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Tests of independence against positive likelihood ratio
dependence in ordered contingency tables are reviewed.
Some exact tests and an intuitive sign test are discussed.

1. Introduction. In the analysis of contingency tables, a classical test of
independence is the chi-square test. However, if the chi-square test strongly rejects
the null hypothesis of independence, the statistician receives little information
as to what kind of dependency may exist in the data. When both categorical
variables are ordinal, it might be interesting to check whether there is a monotonic
relationship between the variables. Grove (1984) and Agresti (1984) explored a
variety of definitions of positive dependence for contingency tables.

On testing the independence in contingency tables, various types of alterna-
tives have been investigated. Armitage (1955) considered tests for linear trends
in proportions. Goodman (1985) discussed association models, correlation mod-
els, and asymmetry models for contingency tables. Grove (1980, 1984) considered
positive association and tests in a two-way contingency table. Nguyen and Samp-
son (1987) considered the alternative hypothesis of positive quadrant dependence.
Agresti et al. (1979) and Patefield (1982) considered several exact tests of inde-
pendence against positively likelihood ratio dependence. Lee (1988) investigated
an intuitive sign test to test against likelihood ratio dependence.

In this review article, tests of independence against likelihood ratio dependence
in ordered contingency tables are discussed.

2. Likelihood Ratio Dependence in Contingency Tables. Lehmann
(1966) defined that random variables X and Y are said to be positively likelihood
ratio dependent if their joint density / satisfies the following properties:

f(x,y)f(x',y') > f(x',v)f(x,if) for all x < x', y < y'.

In this section, we shall discuss the concepts of positive likelihood ratio dependence
in ordered contingency tables.
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Let X and Y be ordinal categorical random variables such that X has values
%ι < %2 < < χr and Y has values yi < ife < < !fe Consider a random
sample (Xk,Yk), 1 < k < N of size JV. Collect the sample data into an r X c
contingency table (ny) where π t j denotes the number of observations (Xk,Yk)
such that Xk = a?ή y* = yj, & = 1,.. .JV. Let pt j = P(X = x^Y = t/j) for
1 < i < r, "1 < j < c- For any two rows i and A; and any two columns j and /,
the corresponding odds ratio parameter is given by (pijPkj) / (PijPkj)- There are
a total of rc(r — l)(c - l)/4 odds ratios formed this way. However, using all the
odds ratios is redundant. It can be shown that local odds ratios, formed by using
cells in adjacent rows and adjacent columns, determine all possible odds ratios
that can be formed from any pairs of rows and any pairs of columns. Therefore,
it suffices to work on the (r - l)(c - 1) local odds ratios defined on adjacent rows
and columns, namely

0W> = (pijft+ij+O/Cpi+ijWj+i) for 1 < i < r - 1, 1 < j < c - 1.

For cross-classifications of ordinal variables, positive likelihood ratio dependence
corresponds to the property that all local odds ratios are greater or equal than 1.
A lot of research has been done based upon the estimated odds-ratio

where pij = τiij/N is an unbiased estimator for pij. See Bishop, Fienberg, and
Holland (1975) and Agresti (1984) for a review of theories and methods based on
odds ratios statistics.

However, 0W) may equal to 0 or oo if any of the nt ; = 0. One way to get
around this is to collapse categories and therefore increase the cell values. But this
kind of procedures would sometimes result in wasting information collected from
the observed data. To avoid these situations, Lee (1988) investigated the cross-
product difference parameters. Similarly as in the case of odds-ratios, it can be
shown that it suffices to consider only the local cross-product difference parameters

^\ where

= pijpi+u+i - ft j+ift +ij for 1 < i < r - 1, 1 < j < c - 1.

For cross-classification tables, positive likelihood ratio dependence corresponds to
the property that all local cross-product differences are greater or equal to 0.

3. Some Exact Tests. Patefield (1982) develops exact tests of independence
against trends of positive likelihood ratio dependence in r x c contingency tables.
The exact test was constructed according to procedures outlined by Agresti, Wack-
erly, and Boyett (1979). This procedure is developed to construct four tests based
on differing criteria for measuring departures from i?o in favor of JBΊ, where the
null hypothesis is Ho : θ^ = 1 for all 1 < i < r - 1, 1 < j < c - 1, and the
alternative hypothesis is Hi : flW) > 1 for all 1 < i < r - 1, 1 < j < c - 1, with
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strict inequality holding for at least one pair of (i, j ) . The tests Pateίield consid-
ered are based on: (1) the likelihood ratio, (2) the maximized score correlation,
(3) the natural score correlation, and (4) the measure of association proposed by
Goodman and Kruskal (1954). For each of the four criteria, the test procedure
requires calculation of the appropriate test statistic for each element of the con-
ditional sample space, i.e. for each table having the same marginal totals as the
observed table. Of the four tests Patefield considered, it was concluded that test
2, the maximized score correlation, should be preferred to tests 3 and 4 as it is
more flexible and appropriate in practical applications. The statistic of Patefield's
test 2 considers the correlation between row and column scores maximized over
ordered values of those row and column scores, i.e.

where

R = I w, s : Σ ni wi = °> Σ n-3si = °' Σ n* wi = n >
{ i 3 i

ASJ = 71.., W\ < tl?2 S ^r? s l S 5 2 S S 5 c

and

Through simulation and Monte Carlo power study, it was shown that test 2 and
test 1, the likelihood ratio test, have similar power. Therefore, test 2 should
be preferred to test 1, the likelihood ratio test, on the ground of computation
feasibility. However, when the sample size is large or when tables have higher
dimensions, full enumeration of the conditional sample space is impossible and the
random sampling technique is used.

