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STOCHASTIC ORDERS AND THEIR APPLICATION
TO A UNIFIED APPROACH TO VARIOUS CONCEPTS
OF DEPENDENCE AND ASSOCIATION

BY REINHARD BERGMANN
Rheinfelden

Multivariate stochastic partial orderings are studied, especially in the con-
text of probability inequalities. Extensions of stochastic orderings to the multi-
component case for general product spaces are developed. They provide a sound
basis for a unified representation of dependence and association notions.

1. Introduction. Stochastic orderings have found a wide field of ap-
plication in probability, statistics, and statistical decision theory, see Stoyan
(1983), Mosler and Scarsini (1991), as comprehensive references. In prob-
ability theory, they are useful in deducing probability inequalities, compar-
ing stochastic models, establishing bounds and inequalities in reliability and
queueing theory, in statistics for example in hypothesis testing, simultaneous
comparisons, multiple decision problems, and in economics in decisions under
risk, particularly in multi-attribute utility theory.

The approach in this paper is mainly to define various stochastic order-
ings starting from interesting multivariate probability inequalities. To char-
acterize the stochastic orderings, several quite different equivalent conditions
are given. The stochastic orderings are associated with inequalities between
expectations of functions with respect to the corresponding distributions or
random variables. A very interesting and important problem is to find the
class of functions which implies the inequality between the expectations. For
this issue solutions are given.

We prefer the presentation in terms of random variables rather than of
distribution functions or probability measures in order to facilitate intuitive
handling of the inequalities. Consider a partially ordered measurable space
(F, <) and random variables X, Y with values in E.
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A common description of multivariate probability inequalities is
P(X € A)X P(Y € A), A€ A, (1.1)

where A is some interesting class of sets and P a probability measure on
measurable space (E, M), M being a o-algebra of subsets of E.

Now, let F denote a class of functions for which the expectations in the
following inequality exist,

Ef(X)<Ef(Y), [feF. (1.2)

Then, the central problem addressed in this paper can be described as
“For a given class of sets .4 which by probability inequality (1.1) defines a
stochastic order find the class of functions F which implies the expectation
inequality (1.2)” and vice versa: “For given F of (1.2) find the class A so that
(1.1) holds.”

DErFINITION 1.1. A real valued function f defined on E is increasing
(decreasing) if for z,y € E, z < y implies f(z) < (2)f(y). Aset AC E
is increasing (decreasing) if the indicator function of A, denoted by Iy, is
increasing (decreasing). Or, equivalently, if for 2 € 4 2 < (>)y implies y € A.

Denote by F; the class of all increasing functions and by 4; the class of
all increasing sets. Then a familiar notion is to say that X is stochastically
smaller than Y, in symbols X <4Y,if (1.2) holds for all increasing functions
f € F;. The notation <4 comes from the univariate case of real valued random
variables where <y is defined by P(X > t) < P(Y > t) for all real t. It is
well known that X <; Y for a general space F is equivalent to probability
inequality (1.1) for the class of increasing sets A;.

In Section 2 we give definitions and characterizations of multivariate
stochastic orderings for further interesting classes of functions F and sets A.
In most cases, this is done by weakening the condition of the stochastic dis-
tribution ordering in requiring that (1.1) holds for all sets A which belong to
a subcollection of the collection of all increasing sets. We shall consider the
class of all convex sets which are additionally increasing or symmetric or G-
invariant with respect to a subgroup G of all orthogonal groups, respectively.
In this context the Schur-convex ordering of Nevius, Proschan, and Sethu-
raman (1977) may be included in the concept of G-increasing orderings. In
terms of all these stochastic partial orderings, a formulation of monotonicity
properties of probability inequalities can be given.

In Section 3 we extend the above definitions to the multi-component case
by defining product partial orderings on general n-dimensional product spaces.
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These orders allow comparing the strength of dependence structures and are
particularly useful in describing qualitative dependence properties.

Section 4 gives an application of the product stochastic orderings to a
unified concept of dependence and association in a generalized sense.

The final Section 5 concerns remarks about the comparison of the depen-
dence structure of sets of random variables and stochastic processes.

2. Multivariate Stochastic Orderings. The approach behind the
idea to construct multivariate stochastic orderings for random variables X, Y
defined on a partially ordered measurable space (E, <) runs as follows. First,
the random variables are mapped on the real axis by a function f : £ —
IR'. Then, the real valued random variables f(X) and f(Y) are compared by
univariate stochastic orderings, for example, by the most familiar distribution
ordering <y, the convex or concave orderings <., <., (see Stoyan 1983).

The crucial step is to choose appropriate mapping functions and a suitable
compatible univariate ordering. Compatibility means that the properties of f
must be compatible with those of the functions for which the one-dimensional
ordering implies the expectation inequality. It is not interesting to choose a
univariate ordering as weak as possible because the class of functions for which
the expectation inequality holds then becomes too small. An important pur-
pose of a useful multivariate stochastic ordering is to establish its equivalence
to the expectation inequality for a class of functions which join certain prop-
erties with the original functions f. The compatibility is guaranteed if the
functions composed from f and the class of functions for which the univariate
ordering implies the expectation inequality preserve these original properties.
In a different approach, using cones of functions, Marshall (1991) studies ques-
tions of generating stochastic orderings which preserve certain properties.

2.1. Unimodal Stochastic Orderings. Motivated by Anderson’s (1955)
paper, various so-called unimodal orderings have been used, see Ahmed, Leon,
Proschan (1981), Eaton (1987). In this subsection we define two stochastic
versions of unimodal partial orderings.

DEFINITION 2.1. A real valued function f defined on a linear space F is
unimodal (reverse unimodal) if the set {z : f(z) > (<)u} is convex for all real
u.

DEFINITION 2.2. A real valued function f defined on a linear space F is
symmetric if f(z) = f(—z) for all z. A set A C E is symmetric if A = —A.

The following simple properties and relationships are true for unimodal
and convex functions.

ProposITION 2.1. (i) f is reverse unimodal if and only if — f is unimodal.



R. BERGMANN 51

(ii) Each concave function f is unimodal.

(iii) The indicator function I4 of a convex set A is unimodal.

The converse statement of (ii) is not true; (iii) gives a simple but im-
portant counterexample since the indicator function I4 of convex set A is
unimodal but not concave. Thus the class of unimodal functions is really
larger than those of the concave functions.

