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LARGE COMPOUND POISSON APPROXIMATIONS FOR
OCCURRENCES OF MULTIPLE WORDS

BY GESINE REINERT1 AND SOPHIE SCHBATH2

Department of Statistics, UCLA and Unite de Biometrie, INRA, 78352
Jouy-en-Josas, France.

A compound Poisson process approximation for the number of occurrences
of multiple words in a sequence of letters is derived, where the letters are assumed
to be independent and identically distributed. Using the Chen-Stein method, a
bound on the error in the approximation is provided. For rare words, this error
tends to zero as the length of the sequence increases to infinity. As an application
the efficiency of the approximation for the number of occurrences of rare stem-
loop motifs in DNA sequences is illustrated.

1. Introduction. When searching a database for the occurrence of a com-
bination of several words within a sequence, the typical Poisson approximation
used by programs like BLAST is no longer valid, as overlapping words may
be dependent on each other. Here a compound Poisson approximation for the
multiple occurrences of short words within a sequence is derived. Using the
Chen-Stein method for Poisson process approximation, an explicit error bound
for the approximation is given, improving those obtained by Schbath (1995a)
for a single rare word. The approximation error increases with the amount of
overlap between the words. The results are applied to the occurrences of stem-
loop motifs. Another application might be a set of words coding for the same
amino-acid sequence.

In general, consider a finite sequence S of letters chosen independently from
a finite alphabet Λ. The main example will be the four-letter DNA alphabet
{A, C, G, T} but the results are valid for general finite alphabets such as {0,1} or
the 20-letter amino acid alphabet. An abundant literature exists on the asymp-
totic distribution of the number of occurrences of a single word in such a se-
quence 5. A normal approximation, valid for frequent words, is presented by
Prum et al. (1995). A compound Poisson approximation is obtained in Arra-
tia et al. (1990), Geske et al. (1995) and Schbath (1995a) for the number of
occurrences of a rare word, whereas the number of clumps of a rare word is ap-
proximated by a Poisson variable (as a rule of thumb, a word is rare if its length
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is at least of order logn, where n is the length of the sequence). As soon as one
is simultaneously interested in occurrences of different rare words in a sequence,
the asymptotic joint distribution of the different counts is of interest; the nov-
elty in this paper is to provide multidimensional results and to give conditions
for asymptotic independence. The multidimensional approximation and in par-
ticular the asymptotic statistical independence for counts of multiple words is
very useful to study statistical properties of any function of these counts. (Note
that asymptotic statistical independence does not necessarily have a biological
interpretation.)

Instead of using the Chen-Stein method for Poisson process approximation
as stated in Arratia et al. (1990) and refined in Barbour et al. (1992b), a more
direct approach could have been the Chen-Stein method for compound Poisson
approximation, developed by Barbour et al. (1992a), Roos (1994) and Barbour
and Utev (1997), which has been applied in this context to approximate the
count of single words with simple self-overlapping structure in a two-letter al-
phabet [Roos and Stark (1996)], but it is not adapted for a multidimensional
approximation to multiple words.

For non-rare words (short words related to the length of the sequence), a
Gaussian approximation is more appropriate and corresponding results have
been shown: Lundstrom (1990) was the first to derive a multidimensional Gaus-
sian approximation (using the ί-method) for a m-tuple of counts; see Waterman
(1995, Chapter 12) for an exposition. Prum et al. (1995) or Schbath et al. (1995)
give an explicit formula for the asymptotic covariance matrix. These results can
be used to construct a Gaussian statistic based on the count of a word family.
Recently, Tanushev (1996) proved the multidimensional Gaussian approxima-
tion for an m-tuple of renewal counts.

The general case where the letters are modeled using a stationary Markov
chain is treated in Reinert and Schbath (1998); Reinert and Schbath (1998) also
give a Poisson process approximation. The purpose of this paper is to treat the
independent case only, meaning that the letters are assumed to be independent
and identically distributed, as under this additional assumption the arguments
and bounds in Reinert and Schbath (1998) simplify considerably.

