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Protein structure classification and prediction is introduced and elaborated
for the application of standard and new statistical classification, discrimination
and regression methods. With the sequence to structure to function paradigm
in the background, methods of secondary and tertiary structure prediction will
be reviewed and super-secondary classes and of fold classes will defined. We
apply two branches of statistical classification - methods based on posterior
probabilities and methods based on class conditional probabilities - and we will
explore the role of artificial neural networks for the protein structure prediction.
The procedures will be applied to a set of 268 previously described protein

sequences for their statistical performance in the prediction of the four super-
secondary classes and also in the prediction of 42 fold structure classes.

1. Introduction. Knowledge of the three-dimensional (3D) structure of a
protein is essential for describing and understanding its function and for its use
in molecular modeling [Fasman (1989)]. The impact of the structural knowledge
for medical interventions and the understanding of diseases and their evolution
has been clearly demonstrated [Branden and Tooze (1991), Gierasch and King
(1990)]. Knowledge of the 3D structure of hemoglobine [e.g. Perutz (1978) Dick-
erson and Geis (1983)] enabled researchers to increase its oxygen capacity. This
was the first and crucial step of a development which resulted in a synthetic
hemoglobin substitute with consequences for blood transfusion [Mickler and
Longnecker (1992)]. On the other hand, sickle cell anemia is caused by a sin-
gle mutation in the amino acid sequence of hemoglobin, a change from Glu
to Val on the surface of the globin fold [see Branden and Tooze (1991) p. 39]
which causes movements of the a-helices relative to each other and makes the
cell membrane more permeable to potassium ions. The disease is lethal for ho-
mozygotes, but increases the resistance to malaria in heterozygotes by killing
the parasite through the drop of the potassium ion concentration. Therefore,
the determination of structure is useful in different aspects: altering an existing
protein’s function (protein engineering), creating a protein de novo (protein de-
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sign), or understanding the evolution of diseases. Understanding and predicting
how sequence information translates into 3D structure and folding of the then
biologically active protein (functional properties) has become one of the most
challenging problems in current molecular biology [Sternberg (1996)]. A solution
of the protein folding problem would have great implications on interpreting se-
quence data as those created by the Human Genome Project. It would improve
gene function analysis with implications on understanding hereditary genetics
and diseases and it would provide clues for drug design and biological engines
with considerable commercial consequences (see e.g. Cambridge Healthtech In-
stitute: hitp://www.healthtech.com/).

The three-dimensional structure of a protein is determined physically by the
3D coordinates of all atoms of the protein. It is mostly obtained by x-ray crys-
tallography and for smaller proteins also by NMR (nuclear magnetic resonance),
see Branden and Tooze (1991). This determination has been achieved at present
only for a small percentage of known proteins. On the other hand, the extraor-
dinary improvement of the efliciency of modern sequencing techniques creates a
large gap between the number of sequenced proteins and the number of struc-
turally ‘explained’ proteins. Figure 1 shows the sharp increase of the number
of entries of proteins sequences and protein domains in the SWISSPROT data
base compared to the much tardier increase of proteins of known 3D structure
in the PDB data base [Bernstein et al. (1977), Bairoch and Apweiler (1997),
Benson et al. (1997)]. Since the Human Genome Project will generate an enor-
mous amount of protein sequences more over the next few years [Rowen et al.
(1997)] this gap will increase rapidly. The need to bridge the gap has called
for biochemical and biophysical methods for the determination of the 3D struc-
ture which circumvent x-ray and NMR and use the basic sequence and physical
properties of the building blocks of proteins. The protein fold problem poses
itself then as the question [Richards (1991)]: How to predict the 3D structure
of a protein from its amino acid sequence? This question had been around in
protein research since the seminal proposition of Anfinsen (1961) to predict the
conformation of a protein on the basis of its linear amino acid sequence. From
there originates the hypothesis that the sequence of amino acids of a protein
is necessary and sufficient for the determination of the 3D structure and, con-
sequently, for its function. Almost 40 years later this problem is still in the
center of theoretical and practical biotechnological protein research. Although
unsolved in its original sense, the question continues to elicit important research
results of structural biology and molecular modeling.

Anfinsen’s hypothesis suggests that the amino acid sequence together with
physical and chemical principles should suffice to determine the forces responsi-
ble for the folding and determination of the ultimate 3D structure. One approach
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Growth of the Sequence Database SWISSPROT
Compared to the Database PDB of Protei Structures
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Fi1G. 1. Increase of the number of entries of sequences of proteins and protein domain in SWISSPROT
data base and of the sequences of known 3D structure in the PDB data bank.

has been the ab initio calculations which combine biophysical, biochemical, and
quantum mechanical calculations with molecular modeling in order to determine
the native protein and its 3D structure from the denaturated and unfolded pro-
tein [Dinur and Hagler (1991), Defay and Cohen (1995)] by simulating dynami-
cally nature’s folding pathways [Creighton (1984, 1990)]. An increasing number
of proteins could be constructed this way (see e.g. recent issues of the journal
Protein Engineering) but the method is still far from being applicable to large
proteins or to be used generally.

