva.riant. If G = {±/}, where / denotes the n x n

identity matrix, then CG = C\, while Λ4G = Λ4χ is the class of all centrally

symmetric sets that are star-shaped with respect to the origin in R n .

DEFINITION 4.1. A real n x n symmetric matrix Σ is G-invariajit if

gΣg' = Σ V5 G G. The class of all positive definite G-invariant n x n matrices

is denoted by SQ.

In multivariate statistical analysis, SQ is called the group symmetry co-

variance model determined by G (cf. Andersson (1975), Eaton (1983), Perlman

(1987)). If G = {/} or {±1} then S% = «S+, the class of all nxn positive

definite symmetric matrices. If G = Vn then SQ is the class of all diagonal

matrices Σ = Diag(σn, . . . , σnn) with each σα > 0. If G = Vn then SQ is the

set of all positive definite matrices Σ = (σt j) having intraclass structure, i.e.,

σ« = α Mi,σij = b Vi φ j . It is a consequence of Schur's Lemma that if G

acts irreducibly on R n then S% = {XI | λ > 0}.

DEFINITION 4.2. The group G acts effectively on IRn if 0 <G X VX £ R n ,
i.e., if 0 is the minimal element in Etn under
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It may be seen that G = {±/} acts effectively on IRn, the group Vn of all

sign changes of coordinates acts effectively on H n , every cyclic rotation group

acts effectively on H 2 , while the group Vn of all n x n permutation matrices

does not act effectively on R n .

We resume our discussion of concentration inequalities. As above, G de-

notes a finite (or compact) subgroup of On. The next result contains Theorem

4.1 as a special case (set G = {±/}):

THEOREM 4.2. When C = Co, (4.1) is valid provided that Σi is G-invariant

and G acts effectively on Etn.

PROOF: The proof of Theorem 4.1 remains applicable here except that

Anderson's Theorem 2.1 must be replaced by Mudholkar's Theorem 2.2 in

order to obtain the inequality in (4.3). Here are the details. The assumption

that Σi is G-invariant implies that the probability density function of Y ~

JVn(0,Σi) is G-invariant, and it is clearly unimodal. Since C G CQ is convex

and G-invariant, Theorem 2.2 shows that

f(z) = PΣl[Y€C-Z\Z = z) (4.4)

is a G-decreasing function of z. Hence the assumption that G acts effectively
on H n implies that f(z) < /(0) V^GlR71 so the inequality in (4.3) holds. |

If G' is a subgroup of G that acts effectively on IRn then so does G, and
clearly CQ Q CQ', SO Theorem 4.2 is strongest when G is replaced by its smallest
effective subgroup. In fact, if —/ G G then Co C Ci, so the conclusion of
Theorem 4.2 is implied by Theorem 4.1 without the additional assumptions on
Σi and G. However, interesting examples of groups G that do not contain —I

but which act effectively on I t n are readily found, in which cases the additional
assumptions appear to be required. For example, let G be any cyclic rotation
group of odd order acting on H 2 . Such G acts irreducibly on IR,2, hence Σi
is G-invariant iff Σi = XI. Thus if C is a regular fc-gon in H 2 centered at
0 with k odd, then Theorem 4.2 implies that PΣ,2{C) < PziiC) whenever
Σ2 > Σi = XI. If k is even, however, then Theorem 4.1 applies without

the restriction that Σ x = XI. [This suggests, in fact, that the conclusion of
Theorem 4.2 might remain valid under weaker hypotheses.]

Theorems 4.1 and 4.2 concern concentration inequalities for the classes
C\ and CG> which consist of convex sets C. Theorem 4.3 below presents a
concentration inequality for the class MG of G-decreasing sets G, which need
not be convex, when G is both effective and a reflection group, i.e., is generated
by simple reflections in R n (cf. Eaton and Perlman (1977a), Section 3). The
dihedral group of all rotations and reflections that leave invariant a regular k-

gon in ]R2(fc > 2) is a reflection group of order 2k, while its cyclic subgroup of
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rotations only (order k) is not a reflection group. Both Vn and Pn are reflection
groups; however, only Vn acts effectively on IRn. The first is generated by the
simple reflections that change the sign of a single coordinate, while the second
is generated by the elementary transpositions of two coordinates. The group
G = {±i j is not a reflection group in R n , n > 2.

THEOREM 4.3. When C = MG, (4.1) is valid provided that G is a reflection
group, Σi is G-invariant, and G acts effectively on R n .

PROOF: Proceed as in the proof of Theorem 4.1, except now apply The-
orem 2.4, the convolution theorem of Eaton and Perlman (1977a), to obtain
that / in (4.4) is a G-decreasing function. I

Note that Theorem 4.3 remains valid if it is only assumed that G contains
a subgroup G1 that is a reflection group and that acts effectively on IRn, since

Q

If G = Vn then G is an effective reflection group acting on lRn, so The-
orem 4.3 applies. Here Σi is G-invariant iff Σi is diagonal. Some examples
of £>n-decreasing sets may be constructed as follows. For positive numbers
2/1? ? Vn a n ( i —°° < r < oo the r-th mean of yi,..., yn is defined by conti-
nuity as

1/r

,r φ 0,±oo,

^00(2/1, -, Vn) = max(t/i,..., yn)

^o(yi,...,2/n) =

m-ooivu.. ,ί/n) = min(yi,.. .,yn).