To approximate the counts of occurrences of words, the "declumping" ap-
proach is used - first the number of clumps of occurrences is counted, and then
the sizes of the clumps are determined. In Section 2, an occurrence of a word
and an occurrence of a clump in a sequence are defined, as well as the number
of occurrences of a word and the number of clumps of a word in a sequence.
Moreover the decomposition of the count of a word with respect to the num-
ber of clumps is introduced; this decomposition is fundamental to proving the
compound Poisson approximation via the Chen-Stein method given in Arratia
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et al. (1990). Next, in Section 3 the compound Poisson process approximations
for counts of m words with not necessarily identical lengths are presented. As
an illustration (Section 4),the count of some stem-loop motifs are studied, like
ATGGCNNNNGCCAT (N denotes any letter in the four-letter DNA alphabet), in a
model for the A-phage genome. We give the expected counts, the error bounds
and the asymptotic distributions. As we will see, the error bounds are very
small, and thus the method provides a useful tool to approximate a collection
of counts.

2. Preliminary notation and the Chen-Stein method. Consider a se-
quence of i.i.d. letters M = {Xi}i^z on a finite alphabet A, where the letters
{Xi}i£Z are chosen independently with probabilities Ϋ(X{ = x) — μ(x),x G -4;
assume that μ(x) > 0 Wx G A. Let u = uχu2 u/ be a word of length ί on
A. Say that an occurrence of u starts at position i in the infinite sequence Λ4
if XiXi+ι -Yi+/_i = Uιu2 uι, and denote the indicator random variable of
this event by Ij(tx). The probability μ(u) that u starts at a given position in Λ4
is exactly the expectation of ϊi(u) and is given by

μ{u) := Mi(u) = μ(uλ)μ(u2) μ{μι).

In the finite sequence 5 = X\X2 Xn of length n, the number N(u) of occur-
rences of u in 5 is defined by

N(u) =
1=1

and its expectation is

(2.1) ΈN(u) = (n-ί+l)μ(u).

2.1. Overlaps and clumps. Occurrences of a word may overlap in 5 or jW.
Through this section the example S = TAAGAAGAAGAAGAAGT and u = AAGAAGAA
is used. In this case, the word u occurs in S at positions 2, 5 and 8. The self-
overlapping structure of a word can be described via the set of principal periods
defined as follows. The lag between two overlapping occurrences of u is said to
be a period of the word u [Guibas and Odlyzko (1981), Lothaire (1983)]. A word
may have several periods; for any word u, the set V(u) of the periods of u, is
defined as

V{u) := {p e {1,.. . ,t - 1} : u% = u, + p , Vt = 1,... A - p}.

The word u is a non-self-overlapping word if and only if V(u) is empty. The
most relevant periods (see for example (2.2) below) are the ones which are
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not a nontrivial multiple of the minimal period. These periods are said to be
principal] let V(u) denote the set of the principal periods of u. For example
V(u) = {3,6, 7} and V\u) = {3, 7} for u = AAGAAGAA.

In order to study the occurrences of a word u the concept of clumps of a
word u is introduced. A clump of u in a sequence is a maximal set of overlapping
occurrences of u in this sequence; no two clumps of u overlap in the sequence. Say
that a clump of u starts at position i in the infinite sequence Λ4 if an occurrence
of u starts at position i in M and if this occurrence is not overlapped by a
preceding occurrence of u. Denote the corresponding indicator random variable
by Ij (ix); i.e.

t - l

The probability μ(u) that a clump of u starts at a given position in Λ4 is exactly

the expectation of ϊi(u); Schbath (1995a) proved that

(2.2) μ(u) := m,.(u) = μ(u) -

where ySp^ = U\U2 up is the word composed of the first p letters of u.
Here is the sketch of the proof for equation (2.2). A clump of u starts at

position i in the sequence if and only if there is an occurrence of u starting at
position i and there are none of the ySp^ starting at i — p where p £ V(u). In
fact, it suffices to exclude the occurrences of all the u^ at i — p where p is only
a principal period of u. Thus

ΪI(M) = Ii(M)I {Πp€τ>'(u){no occurrence of ιr p ' starts at i — p}}

= li(u) (l — I {Up€7>/(M){an occurrence of u^ starts at i — p}})

One can then show that the events {an occurrence of u^ starts at i—p} for p G
V(u) are disjoint, meaning that any two of them cannot occur simultaneously
[Schbath (1995b)]. This leads to
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equation (2.2) then easily follows.
Now define N(u) as the count

n-t+l

N(u) := Σ ϊ, (u),

so that N(u) represents the number of clumps of u in the infinite sequence M.
but starting in S. Its expectation is

ΈN(u) = (n - ί + l)μ(u).

