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ABSTRACT

Waclawiw and Liang (1993) develop an estimating function-based ap-
proach to component estimation in the generalized linear mixed model with
univariate random effects and a vector of fixed effects. In their approach
they utilize the standard optimal estimating functions to estimate the fixed
effects and a so-called Stein-type form of estimating functions to estimate
both the random effects and their variance. In this paper, we provide a semi-
parametric solution to the estimation problem dealt by Waclawiw and Liang.
The solution is obtained under two set-up by utilizing the standard theory
of optimal estimating functions (Godambe and Thompson, 1989). Under
the first set-up, the solution is obtained in three steps. In the first step, the
estimating functions for the regression parameters, and the random effects
are developed by treating the random effects as fixed effects. In the second
step, we obtain the prediction of the random effects by taking their true
nature of randomness into account. These predicted random effects are then
used in the estimating equations for the regression parameters, of Step 1, to
obtain their improved estimates. In the third step, the estimating function
for the variance of the random effects is developed based on the true nature
of the random effects. Under the second set-up, the estimating functions
for the regression parameters, random effects and their variance are devel-
oped by utilizing the true nature of the random effects directly. Results of a
small simulation study based on the performance of the proposed estimating
function-based approaches are reported.
Key Words: Random effects; variance component of the random effects;
semi-parametric solutions; standard estimating function approach; uncondi-
tional and conditional mixed methods; corrected conditional mixed method.
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1 INTRODUCTION

The generalized linear model (McCullah and Nelder (1989)) neatly synthe-
sizes likelihood-based approaches to regression analysis for a variety of out-
come measures. The underlying distribution of the outcome variables is
assumed to be of the exponential family form, and a link function transfor-
mation of the expectation is modelled as a linear function of observed co-
variates. Several recent extensions of this useful theory involve models with
random terms in the linear expectation. Such generalized linear mixed mod-
els are useful for accommodating the overdispersion often observed among
outcomes that nominally have binomial (Williams (1982)) or Poisson (Bres-
low (1984)) distributions; and for modelling the dependence among outcome
variables inherent in longitudinal or repeated measures designs (cf. Laird
and Ware (1982), Stiratelli, Laird and Ware (1984), Zeger, Liang and Albert
(1988), Zeger and Karim (1991)).

Consider a set of repeated observations consisting of a response yij as the
jth (j = 1,..., rii) repeated observation on individual i(i = 1,..., k) and a
p x 1 vector x^ of covariates associated with that response. Let β denote
a p x l vector of unknown fixed effect parameters associated with covariate
Xij. Further, let ji be a univariate random effect such that for a given 7̂ , rii
observations due to the ith individual are independent.

Under the assumption that the conditional density of y;, the n{ x 1 vector
of responses for individual i, given ηι is of the exponential form

f(yi\Ίi) = exp < Σ "̂Wi "" Σ Φfai

with ηij = x[jβ+Ίύ a n d Ί% *~ iV(0, σ2), recently Waclawiw and Liang (1993)
have used a three-step iterative procedure to estimate all three unknowns /?,
7; (i = 1,..., fc), and σ2. The three steps are:

1. Assuming an initial value for σ2, the fixed effects β are computed using

the generalized estimating equation of the form

-μi{β,σ2))=0, (1.2)

where μi(β,σ2) and Vi(β,σ2) are, respectively, marginal mean and

variance-covariance matrix of the response vector yι for the ith indi-

vidual.

2. Assuming that σ2 and β are fixed, the equation gi = 0 is solved for 7;,

where
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is a class of estimating functions for 7$, <?i(yi,7i,/?) being the score
equation given by

9i{yuΊΰβ) =

) = 0, (1.4)
3=1

where φ'(ηij) is the first derivative of φ( ) in (1.1) with respect to 77̂ ,

which is, in fact, the conditional mean of yij given 7̂ . Note that in

(1.3), they have obtained a,ij and bi by following certain optimal criteria

due to Godambe (1960) [see also Ferreira (1982)]. Let α£ and 6J be

such solutions. An optimal function g\ is obtained by substituting α*?

and b\ in # given in (1.3). Next a Stein-type estimation for 7J, 7* is

achieved by solving g* = 0.