Select positive numbers αχ ? . . . , α n , k, and then define

CV = {(a?i, . . , X n ) 6 E n | mr(\xi\αi,. ..,\xn\αn) < k}.

Then Cr € Cvn if r > 1 while Cr £ Mvn\Cvn if r < 1, so in the latter
case Cτ is a non-convex but X>n-decreasing set for which (4.1) holds whenever
Σ2 > Σi = Diagonal.

5. Multivariate Concentration Inequalities: the Elliptically Con-
toured Case, It is evident that the concentration inequalities in Theorems
4.1, 4.2, and 4.3 remain valid when PΣ is taken to be a scale mixture of
Gaussian distributions on IRn with mean 0 and covariance matrix Σ, e.g.,
a multivariate Student —t distribution. Like the Gaussian distribution itself,
such scale mixtures are both unimodal and elliptically contoured. It is perhaps
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surprising, however, that at least the first of these theorems remain valid for

all elliptically contoured distributions without any assumption of unimodality.

DEFINITION 5.1. The random vector X has an elliptically contoured pdf

on H n if its pdf has the form

I Σ Γ ^ V Z ' Σ - 1 * ) , (5.1)

where Σ is an nxn positive definite matrix. In this case we write X ~ ECn(Σ).

Clearly the Gaussian distribution iVn(0, Σ) is a special case of (5.1). Fef-

ferman, Jodeit, and Perlman (1972) substantially strengthened Theorem 4.1

by extending it to the elliptically contoured case. (See also Das Gupta et ai.

(1972), Theorem 3.3.) Surprisingly, the proof of Theorem 5.1, like that of

Theorem 4.1, is based on Anderson's convolution theorem, Theorem 2.1.

THEOREM 5.1 (FefFerman, Jodeit, and Perlman (1972)). Suppose that

X ~ ECn(Σ). Then for every C G Cu

Σ2>Σ1^PΣ2(C)<PΣl(C). (5.2)

PROOF (sketch): The second inequality in (5.2) is equivalent to the in-

equality

Pi(DC) < P7(C), (5.3)

where / is the nxn identity matrix, C is the image of C under an appro-

priate linear transformation (hence C 6 Ci), and D = Diag(di,.. . ,cfn) with

dj,...,d^ the characteristic roots of ΣiΣ^"1 (hence 0 < d{ < 1). Since the

distribution ECn(Σ) is spherically symmetric when Σ = /, the conditional

distribution of X given \X\ = r is uniform on the sphere Sr of radius r, so

(5.3) will follow from the stronger inequality

ur(DC) < tv(C), (5.4)

where vr denotes uniform surface measure on Sr. (Note, however, that DCf\Sr

is not necessarily contained in CΓ)Sr.) By the Divergence Theorem, however,

it may be shown that for suitably smooth C,

\{Dΰ)] ^ K l I)(β))β=o, (5-5)

where α is a positive constant, Br is the ball of radius r (Sr = dBr), and et

is the unit vector with ith component 1 and all other components 0. Because

both Br and DC £ Ci, Theorem 2.1 implies that Iβr * IDQ is ray decreasing,

hence the second derivative on the right side of (5.5) is non-positive. Therefore
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ur(DC) is nondecreasing in each d;, 1 < i < n, which establishes (5.4) and
hence the result. I

It was seen in Section 4 that in the Gaussian case, the method of proof
of Theorem 4.1 could be applied to establish Theorems 4.2 and 4.3 provided
that Theorem 2.1 was replaced by Theorems 2.2 or 2.4. Unfortunately this
is not so in the elliptically contoured case. The proof of Theorem 5.1 invokes
Anderson's Theorem to show that the convolution

(iBr * iDό)(y) = μ[Br n (DC + y)} (5.6)

has a (global) maximum at y = 0 when C (and hence DC) € Ci, where μ
denotes Lebesgue measure. In order to use this argument to extend Theorems
4.2 and 4.3 to the elliptically contoured case, it would be necessary to show
that (5.6) has a (local) maximum at y = 0 when C £ CG or C £ ΛΊ G, where
the group G is as in Section 4. Unfortunately, however, the transformation
C -* DC may not preserve G-invariance, so Theorems 4.2 and 4.3 cannot be
applied. Since only the existence of a local maximum at y = 0 is required,
however, this method of proof may succeed in extending Theorems 4.2 and 4.3,
provided that suitable local versions of Theorems 2.2 and 2.4 can be found.
Note too that one of the sets in (5.6), namely Br, is a ball, so the full generality
of Theorems 2.2 and 2.4 would not be needed.
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