For 1 < i < ί — 1 the definition of ίi(u) involves in particular the letters Xj
with i — ί + 1 < j < 0. In practice, only the sequence S = X\X2 Xn is
observable, and the observable number of clumps, denoted by iV*(w), may be
different from N{u). In the above example, in S there is a unique clump of u
starting at position 2 and ending at position 15, and X\ = T ensures that this
observable clump is a real one in the infinite sequence. This might not be the case
if the first letter X\ was a G. The quantity of interest is N*(u), the observable
number of clumps, but here we will work with the count N(u) instead, since it
is easier and the boundary effect can be controlled. Indeed, Ϋ(N*(u) φ N(u)) is
an upper bound on the total variation distance between N*(u) and N(u) [see,
e.g., Barbour et al. (1992b)], and

*(u) φ N(U)) < ] £ P ( I, (u) = 1,I,(M) = 1 for some j = i - t + 1,... , i - 1 J

t-i , v

= J ^ P ί IZ(M) = l,It-P(ϋ) = 1 for some p G V(u) J

= ] Γ P f h(u) = 1,I,_P(M) = 1 for some p β V\u) j

= ^p[l t-p(M ( p )M) = 1 for some p G V\u)J

As we think of μ(u) as being such that nμ(u) is bounded as n tends to in-
finity (the rare word condition), the above probability is very small for large
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n. Therefore, N*(u) can be approximated by N(u); as approximate N(u) is

approximated, the approximation for N*(u) follows.

R e m a r k 1. If u is not self-overlapping, meaning that u has no period, then
μ{u) = μ{u) and 7V*(u) = N(u) = N(u).

2.2. Clumps of different sizes. Now we distinguish clumps of different sizes.
T h e size of a c lump of u is the maximal number of overlapping occurrences of
u contained in the clump. In the above example, the unique c lump is of size
3. T h e s t ructure of a c lump can be complex, depending on the self-overlapping
st ructure of the underlying word. Let Ck(u) be the set of all the concatenated
words composed of exactly k overlapping occurrences of u. For example,

Cι(u) = {AAGAAGAA},

C2(u) = {AAGAAGAAGAA, AAGAAGAAAGAAGAA} and

C3(u) = {AAGAAGAAGAAGAA, AAGAAGAAGAAAGAAGAA, AAGAAGAAAGAAGAAGAA,

AAGAAGAAAGAAGAAAGAAGAA}

for u = AAGAAGAA. Note t h a t t h e length of two fc-clumps m a y differ a lot, and
t h a t t h e size of Ck(u) increases exponential ly with k whenever u has m o r e t h a n
one principal period. In fact,

\Ck(u)\ = \V'(u)\k-1

[see Schbath (1995b)].
Say that a fc-clump of u starts at position i in the infinite sequence M. if and
only if a clump of u starts at position i and this clump is composed of exactly
k overlapping occurrences of u. Denote the corresponding indicator random
variable by li,k{u)', Schbath (1995a) proved that its expectation is

μk{u) := M, lfc(u) = (1 - A(u))2A(u)k-ιμ(u),

where

(2-3) A(u)= £ ΠM«i + 0= Σ

T h e derivation of (2.3) is similar to the one of (2.2). Note t h a t

(2.4)

(2.5)
fe>i
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Moreover, define Nk(u) as the count

n-£+l

(2-6) Nk(u) := ^ ϊ , fc(u),
ι = l

so that Nk(u) represents the number of fc-clumps of u in the infinite sequence
M but starting in S. Again, because of the boundary effects, the count N(u)
defined by

(2.7) N(

is not equal to the count N(u) of u in the finite sequence 5, but their difference
is negligible. As they can differ only if a clump in M overlaps positions l o r n ,
the same techniques as for the number of clumps give that the total variation
distance between N(u) and N(u) is bounded by

(2.8)F(N(u) ̂  N(u)) < 2(*-l)

The counts N(u) and N(u) have the same expectation because of (2.5). Now
focus on N(u) to apply the Chen-Stein method.

Remark 2. If u is not self-overlapping, meaning that u has no period, then
(u) = 0\/k>2, and N(u) = N^u) = N(u).