3. The variance component of the random effects σ2 is estimated by using
the relationship

E{Ίf)~E{Ί*)-E{Ί*-Ίi)\ (1.5)

where (7* — 7;) is obtained by first expanding the optimal estimating

function to the first order approximation and then solving the resulting

optimal estimating equation. Note that in this step, one actually ob-

tains a recursive form for the estimation of σ2, which must be updated

with changes in β and 7̂ . Let σ* be the estimator of σ2.

The above three steps of the iterative procedure describe a complete cycle

or one full iteration. The cycles of iteration continue until convergence (if

exists) is achieved. However, convergence is to be investigated and further

work is needed to guarantee convergence. Neither in Waclawiw and Liang

(1993) nor in the present paper, this is attempted.

More recently, Sutradhar and Qu (1997) have shown for a Poisson mixed

model that even if 7* in Step 2 is computed based on large n ,̂ the estimator

σ* of σ2 obtained from the third step, does not converge to σ2. These

authors proposed a likelihood approximation (valid for small σ2) to estimate

all three parameters β, ηι and σ2 of this special model. The estimation is

carried out in two steps. In the first step, they utilize a small σ2 based

approximate likelihood function to estimate the fixed effect parameters and

σ2. In the second step, they estimate the random effects 7̂  by its posterior

mean E(ji\yi), which is, in fact, the minimum mean square error prediction

of 7i. It was shown by Sutradhar and Qu (1997) through a simulation

study that their likelihood estimation approach performs much better than

Waclawiw and Liang's three steps estimation approach in estimating all three
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parameters /?, 7$ and σ2. The computation of the likelihood function is,
however, not easy in general.

This paper, unlike Waclawiw and Liang (1993), and Sutradhar and Qu
(1997), provides a semi-parametric solution to the estimation problem dealt
by these authors. That is, we do not make any distributional assumption
for the random effects. The solution is obtained under two set-up by utiliz-
ing the standard theory of optimal estimating functions [cf. Godambe and
Thompson (1989), Godambe and Kale (1991)]. Under the first set-up, the
optimal estimating functions for the regression parameters and the random
effects are developed by treating random effects ηι fixed. The random nature
of 7ί is, however, taken into account when estimating equations are solved for
the parameters. Next the estimating function for σ2 is developed based on
the true nature of the random effects. Under the second set-up, estimating
functions for the regression parameters, random effects and their variance
are developed by treating ηι as random effects as they should be.

The performance of the estimators obtained under these two set-up are
also compared through a simulation experiment, for Poisson mixed models.

2 OPTIMAL ESTIMATION WHEN RANDOM
EFFECTS ARE TREATED INITIALLY AS
FIXED EFFECTS

Assume that given 7; (i = 1,..., fc), the response yij has the mean φ'{ηij) and
variance φ"{ηij) with ηij = xfjβ + 7;, where φ'{ηij) is the first derivative of
</>(•) with respect to 77̂ , as in (1.4), and φ"{ηij) is the second derivative, φ(-)
being a known functional form. Further assume that 7 '̂s are independently
and identically distributed with zero mean and variance σ2, but the specific
form of the distribution of ηι is not known.

Now by holding 7; (i = 1,..., k) fixed, we construct the optimal estimat-
ing functions for β and 7i, following Godambe and Thompson (1989). These
functions are, respectively, given by

k τii

91 = ΣΣwiijhuj, (2.1)
i=l j=l

and

Tli

3=1

where huj are the elementary functions defined as

hij = yij-E2(yφi) (2.3)
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and w\ij and W2%j are given by

i/dβ\β,Ίi) -Φ"(

and

E2(dhUj/dΊi\β,Ίi) _ -ς
j 2 = - 1 , (2-5)

respectively. Note that in the equations (2.3) - (2.5), £2 denotes the condi-
tional expectation of yij for given 7̂ . Further note that £(51) = £(ί/2i) = 0
for alH = 1,..., A;, because E(hiij\^fi) = 0. That is, g\ and g2% are unbi-
ased estimating functions. Now joint estimation of the parameters β and 7̂
can be achieved by solving estimating equations g\ = 0 and g2% — 0 for the
observed data (xij^yij) (ί = 1, ...,&; j = 1,...,ni).

