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The purpose of this paper is to review some ideas connected to aging and
dependence, in the context of technical reliability. The dynamic aspects of these
notions are stressed throughout. The review is based mainly on the authors’
own work during the past decade, but it connects very closely with some recent
results by Shaked and Shanthikumar. New definitions, results and examples are
also presented.

1. Introduction and Mathematical Preliminaries. In this paper
we review some notions of aging and dependence which arise naturally in
the context of engineering reliability. These notions are based on “ordinary”
stochastic order of multivariate distributions in the positive orthant. But the
given definitions differ in two important respects from the standard comparison
of multivariate distributions with respect to stochastic order: they are dynamic
and conditional.

The first characterization means that time becomes a key element of our
analysis. Time is of course present in every meaningful notion of aging. But
it is equally basic in every causality reasoning, and therefore also enters our
modeling of dependence.

The second characterization emphasizes the role of information, which
corresponds to the observed behavior of the considered device in the past and
forms a natural basis on which its future behavior can be predicted.

From a mathematical point of view our approach to modeling aging and
dependence can be seen as a particular application of the modern stochastic
calculus and martingale theory for point processes. As a consequence, our
presentation is somewhat unusual in the reliability tradition. However, we
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maintain that the concepts introduced are very intuitive and easily interpreted
in an actual engineering context. For the necessary mathematical background
we refer to the monographs Liptser and Shiryayev (1978), Brémaud (1981)
and Karr (1986), and to the recent review article Arjas (1989).

Throughout this paper we consider “a device consisting of k parts” (k >
1), and denote the corresponding k-vector of life lengths by S = (5y,...,Sk).
Rather than viewing S as a random point in R’j_ , we consider the corresponding
part failures sequentially in the order in which they occur in calendar time.
Suppose for convenience that all parts are in a working state at time ¢t = 0.
We then arrive at an alternative description of S in terms of a marked point
process (MPP) (T, J) := {(Tn, Jn); n > 1}, where

Ty=inf{S;: 1<i<k} and Jy={i: 1<i<k, S;=T},

(1.1)
T, =inf{S;: 1<i<k, S;>Ti.y} and Jo={i: 1<i<k, S;=T,}.

T, is then the nth smallest of the time epochs at which one or more of the
k parts fail, and the corresponding mark J, is simply the list of parts which
fail at T,,. We follow the convention that inf ) = oo, and let J, = 0 if T}, = oo.
The set of all possible marks (for finite 7,) is then

J={I:0#I1C{1,2,...,k}}.

We use the (partial) order of inclusion for the elements of J. It is natural to
call (T, J) the failure process, and consider it simply on the canonical space

Q:={(tnaIn): OstlstZS/oo,
th < 00 = tpyy > tp, In € J; ty, = 00 = I, =0}

of marked point sequences. We denote by

N(I) = Z UYTn<tJu=1}» 1 20, [ € T,
n>1

the corresponding counting processes. Clearly N(I) = {Ny(I): t > 0} counts
“one” at T}, if J,, = I, and remains zero if there is no such T,.

Apart from the final Section 6, we assume that the level of information
regarding the behavior of the considered device corresponds exactly to observ-
ing when its parts fail. Mathematically this corresponds to conditioning the
prediction made at time ¢ on the o-field generated by the pre-t part failures,
i.e., on

Fi=o{N,I): s<t, [ €J}. (1.2)
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As a convention we assume that the null-sets of Foo = V,5¢ F¢ are included
already in .

The notion of hazard can now be formulated in terms of the (F;)-compen-
sators A(I) = {A«I) : t > 0} of the processes N(I), I € J. For the
definition of a compensator we refer to the general references on martingale
theory mentioned before. However, for our purposes it will be sufficient that
each process A(I) can be viewed as the cumulative hazard which is specific to
failure pattern I and based on knowing the previous part failures, in the sense
that the following interpretation can be made:

(Note that this is a purely heuristic formula, it does not hold literally for a
fixed t.) We call {A(I): I € J} the hazard process of S (Arjas (1981b)).