2.3. The Chen-Stein method. The Chen-Stein method is a powerful tool
for deriving Poisson approximations and compound Poisson approximations in
terms of bounds on the total variation distance. For any two random processes
Y_ and Z with values in the same space £?, the total variation distance between
their probability distributions is defined by

dτv{C{Y_),C{Z_)) = sup \F(Ye B)-F{ZeB)\
BCE

= sup \Eh{Y)-Eh(Z_)l

where B and h are assumed to be measurable. The Chen-Stein method for
Poisson approximation has been developed by Chen (1975); a friendly exposition
is in Arratia et al. (1989, 1990); an exhaustive description with many examples
can be found in Barbour et al. (1992b). We will use Theorem 1 in Arratia et al.
(1990) with an improved bound by Barbour et al. (1992b) (Theorem LA and
Theorem 10. A).
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Theorem 1 (Arratia et al. (1990), Barbour et al. (1992b)). Let I be an
index set. For each a G /, let YQ be a Bernoulli random variable with pa =
F(Ya = 1) > 0. Suppose that, for each a £ I, we have chosen Ba C I with
a G BQ. Let Z α , a G I, be independent Poisson variables with mean pQ. The
total variation distance between the Bernoulli process Y_ = (Ya^ G /) and the
Poisson process Z_— (ZQ,a G /) satisfies

dτv(C0O,£(Z)) < 61 + 62 + 63,

where

(2.9) bi

(2.10) b2

63 = ^ E | E { y α -Pa\σ(Yp,β ϊ Ba)}\.

We think of Ba as a neighborhood of strong dependence of Ya. Intuitively,
61 describes the contribution related to the size of the neighborhood and the
weights of the random variables in that neighborhood; if all Ya had the same
probability of success, then b\ would be directly proportional to the neighbor-
hood size. The term b2 accounts for the strength of the dependence inside the
neighborhood; as it depends on the second moments, it can be viewed as a "sec-
ond order interaction" term. Finally, b3 is related to the strength of dependence
of Ya with random variables outside its neighborhood. In particular, 63 -= 0 if
Ya is independent of σ(Yβ,β £ BQ}.

One consequence of this theorem is that for any indicator of an event, i.e.
for any measurable functional h from E to [0,1], there is an error bound of the
form |EΛ(y)-EΛ(Z)| < dΎW(£(Y_), C(Z_)). Thus, if T(Y_) is a test statistic then,
for all t e R,

|P (T{Y) >t)-F (T(Z) > ί) I < 61 + 62 + 63,

which can be used to construct confidence intervals and to find p-values for tests
based on this statistic.

3. Occurrences of m words of different lengths.

3.1. Notation. Now consider m different words Mi?M2? >Mm °f length £1,
4 , . . . , C respectively;

ur = wΓ|iwΓ|2 i/rΛ? Vr G {1,... ,m}.
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Assume that

(A) Vr φ r', ur is not a substring of any composed word in C2(MΓ/)

Clumps of ur and clumps of uτ, may overlap in the sequence. Assumption (A)
guarantees that a clump of ur and a clump of ur, can overlap on at most
max{4,4 '} — 1 letters. Heuristically, if ur and ur, do not satisfy Assumption
(A), the approximation of their counts by independent Poisson variables should
not be valid.

In order to describe the possible overlaps between two words ur and ur/,
define

V{ur,ur,) := {p G {1,.. . , 4 - 1} : tv,i = tiΓfl + p , for all % = 1,... , 4 - p).

Under Assumption (A) , if p G V(ur,ur,) then p> ir — 4 ' and the last ( 4 — p)
letters of ur are equal to the first (4 — p) letters of ur, (ur, can overlap ur

from the right). Note the lack of symmetry; for example, for u = AAGAAGAA and
v = AAGAATCA, it follows that V(u,υ) = {3,6, 7} and V(v, u) = {7}.

For a bound on the error in the compound Poisson approximation, the fol-
lowing quantities, defined for all r and r' 6 {1,.. . ,ra}, are needed.

- l)μ(ur)μ(ur,) + {lτ, - l)μ(uΓ)μ{ur,)

(3.12) +(24 + 24' - 3)μ(ur)/J(ur,)}

Γ(M Γ ,M Γ O - (n - 4 + l)iu(Mr)/i(Mr0{2(4 + 4< - 2) + M(u r , M r /)

(3.13) +M(tι r , ,u r )} .