The solutions of g\ — 0 and 522 = 0, denoted by β and 7* respectively,
may be obtained by the customary Newton-Raphson method. To begin,
we assume that 7̂  = 0 for i = 1,..., k. Given the value β(u) at the uth
iteration, β(u 4-1) is obtained as

β(u + 1) = β(u) - [(dgι/dβ)τ]Zι[gi]u, (2.6)

where [ ]u denotes that the expression within the brackets is evaluated at
β{u). Next we use this estimate β in g<n and solve g2i{β) = 0 for 7̂ . Given
the value ji{u) at the uth iteration, ji(u + 1) is obtained as

where [ ]u denotes that the expression within the brackets is evaluated at

ΊiW
Notice that 7;'s are estimated so far by treating them as fixed effects.

But, in the present mixed model, they are random by nature. We now
propose an adhoc estimator of the random effect 7$, say 7^ obtained as

ηi = E{ηi\ηi) — £(7i) + £(7ΐ7ΐ){£(7ΐ)}~1(7ϊ ~~ ^(7i))» (2-8)

which is the posterior mean of 7* given the data through 7*, provided 7, and
ji have jointly bivariate normal distribution. Now, as

ji - 7i)2 = Eηf - 2EηiΊi + σ2, (2.9)

we may estimate E{ηιηi) by

[έ ] (2.10)
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where E(ηι — 7^)2 may be obtained easily by expanding 322(7*) about 7̂
k

and noting that #2i(7i) = 0. Next by using E{ji) = ^Ji/k = 7 and

k

i ~ ϊ]2/k it follows from (2.8) and (2.10) that

7?/* + ̂  - %< - 7i)2l (7< - 7)/ Σ(7i " 7)2,
J

where σ2 is a suitable estimate of σ2. These values of ηi may, in turn, be
used in (2.6) to improve the estimate of the regression parameters.

Now to obtain the estimate of σ2, we solve the estimating equation g$ =
0, where

k

(2.12)

is the optimal estimating function for σ2, with \i2i = ΊΪ—σ2 as the elementary
function, and ^ as the respective weight given by ^3^ = E(dhsi/dσ2)/E(hli)
—1/&4, where k± = #(7/) — σ2. Note that to solve 33 = 0 for σ2, it is not
necessary to know k±, i.e., E{ηf). The solution of 33 = 0 for σ2 yields
σ2 = Σ-γf/k. We, thus, obtain

where ηi is the prediction of the true random effects, given by (2.11).
Notice that σ2 in (2.13), 4» i n (2 H) have to be computed iteratively.

As mentioned above, we then go back to (2.6) to improve the estimate of
β by using η\ — ηi instead of %. The cycles of iteration continues until
convergence is achieved for β and σ2. Let /3, 7, and σ2 be the final estimates.

3 OPTIMAL ESTIMATION WHEN RANDOM
EFFECTS ARE TREATED TRULY AS RAN-
DOM EFFECTS

In this approach, optimal estimating functions for the regression parameters
are developed under the fact that 7J'S are independently distributed with
zero mean and unknown variance σ2. For the time being, suppose that we
can compute the unconditional mean and variance-covariance matrix of the
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response vector yι. That is

μi(β,σ2) = E(yi) = ElE2(yi\ii) (3.1)

and

(3.2)

are computable, where E2 in (3.1) denotes the conditional expectation of yi

for fixed 7$ as in (2.4) and E\ denotes the expectation over 7* when they are

random. We now consider an elementary estimating function for β as

2 ) (3.3)

and construct an optimal estimating function as

9l = Σw*ιMi (3-4)

where

For given σ 2, the estimating equation

V = 0 (3.5)

is solved for β.