The above representation of S in terms of a failure process (T, J) is ob-

viously completely general, in the sense that to every value of S in ﬁ_,_ there
corresponds a uniquely defined sample path of (7', J) with mutually disjoint
I..’s, and conversely. On the other hand, it is possible (Jacod (1975)), and
often most convenient in practice, to specify the law of (T, J) by specifying
the corresponding (F;)-hazards A(I), I € J. However, before considering
such constructions explicitly we want to distinguish between different ways in
which the hazard process can behave. We use the following three criteria:

(i) The first distinction is whether the compensators A(I), I € J, are
all continuous or not. In the former case we use the code con, whereas if
discontinuities are allowed we write dis. Note that the latter class comprises all
compensators; the con-class corresponds to the model where, as in the Poisson
process, the exact failure times cannot be predicted with positive probability
from the preceding history. A further subclass of con is formed by those
compensators which are absolutely continuous, admitting the representation

A(I) = /0 “M(D)ds.

The process A(I) = {Ay(I) : t > 0} can then be viewed as the (F;)-based
I-specific intensity (or hazard rate).

(ii) The second distinction we make is whether the parts in the device
fail always one by one, or whether simultaneous failures of two or more parts
are possible (e.g., because of a common cause). In the former case only the
compensators A({:}), 1 < ¢ < k, are not identically zero. We use the code sin
for this class, and mul for the general class.
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(iii) In the dis-class where the compensators can jump, it is still relevant
to distinguish, mainly for technical reasons, whether two or more of the A(I)’s
can jump at the same time epoch. If not, we use the code sep, denoting the
general class by com.

Combining (i)-(iii), we have the following six classes of distributions of
S: (con, sin), (con, mul), (dis, sin, sep), (dis, sin, com), (dis, mul, sep), and
(dis, mul, com). The last class contains all distributions.

We now want to formalize the idea of information, in the form of observing
the part failures, which was mentioned at the beginning. We call a finite subset
H of Ry x J a history set if it is such that (¢,I) € H and (¢,I') € H imply
I = I' (Norros (1985)). We denote by H the space of all history sets endowed
with the Borel o-field H generated by a natural topology. We denote by P(2)
(resp. P(H)) the set of probability measures on (Q,Fs) (resp. on (H,H))
equipped with the topology of weak convergence of measures.

For history sets H we define the operations ¢:(), ¢() and d;() as follows:

c(H) = U{I: Js<t: (s,I)€ H},

o(H)=|J{I: 3t: (t,1) € H},

di(H)={(s,]) e H: s<t}.
Clearly ¢; = cod;. We introduce a partial order of history sets in the following
way: H < H' if ¢,(H) 2 ¢;(H') for all t > 0. In other words, H < H'

if component failures described in H occur earlier (= not later) than the
corresponding failures in H'.

The H-valued pre-t histories of (T, J) correspond to the history process
{Hy; t > 0}, defined by

Hy(w) = {(Tn(w), Jn(w)) : Tn(w) <2},
and its left continuous version defined by
Hi- () = {(Ta(@), Xa(w)) : Tn(w) < t}.

It then follows by (A2,T34) of Brémaud (1981) that for each (F;)-predictable
process Y = {Y;; t > 0} there exists a non-random R4 ® H-measurable
function (¢, H) — Y*(t | H) such that the process

Yi(w) =Y"(t| H-(w)), 20,

is indistinguishable from Y. For simplicity, we drop “*” from Y™ from now
on.
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In this way we can define the compensator function family of a multi-
variate life length distribution to be a family of functions a;(I | H) satisfying
at(I | Hy) = Ai(I) a.s. and the consistency condition

(I | H) = ay(I | di—(H)).

In particular, we can use this construction for defining the failure pattern
specific intensities A(I) by using functions (¢, H) — Ay(I | H) and the require-
ment that A¢{(I)(w) = Ai(L | Hi—(w)). As mentioned before, these functions
will also specify uniquely the distribution of (T, J) (and of S).

ExampLE. Of particular interest is the Markovian case where the hazard
rates depend on the past history only through the current configuration of
parts down: whenever two history sets H and H' are such that ¢;,(H) = ¢;(H')
for a considered time ¢, we have \(I | H) = A\(I | H'). Then c¢(Hy) is a
Markov process on the state space Jop = J U {0}. The so called Freund (1961)
model and the multivariate exponential model of Marshall and Olkin (1967)
are further special cases of this, with A;(I | H) not depending on t. In our
examples below we also restrict ourselves to the time homogeneous case, and
write A(I | J) instead of A(J | H) when ¢(H) = J. Thus the second argument
in A(I'| J) is the set of failed components.