A second approach formulates the protein folding problem in terms of math-
ematical physics. This point of view has been reviewed excellently by Neumaier
(1997) who provides also a survey of most of the relevant literature on chemical
structure and local geometry of a protein and molecular mechanics. Focussing
on mathematical models and molecular dynamics, quantitative 3D prediction
applies (global) optimization of the potential-energy functions, directly making
use of the physical forces between the atoms in the poly-peptide sequence of
the protein. This method is computationally intensive and can succeed only
if its able to find the global energy minimum which determines the ultimate
3D structure. The limitations of this method are in the computational com-
plexity combined with the intrinsic problem to avoid local energy minima. A
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third approach evolved recently from machine learning and artificial intelligence
and claims to predict structural classes of proteins from the basic amino acid
sequence and features derived from that [Holley and Karplus (1989), Lambert
and Sheraga (1989), Friedrichs et al. (1991), Taylor (1992)]. Although success
was rather limited [Schulz (1988)] this approach is appealing because of its
new information theoretical access to the problem. It has attracted computer
scientists, biomolecular modelers, bioengineers and biophysicists to use espe-
cially artificial neural networks (ANN) for the classification and prediction. The
goals were lower in this case: not the quantitative prediction of the ultimate 3D
structure but the prediction of the qualitative appertaining to a limited number
of folding categories was searched. In principle, all three approaches could not
reach their goal because of the problem’s complexity which translates almost
immediately into computing complexity as e.g. when biophysical methodology
is combined with modern computer algorithms or when all possible configura-
tions are screened for those with low energy [Neumaier (1997)]. Therefore, the
search for better prediction methods is ongoing [see Defay and Cohen (1996)
and the endeavors of the Ansilomar Conference from 1994].

So far, this type of protein prediction was without much interaction with
statistics, although standard statistical methods such as regression, discrimi-
nant analysis, and cluster analysis have been applied to a variety of prediction
problems with considerable success. To our knowledge, traditional statistical
techniques have not been applied systematically to the protein folding problem.
The protein structure prediction problem is usually complicated. This fact may
have deterred researchers from using standard statistical methods to predict pro-
tein structure. However, if statistical methods could be applied to this problem
it would be very interesting to compare their performance with that of machine
learning and artificial neural networks. More attention could then be given to
the assumptions of the procedures, the sampling of the data and the realism
of the error probabilities and the prediction accuracy. By this work we want to
add statistical classification and statistical methodology of pattern recognition
to the toolbox for predicting protein structure directly from the sequence infor-
mation, and we want to initiate the exchange and transfer of methods between
the disciplines of protein research and applied statistics.

In principle, biophysical methodology should be able to define the unique
structure of a protein from the atomic structure of the amino acids in the se-
quence. At present, it fails with the complexity of the calculations. Therefore, it
may be a reasonable strategy at this stage to develop methods that exploit both
types of information, the biophysical information from molecular mechanics and
the statistical information from classification and regression on sequences. We
can not be sure that this combination will lead soon to a breakthrough for this
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knotty problem but it will require innovative collaboration between molecular
biologists and statisticians. Interaction of the two disciplines could push the
problem one step further to its solution. The following methods and ideas rep-
resent a statistical contribution to such a collaboration. In other words, the aim
of this paper is to introduce statisticians to the subject, to provide some back-
ground of the problem and to improve the interaction between statisticians and
computer scientists for approaching the statistical problem of classification and
prediction of protein fold class.

Below, we will provide a short introduction to protein structure prediction
and to some of the results achieved. We will introduce in the next section the
biological problem of fold class prediction and review shortly previous methods
of fold classification and prediction. This will comprise the data structure of
the amino acid sequence and the definition of the statistical classification and
decision problem such that it becomes amenable to regression, discrimination
and classification methods. Section 2.2 provides a short review of the methods
used for secondary structure prediction and their achievements. Based on the
secondary structure we define the four supersecondary classes which have to be
predicted by the statistical methods we will introduce later. Section 2.3 intro-
duces tertiary structure and fold prediction. Emphasis is given to the statistical
content of the methods used previously by protein researchers. In Section 2.4
we will present standard and new regression and discriminant methods to be
used competitively for prediction including the neural nets. These methods are
applied in our case study of a data set of 268 protein sequences [Grassmann
et al. (1998)] described in 2.5 which we investigated recently in collaboration
with colleagues from the biophysiscs discipline in our research program. Selected
results of the fitting of the models to these protein data will be given in Section
3 and discussed in Section 4.

2. Methods.

2.1. Proteins and their classification. From a chemical point of view, a pro-
tein is a polymer or polypeptide consisting of a long chain of amino acids linked
by peptide bonds to a one-dimensional directed polypeptide chain, see Bran-
don and Tooze (1991) for an illustrative introduction. Important for the 3D
geometry is that fact that each amino acid in the sequence contains a central
carbon atom (Cy atom) and that each amino acid is characterized by its side
chain (residue) attached to the C, atom. Interatomic forces bend and twist the
protein into a characteristic 3D folded state. The sequence of the C, atoms
represents the so-called backbone of the protein. Their three-dimensional coor-
dinates represent the genuine 3D structure. For the local geometry and all other
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details see Neumaier (1997).

Nature has provided twenty amino acids; see Brandon and Tooze (1991) or
any standard monograph on molecular biology for a listing and characterization.
A protein of length N is then formally represented as an ordered sequence

P:‘ (31,... ,SN)

with elements s; from the finite set A = {4;,..., A20}. The length of proteins
varies considerably between the tens and a few thousands. An average sized
protein has a length of 100-200 amino acids. For combinatorial reasons the
number of possible proteins is therefore huge: Given an averaged sized protein
of 150 amino acids, the number of possible sequences would be 201%° ~ 102%°. At
present, the number of proteins existing in living nature is not known. Based on a
number of assumptions, Zhang (1997) estimated the number of human proteins
roughly to 5 — 10x10°. Similarities of the shape and functional similarities
of proteins motivated researchers to define structural classes for proteins, say
classes C,... ,Ck. The largest set of structural classes would be obtained by
the complete description of a protein by all C, atoms and their 3D coordinates.
Although, the determination of the full set of 3D coordinates of the C, atoms
is an important task performed in cristallography [Zanotti (1992)] and NMR
spectroscopy [Torda and van Gunsteren (1992)] broader classifications lead to
structural families. Holm and Sander (1994) describe e.g. 270 fold classes for 838
families with a class occupancy ranging between 1 and 73. Using some type of
sampling statistics and empirical data, Wang (1998) estimates a total number
of 1150 protein superfamilies and about 650 protein folds to exist in nature.
That means we are dealing roughly with a number of sequences of the order of
magnitude of perhaps 10° — 10° to be classified into about 10% — 10? classes,
given all proteins have been once sequenced.