The following characterization of a concave function by a convex set is
well known.

ProposiTioN 2.2. Let E = R* and f be a real valued function on R¥.
Then f is concave if and only if the set H = {(z,u) € R* x R: f(z) > u} is
convex (as a subset of R**1),

REMARK. H is not necessarily an increasing set.

The following first definition of a stochastic unimodal partial ordering
with respect to the class of symmetric and convex sets is known in the literature
as “peakedness” ordering; see Birnbaum (1948), Sherman (1955), Olkin and
Tong (1988), and Dharmadhikari and Joag-dev (1988).

DEFINITION 2.3. Two random variables X and Y with values in F are
said to be ordered with respect to convex and symmetric sets, X <., Y, if

(a) P(X € A) < P(Y € A) for all sets A € A, the class of convex,
symmetric sets.

THEOREM 1. X <. Y is equivalent to each of the following conditions.

(b) P(f(X)>1t) < P(f(Y) > t) for all t and functions f € F,,, the
class of all unimodal, symmetric functions; i.e. f(X) <4 f(Y) for
all unimodal symmetric functions f.

(c) Ef(X) < Ef(Y) for all unimodal, symmetric functions f € F,
provided the expectations exist.

(b") P(f(X) <t) < P(f(Y) < t), for all t; i.e. f(Y) <q f(X) for all

reverse unimodal, symmetric functions f.

Proor. If X <. Y for f unimodal and symmetric, then the set {z :
f(z) > u} is convex and symmetric so that (b) holds.

Since the indicator function 14 of a convex and symmetric set is unimodal
and symmetric (see Proposition 2.1.(iii)), (b) implies (a), i.e. X <. Y.

Remember that (b) f(X) <4 f(Y)is equivalent to Eg(f(X)) < Eg(f(Y)),
f € Fus and g increasing. Choosing for g the identical function, (b) implies

(c).
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Now, it is crucial that the composed function g(f(z)) is unimodal and
symmetric for f € Fys and g increasing. This is true since {z : f(z) > u} =
{z : g(f(z)) > g(u)}. Therefore, (c) implies (b).

(b") is a simple consequence of Proposition 2.1.(i). This completes the
proof. 1

REMARK. Note that if one condition of Theorem 1 holds, the inequalities
in (b), (c) hold, especially for all concave and symmetric functions, and the
inequalities in (b’) whenever f is convex and symmetric.

The next theorem shows that F,; is the largest class of functions which is
monotone for the relation <., with respect to the probability operator defined

in (b).

THEOREM 2. Let X <. Y imply P(f(X) > t) > P(f(Y) > t) for a
function f and all t. Then f is unimodal and symmetric.

ProoF. The assumption of the theorem can be rewritten as: P(X € A) <
P(Y € A) for all convex, symmetric sets A implies P(X € D;) > P(Y € D)
for all t where D, = {2 : f(z) > u}. Therefore, the set D, must be convex,
i.e. f is unimodal. Furthermore, D, is also symmetric, especially —y € D F(Y)

ie. f(-y) > f(y) and y € Dy(_y), that is f(y) > f(—y) and therefore f(—y) =
f(y)- |

Now, we state Anderson’s Theorem as a monotonicity property in terms
of the stochastic partial ordering <.s in E = R*. Some applications follow.

PropPosITION 2.3. (Anderson 1955). If the random variable X with values
in R* has a symmetric and unimodal density, then

X —y <es X — My for all y € R* and any real number A, || < 1,
or equivalently,

X + Ay <es X+ Ny, forally € R*
and for any real numbers A1, Ag, |A1] < |Ag| .

That means, the nearer the values of X are concentrated about the origin the
larger becomes the probability.

ProposiTioN 2.4. When the random variable Y is independent of X and
X has a unimodal symmetric density, then for all real Ay, Aq

X+ XY < s X+ \Y if l/\1| < |/\2|.

The next proposition applies to the Gaussian case with zero mean.
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PROPOSITION 2.5. Let Xy, have a normal distribution N(0,%;) on R*
with mean 0 and covariance matrix ¥;, ¢ = 1,2. If ¥ — X, is positive semi-
definite, then Xy, <. Xx,.

This proposition has been generalized to elliptically contoured distribu-
tions by Fefferman, Jodeit, and Perlman (1972).

Now, we give a further definition of a stochastic partial ordering con-
cerning unimodality. This is done by replacing the word “symmetric” in the
definition of relation <. by “increasing”.

DEFINITION 2.4. Two random variables X and Y with values in F are
said to be ordered with respect to convex and increasing sets, X <Y, if

(a) P(X € A) < P(Y € A) for all sets A € A, the class of all convex,
increasing sets.

THEOREM 3. X < Y is equivalent to each of the following conditions.

(b) P(f(X)2>1t) < P(f(Y)>t)forallt and functions f € F,;, the class
of all unimodal, increasing functions; i.e. f(X) <q (Y), f € Fui.

(c¢) Ef(X) < Ef(Y) for all unimodal, increasing functions f € Fy;
provided the expectations exist.

() P(f(X) <t) < P(f(Y) < t) forall t; i.e. f(Y) <4 f(X) for all

reverse unimodal, decreasing functions f.

The proof is similar to that of Theorem 1 by replacing the term “sym-
metric” by “increasing”. In particular, (b’) is equivalent to (b) since —f is
unimodal and increasing if and only if f is reverse unimodal and decreasing.

Note that in Theorem 3 above the inequality in (b) holds for all con-

cave increasing functions, and the inequality in (b’) whenever f is convex and
decreasing.

Furthermore, we say that the random variables X, Y are ordered with
respect to convex and decreasing sets, X <. Y, if

(a) P(X € A) < P(Y € A) for all sets A € A4, the class of convex,
decreasing sets.

Then we have, parallel to Theorem 3,

THEOREM 4. X <4 Y is equivalent to each of the following conditions.

(b) P(f(X)2>1t) < P(f(Y)>t){forallt and functions f € F,q, the class
of all unimodal, decreasing functions; i.e. f(X) <4 f(Y), f € Fua.

(¢) Ef(X) < Ef(Y) for all unimodal, decreasing functions f € Fyq
provided the expectations exist.
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(b") P(f(X) < t) < P(f(Y)<t)forallt;ie f(Y)<q f(X) whenever
f is reverse unimodal and increasing.