2. Monotonicity Conditions for the Prediction Processes. The
notion of a prediction process was introduced by Knight (1975). Aldous (1981)
developed a somewhat different approach which was applied in Norros (1985)
and is followed here. We denote by ’P(R’j_) the space of all probability measures
on the Borel sets of R’j_, endowed with the topology of weak convergence.
P(RE) is also a Polish space. We often consider P(RE) as a partially ordered
space, equipped with the usual stochastic order relation. (In later sections we
consider also some other order relations defined on P(RX) or on a subset of
it.)

TreoreM 2.1. There exists a P(RX )-valued cadlag process p such that

for any stopping time T, ut is a regular version of the conditional probability
P(S € - | Fr).

The proof can be found in Aldous (1981), and it is reproduced in Norros
(1985). In this paper we call the process p of Theorem 2.1 simply the prediction
process.

The prediction process u; bears in itself a complete description of the
past, on the level of the made observations. Sometimes it is more convenient
to have this degenerate part of the conditional distribution cut off from the
prediction. Denote (s —t)* = ((s1 =t)*,...,(sk—1)*). We define the residual
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prediction process v; as the measure valued cadlag process satisfying
vr(-)=P((S-T)* € -| Fr)

for every finite stopping time T. The residual prediction process is a time
homogeneous strong Markov process.

Some interesting notions of aging and dependence can be defined as mono-
tonicity conditions for the prediction processes. Arjas (1981a) generalized the
class of IFR (Increasing Failure Rate) distributions in the following way (here
we restrict ourselves to the case where F; is the internal history):

DEFINITION 2.2. S is multivariate IFR (MIFR) if the residual prediction

process v, is a decreasing process with respect to the stochastic order on the
space P(RE).

Thus the MIFR distributions can be characterized by the following intu-
itive property: whatever happens in the internal history, the prediction of the
remaining lifetimes becomes worse with increasing age.

This definition is meaningful for any class of distributions, but it actually
implies that the compensators are continuous, except for possible final jumps of
size 1. In fact, MIFR implies convexity of the compensator functions, although
the converse does not hold (see Arjas (1981b)). Thus, all MIFR distributions
lie in the class (dis,mul,sep).

A positive dependence condition in the same spirit was introduced in
Arjas and Norros (1984) (in the final form in Norros (1985)):

DEFINITION 2.3. S is weakened by failures (WBF) if the prediction process
pt decreases (with respect to stochastic order) at failure times:

ps; < ps;— for all 1.

It is (almost) evident that this definition is equivalent to the correspond-
ing condition for the residual prediction process: vs, < vg,_ for all 7. In other
words, S is WBF if any part failure reduces, in the sense of stochastic order,
the remaining life of the parts still alive. We then have the following trivial
but interesting implication, an example of an aging condition implying positive
dependence:

THEOREM 2.4. MIFR implies WBF.

WBEF is a meaningful notion for completely general life length distribu-
tions, and the following result holds:

THEOREM 2.5. WBF implies association.
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The proof can be found in Norros (1985) (it was first proven in Arjas
and Norros (1984) with a slightly different definition of WBF'). The proof is
based on the compensator processes and the integral representation theorem
for point process martingales.

ExaMmPLE 2.6. Consider the time homogeneous Markovian case defined at
the end of Section 1. For any function a : Jo — R4 denote by & the measure
on Jp with point mass function a. For two such functions, say a and 3, we
write & < f if &(U) < B(U) for each upper set (with respect to inclusion)
U C J.

For I, K and L in Jo such that I # 0, K C L and I N L = () denote by

M| K)= Y MIUJ|K)
JCL\K

the total intensity, when the set of failed components is K, for the event that
the next failure pattern is the union of I and possibly some subset of L. Let
S and T be Markovian systems with the same set of parts, having intensity
functions k(I | K) and A(L | K), respectively. The following results were
proven in Norros (1985):

(i) If the implication
KCL = & (-|K)<A(-| L),

holds for all L and K, then S >¢¢ T.

(i) f K C L implies A(- | K) < A(- | L), then T is MIFR (and,
consequently, WBF).

(iii) If there are no multiple failures, a sufficient condition for WBF is
KCLi¢L= M{i}|K)<A({i}| L)

for all 7, K and L.

(iv) The conditions in (i) and (ii) are also necessary if all transition in-
tensities or, respectively, all intensities of single failures, are positive. (The
latter case is not considered explicitly in Norros (1985), but the proof follows
by the same technique as in Proposition 5.7 of that paper.)