4. A Sign Test. In this section, an intuitive sign test is considered to test
the hypothesis of HQ : u^^ = 0 for all i, jf against the alternative hypothesis that
Ht : u^'ri > 0 for all ij and u&fi > 0 for at least one pair of (i, j).

Considering

as an unbiased estimator of the cross-product difference u^\ Lee (1988) intro-
duced a test statistic as follows. Let
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S=

where sgn x = l{x > 0} denote the indicator function for positive values of x. That
is, the test statistic S is simply the number of 2 X 2 subtables, formed by adjacent
rows and adjacent columns, such that the corresponding cross product difference
statistic ύtf is positive. Since positive association in many 2 x 2 subtables (i.e.
many ύ^ > 0) will provide strong evidence for the alternative H\, one rejects
Ho, if the value of S is sufficiently large.

Instead of using the delta method which would lead to lengthy calculations,
the method of U statistics can be used to derive the asymptotic distributions of
the ώjy s. It can be shown that the joint distribution of

is asymptotically normal with mean vector zero and variance-covariance matrix

4Σ (see Serfling (1980)), where Σ = (σ{ij)(i'j'))ιs g i γ e n by

y1)), with

Λ) = ^ ^

+ ftjW+ij+iA-ij+i] /4-u^u^'1^

g ^ = 0 for all other (s,t).

To derive the asymptotic null distribution of the test statistic 5, it suffices to
compute the probability P(S = m) under Ho for any m = 1,2,.. .(r - l)(c - 1).

P(S = m)

& J ) j j J ) > 0, 4Jj

ή ( ) (

where Σ2cm denotes summation over all possible combinations of m distinct ele-
ments {(ή,ii),..., (imJm)} from {(1,1),..., (r-1, c-1)} and where {(im4.i,im+i),
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.. ,(2(r-i)(c-i)?J(r-i)(c-i))}} ίs its complementary set. It can be shown that
P(S = m) converges to a sum of integrals of a multivariate normal over certain
quadrants.

Since this is essentially a test based on signs, it is not very powerful for 2 x 2
tables. The proposed sign test is not recommended for 2 x 2 tables. For the case of
(r - l)(c - 1 ) = 2, that is, for 3 X 2 (or 2x3) tables, explicit formulas for P(S = m)
can be derived.

EXAMPLE 4.1: 3 x 2 tables. In this case, the {/-statistic considered has values
in a two-dimensional space. It is known that the mass attributed to the positive
quadrant by a standard bivariate normal random vector with correlation coeffi-
cient p is given by 1/4+ (arcsin/>)/2τr, (see Johnson and Kotz (1976)), and this
probability is invariant under the scale transformation.

Therefore,

P(S = 2) = PiύftV > 0, fij}4) > 0)

= \ + ±- arcsin (-1(1 + - ^ - Γ θ ,
4 2π V Pi.Ps. )

P(S=1) = 1 - 2 P ( 5 = 2),

P(S = 0) = P(ύ$1] < 0, tij}'1* < 0) = P(S = 2).

Consider the following 3 x 2 table from the sample.

yι y2 total

xi 23 13 36
x2 1 1 2
x3 20 31 51

total 44 45 89

The test statistic S is equal to 2. The proposed test of independence has a sig-

nificance level of 0.048. In this case a chi-square test has a significance level of

0.077.
For higher dimensional tables, one may use Monte Carlo methods to evaluate

multivariate normal orthant probabilities and then compute the asymptotic null
distribution if the table dimensions satisfy the condition that (r — l)(c - 1) < 20.
An efficient evaluation method is given by Evans and Schwartz (1986). Note
that unlike the exact test procedures, the proposed sign test has the advantage
that increasing sample sizes will not add difficulties to the computation of the null
distribution. Hence the proposed sign test procedure is more appropriate for tables
with large sample sizes.

EXAMPLE 4.2: Monte Carlo Simulations for Higher Dimensional Tables. Con-

sider the following data set referred to by Kasser and Bruce (1969), BMDP (1979),

and Nguyen and Sampson (1987).
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Coronary Function and Activity for Patients Under Age 51

Functional Class

Active
None or
Minimal Moderate Severe Total

Very
Normal
Limited

4
8
1

2
14
2

0
2
4

6
24
7

Total 13 18 37

In this example the test statistic S is equal to 4. Using the Monte Carlo simulation
method derived by Evans and Schwartz (1986), based on a sample of 10,000,
the estimated level of significance is equal to 0.028492 with a standard error of
0.0000534. A chi-square test has a significance level of 0.011.

5. Discussion. For each exact test reviewed in Section 3, the test procedure
requires calculation of the corresponding test statistic for each element of the
conditional sample space, i.e. for each table having the same marginal totals as
the observed tables. This kind of approach is feasible for small tables with small
sample sizes, but when the sample size is large or when the table has much higher
dimensions, full enumeration of the conditional sample space is impossible. See
Gail and Mantel (1977) for an approximation of the number of r x c contingency
tables with fixed marginals.

The sign test discussed in Section 4 does not have this restriction as it does
not depend on the conditional sample space of tables having fixed marginals. The
simulation method used for evaluation of the null distribution of the sign test for
high dimensional tables is relatively efficient. See Evans and Schwartz (1986) for
a discussion of the efficiency of the simulation method for evaluating the orthant
probability of a multivariate normal distribution. Comparisons of the sign test with
likelihood ratio tests using Goodman's association models are being considered.
The comparison results will be discussed in another paper.
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