We note again that (b’) is true for convex increasing functions.

Finally, we remark that the partial ordering <.; for increasing and uni-
modal functions was already used by Levhari et al. (1975) and Mosler (1982)
in an economic context. There, a unimodal function is called quasiconcave.

2.2. Partial Orderings Invariant With Respect to an Orthogonal Group.
The symmetry property above can be replaced by a more general invariance

property.
We shall adopt the following notations. Let g be a transformation £ — E.
Then for AC E
9(A)={2:2=4(z), =€ A}

Let E be endowed with an inner product such that (E,(:,-)) is a finite
dimensional inner product space, and let G be any subgroup of O(FE), the
orthogonal group of the inner product space (E, (-,-)). The topology on O(E)
is the usual topology of the orthogonal group.

DEFINITION 2.5. We say that f is G-invariant if f(z) = f(gz) forallz € E
and all ¢ € G, and that the set A is G-invariant if # € A implies gz € A for
all g € G.

DEFINITION 2.6. For a partially ordered finite dimensional inner product
space (E,<,(-,)) we say that the random variables X, Y are ordered with
respect to convex and invariant sets, X <., Y, if

(a) P(X € A) < P(Y € A) for all sets A € Ay, the class of convex,
G-invariant sets.

Then we can generalize Theorem 1 to

THEOREM 5. X <, Y is equivalent to each of the following conditions.

(b) P(f(X)>1) < P(f(Y) > t) for all t and functions f € Fyiy, the
class of all unimodal, G-invariant functions; i.e. f(X) <q f(Y),
f € Fuiv-

(c) Ef(X) < Ef(Y) for all unimodal, G-invariant functions f € Fy, if
the expectations exist.

(b") P(f(X)<t) < P(f(Y) < t) for all t; i.e. f(Y) <q f(X) whenever
f is reverse unimodal and G-invariant.
The proof is omitted since it parallels that of Theorem 1.

Now in terms of <, for E = R we can state a generalization of Ander-
son’s Theorem which is due to Mudholkar (1966).
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ProPosITION 2.6. (Mudholkar 1966). Let X have a unimodal G-invariant
density on RF and a(y) = Eﬁl ;9:y, gi € G, 0; 2 0, Z,_l o; = 1. Then

X - ) <civ X - a(y)’ NS ]R'k;
and if Y is independent of X

X +Y <eiv X +a(Y).

In the Gaussian case, Eaton and Perlman (1991) give the following state-
ment.

PROPOSITION 2.7. Suppose that Xy, have a k-variate normal distribution
N(0,%;) on R* with mean vector 0 and covariance matrix ¥; for i = 1,2. If
Ty > By, i.e. ¥y — ¥ is positive semi-definite, then

Xz, Leiv X3,

provided that ¥y is G-invariant, i.e. gXi¢' = X, for all ¢ € G,and G acts
effectively on IR*.

By definition, G acts effectlvelly on R¥ if 0 = E,_l a;giz for all z € R*
where g; € G, a; > 0, El a, = 1, that means 0 is in the convex hull of
{9z | g € G} for all z € R¥, or, to put the last condition in another way,
0 is the minimal element with respect to the ordering <G induced by G (see
Section 2.4): 0 <g z for all z € R*.

2.3. The Stochastic Majorization Ordering. Also the notion of stochastic
majorization introduced by Nevius, Proschan, and Sethuraman fits very well
with the concept presented here and outlined so far. Their results and many
related ones are collected in the book of Marshall and Olkin (1979).

In this context, it is worth mentioning that the stochastic majorization
order can be obtained from the distribution order <4 which is characterized
by increasing sets and functions (see Section 1) by choosing the majorization
order as the partial ordering of the partially ordered space (E, <). The reason
for that is that Schur-convex functions are defined as increasing functions with
respect to the majorization order.

Moreover, the stochastic majorization ordering is embedded as a special
case in a general stochastic ordering of functions and sets which are increasing
with respect to the order induced by a subgroup G of all orthogonal matrices;
see Section 2.4.

Throughout this subsection we assume E = R,
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Consider two real vectors z = (21,...,2%), ¥ = (¥1,.--,¥k) € RF where
Ty > ... 2 k) and y) > ... > yi) are the components of z,y rearranged
in decreasing order.

DEFINITION 2.7. We say that y majorizes ¢ and write z < y if

m m k k
Zw(i)SZy(i), form=1,---,k—1 and E:L‘,‘:Zyi.
=1 =1 =1 =1

Sometimes the majorization order is also called “Schur-ordering” because
of the next definition.

DerINITION 2.8. A function on IRF which is increasing (decreasing) with
respect to the majorization order < is called Schur-convex (concave). A set
A C R¥ is said to be Schur-convex (concave) if its indicator function is Schur-
convex (concave), i.e.if z € A and z < y (y < z) imply y € A.

DeFINITION 2.9. For two random variables X, Y € RF, X is said to
stochastically majorize Y, X <,. Y, if

(a) P(X € A) < P(Y € A) for every set A € A,, the class of Schur-
convex sets.

The notation <,. symbolizes that alternatively we could say X and Y
are ordered with respect to Schur-convex sets.

THEOREM 6. (Nevius, Proschan, Sethuraman 1977). X <,. Y is equiva-
lent to each of the following statements.

(b) P(f(X) >1t) < P(f(Y) > t) for all t and functions f € Fi., the
class of all Schur-convex functions; i.e. f(X) <q f(Y), f € Fsec.

(c¢) Ef(X) < Ef(Y) for every Schur-convex f € Fs. for which both
expectations exist.

(b)) P(f(X) <t) < P(f(Y) < t)for all t; i.e. f(Y) <4 f(X) for all

Schur-concave f.

Note that an equivalent definition is obtained when the term “Schur-

convex” is replaced by “Schur-concave” and the roles of X and Y are ex-
changed.

The following statements in terms of <,. can be given.

ProposITION 2.8. (Marshall and Olkin 1974). Let X have a Schur-concave
density on RF. Then

0 < £ implies X — 0 <;c X —¢&.
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A special consequence is the following important result for location pa-
rameter families.

ProPoSITION 2.9. Let Xy have a density fs(z) = f(x —6) which is Schur-
concave on R*. Then

0 < ¢ implies Xg <,c X¢.