We conclude this section by yet another dependence condition, called
strong supportivity, which has not appeared in the literature before. Let
my(H) be a measurable function with values in P(R%), defined for non-
negative t and history sets H, such that m.(H;) is indistinguishable from
pt. As in the definition of the compensator function family (Section 1), we
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require that m,(H) satisfies the consistency condition m(H) = my(d;(H)).
We define:

DEFINITION 2.7. S is called strongly supportiveif H < H'implies m;(H) <
my(H'") for all t > 0 and all history sets H and H'.

It is evident that a strongly supportive system (distribution) is weakened
by failures. We return to this new notion again in Section 5.

3. The Compensator Representation of the Class (dis,mul,sep).
In this section we present a generalization of the compensator representation
of life length vectors, first studied in Norros (1986) and independently, with
the name “multivariate hazard construction”, in Shaked and Shanthikumar
(1987D).

Consider first a (univariate) random lifetime S with a continuous distri-
bution function F. Denote the corresponding survival function by /' =1 - F.
It is easily checked that —In F(S) has the 1-exponential distribution. In the

class (con,sin) we have the following analogous multivariate result, first proven
in Meyer (1971):

THEOREM 3.1. Let S be in (con,sin), and denote
Xi = As,({1}).

Then the X;’s are independent 1-exponential random variables.

If F is not continuous, Ag can not have an exponential distribution, of
course. However, we can represent S as a function of a 1-exponential variable
as follows.

Notation. If f(t) is a right continuous increasing function with jumps
<1, we write

- [ - a6 = 50 + (- n1 - ASCs)

s<t

where Af(t) = f(t) — f(t=) and f°(t) = f(t) — X ,<; Af(s). For continuous
functions this notation is motivated by the “infinitesimal” formula —In(1 —

dz) = dz.

Let now a; be the compensator function of S, so that 4; = asas, and
define

t
b = —/ In(1 - da,), by = inf{t: b, > z}.
0

Let X have the 1-exponential distribution. Then b% has the same distribution
as §.
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In fact, b; is simply —In P(S > t). Dropping the “minus logarithm”
we would have represented S in the more familiar way as b}, where T is
uniformly distributed on [0,1]. However, we want to work with exponential
random variables because of Theorem 3.1, and because we want to have the
compensator functions as our starting point rather than the usual distribution
functions.

Let us now turn to the multivariate case. Let a;(I | H) be the compen-
sator function of a class (dis,mul,sep) distribution. Define

b(I| H) = — /0 In(1 — day(I | H)),
bi(I| H) = inf{t: b(I| H)> z}.

We call the functions b;(i | H) b-functions. As usually, we let inf § = oco. For
arbitrary x € Rf , X = (27), we define inductively the mapping x — ¥*(x) =
s = (81,...,8k)"

tng1 = inf{b; (I | {(tp,Jp): p=1,...,n}): IN(J1U---UJp) =0}
ift,41 < o0, then

Jn+1 = that I at which the minimum is obtained, and

8; = tpy1 for ¢ € Jpy1. (3.2)

Since common jumps of the compensators are forbidden in the class (dis, mul,
sep), the mapping is uniquely determined for almost every x.

We call the function ¥* the compensator representation of S. The reason
we use this term is, as is easy to see by the memoryless property of the exponen-
tial distribution, that ¥*(X) has the same distribution as S if X = (X;)jes
is a vector of independent 1-exponential random variables.

The reasoning goes as follows. First, it is obvious that a copy of S can be
generated proceeding in time inductively from one failure to the next, choosing
always the next failure time and failure pattern according to the conditional
distribution where the conditioning is based on the history up to the previous
failure.

Second, at each step the conditional distribution of the time to the next
failure and the next failure pattern can be produced as the minimum of inde-
pendent “competing risks” (see Arjas and Greenwood (1981)). At this point,
the assumption that the compensators do not have common jumps is crucial.

Third, the survival functions of these competing risks are exponential
functions of minus the increments (with respect to the starting point) of the
corresponding b-functions. Thus the “competing” failure times, from which the
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minimum is chosen, can be generated using independent 1-exponential random
variables and the b-functions as shown above in the case of one component.

Fourth, the “fine point” of the construction is that the same exponential
variables can be used through all steps. Indeed, we can think that at each
step only the result, that is, the exponential giving the shortest time to the
corresponding failure pattern, is revealed. As regards the others, it is known
only that they are greater than certain values, namely those attained by the
corresponding b-functions so far. But, by the memoryless property of the
exponential distribution, this gives no information about the following step.
Thus, the “unused” exponentials are “as new” at the beginning of each step.