Note that the estimating equation g\ = 0 in (3.5) is the same as the es-
timating equation for β considered by Waclawiw and Liang (1993). Further
note that in the manner similar to that for the estimation of /?, we could
construct an optimal estimating function for σ2, but this will require calcu-
lations of higher moments for the response vector, which may not be easy.
Consequently, we choose to estimate σ 2 by using the predicted random ef-
fects, where the prediction of the random effects is made by exploiting their
true randomness nature.

More specifically, the joint computational steps for /?, ji and σ2 are as
follows. First, for an initial σ2 value, β estimate at the (u + l)th iteration is
obtained as

β*(u + 1) = β*{u) - {{dg\{σ2)ldβ)τ]-u

ι[gl(σ2)}u (3.6)

where s ί(σ 2 ) is the same estimating function as g\ in (3.4) except that now
σ 2 has a specified value, and [ ]u denotes that the expression within the
brackets is evaluated at β*{u). Next we use this estimate β* in (3.8) below
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to obtain an optimal prediction 7* for 7̂  under the assumption that 7i's are
truly random. The estimating function for ji is constructed as follows.

To begin, 7i's are treated as fixed as in the previous section. Next the
prior information that 7i's are independently and identically distributed with
zero mean and variance σ2, is used to take the randomness nature of ηι into
account. The optimal estimating function for 7̂  is then written as

92i = 92i +531? [o.l )

where g2{ is as in (2.2) and g& is given by g^i = ^3^32, with h^ = ji —
E(ji) as the elementary function and w$i = E(dhsi/dji)/E(hli) = 1/σ2, as
its weight (Godambe, 1994; Naik-Nimbalkar and Rajarshi, 1995). It then
follows that for β = β* obtained from (3.6) and for known σ2, the predicted
value of 7$ at the (u + l)th iteration is obtained as

7ί(« + 1) = 7*(u) - [dg*2i{β*^*)ldΊi]-ι[g*2i{β\σ2)\u, (3.8)

where [ ]u denotes that the expression within the brackets is evaluated at
7*(u), the uth. iteration value of 7̂ .

Notice that it has been assumed in (3.8) that σ2 is known. When σ2

is unknown, it may be estimated, as in the previous section, by using the
optimal estimating function 33 given in (2.12). The corresponding estimating
equation g$ = 0 yields

k

ΐ IK (3.9)

where 7* is obtained from (3.8) for β = β* and for a given value of σ2.
Now σ* is put back into (3.6) and (3.8) to obtain the improved estimates
of β and 7i. The improved estimate of 7, is then used in (3.9) to obtain an
improved estimate of σ2. The cycle of iteration continues until convergence
is achieved for β and σ2. Let β, ηi and σ be the final estimates.

Now turning back to the issue of computations for the mean and co-
variance matrix of ŷ , it is well known that in general, exact expressions for
the marginal means and variances may not be easily computable. But for

7< ̂  iV(0, σ2), expressions for the marginal means and variances simplify or
may be easily approximated for the standard link functions [see Zeger et al
(1988)]. For example, for the log link as in the Poisson case,

y) = EιE2{yij\Ίi)

σ2), (3.10)

and
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= vax{E2(yij\ji)} + E!{vΆτ(yφi)} (3.11)

= expOrξ/3 + \σ2){\ + exp(aξ/? + ̂ 2)(exp(σ2) - 1)}.

If it is assumed that for given 7J, Poisson responses yij and y^i are indepen-

dent, for j φ f, j,f = 1,... ,rij, then unconditional covariance between y^

and yijt is given by

yiji) = {exp{xjjβ + -σ2)}{exp(xjfβ + -σ2)}

x{exP(σ2)-l}. (3.12)

The mean vector μι(β, σ2) and variance-covariance matrix Vι{β, σ2) are then

easily computed.

Note that for the cases when 7* ~ ΛΓ(O, σ2) and σ2 is assumed to be
small, one may develop an approximate likelihood function for β and σ2 and
compute the likelihood estimate for these parameters [see Sutradhar and Qu
(1997)]. The random effects 7; (i = 1,..., k) may be estimated by using the
posterior likelihood of ηι given the data.