Finally, we remark that a weak stochastic majorization order was de-
fined by Nevius, Proschan, Sethuraman (1977a). It corresponds to the weak
majorization ordering. This implies that in addition to Schur-concavity the

functions and sets have to be increasing with respect to the componentwise
order in IRF.

2.4. Stochastic Orderings Increasing with Respect to an Orthogonal
Group. Motivated by the concept of majorization and Schur functions, pre-

orders can be defined by special groups of orthogonal transformations, see
Eaton (1982, 1987).

We note that the stochastic ordering with respect to a given group (which
will be defined in this section) is the ordering <4 of Section 1 when the preorder
with respect to that group is chosen as the order < of the underlying space.

Remember Section 2.2 where we assumed that (E,(:,)) was a finite di-
mensional inner product space and G any closed subgroup of O(E), the or-
thogonal group of the inner product space.

On the inner product space (E,(-,-)), G is a closed subgroup of O(E)
and induces an ordering as follows. Given z € E, C(z) denotes the convex
hull of the G-orbit of z, that is, C(z) is the convex hull of {gz : ¢ € G}. Since
G is closed, C(z) is compact.

DerINITION 2.10. (Eaton 1987). For z and y in E, write ¢ <G y to mean
that ¢ € C(y). The relation <g is called the G-induced ordering on (E, (-, )).

A real valued function f defined on F is decreasing (increasing) if z <g y
implies f(z) > (<) f(y). A set A C E is increasing (decreasing) if the indicator
function of A is increasing (decreasing), i.e. for 2 € Az <g y (y <¢ z) implies
y € A,

Note that any f which is increasing or decreasing is also G-invariant,
because it necessarily satisfies f(z) = f(gz) forallz € E, g € G since z <g gz
and gz <g z.

DeFINITION 2.11. Two random variables X and Y with values in F are
said to be ordered with respect to G, X <g Y, if

(a) P(X € A) < P(Y € A) for all sets A € Ag, the class of all G-
increasing sets.
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THEOREM 7. X <g Y is equivalent to each of the following conditions.
(b) P(f(X) 2 t) < P(f(Y) > t) for all t and functions f € Fg, the
class of G-increasing functions; i.e. f(X) <q f(Y), f € Fa.
(c) Ef(X) < Ef(Y) for all G-increasing functions f € Fg provided the
expectations exist.
(b") P(f(X) <t) < P(f(Y) < t) for all t; ie. f(Y) <a f(X) for all
G-decreasing functions f.

The proof is similar to that of Theorem 1 and therefore omitted.

For statistical applications, especially with E = R¥, important examples
of orthogonal subgroups are

(1) Py — the group of k£ x k permutation matrices,
(2) Dg - the group of coordinate sign changes,
(3) Px U Di — the group generated by Pi and Dk.

REMARKS. (i) A G-invariant and unimodal function f is G-increasing.
This means that the stochastic ordering <q is weaker than <.

(ii) If G = Py for E = R* then the majorization order z < y is equivalent
to z <p, y. That means that the stochastic ordering X <p, Y is equivalent to
the relation X <. Y for Schur-convex functions and sets defined in the preced-
ing sections. Combining this result with Remark (i) above, we see in particular
that the majorization relation <,. is weaker than the convex invariant ordering
<civ Which is invariant with respect to Pi, the group of permutation matrices.

For the following statistical applications of the stochastic ordering <g we
assume E = RF.

ProposiTioN 2.10. (Eaton 1982). Suppose Xg is Np(0,%o + 66") dis-
tributed for 8 € R? where X is a fixed p X p positive definite matrix, and G
is a reflection group such that gXog’' = ¥¢ for all g € G, i.e. ¢ is G-invariant.
Then

Xg <g X¢ if 0 <g¢.

ExaMPLE 2.1. Suppose Yo = D is diagonal and take G = Dy, the group
of coordinate sign changes. Then for X4 distributed as N(0, D + 6¢')

Xg <p, X¢ if 0 <p, &

That means, Xy increases stochastically with respect to <p, if § Dj-
increases, i.e. for Dy-increasing sets A, P(Xy € A) is a function of |64],...,|6,|
and is increasing in |6;| for i = 1,...,p. Especially, P(|X;| > a;, i =1,...,p)
is increasing in |6;|, ¢ = 1,...,p.
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ExaMmpLE 2.2. Take G = Pk, the group of permutation matrices, so that
gXog’ = T for all g € G where X has intraclass correlation structure, that
is, £o = 0%R where the p diagonal elements of R are all unity and the off
diagonal elements of R are all p, —1/(p — 1) < p < 1. When X, is N(0,X(0))
where X(0)) = Xo + 66', then

Xy <p, X¢ for 0 <p, &,

that means, for any Pj-increasing function (i.e. Schur-convex function) f,
E f(Xg) is Pg-increasing as a function of 6.

EXAMPLE 2.3. Suppose Zo = 02I, and let G = Py U Dt. When Xj is
normal as in the previous examples, then

Xo <g X¢ for 0 <gé&.

3. Stochastic Orderings for General Product Spaces. The aim of
this section is the investigation of dependence structures which play a crucial
role in many problems of probability theory and statistics. Our concern is
to develop a tool which allows us to describe and compare the strength of
dependence in a qualitative way. For this purpose we use the concept of one-
component or marginal stochastic orderings given in the preceding sections and
extend it to stochastic product partial orderings defined on product spaces.

Consider a partially ordered linear space (E, <) and random vectors X =
(X1,...,Xn)and Y = (Y3,...,Yy) each defined on the product space X, E.
In this case we write (E™, <) where < means that each component is ordered
with respect to <. ‘

Although we confine ourselves to the case where X = (Xj,...,X,) and
Y =(Y,...,Y,) are random vectors in (E™, <) it is worth mentioning that all
forthcoming considerations are true for a general product x?, E; of partially
ordered linear spaces F;.

In the case E = RR!, i.e. when the partially ordered space is the reals,
Bergmann (1978) (see Stoyan (1983), p. 27) defined the following three rela-
tions between random vectors X,Y in R™.

X<kgY if P(X2>2)<P(Y >z) forall z€ R",
X<pY if P(X<z)XPY <z) forall z€R", and

X <gcY if/ P(X > z)dz S/ P(Y > z)dz
t t

for all t = (t1,...,t,) € R™.
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A characterization of these relations by inequalities between expectations
is given in the following statement.