In Norros (1986), a condition was given which implied the monotonicity
of U* in the class of (con,sin) distributions. The next example shows that

the representation need not be monotone if multiple failures are allowed, even
when there is a strong positive dependence between the coordinates of S.

ExampLE 3.3. Consider a Markovian system with & = 2, and let the
intensities be

A{1D10) = A({2}10) = A({1,2} | 0) =1,
A{1}{2}) =A({2} [ {1}) =2.
The system is obviously WBF. But take z; =1, 2, = 5, 212 = 2, and z} = 3,
x4y = 5, 21, = 2. Then x < X/, but ¥*(x) = (1,3) and ¥*(x’) = (2,2). Thus
U* is not monotone.
The simplicity of this example indicates that, at least in the context of

stochastic order, the compensator representation is a useful notion only for
distributions without multiple failures.

We now extend the notion of supportivity, introduced in Norros (1986),
to the case where multiple failures and simultaneous jumps of compensators
are not allowed but where the compensators need not be continuous.

DEFINITION 3.4. A distribution of the class (dis,sin,sep) is called support-
ive if for all ¢

H<H, i¢o(H) = b({i}| H) > b({i} | H').

The usefulness of the notion of supportivity is based on the one hand
on its practical verifiability (compared, for example, to verifying the WBF
property, or association) and, on the other hand, on the following fact:

THEOREM 3.5. If S is supportive, then ¥* is componentwise increasing.

Proor. The condition appearing in Definition 3.4 is the same as in Norros
(1986) except that it is formulated for b-functions instead of compensator
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functions, and the same holds for the construction (3.2). It follows that the
proof of the corresponding Proposition 3.3 in Norros (1986) is applicable when
compensator functions are replaced by b-functions. I

Counterexample 4.9 of Shaked and Shanthikumar (1987b) shows that the
implication of Theorem 3.5 is strict (even in the class (con,sin)).

Let X = (Xy,...,Xk) be a set of independent 1-exponential random
variables, and let ¥*(X) be the compensator representation of a random vector
of class (dis, sin, sep). Since a set of independent random variables is always
associated, Theorem 3.5 has the following corollary.

CoroLLARY 3.6. If S is supportive, then it is associated.

We show in Section 5 that supportivity implies even a stronger positive
dependence condition, WBF.

ExaMmpPLE 3.7. Consider again the Markovian case and assume that only
single component failures are possible. It is shown in Norros (1986) that the
system is supportive if and only if A({i} | K) is increasing in K. This is the
same condition as the sufficient (and, at least when all single failure intensities
are positive, necessary) condition for WBF, mentioned in Example 2.6.

4. Conditions for Stochastic Order. Let S have a distribution in the
class (dis,sin,sep). We now extend to this class the definition of cumulative
hazard ordering of Shaked and Shanthikumar (1990, Section 2).

DEFINITION 4.1. Let S and S be two life length vectors with the same
number of components and with distributions in the class (dis,sin,sep). Denote
the corresponding b-functions by b:({i} | H) and b;({i} | H). We say that S is
less than S in the cumulative hazard ordering, and denote this by S <. S, if

H<H andi¢e(H) = b({i})| H) 2 b({s} | H')

for any 7, H and H'.

The relation <j, is transitive, but it is obviously reflexive only in the class
of supportive distributions.

The following result was proven by Shaked and Shanthikumar (1987a)
(in the absolutely continuous case):

THEOREM 4.2. If S <4 S, then S <, S.

Proor. Using the construction 3.2, the S;’s and S.’s can be generated
inductively by using the same exponential variables X; = X(;;. It is easy to
see that then §; < 5; for all 4. 1
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This result may be useful in proving that certain non-continuous multi-
variate distributions are stochastically ordered. Note that although the cumu-
lative hazard ordering is a proper (reflexive) order relation only in the ciass of
supportive distributions, supportivity is not required in Theorem 4.2.

A third order relation for multivariate life length distributions is the TP,
ordering of Karlin and Rinott (1980). Shaked and Shanthikumar (1990) chose
this ordering as the multivariate generalization of the likelihood ratio ordering
and denoted it by <;.. The definition is as follows.