For the general case when 7i's are independently and identically dis-
tributed with zero mean and variance σ2, one may still obtain the approxi-
mate marginal means and variances, provided σ2 is small (cf. Sutradhar and
Rao (1996)]. Rewrite the conditional density (1.1) of y^ given 7̂  as

j £ j + c ( ^ )}, (3.13)

where 0^'s, with θ\j = xjjβ + 7Ϊ, are independent random variates with

E(θ*j) = Oij = xJjβ, and var(^ ) = σ2.

Now by expanding f(yij\θ^) in (3.13) about 0y and taking expectation over

the distribution of θψ one first obtains the density function of j/ij, which

may then be exploited to compute the marginal means and variances. After

some algebra it follows that

2

y [(α')2{m3 + raira2} + α"ra2

, (3.14)

with mi = sflα\ m2 = [g" - α"mι]l{α')2, m 3 = -{α')-*[Zα'α"m2 + Q!"mx -
g'"], where, for example, mi, α! and g1 are used for the functions mi(^j),
α!{θij) and g'{θij) respectively, by suppressing their dependence on θij. By
similar calculations, one obtains

σ2) - {E(yij)}2, (3.15)
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where

2
fϋ"j °"2) = (m2 + rn\) + y [(α')2{m4 + 2mira3 + mfm2}

3raira2 + mf} - #"(m2 + m2)],

with

m4 = - (

Further, as in this general case we do not specify the joint distribution of
ί/ii? ? 2/175 j Virii, one may use the 'working' covariance matrix

Σi(β,σ2)=D?R(a)Dl (3.16)

in place of the true covariance matrix Vi(β,σ2) without sacrificing the con-
sistency of β through the generalized estimating equation approach [Liang
and Zeger (1986)]. In (3.16), R(a) is referred to as a 'working' correlation
matrix of yi} and D{ = diag[var(ya)..., var(y^)..., var(yίn.)].

4 SIMULATION STUDY

To examine the performance of the proposed approaches, we executed a
small simulation study under the Poisson mixed model, with

v
log{JB(yy | 7 i)} = Σβtxijt + Ίu (4.1)

£=1

for j = 1,..., Πi\ i — 1,..., k. The parameters to be controlled in the
simulation study are as follows: (a) fc, the number of independent clusters
or individuals; (b) rij, the number of observations under each cluster or
individual; (c) β\,... ,/3p, the regression effects of the p covariates; (d) 7̂
(i = 1,..., A;), the random effects; and (e) σ2, the variance of the random
effects.

We take the number of clusters as k = 100, and consider two sets of
values of ni and p, namely, Ui — 4, p — 4; and πi = 10, p = 2, for all
i = 1,..., k. For the first set of values of ni and p, we take

βλ = 2.5, β2 = -1.0, βs = 1.0 and βA = 0.5;
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and

= 1, for j = 1,. . . ,

n»+ 1
j = 1,..., and 0:̂ 4 =

For the second set of values of Ui and p, we take the first two values of β%
i.e., βι = 2.5 and /?2 = —10; and first two covariates X{j\ and a ̂  F°Γ

k = 100, the 7i's were independently generated from a normal distribution
with mean 0 and variance σ2. Five values of σ2 = 0.1, 0.3, 0.50, 0.75 and
1.00 were considered. The responses (yn,... ,yini) for each cluster i were
generated as realizations of Poisson model (1.1) with mean and variance

equal to exp I Σ βtx%jt + 7< >. The simulated data (yij), j = 1,...,
I J

i =
Ifei J

1,... fe, and the covariates (xiju), u = 1, ,p; j = 15 5 ̂ ; i = 1,... A;
were used to compute the estimates of the fixed effect parameters /?, variance
component σ2 of the random effects, and the random effects 7$ (i = 1,..., fc),
based on both approaches discussed in Sections 2 and 3. The simulation was
repeated 2,000 times in order to obtain the mean value and standard errors
of the parameter estimates.