ProposiTioN 3.1. For random vectors X = (Xi,...,X,) and Y =
(Yi,...,Y,) on R",

X <k Y(X <pY) ifand only if
E(fi(X1) ... fa(Xn) S E(fi(Y1) ... fa(Yn)) (3.1)

for all increasing (decreasing), positive functions f1,..., fu.

X <kc Y ifand only if (3.1) holds for all increasing, positive, and convex
functions fi,..., fa.

Furthermore, for X = (Xy,...,Xy), let X(;) denote the (n — 1)-variate
random vector with the jth component X; omitted.

ProrosiTION 3.2. Let the n-variate random vectors X and Y have equal
(n — 1)-variate distribution functions X(;) =d Y(;) foreach j = 1,...,n. Then
X <k Y is equivalent to the inequality (3.1) for all increasing functions

fl’“',fn

In the preceding sections stochastic orders for random variables with
values in general partially ordered spaces (E, <) were defined. The idea used
there was to map the E-valued random variables by real functions into the real
axis and then to apply a known stochastic order to the real valued random
variables obtained, especially the partial order <;. The crucial problem is to
choose a class of mapping functions to the reals and a class of functions (for
which the expectation inequality holds) corresponding to the stochastic order
on the reals. This means that both classes of functions must be compatible in
the sense that the composed function is in the class of mapping functions.

Bearing this concept in mind, we give the definitions of several stochas-
tic product partial orderings. We mainly use the relation <g between n-
dimensional distribution functions because of the preservation character of
the inherent increasing functions.

Let X = (X1,...,X4), Y =(Y3,...,Y,) be random vectors belonging to
(E™, <).

DEFINITION 3.1. Two n-variate E™-valued random vectors X,Y are said
to be ordered with respect to

X <gpY it (fi(X1),..., fa(Xn)) <k (fr(Y1), s fa(Y))

3.2
for all increasing functions fi,..., f, € F;. (3-2)
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X <c¢sp Y iff (3.2) holds for all functions fi,..., fn € Fus,
the class of all unimodal and symmetric functions.
X <crp Y iff (3.2) is true for all functions fi,..., fr € Fui,

the class of all unimodal and increasing functions.

X SDP Y iff (fl(Xl)a’fn(Xn)) SD (fl(}/l),,fn(Yn))

3.3
for all increasing functions fi,..., f, € Fi. (3:3)
X <c¢cppY iff (3.3) for all increasing, unimodal fi,..., f, € Fu.
X <kep Y iff (fi(X1)...fa(Xn)) <kc (1(11)...fa(Yn))
for all increasing and convex functions fi,..., fn € Fe.

The index “P” of the orders indicates that it is a product partial order.

“C” comes from convex, “S” from symmetric, “I” from increasing, “D” from
’ ’ ’
distribution.

A characterization of the six product partial orderings in terms of prob-

ability inequalities for sets with certain properties and of inequalities between
expectations for certain classes of functions is given in the next theorem.

THEOREM 8.
(i) X <kpY is equivalent to each of the following three conditions:
(a) P(X1 € Ay,...,Xp,€4,)<PY€A,....Y €A,) (3.4)

for all sets Ay,..., A, € A;, the class of all increasing sets.

(b) P(fi(X1) 2 t1,..oy fu(Xp) 2 t2) S P(fi(Y1) 2 t1, ..., fu(Yn) 2
tn) Vi1, ...ty € R! (3.5)
whenever fi,..., fn € Fi, the class of all increasing functions
fi: E—-R.
for all functions f1,..., fo € Fiy, the class of all increasing and

positive functions provided the expectations exist.
(ii) X <csp Y if and only if one of the following conditions holds:

(a) (3.4) holds for all sets Ay,...,Ap, € Acs, the class of convex,
symmetric sets.

(b) (3.5) holds for all unimodal, symmetric functions f1,..., fn €
Fus-

(c) (3.1) holds whenever fi,..., fn € Fust, the class of all uni-
modal symmetric positive functions.

(iii) X <c¢rp Y if and only if one of the following conditions holds:
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(a) (3.4) holds for all sets A;,...,A, € A, the class of convex,
increasing sets.

(b) (3.5) holds for all unimodal, increasing functions fi,..., fn €
fui'

(c) (3.1) holds whenever fi,...,fn € Fuiy, the class of all uni-
modal, increasing positive functions.

(iv) X <pp Y if and only if one of the following conditions holds:
(a) (3.4) holds for all sets A, ..., A, € Aqg, the class of decreasing

sets.
(b,) P(fl(Xl) < tl’--"fn(Xn) < tn) S P(fl(Yl) < tl,“-vfn(Yn) <
tn) Vt1,...,t, € R! (3.5")

for all increasing fi,..., fn € F;.

(¢) (3.1) holds whenever fi,- -+, fn € Fay, the class of all increas-
ing, positive functions.

(v) X <cpp Y if and only if one of the following conditions holds:

(a) (3.4) holds for all sets Ay,...,A, € Acq, the class of convex,
decreasing sets.

(b") (8.5') holds for all reverse unimodal, increasing functions fi, ...,
fn € Frui-

(c) (3.1) holds whenever fi,...,fn € Fuis, the class of all uni-
modal, decreasing, positive functions.

(vi) X <kcp Y if and only if one of the following conditions holds:
() E((fr(X1) =) - .- (fa(Xn) = ta)4) < E((A(Y2) — t1)+ -
oo (fa(Ya) =t2)4) YV t1,...,t, € R! for all convex, increasing
functions fy,...f, € Fe where z4 = max(z,0).
®") [ J POUA(XD) 2 21y fa(Xn) 2 2n)den. . dey < [/
f:’ P(fi(Y1) 2 z1,..., fa(Yn) > z4)dz,...dzy whenever
fl,"-’fn € }-ci~

(c) (3.1)(4.1) holds whenever fi,..., fn € Feit+ the class of all con-
vex, increasing, positive functions.

The proof of Theorem 8 is obtained by combining Theorem 1 with Propo-
sition 3.1 above and is therefore not given here.

REMARK concerning the statements of Theorem 8 for the relations <cyp
and <cpp. We note that a concave or log-concave function is unimodal and a
convex or log-convex function is reverse unimodal. This has the consequence
that the class of unimodal and increasing functions F,; contains all increasing
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concave or log-concave functions and the class of reverse unimodal increasing
functions F,,; contains all increasing convex or log-convex functions. There-
fore, our definitions generalize those of Shaked (1982) who used the more
restricted class of concave increasing functions.