The quantity M(wr,ϊ/Γ/) can be seen as a measure of the overlapping struc-
ture between ur and ur,. If ur and ϊir/ cannot overlap, M(ur,ur,) equals zero;
otherwise, the more they can overlap from the right, the larger is M(ur,ur,).
The quantities R and T correspond to the quantities R and Γ in Reinert and
Schbath (1998). It will turn out that R is used to describe the "neighborhood
size term" bu whereas T describes the "second order interaction term" 62, when
applying Theoren 1.

Moreover introduce the set of possible words of length ί — 1 preceding a

clump of u;

Q(u) = {g = g i . . . gt_x : for all p G P(u), flf/-P ' ' ' »-i Φ M
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Similarly, V(u) is the set of words allowed after a clump of u]

2 % ) = {d = dι dι-ι : \/p £ V(u), dx- dvφ w/- p + i u£}.

Recall that Ck(u) is the set of all the concatenated words composed of exactly
h overlapping occurrences of u. Thus, a A -clump of u starts at position i in
the infinite sequence Λ4 if and only if one of the words gCd, where g £ £?(M)5

C_ £ Ck(u) and d £ V(u), occurs at position i — ί + 1. From Schbath (1995a),
no two different C_ and C' in Ck(u) can occur simultaneously at position i.
Therefore,

Ii-ιr+i(gCd).

N o t e t h a t

(3 14) Σ Σ rtgc) = Σ Σ ?**(!*)= /i(^)
Λ>1 £6ί;(ti),eGCΛ(ti) Λ>1 k*>k

3.2. Results. Enumerate the elements of Ck(ur) from Ci to C|7>/(uj|*-i. Select
the index set

/ = { ( t , r , f c , c ) : l < i < n , r = l , . . . ,m,fc = 1 , 2 , . . . , c = l , . . . , I ^ M . ) ^ " 1 } .

For e a c h (z , r , fc, c) £ /, define t h e Bernoul l i process Y = (V(ί,r,fc,c))(2,r,A;,c)€/ by

Thus y(ijΓϊjb|C) equals 1 if and only if a specific clump C^ of size k of word ur

occurs at position i in the sequence. Furthermore define the Poisson process

Z = (Ziir,k,c)(i,ryk,c)€i by having independent components and each component
being Poisson distributed with mean EV(t fΓϊfc|C). We think of Z r̂>jt,c approximating

the indicator random variable V(t fΓ)fc>c).
For (i,r, fc,c) £ /, choose as neighborhood

Sf>.*fC := {(.?>',fc',<0 £ / : -|£c<l " 4 ' - ίr + 3 < j - ί < |C^| + ίτ + ίr> - 3}.

Theorem 2. Under Assumption (A) and with the notation (3.12) and (3.13),
we have

dτv(c(Y),£(Z))< Σ
l<r,r'<m
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Let (Zζ )fc>ifr6{i,...,m} be independent Poisson variables with expectation
r ) =(n-£r + l)μ f c(uΓ). From Theorem 2 and Equation (2.6), the following

corollary is easily obtained.

Corollary 1. Under Assumption (A) and with the notation (3.12) and (3.13),
we have

l<r,r'<m

Now let C P ^ denote the compound Poisson distribution of Σk>i
From Theorem 2, Equation (2.7) and Inequality (2.8), we have the following
two corollaries.

Corollary 2. Under Assumption (A) and with the notation (3.12) and (3.13)
we have

(i) dτ

l<r,r'<m

( π ) d τ ( (

l<r,r'<m r=l

Let (Zk)k>i be independent Poisson variables with expectation

and let CP denote the compound Poisson distribution of Σk>1 kZk.

Corollary 3. Under Assumption (A) and with the notation (3.12) and (3.13),

we have

yN(ur)\ ,CP ) < Y"
,r=l / / l<r,r'<m

r = l
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Note that the compound Poisson distributions defined in Corollaries 2 and
3 reduce to simple Poisson distributions if every u r, r = 1,... ,m, is a non
self-overlapping word.

Poisson approximations should be good for rare events. Here, rare words
mean that EiV(ur) is bounded away from 0 and oo for r = 1,... , m; we use
the notation EN(ur) x 1. For a fixed alphabet, this asymptotic framework is
equivalent to μ(ur) x ^, and ίr x logn because

(x)/ r~'1 < μ(ur) < μ(ui)(maxμ(x)) i r~ ι.