The definition of structural classes of proteins started with the identifica-
tion of local structure in the primary amino acid sequence. There are only
three types of so-called secondary structures: a-helices, [3-sheets and coils (7).
For illustrative details see Branden and Tooze (1991) and Fetrow et al. (1997).
Secondary elements can combine with each other to form motifs or so-called
super-secondary structures which finally assemble globally and form the
tertiary structure. Classification and prediction of secondary structure is con-
sidered also as intermediate step to tertiary structure [Stolorz et al. (1992)].
A very simple global classification is obtained by characterizing the protein by
the presence or absence of a-helices and [(-sheets. This results in four super-
secondary classes (SSC): only «, only 3, one part o plus one part 8 (a+ (), and
a and 3 alternating ( /3 ). Based on topological similarity of the backbone, a
definition of 38 fold classes has been proposed by Pascarella and Argos (1992)
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and recently enlarged to 42 fold classes by Reczko et al. (1994). That set of
classes was later enlarged to 45 classes [Reczko and Bohr (1994)] and further to
49 classes by Reczko et al. (1997).

The raw information given by the protein sequence P = (s;,1 = 1,... ,N)
with elements from A = {A;,..., Az} is usually reduced and restructured for
protein classification and prediction such that each protein is represented by an
element of a suitable predictor space (feature space) X. A very simple example
is the space of the frequency distributions of amino acids, the 20-dimensional
unit cube X = [0,1)*° where each protein is represented by a vector (fi, ... , fa0)
of the relative frequencies of the 20 amino acids in its sequence. Other feature
spaces have been constructed by some type of ‘reading’ information. There, a

moving window z;(®) = (s;,8;41,... ,5;4a1) say of length a, is gliding along
the protein sequence (Figure 2). The sample z;(®),5 = 1,... , N represents the
sequence P = (s1,...,sy) and a suitable feature space X is e.g. the space of

the frequency distribution of all a-tuples with elements of A. Special cases are
the dipeptides obtained for a = 2 which give raise to a 400 dimensional space
of dipeptide frequencies. We consider in the following the complete protein as
sampling unit. In some cases, sequences of sub-domains of proteins or motifs
were treated as independent samples even if they originated from the same
protein. Two feature spaces X will be used in our analysis: Firstly, the space of
the amino acid frequencies (AAF)

Xll.’L':(fl,-")fn)

where f; denotes the relative frequency of the amino acid A; in the sequence.
Secondly, the space of the dipeptide matrices (DPF)

X2 = (fl,l,.-- ,f1,20,f2,1,c-~ ,f2,20,... ,...f20,1,... ,f20120)

where f;x denotes the relative frequency of the amino acid pairs (4;, Ax) in an
ordered sequence of residues (the case of a moving window of length a = 2).

A classification / prediction rule R is a rule which maps the feature infor-
mation z € X of each primary sequence P = (s1,...,$y) into a finite set of
structural classes C = C,...,Ck. For convenience, the structural classes Cy
are represented by the consecutive numbers {1, ... , K'}. From a statistical point
of view the protein structure prediction is nothing more than a prediction of an
element of a finite set of structural classes based on information zinX where
X 1s an Euclidean Space, e.g. a subset of R",n > 1. However, the space X is
not straightforwardly given in practice. There are many options to define X,
see above, such that it represents relevant information and is still dimensionally
tractable. When using moving windows z;(*), the window size a can be chosen
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window of length a
at position j

Sjs Sj+15 .- 5 Sj+a-1

FiG. 2. Moving window information read from the protein sequence. A moving window of length 5§
glides in this example from the left to the right. At the start (and at the end, respectively) the segments
have to be augmented by spacers.

depending how much neighborhood information is thought to be useful. Given
only a limited number of observations available in practice, one has to account
for the sparseness of data in X.

2.2. Secondary structure prediction. Because of its direct connection with the
SSC classification used below and because of the wealth of previously obtained
results we address here secondary structure prediction for further illustration.
The secondary structure of the amino acid sequence is defined as a local property
and induces an one-to-one mapping

RSEC:P=(81,... ,SN) — Q=('r‘1,... ,TN)

from the set of all possible sequences {(s1,...,82): 8; € A,1=1,...,n,n =
1,2,...} to the set {(ri,...,mn) : 1 € (0,B,7),¢4 = 1,...,myn = 1,2,...}.
Each element of P is mapped onto exactly one element from {a,ﬂ,’y}. The
rule Rspc assigns to a protein its secondary structure @ as an estimate Q=
(1,...,rn) depending on a sample of n known pairs (Pj,Q;)j = 1,...,n, of
proteins and structures.
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Let us use this framework to consider the definition of a classification error.
The naive per protein error rate is the ratio w/N of the number w of incorrectly
assigned secondary classes of the residues of that protein P of length N. This
error is further differentiated with respect to the three secondary types. This
yields a misclassification table or confusion matrix [Ripley (1996) Chap. 2.7):

True Class
| @ g g .
«a Waa Wag Wey N,
Assigned B Wga wag Wgy Ny
Class 0 Waq Wy Wy N,
Na Ng N, N

The diagonal contains the number of correctly and the-off diagonal contains the
numbers of incorrectly classified amino acids. Therefore,

ei = (Ni —wi)/N;

is the structure specific error rate, 1 =1,2,3, and

€ = (N—i:wu) /N

the total error rate, usually denoted by @3 in secondary structure prediction.
If classification or prediction is performed for a set of proteins one calculates
an overall structure specific error rate and overall total error rate by pooling
all residues of all the proteins. Another measure of discordance is the so-called
Matthew correlation [Matthew (1975)] defined as

wii (E_%‘k) - (E w,-,-) (Z wﬁ)
MC,: = Jik#i J#i J#i
J# J#i

for :+ = 1,2,3. MC; is up to the factors N; the square root of the chi-square
statistic for the classification into the i-th secondary structure category if the
data are organized as a four fold table with the numbers w;; of correct classifi-
cations into category i and the numbers ) ._; ., wjk of correct classification
into the non-¢ category.