DEFINITION 4.3. Assume that S and T have density functions f and g,
respectively. We say that S is less than T in the likelihood ordering, and
denote this by S < T, if

f(s)g(t) < f(sAt)g(sV )
for all s,t € R’j,. If some of the S;’s are identically zero, we set the same
definition for the marginal densities of the positive components.
This relation is reflexive exactly in the class of the so called multivariate
TP, (MTP2) distributions. Shaked and Shanthikumar (1990) proved:
THEOREM 4.4. If S <;, T, then S <., T.

Since the likelihood ratio ordering is defined only for absolutely continu-
ous distributions, our extension of the definition of cumulative hazard ordering
does not generalize this theorem.

5. Relationships Between Positive Dependence Notions. Con-
sider a distribution of class (dis,sin,sep). Assume that a;({:} | H) is support-
ive. Consider the conditional distributions vs; and vs,—. It is obvious that
their b-function families are

(¢, H) = bse({5} | (H + Si) U Hs;) = bs;({5} | Hs;)
and
(t, H) = bsi4¢({5} | (H + Si) U Hs,-) = bs,({j} | Hsi-),
respectively. (The notation is: H +t = {(s+¢,{¢}): (s,{¢}) € H}.) Now,

Theorem 4.2 implies that vs; < vg,—, so that we have the following result.

THEOREM 5.1.If a class (dis,sin,sep) distribution is supportive, then it is
WBF.

The next example shows that the implication is strict.

ExaMPLE 5.2. Consider a system with two parts. Let S; have constant
intensity 1 (it follows the 1-exponential distribution), and let the intensity of
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S2 be defined as follows:

A({2}10) =0,
({2} [ {(s, 1)) = sV 1

Then a;({2} | (s,1)) = (sV1)(t—s)*, which is increasing in s when s € (1,1/2),
so that the system is not supportive. On the other hand, we have for all s and
z such that s< z

P(52>$|31>8) P(Sl>:1:|51>8)_

= (=Dt (z-s) 5
P(S:>2|Si=9) P(S>z[Si=3s) ¢ 21

which is enough to show that the system is WBF.

Shaked and Shanthikumar (1990) showed that MTP; implies supportiv-
ity. Their argument consists of the following two steps:

(i) MTP; implies that the prediction process decreases in likelihood ratio
ordering at failure times;

(ii) Supportivity is equivalent to the following: the prediction process
decreases at failure times w.r.t. the cumulative hazard ordering.

Their idea is to recast the definitions of MTP, and supportivity into the
form of WBF, where only jumps of the prediction process at failure times are
considered. Then, the only difference of the notions is the order relation that
is required between the predictions before and after the jumps. Note that in
(i) the implication is only one way. In (ii), the equivalence is rather trivial.

The following two theorems offer an alternative route from MTP; to
WBF.

THEOREM 5.3. If S is MTP,, then it is strongly supportive.

Proor. Formula (3.6) in Shaked and Shanthikumar (1990) is shown to
follow from X <;. Y. Choosing X = Y and taking into account that <,
implies stochastic order we get the assertion of the theorem. |

Recall from Section 2 that strong supportivity implies the WBF property.
Actually the following conclusion holds:

THEOREM 5.4. Let S be in the class (con,sin). If S is strongly supportive,
then it is supportive.

Proor. Fix ¢ and t. We denote U; = {s: s; < t}. U; is a lower set. Let

0 if there is an s <t such that (s,{:}) € H,
¢(H) =

1 otherwise.
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Let tj, = j/2". Identifying w with H = H,, we may write

APGH) = Y P(Si € (tinstisinl | Fiyp)
J: tin<t

= Z ¢tjn(H)'mtjn(H)(Uti“'")’

J: tin<t

where my(H) is the measure-valued function appearing in Definition 2.7. It
is well known that Agn)(H ) converges to A;(H) stochastically (Murali-Rao
(1969)), and taking a subsequence we may assume that the convergence holds
for almost every H. Taking H and H' from this set and satisfying H < H’,
i ¢ ci(H), gives the assertion. Indeed, my(H)(U;) is decreasing in H, and
the condition ¢ ¢ ¢;(H) implies that ¢,(H) = 1 for s < t. Thus an inequality
holds in each term of the sum, and the desired inequality between compensator
functions is obtained at the limit. |

Our next example shows that the implication in Theorem 5.4 is strict.