If EN(ur) x 1, then T(uΓ,ur,) x n'Mogn + (M(ur,uΓ,) + M(ur,,ur))n-1, and

Therefore, if ur and ur, cannot overlap too much for r φ r1 (this is measured
by M(u r,uΓ,) + M(u r/,u r)), the error bound is very small for large n. In the
extreme case where uλ = AAA AAA and u2 = TAA AAA, both of length ί,
we have M(u 2 ,u 1 ) = Σ ! = i ^(A)"8 X M(A)~l°sn? S O ^ e error bound may fail to
converge to zero as n tends to infinity. This confirms the intuition that, because
of considerable overlaps, the occurrences of ux and u2 should not be independent
even asymptotically.

3.3. Proof of Theorem 2. Our task consists now in bounding 6χ and b2 given
in (2.9) and (2.10). For any C_ G Ck(ur) it follows that \C_\ < k(£r - 1). This
motivates the introduction of the set

(3.15) B*,MV,r< : = { J G { 1 , . . . , n } :

i - (k' + l)(lr, -l)+ir-l<j <i + (k + ί)(ir - 1) + ίrι - 1};

for each fixed i,r,r', k,k',c,d, thus {j : (j,r',k',c') G ̂ >r,fc>c} C Bi,k,k',r,r'
Bounding b\: We have

Σ

- Σ Σ Σ Σ
r,r'=l fc,fc'>l i = l

r,r'=l
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MUr)MUr')((k + 2)(4 - 1) + (A;' + 2)(4< - 1) + 1),
k,k'>l

where Bijk,k',ry is defined in (3.15). Now use (2.4) and (2.5) to obtain

r,r'=l

+(24 + 24' - 3)μ(ur)μ(ur,)}

r,r'=l

Bounding b^. To bound 62 write

Σ

with

n-ίr

b'2(ur,Ur,)= Σ Σ Σ
ι=l k,k>>l i:(j,r',fc'

Now distinguish two cases: The first one when the fc-clump starting at i and the
AZ-clump starting at j overlap in Λ ί̂, and the second one when the clumps do
not overlap but the "enlarged clumps" - including the (£r — 1) preceding letters
and the (£r — 1) following letters of the clumps - overlap. Write C_ = C^, and
C_f = Ĉ ,/, for convenience.

1. First consider the case when C_ and C' overlap in the sequence, that is,

j e {* + \c\ - 4 , . . . , * + \c\ -i}u{ι- \σ\ +1,..., % - \σ\ + ίr,}.

Let b2i(ur,urr) denote the quantity corresponding to this case. Since two clumps
of ur cannot overlap in the sequence, the composed words C_ and Q! starting at
i and j cannot overlap. Therefore we may restrict ourselves to the case r φ r'.
First focus on j > i. If C and C' overlap, Assumption (A) ensures that only the
last occurrence of ur in C_ overlaps with the first occurrence of ur, in C'. The
last occurrence of ur in C_ starts at position i + \C\ — £r. An occurrence of ur,
starting at position j may overlap ur at i + \C\ — ίr only if j = i + \C_\ — ίτ + p
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with p G V(uτ,ur,). Therefore,

n-ίΓ + l «+|C|-l

Σ Σ_ Σ) gΣ ( ^
ceck(ur) c'6Cfc/(«r,)

< Σ Σ Σ Σ Σm'-^Λ9C)h+m-ir-o+P+Λ9'Cd')
i=l fc>l Q{uτ) G{ur,) V(ur,url)

k'>l Ck(uΓ) V(uΓ.)

n-tτ + l

2_j i-trλ

the last inequality comes from summing over d\ k\ g', C', d\ and then using

that Ii+|cj_^+p(uΓ,) < Ii+|c|-^+p(Mr0 N o w ^ 9^_ starting at i - lr + 1 and uΓ,
starting at i + \C_\ — ίr + p overlap at most on (ίτ — 1) letters; thus

Finally, using (3.14) and applying the same reasoning to j < i yields

(3.16) &'21(ur,ur,) < (n - ίr + l)μ{ur)μ{u.ΛM{ur,ur.) + M(urhur))

where M is given by (3.11).

2. gCd and g'C'd' overlap in the sequence (at most on ίr + lr> — 2 letters), but
C_ and C' do not overlap, that is,

j 6 {̂  ~ |C'| - lr' - ίr + 3,... , i - |C'|} U {i + | £ | , . . . , i + |C| + 4 + 4 ' - 3}.