Other error estimates are obtained by splitting the data into a training set
and a test set and calculating the training error rate and the test error rate, or
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TABLE 1
Previous results on secondary structure prediction.

The overall percentage of prediction (Q3 accuracy) is given and where available the sample sizes
of the training and the test set in brackets [n(training), n(test)]. In some cases the method could
not be described in short terms and is missing (—). If more than one result is published, only the
best is reported. In two cases where only the individual predictions for the a-helices and the 3-sheet
was published those are reported in parentheses. jack = jackknife procedure, CV(z) = z-fold cross
validation. For references see http://www.dkfz-heidelberg.de/biostatistics/protein/protlit. html.

AUTHOR METHOD %

Lim (1974) physico-chemical characteristics 59

Chou & Fasman (1978) preference index 57

Garnier et al. (1978) GOR, maximum likelihood 56

Gibrat et al. (1987) GOR 11 63

Zvelebil et al. (1987) GOR + evolutionary conservation 66.1 [-,11]

Levin et al. (1986) KNN + homology 62.2

Biou et al. (1988) GOR Combined, 65.5 [67,-; jack]

Levin & Garnier (1988) KNN 63.0

Holley & Karplus (1989) ANN 63.2 [48,14]

Qian & Seinowski (1988) ANN 64.3 [91,15]

Rooman & Wodack (1988) - 62

Kneller et al. (1990) ANN + a priori information 65

King & Sternberg (1990) symbolic machine learning 60 [43,18]

Muskal & Kim (1992) tandem ANN - o 95.0 [105,15)
tandem ANN - 8 95.4

Salzberg & Cost (1992) machine learning 71 [100,28]

Stolorz P et al. (1992) tandem FNN 63.5 [91,14]

Zhang et al. (1992) ANN, nearest neighbor hybrid 66.4 [107,-]

Sasagawa & Tajima (1992) ANN 56.2  [33,29]

Asai et al. (1993) Hidden Markov methods 66.0 [120,-;jack]

Leng et al. (1993) two level method 69.3

Yi & Lander (1993) KNN + ANN + scoring 68

Rost & Sander (1993) ANN + Jury 70.8 [130,-;CV(7)]

Rost & Sander (1994) - 72.5

Ellis & Milius (1994) GOR 62.2 [239,]

Wako & Blundell (1994) - 7 [14,]

Geourjon & Deleage (1994) self-optimized, binary, similarity 69

Solovyev & Salamov (1994)  LDA + multiple alignment 68.2 [126,-;jack]

Barlow (1995) hierarchical mixture of ANNs 63 [91,14]

Salamov & Solovyev (1995) KNN + scoring table 72.2  [126,-]

Chandonia & Karplus (1996) FNN+4 sequence profiles 72.9 [318,-;,CV(32)]

DiFrancesco et al. (1996) Logistic regression 71.5 [115,-;CV(7)]

Frishman & Argos (1997) local pairwise alignment 74.8 [125,-;jack]

Ito et al. (1997) 3D-1D compatibility /pseudo energy  69.3  [325,77]

Kawabata & Doi (1997) BW-mod GOR + mult. alignement 68.2 [126,-:CV(7)]

Fiser et al. (1997) Deleage method - o 68.6 [80,-]
Deleage method - 8 65.0

Levin (1997) KNN 72.8 [372,111]

(update of Levin & Garnier, 1988)
Rychelwski & Godzik (1997) segmented similarity after alignment 72.4  [256,256]
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by calculating a cross-validation error (CV) or the jackknife error [Efron and
Tibshirani (1993)], see also Grassmann et al. (1998).

Table 1 gives an overview of the development of the secondary structure
prediction. Since its beginning, prediction accuracy has improved from less
than 60% to more than 70%. Among the methods not using intrinsic biochemi-
cal information were mostly the nearest neighbor methods and artificial neural
networks (ANNs). From a statistical point of view to mention is the quadratic
logistic regression applied by DiFrancesco et al. (1996). They obtained a pre-
diction error of 27.6% (with 7 fold CV). Interestingly, this rate was reduced
to 21.5% when they incorporated techniques from bioinformatics as e.g. the
relative frequencies of residues at each position after multiple alignment of ho-
mologue sequences, a variability score describing conserved residue patterns, or
insertions and deletions. For details of the statistical modeling and the perfor-

mance of the maximum likelihood estimation method see Di Francesco et al.
(1996).

2.3. Tertiary structure prediction. Prediction of 3D structure is extremely
complicated and has been confined to only a small number of shorter sequences.
An illustrative view of the present state of tertiary structure prediction is ob-
tained from reports on the recent contest of the Asilomar Conference in 1994
[Defay and Cohen (1995)]. Out of 33 proteins 14 were examined successfully in 12
laboratories. Fold prediction from primary sequence information was performed
by 9 research groups performing 23 predictions on 11 sequences and obtaining 4
totally correct predictions. Hubbard and Park (1995) classify in another exercise
9 out of 27 sequences. They apply methods based on evolutionary information
contained in multiple sequence alignments and hidden Markov models using
various computer algorithms and alignment scores. In contrast to these predic-
tions aiming at the 3D structure we will consider in our statistical classification
two sets of classes:

a) the four super-secondary classes (SSC) defined above:
C = {only a, only 3, one part a plus one part 8 (o + ), and « and
alternating (/@) }
b) the 42 classes of Reczko et al. (1994) based on topological similarity of the
backbone and presented by the numbering of the classes (www|[2]):
C={1,2,...,42}
The SSC were chosen for our study for reasons of convenience and because of
the possibility of comparison with the work of Reczko et al. (1994). SSC has
also been investigated by Geourjon and Deleage (1994) and Efimov (1994), also
Barton (1995). Supersecondary structure beyond these four classes has been
investigated by Sun and coworkers. They used a vector projection method [Sun
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et al. (1996)] and later also a feed forward neural net with one hidden layer
of about half of the number of input units [Sun et al. (1997)] to predict a set
of 11 standard motifs in 56 non-redundant proteins selected from a set of 240
sequences from the PDB. The motifs were defined as potential building blocks
for tertiary structure and are characterized by a well defined 3D structure related
to the backbone [Sun and Jiang (1996)]. Prediction accuracy obtained with the
neural net for the 11 super-secondary classes of motifs ranged between 68% and
80% [Sun et al. (1997)] and was similar to the accuracy obtained in secondary
structure prediction (Table 1). The vector projection method [Sun et al. (1996)]
was tailored to those motifs and yielded an accuracy between 83% and 96%. This
result may encourage stepping from primary via secondary to tertiary structure
prediction. Reczko and Bohr (1994) actually tried this approach to some extent
by combining the 42 fold classes with the SSC and they could improve their
previous accuracy of 71% for the SSC prediction to about 91%.

2.4. Statistical methods. The problem the classification and prediction of sec-
ondary or tertiary structure can be formulated statistically in the framework
of statistical decision theory. For this purpose we refer to Chapter 2 in Rip-
ley (1996). General statistical decision theory and especially the background
of Bayesian methods are found in the monograph of Berger (1985). Stolorz
et al. (1992) introduced and discussed Bayesian analysis for secondary structure
prediction. Grassmann et al. (1998) identified statistical methods of classifica-
tion and discrimination as possible tools for fold prediction and applied them
straightforwardly. They distinguish two cases: (1) methods based on the posteri-
ori class probability and (ii) methods based on the class conditional probability.
In both cases, an input vector z is assigned to its structural class k by a decision
rule d(z). The input vector z = (z1,...,p) is an element of the feature space
X associated with the sampling units (i. e. the protein sequences), the struc-
tural class k is an element of C associated with the protein fold classification.
Random elements of X and C are denoted by X and C, respectively.

(i) posteriori class probability
Case (i) builds the decision on the posteriori class probability of class k given z

p(klz) = P(C = k|X = 2)
A sequence z is assigned to that class k for which p(k|z) is maximum. This

assignment minimizes the total risk if a standard loss function is assumed [Ripley
(1996) Chap. 2.1]. Such, the decision rule d(z) is given as

d(z) = {k € C : p(k|z) = max; p(j|z)}
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This decision rule is directly related to regression which enables the application
of logistic regression and in its sequel the use of the feed forward neural networks.
Set

(2.1) fi(z) = EYi|z] = P(C = k|z) = p(k|z)
where Yi,k = 1,... , K are “dummy” variables coding the class variable C' as
follows

Yo=1 if C=k and Yi=0 if C#k

An example is the multiple logistic model

(2.2) fe(z) = p(klz) = kexp(nk(w))
mZ=)1 exp(1m(z))

with the linear predictor nx, = 3-z [Ripley (1996) Chap. 3.5]. This generalizes the
well known correspondence of Fisher’s linear discrimination and linear regres-
sion. Maximum likelihood methods are used to fit the model and to estimate
fe(z) = p(k|z). The multiple logistic regression (2.1) and (2.2) is equivalent
to the single-layer feedforward neural network (FNN) which uses as input the
feature vector ¢ = (z1,...,z,) € X and has the K output units Y;,...,Yx.
ne(z) = wiT - z represents the output function with weight vectors, see e.g.
Grassmann and Edler (1996) and Schuhmacher et al. (1994). Below, we will ap-
ply this FFN and also the feedforward network FNN(H) with a layer of H hidden
units [Ripley (1996) Chap. 5). To minimize the error between the current state
net output and the target output we use as error function the Kullback-Leibler
distance which is equivalent to the use of the likelihood function. Weight decay
regularizes the FNN. Notice, the number of hidden units plays an important
role for the structure of the non-linearity and the dimension of the parameter
space. Two further regression methods based on the posterior class probability
are applied below as described in Grassmann et al. (1998). These are the ad-
ditive model of Hastie and Tibshirani (1990) known as the so-called BRUTO
method [Hastie et al. (1994)], and the projection pursuit regression (PPR) of
Friedman and Stiitzle (1981).

(ii) class conditional probability Case (ii) builds the decision on the class
conditional probability of the feature z given the class k

p(zlk) = P(X =z|C =k)
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Using Bayes formula

p(kl|z) =

the decision rule d(x) can obviously be rewritten as
(2.3) d(z) = {k € C : p(z|k) - p(k) = max; p(z|j) - p(s)}

The prior probabilities p(k) are either assumed to be known or they are esti-
mated by the relative class frequencies p(k). The conditional densities p(z|k)
can be estimated either by assuming a parametric model p(z|k, ) or by non-
parametric methods (kernel or nearest neighbor methods), see Ripley (1996;
Chap. 2 and 6). Assuming for p(z|k) the multidimensional normal density as
a parametric family we obtain the Linear Discriminant Analysis (LDA). As-
suming different variance-covariance matrices for the different classes yields the .
Quadratic Discriminant Analysis (QDA). If the number of classes is large and
if the number of available sequences with fold structure information is limited,
the full QDA requires the estimation of a too large number of unknown param-
eters. Therefore QDA is restricted to the so-called QDA-MONO where only the
diagonal elements (variances) differ between the classes.

Finally we use the K-Nearest Neighbor Classification (KNN) which assigns
an object with feature vector z to the majority class of its neighbors. Decision
rule 2.3 is applied with an estimate of the class conditional probability of the
form

. _ By

where By denotes the number of the K nearest neighbors of z that belong to
class k, ny is the total number of objects in class k, and A(K, z) is the content
of the smallest hypersphere containing the K nearest points to z [Ripley (1996)
Chap. 6.2). The methods described above were computationally realized by S-
Plus software (e.g., lda, gda, fda, knn).