A still more general product partial order can be defined by replacing the
property of symmetry by a more general invariance property.

For this purpose, consider a closed subgroup G of the orthogonal group
O(E) in a partially ordered inner product space (E, <, (:,-)).

DEFINITION 3.2. The n-variate E™-valued random vectors X,Y are said
to be ordered with respect to X <¢rvp Y if

(fi(X1), -+ o5 fa(Xn)) <k (fi(N1), -, fu(Yn))

for all unimodal and G-invariant functions fy,..., fn € Fuiv.

THEOREM 9. X <crvp Y is equivalent to each of the following three
conditions:
(a) P(Xl € A,...,. X, € An) < P(Y1 € Ai,...,Y, € An) for all
convex, G-invariant sets Ay, ..., A, € Agyp.

(b) P(fl(Xl) 2 tl,-",fn(Xn) 2 tn) S P(fl(Yl) 2 tls---,fn(Yn) 2
t,) where ty,...,t, € R! for all unimodal G-invariant functions

fla""fn ej:uiu-

(c) E(i(X1) ... fa(Xn)) L E(fi(Y1) - ...* fu(Yn)) whenever fi,...,fn €
Fuiv, the class of unimodal G-invariant and positive functions for which
the expectations exist.

Since the proof parallels that of Theorem 8, it is omitted.

For the relation in Theorem 9 and for the first three relations in Theorem
8 further equivalent conditions can be added.

For this reason, we mention that for R™ Riischendorf (1980) and Mosler
(1982) established the equivalence of X <k Y to the expectation inequality
for a more general class of functions than considered in (3.1). Namely

X <k Y if and only if Ek(X) < Ek(Y)

(provided the expectations are finite) whenever k£ € Fa, the class of all func-
tions k : R® — R! which are right continuous and k(...,z;,,.. ey Ligy. ) 18
A-monotone on R" ¥ for all 0 < k¥ < n —1 and all z;,,...,2;,. (An (n — k)-
variate function is called A-monotone if the multivariate difference operator is
nonnegative. In the case of an absolutely continuous function this is equivalent
to the nonnegativity of the mixed partial derivative of order n — k.)
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Then, for all stochastic product partial orderings defined by means of <g
a fourth condition can be given by applying Riischendorf’s result.

THEOREM 8-9’.
(i) X <gp Y iff

for all increasing functions fy,..., f, € F; and all A-monotone func-
tions k € Fa for which the expectations are finite.

(ii) X <c¢sp Y iff (3.6) holds for all k € Fa and for all unimodal,
symmetric f1,..., fn € Fus-

(iii) X <crp Y iff (3.6) holds for all k € Fa and for all unimodal,
increasing fi,..., fn € Fui.

(iv) X <crvp Y iff (3.6) holds for all k € Fa and for all unimodal,
G-invariant fy,..., fn € Fuiv.

For the relations <k p, <csp, <crp we now consider the case of identical
(n — 1)-variate marginal distributions. Then, in Theorems 8 and 9 the restric-
tion to positive functions (“product”-expectation inequality) can be dropped
by applying Proposition 3.2. This is of particular interest in the case of bivari-
ate random vectors. It becomes especially important when we compare with
the independent case; here the assumption of equal marginal distributions
holds in a natural way.

THEOREM 10. Let the n-variate random vectors X,Y € E™ have equal
(n — 1)-variate distributions, X ;) =4 Y(;) for each j = 1,...,n. Then
(i) X <kp Y iff

E(fu(X1) ... fa(Xn)) < E(i(Y1) - ...+ fa(YR)) (3.1)

for all increasing functions f1,..., fn € F;.

(i) X <c¢sp Y iff (3.1) holds for all unimodal, symmetric functions
f17""fn € ]:us-

(iii) X <c¢rp Y iff (3.1) holds for all unimodal, increasing functions
fl,"'afn e}-uz

(iv) X <crvp Y iff (3.1) holds for all unimodal, G-invariant functions
fl)"'?fn € fuiv-

We should like to close this section with two remarks which are of particu-
lar importance since they show the generality of the definitions of our product
partial orderings.
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First we point out that the partial ordering < of the space (E, <) has a
very large range of applications. Especially if we consider a partially ordered
inner product space (E,<,(-,-)) we can again choose the partial ordering in-
duced by an orthogonal subgroup G, i.e. <g. Then, the application of the
product ordering <gp of increasing functions and sets, respectively, is of par-
ticular interest. If we take E = R* and G = Py, the group of all k x k
permutation matrices, we obtain stochastic majorization product orderings
(since Schur-convex functions are defined as increasing functions via the ma-
jorization preorder).

We resume these facts in the following definition and theorem.

Let the n-variate random vectors X = (Xy,...,X,), Y = (Y1,...,Y,) be
defined on the n-dimensional product space R¥ x...xR¥, i.e. each component
X;,Y; has values in R fori=1,...,n.

DEeFINITION 3.3. X is said to majorize stochastically Y in the product
space, in symbols X <gscp Y, if

(fi(X1)s- -+, fa(XR)) <k (f1(Y1), .-, fa(Ya))

for all Schur-convex functions fi,..., f, € Fee.

THEOREM 11. X <gcp Y is equivalent to each of the following conditions:

(a) P(X1 € Ay,...,.Xn € A) < P(Y; € Ay,...,Y, € Ay) for all Schur-
convex sets A1,..., A, € Agc.

(b) P(fl(Xl) > th-'-,fn(Xn) > tn) S P(fl(}/i) > tly" ’fn(Yn) > tn)
for all t1,...,t, € R! and all Schur-convex functions fi,..., f, €

Foc-
(c) E(fa(X1):. .- fu(X0n)) L E(fi(Y1):. .. fu(Yy)) for all Schur-convex,
positive functions fi,. .., fn € Fyct for which the expectations exist.

In the case of equal (n — 1)-component distribution functions (c) the
above is true for all Schur-convex functions fi,..., f, without the assumption
of nonnegativity.

A further interesting example is to take G = Dj as the matrix group
of coordinate sign changes on R¥. Then we obtain the absolute value order-
ing, see Eaton (1982), (1987, p. 157). The stochastic absolute value ordering
for product spaces is useful in the investigation of absolute value association
problems, see Ahmed, Leon, and Proschan (1981), and Jogdeo (1977).