Denote the corresponding quantity by ^(MDMΓO ^ o r ^ e c a s e ^ a * J
follows

Σ Σ Σ Σ
i=l k,k'>l £€ί?(uΓ)ld€l>(tιr) i
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^ Σ Σ Σ Σ
i=l k,k'>l ge$(ur) J

ceck(ur)

n-lΓ + \

= Σ Σ Σ Σ
2=1 k>\ geg(u) j=i+\Q\

ceck(u)

The case j < i is treated analogously. Summing and using (3.14) leads to

(3.17) b'22{ur,url) < 2(n - lτ + l)(tr + ίr> - 2)μ{ur)μ{ur,).

Combining (3.17), and (3.16) gives b'2(u,v) < T(u,v). •

4 Application. To illustrate the goodness of the approximation for col-
lections of words in DNA sequences, consider motifs on the four-letter DNA
alphabet Λ = {A,C,G,T} having the structure

(4.18) aχa2 - - αΓ(N)sα7 αi"αΓ,

where the integers r and s are fixed, and α, £ A for i = 1,... ,r. Here N
represents any letter in the alphabet A, (N)s denotes 5 consecutive, possibly
different letters N, and for each i = 1,... , r, ~ai is the complementary letter of α;
(A is the complementary letter of T and vice versa, and C is the complementary
letter of G and vice versa). For example, the motif AGGCNNGCCT is such a motif,
involving the collection of the sixteen words (AGGCabGCCΎ)aibeΛ °f length 10.

These motifs are particularly interesting because of their possible stem-loop
structure; the prefix a\a2 ar could form a stem with the suffix ά^ S^αY,
leading to a loop of length 5 as shown by Figure 1. Such a structure may lead to
errors when the polymerase replicates the genome. This phenomenon can also
occur with RNA sequences.

, N - N
AGGC

AGGCNNNNNGCCT J _ M M N
T C C < V

FIG. 1. Stem-loop structure

To assess its extent, the number of occurrences of these motifs in a DNA se-
quence are approximated. The number of occurrences of the motif AGGCNNGCCT,
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for instance, is denoted by iV(AGGCNNGCCT) and can be easily obtained by sum-

ming the numbers of occurrences of each word AGGCα&GCCT, α, 6 G A:

ΛΓ(AGGCNNGCCT) = J ^ JV(AGGCαfrGCCT).

The expected count of AGGCNNGCCT in a sequence is

EiV(AGGCNNGCCT) = ^ EiV(AGGCα&GCCT),

where the right-hand terms are given in (2.1). Using Corollary 3, we calculate
the error bound for approximating the count iV(AGGCNNGCCT) by a compound
Poisson variable Σk>i k%k such that the Zjt's are independent Poisson variables
with expectation

EZk = ^ (1 - A(AGGCNNGCCT))2A(AGGCNNGCCT)^1EiV(AGGCNNGCCT),

where A is given in (2.3).
In the application below, a sequence of length n — 48502 on the alphabet A

is considered, with the letter probabilities

(4.19) μ(A) = .2544 μ(C) = .2342 μ(G) = .2643 μ(T) = .2471.

These values correspond approximately to the genome of the bacteriophage
Lambda.

Table 1 gives the expected counts in the sequence of the motifs AGGCGCCT,
ATGCGCAT, ATGGCGCCAT, and ATTGGCGCCAAT; the first two nonzero digits are
given. Note that inserting ΛΓs in the word does not change their expected
count, so that the expected count of AGGC(N)3GCCT, for example, equals the
expected count of AGGCGCCT, which is 0.72. All the above motifs have a very small
expected count, which is in agreement with the rare word condition. Naturally,
the expected counts decrease with increasing sequence length.

For a stem of fixed length, increasing the size s of the loop does not change
the order of the bound substantially; it only gently increases. For computa-
tional reasons we restrict our study to loop sizes less or equal than 3, even
though relevant biological loop sizes are slightly larger. This result is particu-
larly interesting since increasing s means enormously increasing the number of
words in our family, which is of course penalizing.

Comparing the results for the motifs AGGC(N)SGCCT and ATGC(N)5GCAT, the
bounds for ATGC(N)5GCAT are larger because of its more complicated overlapping
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TABLE 1

Expected counts of some stem-loop motifs, in a sequence of length 48,502 of i.i.d. letters generated by
(4-19)

AGGCGCCT
ATGCGCAT

ATGGCGCCAT
ATTGGCGCCAAT

expected count
0.72
0.73

4.5e-02
2.8e-03

structure. Consider, for instance, the motif ATGCNNNGCAT; Figure 2 describes the
different possible overlaps that can occur between two words belonging to this
motif. Let u and v be two words belonging to the ATGCNNNGCAT family; the set
of periods V(u,υ) is then necessarily equal to either {5,9} (16 pairs) or {9}
(46 — 16 pairs). Moreover, the set V(u) is equal to {9} for all words in the motif.