2.5. Data. The data used for illustration of the statistical classification and
prediction described above originate form Reczko et al. (1994). They considered
268 proteins including a few sub-domains which had been classified into the
four SSC and into 42 fold categories related to the Pascarella and Argos (1992)
classification. Figure 3 exhibits the frequency of the SSC in the data set of the
268 protein sequences. This sample was subdivided into a training set of 143
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F1G. 3. Occupation frequency of the four supersecondary classes (SSC) of the data set of 268 se-
quences.

sequences and a test set of 125 sequences [same as used by Reczko et al. (1994))
by random sampling stratified according to the 42 classes such that each of the
42 fold categories was occupied at least by one sequence in the training set and
in the test set and otherwise balanced at best, but putting ‘excess sequences’
into the training set, see www[2] for the set of sequences, the partition and the
classification into the SSC and the 42 fold classes. Tentatively, we used a second
partition with sizes of the training set and the test set in the ratio of about
2:1. In this case 90 proteins were randomly sampled into the test set and 178
remained in the training set.

3. Results of the prediction analysis. In this section we will illustrate
the application of the methods described above through prediction based on
primary sequence information. We used two simple feature spaces: the amino
acid frequencies X; and the dipeptide matrices X,. Since the number of 143
sequences in the training set was smaller than 400, the dimension of X, a prin-
cipal component analysis (PCA) was applied in order to reduce the dimension.
Deliberately, we set the cut off point to 90% explained variation and obtained
so 74 remaining components. This defined a third feature space X3 of dimension
74. For the use of PCA in protein classification see also Ferran et al. (1993).
Table 2 outlines the classification task depending on the chosen feature informa-
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TABLE 2
Outline of the classification task.

Classification was considered for two sets of classes: the supersecondary classes (SSC) and the 42
fold classes based on the backbone topology of Pascarella and Argos (1992). Feature information
was available as the amino acid frequencies (AAF), the dipeptid frequencies (DPF), and the 74
first principal component values of the DPF: (DPF-74PC). The notation p — K informs on the
dimension p of the feature space and the number of classes K. The DPF column was not realised in
this evaluation because of the too large dimension of the feature space X in relation to the sample
size.

Feature Information

Classification AAF DPF DPF-74PC
SSC 20 — 4 (400 — 4) 74— 4
42-CAT 20 — 42 (400 — 42) 74 — 42

tion (AAF or DPF) and the chosen classification (SSC or 42-CAT, the 42 fold
classes). The error rate of the reclassification of the training sequences gives rise
to the apparent prediction error (APE) which was determined to judge over-
fitting. As objective measures for the prediction error we calculated the test
prediction error rate (TPE) and the cross validation error rate using a 10-fold
cross validation (CV-10). We will focus here on prediction based on the AAFs
of the SSCs (‘20 — 4’) and of the 42 fold classes (‘20 — 42’).

3.1. Results for the case 20 — 4. Figure 4 summarizes the error rates for
the prediction of the SSCs through the AAFs (‘20 — 4’ case). Table 3 provides
the error rates numerically. The FNN reached perfect apparent prediction on
the training set with 7 and 9 to 14 hidden units in our standard splitting of
143 training and 125 test sequences, see Table 3 upper part. The test error rate
(TPE) and the cross validation error rate (CV) decreased with few minor excep-
tions when the number H of hidden units is increased from 0 (logistic regression)
to 10. Increasing H forced the error rates to a plateau. Increasing H further lead
to numerically unstable estimates. Best prediction accuracy was 77.6% (22.4%
CV(10), 23.2% TPE) obtained with an FNN(10). Projection pursuit regression
(PPR) could almost reach this accuracy, see Table 3 middle. With a compara-
ble number of terms (H’ = 12), PPR could even beat the FNN(10) in terms
of TPE (22.0%). PPR became less predictive with a higher number of terms.
The discriminant analysis methods performed reasonably good, except the full
QDA, which is obviously over-parameterized. QDA showed a perfect prediction
on the training set, but it became a disaster on the test set also in terms of the
CV error. Remarkably, QDA-MONO yielded one of the best results in ‘20 — 4’
with 20.1% CV error. The additive model (BRUTO) performed almost identical
to the LDA. It is also seen that the discriminant based methods show almost
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no over-optimism in the apparent error rate (LDA: APE = 30.1 versus CV =
29.5, QDA-MONO : APE = 18.2 versus CV = 20.1). We investigated another
splitting of the data into a larger training set and a smaller test set of a ratio of
about 2:1 but we obtained worse results (see error rates in parentheses in Table
3). The better performance of QDA-MONO compared to LDA is exhibited in
the discriminant plot in Figure 5. The three classes only « (1), @ and 3 alter-
nating (a/B3) (2), one part o plus one part 8 (a + 8) (3), and only 3 (4) are
further separated in the QDA-MONO discriminant plot and especially the two
mixed types are better discriminated.

Because of the identity of the data sets we can now compare our results
obtained by standard statistical methods directly with those of Reczko et al.
(1994) who had used a cascade correlation network (a partially recurrent neural

net allowing for varying topologies). Our accuracy is higher than theirs reported
as 71% (TPE = 29%).

3.2. Results for the case 20 — 42. When we predicted the 42 fold classes
from the 20 amino acid frequencies (‘20 — 42’), see Table 4, the prediction
accuracy became worse, as could be expected because of the larger number of
classes. LDA exhibited almost as good results as the FNN(12) in terms of the
test error rate. PPR showed results similar as the FNN as long as the number
of hidden units H and number of terms H’ was small. When increasing H and
H’, PPR became inferior to FNN. The result of QDA was comparable to that
of LDA. The KNN was not calculated in this case.