The last two examples give rise to our second remark. They show the
generality of the definitions of the product partial orderings in a further sense.
What we want to point out is that for the space E again a product space may
be chosen. For E = RF with < the usual componentwise order, the stochastic
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ordering <kp for n = 2 leads to the well known notion of association in the
sense of Esary, Proschan, and Walkup (1967). On the other hand, if E is a
product space of general partially ordered spaces (E;, <'), i = 1,...,k, then
for n = 2 we get the concept of generalized association of Ahmed, Leon, and
Proschan (1981).

4. Concepts of Dependence and Association. There are many
papers dealing with various concepts of dependence and association. This is
done by comparison with the independent case. Since independence is a basic
assumption in many statistical procedures, a crucial question is whether the
validity of the results is affected by certain departures from the independence
assumption.

Our approach to a unified concept of dependence and association is to
compare the dependent vector X with its independent version Y by product
partial orderings of the preceding section.

Our framework includes the well known dependence and association con-
cepts: positive or negative upper and lower orthant dependence and the posi-
tive dependence notions of Shaked (1982) as well as the notions of association of
Esary, Proschan, and Walkup (1967) and of generalized association of Ahmed,
Leon, and Proschan (1981).

Let the n-component random vector X = (Xj,...,X,) have values in E™
for a partially ordered space (E,<) and F a class of functions defined on E.

DEFINITION 4.1. The random vector X = (Xi,...,Xy) is said to be
positive (negative) F-dependent if

E(fi(X1) ... fa(Xa)) > () [] EA(X0)

=1
whenever fi,..., f, € F and the expectations exist.

Consider the classes F;; of increasing, positive, F44 of decreasing, pos-
itive, F,s4+ of unimodal, symmetric, positive, F,;4+ of unimodal, increasing,
positive functions, F,44 of unimodal, decreasing, positive, F.+ of convex, in-
creasing, positive, Fyiy4+ of unimodal, G-invariant, positive functions. From
Theorems 8 and 9 (replacing there Y by an independent version X we imme-
diately get the following characterizations and equivalent statements in terms
of probability inequalities of the F-independence definition.

THEOREM 12. X is positive (negative) dependent with respect to
(i) Fiy iff
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P(X1€A1,...,Xn€A,) > (S)P(X1 € Ay)-...- P(Xp € 4,) (4.1

for all increasing sets Ay,..., A, € A;.
(ii) Fay iff (4.1) for all decreasing sets Ay,...,An € Aq.
(iil) Fysy iff (4.1) for all convex, symmetric sets Ay, ..., An € Ags.
(iv) Fuiy iff (4.1) for all convex, increasing sets Ai, ..., An € Aci.
(V) Fuds iff (4.1) for all convex, decreasing sets Ay,- -+, An € Acq.
(vi) Fuivsy iff (4.1) for all convex, G-invariant sets Ay,..., An € Aciy-
(vii) Fuiy iff

[m. . ./too -P(fl(Xl) > zl,...,fn(Xn) > zn)dzn. ..d(l)l Z (S)

n 0
H/ P(fi(X;) > z;)dz; whenever fi,...,fn € Fei.
i=1 Vb

Of special interest is the two-component case n = 2 of a two-dimensional
product space. Then the marginal distributions are equal and Theorem 10
applies. Now, the F-dependence of X = (X;,X;) can be expressed in an
alternative way in terms of the covariance, namely

cov( fi(X1), f2(X2)) > (L) 0 whenever fi,f2 € F

4.2
provided that the expectations exist. (42)

ProposiTION 4.1. For a bivariate random vector X = (X;,X2) with
values in E x E the statements of Theorem 12 are true for all dependence

classes of functions F;, Fq, Fus, Fuiy Fudy Fuivs Fei, that means, without the
assumption of positiveness.

It is easy to see that the following proposition holds.

Let - F={f:-f € F}.

PRroposITION 4.2. Let X = (X3, X3). X is positive (negative) F-dependent
iff X is positive (negative) —F-dependent.

This means for example that the F,;-dependence also includes all reverse
unimodal and decreasing functions and that the F;-increasing dependence and
the Fy-decreasing dependence are equivalent.

There is an easy way to prove a proposition corresponding to Proposition
4.2 in terms of classes of sets A in view of Theorem 12.
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We say that X is positive (negative) .A-dependent if the probability in-
equality (4.1) of Theorem 12 holds for all sets Ay,..., A, € A.

For the set A C E let A° = {A: A° € A} where A€ denotes the comple-
ment of A.

ProposiTION 4.3. X = (X1, X3) is A-dependent if and only if X is A°-
dependent.

A restatement of Theorem 12 gives

ProposiTION 4.4. X is F-dependent if and only if X is A-dependent.
Here F is any of the classes of functions F;, Fq, Fus, Fui, Fud, Fuiv, and A
the corresponding class A;, Aq, Acsy Aciy Acdy Aciv-

The result stated in the following example concerns the Gaussian case;
for a reference see Tong (1980).

ExamPLE 4.1. Suppose that YV = (¥1,Y2) has an (n; + n2)-dimensional
normal distribution Ny, 4n, (0,%) with ¥; € R™ for ¢ = 1,2 and where

( Y T2 )

r= .

Y1 T2

If rank ¥,5 = 1 then Y is positive A.;-dependent, which is equivalent to the

fact that Y is positive F,s-dependent. A corollary of this result is

ExaMmpPLE 4.2. Suppose X = (Xji,...,X,) has an n-dimensional normal
distribution N,(0,X). Then X is positive A.s-dependent; or, equivalently, X
is positive F,s4-dependent.

The concept of association is related to a single random vector Z. In our
context the notion of association is obtained by considering a random vector
with two identical components X; = X; = Z.

DEFINITION 4.2. Let the random vector Z have values in the partially
ordered space (E,<). Z is said to be positive (negative) F-associated if X =
(Z,Z7) is positive (negative) F-dependent; or, equivalently, because of (4.2) if

cov(f1(2).f2(2)) 2 (£)0

4.3
whenever fi, fo € F and the covariance exists. (43)

We call Z positive (negative) A-associated if X = (Z, Z) is positive (neg-
ative) A-dependent, that is if

P(Z € A,Z € A2) > (S)P(Z € A])P(Z € Az) for all sets Aj, A; € A.