A T G C α δ c G C A T
A T G C a' V cι G C A T

t
9

A T G C α A T G C A T
A T G C A T 6 G C A T

t
5

FlG. 2. Self-overlaps of the family ATGCNNNGCAT

In contrast, V{u) = 0 for all words u in the AGGCNNNGCCT family. Figure 3
describes the possible overlaps between two words of the AGGCNNNGCCT family.
Among all the pairs (u,v) in the AGGCNNNGCCT family, only 16 pairs have a
nonempty period set V{u,v), which in this case equals {5}.

A G G C α A G G C C T
A G G C C T 6 G C C T

t
5

FlG. 3. Self-overlaps of the family AGGCNNNGCCT

A motif composed of words with many overlaps between themselves will pro-
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duce large quantities M and hence large quantities T (given by (3.13)). The
overlapping structure of a motif has an important influence on the error bound
through the terms Γ. This explains the larger bounds for ATGC(N)5GCAT.

However, Table 2 shows that adding just one letter to the stem of the motifs
ATGC(N)SGCAT, in such a way that the high overlapping structure of the motif
is preserved, for instance yielding ATGGC(N)5GCCAT, is sufficient to reduce the
global error bound considerably to the order of 10~6. Adding another letter
leads to an error bound of order 10~8 for ATTGGC(N)SGCCAAT. This illustrates that
the approximation improves with increasing word length, i.e. with decreasing
expected count of the motif (see Table 1).

Now focus on the weight of each of the three terms appearing in the global
error bound given by Corollary 3. The three terms correspond, respectively, to
the bounds of δi, δ2, and the boundary effect calculated in Section 3. Table 2
gives the bound for each term and for the motifs AGGC(N)SGCCT, ATGC(N)SGCAT,
ATGGC(N)5GCCAT, and ATTGGC(N)SGCCAAT, s varying from 1 to 3. It is obvious
that the boundary effect is negligible and decreases smoothly as s increases. On
the other hand, &i and 62 are the main terms, and their bounds are about of the
same order. These bounds increase very slightly while increasing the loop size
5, leading to a small increase of the global error bound. Note that there is no
boundary effect for AGGC(N)SGCCT, s = 1,... ,3; the explanation is that these
motifs are composed of non-self-overlapping words (see (2.8)).

TABLE 2

Weight of the different terms involved in the global error bound for the compound Poisson approxi-

mation of some stem-loop motif counts, in a sequence of length 48,502 of i.i.d. letters generated by
(4-19)

AGGCNGCCT
AGGCNNGCCT
AGGCNNNGCCT
ATGCNGCAT
ATGCNNGCAT
ATGCNNNGCAT

ATGGCNGCCAT
ATGGCNNGCCAT
ATGGCNNNGCCAT
ATTGGCNGCCAGT
ATTGGCNNGCCAGT
ATTGGCNNNGCCAGT

61

4.4e-04
5.4e-04
5.4e-04
4.5e-04
5.1e-04
5.6e-04

2.1e-06
2.3e-06
2.5e-06
1.0e-08
l.le-08
l.le-08

62

3.4e-04
4.3e-04
7.7e-04
6.2e-04
7.3e-04
l.le-03
2.7e-06
3.1e-0β
4.7e-06
1.2e-08
1.3e-08
1.4e-08

boundary effect

0
0
0

1.4e-08
7.0e-08
l.le-09
6.9e-ll
1.9e-ll
5.2e-12
3.3e-13
9.0e-14
2.4e-14

global bound

7.8e-04
9.8e-04
1.3e-03
1.0e-03
1.2e-03
1.7e-03

4.8e-06
5.5e-06
7.3e-06
2.2e-08
2.4e-08
2.6e-08

In Reinert and Schbath (1998), corresponding bounds are calculated for
the case that the sequence is not composed of i.i.d. letters but generated by a
stationary Markov case. In comparison, the bounds for the independent model
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are orders of magnitude smaller.
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