For simplicity, we refer to the estimation method discussed in Section 2
as corrected conditional mixed method (CCMM) and the estimation method
discussed in Section 3 as unconditional mixed method (UMM). We now spell
out the formulas for the estimation of the parameters of the Poisson mixed
model by CCMM and UMM.

In CCMM, to begin with, the random effects ji are treated as fixed
effects and estimating equations for β and 7̂  are developed by conditioning
on these fixed effects. Folowing (2.6) and (2.7), these estimating equations

are

1
>_

- 1

V^ V"̂  ί / / 7
Λ Λ J ( 01 — QVΉl T

and

- 1

(4.2)

(4-3)
where [ ]u in (4.2) and (4.3) denotes that the expression within the brackets
are evaluated at ΐith iterated value β(u) and ji(u) respectively. Note that
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7» in (4.3) are computed by treating 7, (i = 1,. . . , k) as fixed, although in
reality, under the present model, they are random. We now make a correction
to take this random nature of ji into account and estimate them by (2.11)
by noting that for the Poisson model

E{Ίi-Ίi? =
3=1

This result in (4.4) is obtained by expanding

(4.4)

about 7i and noting that 321 (7ί) = 0. Now by using (4.4) in (2.11), and
exploiting (4.2), (4.3), (2.11) and (2.13) iteratively, we obtain the solutions
for /?, 7i and σ2. They are referred to as /?, 7$ and <τ2 respectively.

In UMM, regression effects β are estimated by using (3.6). For the Pois-
son model, equation (3.6) reduces to

l)=β*(u)-gfβg*1, (4.5)

where

/ j Uijxij

+ Σ?ii Li=i

and

with α = l/{exp(σ2) - 1}, and λ = l/{exp(σ2)(exp(σ2) - 1)}. Next, by

(3.8), the iterative equations for X{ (i = l,...,fc) for the Poisson model,

reduces to
Ί - 1

x (4.6)
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where [ ]u denotes that the expression within the brackets are evaluated at
uth iterative value j*(u). Further, by (3.9), the estimating equation for σ2

is given by
k

•**/*> ( 4 7)

which is similar to the estimating equation (2.13) for σ2 in CCMM.
The above three estimating equations (4.5), (4.6) and (4.7) are solved

iteratively as follows. For a given value of σ2, we first solve (4.5) for β. This
estimate of β is then used in (4.6) to obtain the estimate of ηι. In the third
step, these values of ηn (i = 1,..., k) are used in (4.7) to obtain an estimate
of σ2. We then put back this estimate of σ2 in (4.5) and (4.6) to improve the
estimates of β and 7*. This cycle of iteration continues until convergence is
achieved for β and σ2. The final estimates are denoted by β, ηi (i = 1,..., k)
and σ .

In the simulation study, we also include the results based on the condi-
tional mixed method (CMM). In this method, unlike the CCMM, β and ji
are estimated by treating the random effects 7$ as fixed effects, although in
reality they are not so. The appropriate estimating equations are (2.6) and
(2.7) for β and ηι respectively. Next, the variance of the random components
is estimated by treating 7$ as random effects, but using the estimate of the
fixed 7J for the unobservable random 7$. The appropriate equation for the
variance component is

* =Σ,7.7*> (4.8)

instead of (2.13). In (4.8), 7; is obtained from (2.7) instead of (2.11).

4.1 Estimate of/?

Table 1 reports the simulated values of the percent relative bias (RB% ) of
the regression estimators computed by: (1) the conditional mixed method
(CMM), (2) the corrected conditional mixed method (CCMM), and (3) the
unconditional mixed method (UMM). The percent relative bias (RB% ) of
the estimator /3χ, for example, is given by 100 x ΛB(jSi), where