3.3. Results for the case 400/74 — 4/42. The cases ‘400 — 4’ and ‘74 — 4’,
described in detail in Grassmann et al. (1998), are summarized here for compar-
ison with the cases above. The few successful technically working applications of
the FFNs in the case ‘400 — 4’ were not reliable because of the too high dimen-
sion of the feature space compared with the number of observations. Therefore,
we restricted the analysis to the feature space X3 of the first 74 principal compo-
nents. In the case of ‘74 — 4’ the FNN(10) provided in terms of CV the highest
prediction rate of 77.6%. LDA gave 73.1% and QDA-MONO and BRUTO only
62.7% and 64.6%, respectively. In the case ‘74 — 42’ the FNN(9) provided the
highest prediction rate of 67.5%. LDA yielded an even better result of 69.8%;
QDA-MONO 61.6% and BRUTO 64.6%. The prediction accuracy Reczko et al.
(1994) obtained by a cascade-correlation network was about 73%. They could
improve the classification by enlarging the set of classes to 45 [Reczko and Bohr
(1994)] and to 49 [Reczko et al. (1997)]. They report then an accuracy of about
82% for the 42 classes when using another constraint network.
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TABLE 3
Prediction of supersecondary classes (SSC) from the amino acid frequencies (AAF).

The apparent error (APE), test error (TPE) and cross-validation error are presented for the neu-
ral networks with varying numbers of hidden units: FNN(H) the projection pursuit regression with
varying number of terms H’ PPR(H’, linear discriminant analysis: LDA, Quadratic discriminant
analysis: QDA, quadratic discriminant analysis restricted to varying variances: QDA-MONO, gener-
alized additive model: BRUTO, K-th nearest neighbor method: KNN. The set of 286 sequences were
split between training and test set in two ways denoted by ‘143’/‘125’: (143 training, 125 test) and
‘178°/'90° : (178 training, 90 test).

Classification Error in %

APE TPE CV-10
training set test set cross-validation
‘143’ (‘178’) 125’ (‘90°)

FNN: H hidden units

0 30.8 (34.3) 33.6 (34.4) 36.9

1 41.3 (40.4) 376  (38.9) 42.5

2 25.9 (25.3) 304  (42.2) 33.6

3 30.1 (18.0) 32.0 (35.6) 30.2

4 91  (11.2) 312  (37.8) 31.7

5 2.8 (9.0) 29.6 (28.9) 27.2

6 0.7 (11.2) 320  (289) 26.9

7 0.0 (11.8) 24.0 (27.8) 27.6

8 21  (101) 256  (30.0) 26.1

9 0.0 (11.2) 26.4 (28.9) 26.1

10 0.0 (11.2) 23.2 (27.8) 22.4

11 0.0 (10.1) 20.8 (26.7) 25.7

12 0.0 (2.8) 21.6 (24.4) 24.6

13 0.0 (3.9) 21.6 (26.7) 23.1

14 0.0 (2.8) 27.2 (24.4) 21.6

15 2.8 (2.8) 20.0 (24.4) 19.8
PPR: H’ terms

1 36.5 424

2 25.2 32.8

4 16.8 29.6

8 6.3 24.0

10 0.7 32.8 28.0

12 0.7 22.0

13 0.7 20.0

20 0.0 32.0 27.2
LDA 30.1 (29.2) 36.0 (33.3) 29.5
QDA 0.0 (0.6) 60.0 (72.2) 60.4
QDA-MONO 18.2 (16.9) 28.0 (32.2) 20.1
BRUTO 30.1 (29.8) 36.0 (34.4) 29.5
KNN 0.0 -) 19.2 -) 22.8
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Amino Acid Frequencles: p =20
Superfoiding classes: K =4

Classification efror %
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FI1G. 4. Histogram of the error rates (apparent, test, and cross-validation error rate) of the classifi-
cation into the four SSCs using the AAF information.

LDA: 4 classes and 20 variables QDA: 4 classes and 20 variables (without interactions)
Discriminant Plot for true classes Discriminant Plot for true classes
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F1G. 5. Discriminant plot of the Linear Discriminant Analysis (LDA), upper part, and the Quadratic
Discriminant Analysis without varying interaction (off-diagonal) terms (QDA-MONQ), lower part,
for the classification 20 — 4 of 125 test sequences into the four supersecondary classes (SSC) a (1),

a and B3 alternating (a/B) (2), one part a plus one part B (a + ) (3) and only B (4) on the basis of
the 20 amino acid frequencies (AFF)
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TABLE 4
Prediction of the 42 fold classes based on backbone topology of Pascarella and Argos (1992) from the
amino acid frequencies (AAF).

The apparent error (APE), test error (TPE) are presented for the neural networks with varying
numbers of hidden units: FNN(H) the projection pursuit regression with varying number of terms
H’: PPR(H’), the linear discriminant analysis: LDA, the quadratic discriminant analysis: QDA, the
quadratic discriminant analysis restricted to varying variances: QDA-MONO, and the generalized
additive model: BRUTO. The set of 286 sequences was split into 143 training sequences and 125 test
sequences.

Classification Error in %

APE TPE
training set test set
FNN: H hidden units
0: Log. Regr. 0.0 46.4
1 76.2 74.4
2 59.4 61.6
4 28.0 48.0
6 16.8 32.8
8 9.2 31.2
12 0.7 27.2
PPR: H’ terms
6 61.5 60.8
10 48.3 56.0
15 33.6 48.0
17 27.3 44.0
18 23.1 44.8
LDA 2.8 27.5
QDA 0.0 29.7
QDA-MONO 0.0 71.4
BRUTO 2.8 27.5