ExampLE 5.5. Consider a system with two parts. Let S; have constant
intensity 1 (it follows the 1-exponential distribution), and let the intensity of
S, be defined as follows:

A({2}10) = 2 1(2,3(t) + L(3,00)(2)
A({2}]0), s>1,
Ad{2} 1 {(s; D)} = {

l(lyw)(t), s<1.

It is easy to check that a;({2} | {(s,1)}) is decreasing in s, so that the system
is obviously supportive. However,

ma({(0.5, (R x (3,00)) = ¢ > €72 = my({(1.5, D})(IR x (3,00)),
so that the system is not strongly supportive.

6. Histories and Information. In the above analysis of aging and
dependence we have restricted ourselves to the history (F;) which is generated
by the part failures. This may have led the reader to think that this choice is
in some sense the only possible. Rather the opposite is true, however. In the
present framework a history represents cumulating knowledge or information,
and the resulting conditional distributions are viewed simply as quantitative
expressions of the remaining uncertainty regarding the exact values of the
part life lengths. The histories can be arbitrary (subject to certain technical
conditions), different histories then giving rise to different compensators and
prediction processes. More, or less, detailed knowledge regarding the events in
the past typically changes the prediction made about the future, and thereby
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also has the potential of influencing the ways in which aging and dependence
can be characterized.

Obviously every elapsed time unit of a part’s life brings the part closer
to its failure, by the same amount. However, when the time of failure is not
known, the predicted remaining life can become even longer, in the sense of
stochastic order, as the age increases. In practice this can be often explained
by the heterogeneity of the population of parts, and a corresponding selection
mechanism which tends to leave the strong parts alive while the weak ones
fail.

In order to keep the following discussion in the simplest possible terms we
consider only two particular levels of information, called part level and system
level. The former is the history (F;) which was considered above. To define
the latter, suppose that the k parts give rise to / (monotone) systems, say
&1, .., ¢, with respective life lengths 7,...,7. It is well known (e.g. Barlow
and Proschan (1975)) that each 7; can be expressed as a simple increasing
function of S. Note that we are here not assuming any form of independence:
originally the part life lengths can be statistically dependent, the systems may
have parts in common, and two or more systems can fail at the same time,
possibly of a common cause.

We can now consider the counting processes corresponding to system
failures, defined simply by N¢(¢;) = 1{r;<s}, ¢ > 0, and the corresponding
system level history (G;) where

Ge=0{Ns(¢;); 1<j <1, s < th

(Again Go should contain all nullsets of Goo = V50 Gt.)

It is easy to see that the inclusion G; C F; holds for all ¢ > 0. Intuitively
this corresponds to the property that the pre-t behavior of the parts determines
completely that of the systems.

Now suppose that we have been able to characterize the behavior of the k
parts (i.e., the distribution of S) in terms of the aging and dependence concepts
introduced earlier. We consider the following two questions:

(1) Do the corresponding properties hold when the vector S is replaced
by the vector 7?7 In other words, we want to characterize the behavior of the
systems instead of parts.

(2) Do such properties hold when the part level knowledge (F;) is replaced
by (G:)?

The answer to the first question turns out to be positive, to the second
generally negative.
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That the first question gets a positive answer is a simple consequence of
the fact that all increasing functions of = are also increasing functions of S.
For example, if S is IFR (resp. WBF, or (strongly) supportive) relative to the
history (F:), = has the same properties. In particular, the IFR property is
“closed under formation of monotone systems”, provided that the part level
history (F;) is used throughout.

On the other hand, the situation is different if the history is changed as
well. The well-known example of two parts with independent exponential life
lengths in parallel, showing that the classical notion of IFR is not closed under
formation of monotone systems (Barlow and Proschan (1975)), serves here as
a counterexample as well: it proves that IFR-property relative to (F;) does not
imply IFR-property relative to (G;). This follows from the obvious facts: (a)
if §7 and S are independent exponential part life lengths, then S = (51, 52)
is IFR relative to (F;), and (b) a univariate life length is IFR in the classical
sense if and only if it is IFR relative to its internal history.

We remark that certain aging properties which are weaker than IFR can
remain valid when the history is changed. An easy example is the multivariate
NBU (New Better than Used) concept introduced in Arjas (1981a).

A fairly elaborate counterexample is needed to show that the WBF prop-
erty can be lost in a history change (Arjas and Norros (1991)). A more sys-
tematic analysis of the effects of history change is outside the scope of this
review; we refer to Arjas (1991), Arjas and Norros (1991) and Arjas, Haara
and Norros (1989) for such results.
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