RBφι) = \Eφι)-β1\/σφι),

with Eφi) and σ(β\) as the simulated mean and standard errors of the
estimator β\. It is clear from the table that in estimating all the regression
parameters βu β2, /% and /34 for p = 4, βx and β2 for p=2, the UMM leads
to very large reduction in RB relative to the conditional methods CMM
and CCMM. Between the two conditional methods, the corrected method
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(CCMM) yields slightly better estimates for the regression parameters, as
compared to the uncorrected conditional method (CMM). For large values
of σ2, both conditional and unconditional methods may have convergence
problems. For example, for n2 = 4, p = 4, CMM and CCMM do not converge
when σ2 = .75 and 1.00. The convergence problems are shown by putting
'*' in the tables against the parameter values for which convergence are not
achieved. Similarly, for U{ — 10, p = 2, the UMM fails to yield the estimates
of βι and β2 when σ2 = 1.00.
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Table 1. Comparison of percent relative bias (RB%) of the regression es-
timates for selected values of σ2; k = 100; Ui = 4 (i = 1,... , fc), p = 4;
Πi = 10 (i = l,...,fc), p = 2; true values of the regression parameters:
βι = 2.5, β2 = -1.0, /33 = 1.0 and /34 = 0.5; 2,000 simulations.

Cluster

Size (πi) p σ2

4 4 0.10

0.30

0.50

0.75

1.00

10 2 0.10

0.30

0.50

0.75

1.00

Method

CMM
CCMM
UMM

CMM

CCMM
UMM

CMM

CCMM
UMM

CMM
CCMM
UMM

CMM
CCMM
UMM
CMM

CCMM

UMM

CMM

CCMM

UMM

CMM

CCMM
UMM
CCM

CCMM

UMM

CMM
CCMM

UMM

βl
2432
2380

54.3

2368

2305
100

1848

1819
148.5

*
*

200.0
*
*

259.4

5463
4950

123.1

6513

6275
235.7

4360

605.8
320.0
5467

1615

364.7

2422

2300
*

Parameter

ft
353.7
353.7

1.7

443.8

428.6
1.8

540.5
538.1

3.7
*
*

1.9
*
*

4.2

705.3
636.4

0

668.4

688.9

0

615.8
221.7

4.5
623.5

536.8

0

564.7
564.7

*

βz
433.3
422.2

0

650.0
650.0

5.0

837.5

837.5
0
*
*

0
*
*

5.9

285.3
282.4

2.7

321.9
318.8

8.3

375.0
362.1

3.0
*
*

1.0
*
*

4.4
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4.2 Prediction of the Random Effects

The results of Table 2 show the performance of the predictors of ηι (i =
1,..., k) by all three methods CMM, CCMM and UMM. Here we examine
the empirical distribution form of the estimates of 7; (i = 1,..., k), given
that 7i's are generated from the normal distribution with mean 0 and vari-
ance σ2. This is done by studying the empirical mean, median, skewness
and kurtosis of the predictors of 7̂ . Table 2, in its last column, also re-
ports the simulated total mean square error (TMSE) of the random effect
predictors based on the CMM, CCMM, and UMM. Let % be the CMM esti-
mator of the random effect 7̂  in the sth (5 = 1,..., 2000) simulation. Then

k (2000 ϊ

the TMSE of the CMM predictors is defined by ^ I Σ {% - 7;)2/2000 I

where k = 100 is the number of independent clusters. Similarly, the TMSE of
k (2000 ^

the CCMM and UMM predictors are defined by ^ < ̂  (% - 7i)2/2000 >
i=i 15=1 J

k (2000 ϊ

and y^ < ^ (7 i s — 7i)2/2000 > respectively. It is interesting to note from the
i=i L=i J

table that the corrected conditional method (CCMM) performs extremely
well in the prediction of the random effects as compared to the unconditional
method UMM. Between the two conditional mixed methods, as expected, the
corrected conditional mixed method performs much better as compared to
the uncorrected conditional mixed method. This leads to the fact that cor-
rection for randomness of ji (i = 1,..., k) is quite important as the true 7i's
are random. When the corrected approach is compared with the uncorrected
approach for checking for the normality of the predictors of the random ef-
fects, both approaches appear to yield the normal predictors. But, the mean
value of the predictors by CMM is quite away from the mean value zero for
7i (i = 1,..., fc), whereas CCMM yields zero mean value similar to that of
the distribution of 7$ (i = 1,..., k). Next,
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Table 2. Comparison of Mean, Median, Skewness, Kurtosis and total
mean square errors (TMSE) of the random effect predictions for selected
values of σ2; k = 100; n< = 4 (i = 1,. . . , fc), p = 4; n< = 10 (t = 1,. . . , fc),
p = 2; true values of the regression parameters: /?i = 2.5, fo = —1.0,
/?3 = 1.0 and /?4 = 0.5; 2,000 simulations.