4. Discussion. The prediction of protein folds from their amino acid se-
quence is an impressively long-standing challenge in molecular biology and bio-
physics [Finkelstein (1997)]. After a few blind predictions in the seventies it was
realized in the eighties that the efforts are ‘not hopeless’. Two large scale blind
predictions performed in 1994 [Moult et al. (1995), Prediction Center (1996)]
exhibit the difficulty to predict 3D folds systematically if the proteins are not
closely related to previously known ones, see Lemer et al. (1995), Defay and Co-
hen (1995) and Hubbard and Tramontano (1996). Prediction experience of the
past years showed that the most successful tools are knowledge based systems
in combination with experience and statistical methods [Rost and O’Donoghue
(1997)]. To our knowledge, tertiary structure predictors have used almost always
rather small data sets. Statistical procedures which exhibit their power on large
sizes much better have not been applied systematically. Our results obtained
with statistical classification methods show that their application is also ‘not
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hopeless’ and that their combination with biophysical methodology may add
quality to future prediction, which is interesting in face of the fastly increasing
information from the protein data bases. A statistical approach to the problem,
with careful attention to assumptions, variation, sampling, defensible precision
estimates, and realistic estimates of error probabilities, could strengthen exist-
ing procedures as well as provide new ones. Compared with the present aims of
protein prediction [Rost and O’Donoghue (1997)] our results above fall some-
how short when considered for improving the direct protein prediction. This is
not surprising given the simplicity of the feature spaces used in our analysis and
the fact that no physical and chemical properties of the molecular level were
included. Further research is needed when a richer - and then also more complex
- feature space is used, see e.g. the proposal of class-directed structure where
only representative members of classes will be fully structurally characterized
[Terwilliger et al. (1997)]. Our investigation focussed in the role of standard
and new statistical methods with the goal of identifying a possibly best statis-
tical procedure. We considered especially the neural networks. FNNs are in fact
non-linear regression methods subordinated under posterior class probability
based classification. A further aim was the application of these methods on a
larger data set than it has been used in most previous evaluations of automatic
protein fold prediction. From our analyses we conclude that linear discriminant
and nearest neighbor methods are potent competitors to the more flexible neural
networks. The results obtained from the modern discriminant and a regression
methods (e.g., BRUTO, PPR) were mixed. In some cases these methods com-
peted very well in other cases the results we obtained so far were disappointing
in the sense that they were not able to yield an improved prediction and had
sometimes serious problems to cope with the ill-posedness of the classification
problem. Typical for this was the failure of the QDA when the number of input
variables became larger than the sample size. Search for more efficient regular-
ization methods is needed to exploit the power of these new statistical methods.
Previous predictions especially for secondary structure proved the usefulness of
FNNs. This was corroborated in our investigation where the FNNs competed
well with other methods. This is not surprising since the FNNs are non-linear
regression methods and implement standard statistical tools. However, as uni-
versal approximators, neural nets are always in danger of overfitting, which we
experienced in our analysi too. Therefore, the bias-variance trade off has to
be considered carefully. Automatic smoothing and regularization are statistical
methods to be investigated further. A clear disadvantage of all FNNs is the lack
of interpretation of the weights and the fact that quite different weights and
weight patterns can lead to the same prediction outcome.

The optimal method for assessing the validity of the prediction procedure
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would be the use of an independent validation set sampled from the set of all
proteins. We used a test set after dividing the sample of 268 sequences into 143
training and 125 test sequences to calculate the test error rates (TPE). Those
may be still a little optimistic, but the bias is usually in the order of a few
percentages, when compared with the CV error. Similar small biases have been
observed by DiFrancesco et al. (1996) for secondary structure prediction. This
corroborates the recommendation of using some sort of cross-validation error, at
least as long as no independent validation data are available. We calculated the
cross-validation error (CV-10 fold) mostly in addition to the TPE. In some cases
as e.g., PPR, however, computing of the CV error became very time consuming
and was not performed for each architecture. The fact that our error rates
obtained by the statistical procedures are around 30% is not too disappointing
given that no higher order information from the protein was taken into account.
Without that it might be difficult to surpass that margin. Obviously, more
protein sequence data and perhaps both, more informative feature spaces and
functionally more realistic class definitions are needed. Inclusion of information
on distant interaction in the protein sequence and its quantitative presentation
could be as helpful as the use of physico-chemical properties of the amino acids.
At present it seems that the number of classes and the classification itself is
too much tailored to the existing information on 3D structure. The number of
existing relevant structural families is estimated to about 200-500 but present
fold class prediction is limited to much smaller numbers, as our analysis of 42
classes or the analysis of Sun et al. (1996) of 11 classes.

The prediction methods from above assume independent sampling of a com-
plete and correct sequence. Only then are the statistical model estimates and
the accuracy measures valid statistics. However, in practice occur errors during
sequencing and in a number of cases interest focuses in parts of proteins only,
as e.g. motifs. This creates for any procedure - not only the statistical ones - the
errors-in-variables problem and the non-independent sampling problem which
both need further investigation.

Usually, protein researchers distinguish two situations: (i) Presence of se-
quence similarity such that the investigated sequences is similar to a sequence
of known 3D structure in the data base. (ii) Absence of sequence similarity such
that no similar sequence exists in the 3D data base. Similarity is defined as
sequence identity after alignment of at least 25% to 30%, which is at the same
time considered sufficient to infer structural similarity [Rost and O’Donoghue
(1997), Schneider et al. (1997)]. The distinction between (i) and (ii) established
the prediction paradigm: If a protein has been newly sequenced, then search
the 3D data base for at least one sufficiently similar sequence. If one is found
structure and function is predicted from the knowledge available from that. If
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none is found an automated structure prediction is tried by comparing the se-
quence information of the new sequence with the sequence information available
for all proteins whose 3D structure has been clarified so far. In our analysis we
did not account thoroughly for the effect of the similarity between the 268 se-
quences. Details on the sequence similarity is provided in www(2]. However, it
is shown in Grassmann et al. (1998) how with our data the prediction accuracy
decreases when the dissimilarity increases. Further research on the performance
of the statistical procedures is needed on dependency of sequence similarity.
The recently provided representative sample from the PDB data bank of 838
proteins of Holm and Sander (1996) could be an excellent data set. There,
all sequences have less than 25% sequence identity and fall into 270 different
fold classes with class occupancy ranging between 1 and 73, see ftp://ftp.embl-
heidelberg.de/databases/fssp/ .
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