Then we have
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ProposITION 4.5. For any of the classes F;, Fq, Fusy Fuiy Fudy Fuiv £
is F-associated if and only if Z is A-associated where A is the corresponding

class A;, Ad, Acs, Aci’ Acd, Aciv-

The next example gives a result concerning the Gaussian case, see Eaton
(1987) for a reference.

ExaMpLE 4.3. Suppose X = (Xi,...,X) has a k-dimensional normal
distribution Ni(0,X) with zero mean. If each element of ¥ = (o;;) is non-
negative then X is positive A;-associated (which is equivalent to the positive
F;-association of X).

If we consider the k-dimensional Euclidean space E = RF the positive
association of Z = (Z,...,2Zx) with respect to the class of all increasing

functions F; coincides with the association notion of Esary, Proschan, and
Walkup (1967).

On the other hand, the remarks at the end of Section 3 concerning the
generality of the definitions of the product partial orderings apply to the de-
pendence and association concepts, too. Especially, if E is chosen to be the
k-dimensional product space of partially ordered spaces (E;, <J ),i=1,...,k,
endowed with the componentwise ordering, and the Z; are random compo-
nents of Z = (Zy,...,2Z) with values in Ej, then the positive F;-association
of Z is the same as the generalized association of Ahmed, Leon, and Proschan
(1981).

A further interesting example is that of Schur-convex dependence and
association. Let E = IR*. Then the real valued random vector Z is pos-
itive (negative) Schur-convex associated with respect to Fy. if and only if
cov(fi(Z), f2(Z)) > (L)0 for all Schur-convex fi, fo € Fs.. This is equivalent
to saying that Z is positive (negative) A,.-associated which means P(Z €
A1,Z € A3) > (L)P(Z € A1)P(Z € A;) for all Schur-convex sets A;, Ay €
Ase.

We close this section with two remarks. First we note that the notions
of dependence and association with respect to classes of functions F are more
general than those relative to classes of sets .A. This is the case since the expec-
tation inequality for functions may not correspond to a probability inequality
(4.1); an example is the class of convex and increasing functions F.

Second, we refer to Mosler (1982) who used a related approach to define
some dependence and association concepts.

5. Remarks Concerning Applications of Comparisons of De-
pendence Structures. The product partial orderings and dependence and
association notions of Sections 3 and 4 may be applied to compare dependence
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structures of stochastic processes and sets of random variables, especially with
respect to the strength of their dependence. Two principal cases have to be
distinguished, namely, internal comparisons within a set of random variables
(or within a stochastic process in order to assess the development of the de-
gree of dependence between progressive time points) and, on the other hand,
external comparisons between two sets of random variables which is, for exam-
ple, the purpose of canonical correlation analysis, or between two stochastic
processes in order to obtain qualitative statements.

(A) Internal comparisons.
(i) Internal monotonicity of a stochastic process.

Denote by <g any of the relations of R< = {<kp, <csp, <cip, <DP,
<cppP, Lc1vp, <scp} and by F any of the function classes of F' = {F;, Fys, Fui,
Fay Fudy Fuivs Fsc} and by A any of the classes of sets A’ = {A;, Acs, Aci, Ad, Acd,
-Aciv, -Asc}-

Let {X;}ieT be a given stochastic process. By means of Theorem 10 we
obtain the following monotonicity property of the covariances.

ProprosiTioN 5.1. For tq,15,13,t4 € T we have

cov(f(X4,),9(Xt,)) < cov(f(Xey),9(Xe,))

whenever f,g € F, where F is an element of F', if and only if
(Xty, Xt,) <R (Xtg, Xt,)
for the relation of <g of R< corresponding to F € F' if and only if
P(X;, € A, X, € B) X P(X;, € A, X, € B)

whenever A, B € A, the corresponding element of A’.
The first equivalence statement is also true for F,; and the relation <gcp.

REMARK. If more than two components of the stochastic process are
compared then, in addition, all functions must be positive.

Comparison with the independent case leads to the notion of dependence
of Section 4.

ProposITION 5.2. Let {X;}ieT be as above and lett,s € T'. Then (X3, X,)
is F-dependent for F € F', that is cov(f(Xt),9(X,)) > 0 for all f,g € F,
where F is an element of F' if and only if

(X, X,) is A-dependent for A,
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ie. P(X; € A,Xs € B) > P(X; € A)P(X, € B) for all A, B € A, where A is
the element of A’ corresponding to F.

(ii) Internal association of a set of random variables.

Let Zy,...,Z be a set of random variables, each with values in (E, <).
Then Proposition 4.5 directly applies. For F € F' the set Zy,...,Z; is F-
associated if and only if Zi,...,Z are A-associated where A is the corre-
sponding element of A’.

(B) External comparisons.

(i) External monotonicity of stochastic processes.

Let {X;} and {Y;}, t € T, be two stochastic processes, with values in
(E,<)-

By F} we denote the family F' of classes of functions which are in addi-
tion nonnegative.

ProposITION 5.3. For any of the relations <r€ R< and t,s € T (X¢, X,)
<r (%, Y;) if and only if

Ef(X:)9(Xs) < Ef(Y:)g(Y,) for all f,g € F,
the element corresponding to <g of F, if and only if
P(X;€ A, X, € B)< P(Y; € A,Y; € B)
whenever A, B € A, the corresponding element of A’.

REMARK. This proposition is especially useful if the elements of the
stochastic processes are related by a mapping which has the properties of
the corresponding class of functions; see Bergmann (1978).

(ii) External comparison of sets of random variables.

A typical question in statistics (which arises in many data analysis prob-
lems) is whether two sets of random variables are correlated. For example, in
canonical correlation analysis the dependence structure between the two sets
is investigated by constructing linear relationships in each of the sets and then
finding out the correlation between two linear functions.

The dependence notion of Section 4 permits us to consider function classes
other than the linear one.

Let Z1,...,Z; and V4,...,V; be random variables each having values in

E(, <)

ProposITION 5.4. Z = (Z,...,2Z) and V = (Vi,...,V,) are positive
(negative) F-dependent for F € F', i.e. cov(f(Z,...,2x), g(V1,...,V2)) >
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()0 for all f,g € F, where F is an element of F', if and only if (Z,V)
is positive (negative) A-dependent for A € A', i.e. P(Z € A,V € B) >
(L)P(Z € A)P(V € B) for A, B € A, the element of A’ corresponding to F.
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