Cluster

Size p σ2

4 4 0.10

0.30

0.50

0.75

1.00

10 2 0.10

0.30

0.50

0.75

1.00

Method

CMM
CCMM

UMM
CMM

CCMM
UMM
CMM

CCMM
UMM
CMM

CCMM

UMM
CMM

CCMM

UMM

CMM

CCMM

UMM

CMM

CCMM
UUM
CMM

CCMM
UMM

CMM

CCMM

UMM

CCM

CCMM

UMM

Mean

0.473
0.000

0.000
0.337
0.000
0.000
0.153

0.000
0.002

*
*

0.006
*
*

0.014

0.536

0.000

0.000
0.460

0.000
0.000
0.380

0.000
0.001
0.274

0.000

0.005

0.168

0.000
*

Median

0.445
-0.028

0.004
0.288

-0.049
0.007
0.091

-0.064
0.014

*
*

0.029
*

0.038

0.507

0.014

-0.002

0.408
-0.056
0.005
0.314

-0.069
0.014

0.194

-0.081

0.015
0.074

-0.094
*

Skewness

0.320
0.332

0.184
0.321
0.324
0.153
0.324

0.325
0.142

*
*

0.135
*
*

0.135
0.342

-0.089

0.238
0.362

0.429
0.183
0.363
0.386
0.164

0.366
0.372

0.159

0.371

0.373
*

Kurtosis

2.655

2.660
2.284
2.654
2.654
2.264

2.651
2.651
2.252

*
*

2.246
*
*

2.256
2.654

2.833
2.324

2.658
2.661
2.264

2.651
2.658
2.252

2.649

2.650

2.256

2.642

2.642
*

TMSE

23.327
0.178

0.813
12.565
0.211

1.050
3.252
0.244

1.293
*
*

1.639
*
*

2.046
30.817

1.106

1.160

23.793
1.315
1.496

17.318
1.462

1.771

10.455

1.669

2.170

5.548

1.845
*
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when the unconditional approach UMM is compared with the corrected con-
ditional mixed method (CCMM) for normality, the UMM appears to pro-
duce much better mean, median and skewness values for the predictors of
the random effects than those yielded by the CCMM approach. The CCMM,
however, appears to yield much better kurtosis value (close to 3) as compared
to the unconditional mixed method (UMM).

4.3 Estimate of σ2

Table 3 reports the simulated mean values and standard errors of the esti-
mates of σ2. It is clear from the table that the unconditional mixed method
and the corrected conditional mixed method compete each other in esti-
mating the variance σ 2 of the random effects. The uncorrected conditional
mixed method performs worse, as expected, as compared to its counterpart
CCMM. This is because, unlike the CCMM, the CMM treats the random ef-
fects as fixed effects and use them to estimate the variance component of the
random effects. Between the CCMM and UMM, σ 2 estimates of the UMM
always have the smaller bias but larger standard errors than the estimates
of the corrected conditional mixed method (CCMM).

Table 3. Comparison of simulated mean values and standard error (SE) of
the estimates of variance components of random effects for selected values
of σ2; k = 100; n< = 4 (t = 1,. . . , * ) , p = 4; m = 10 (i = 1,. . . , fc), p = 2;
true values of the regression parameters: β\ = 2.5, /% = —1.0, βs = 1.0 and
β\ = 0.5; 2,000 simulations.

Cluster

Size p

4 4

10 2

Method

CMM

CCMM

UMM

CMM

CCMM

UMM

Mean

SE
Mean

SE
Mean

SE
Mean

SE
Mean

SE
Mean

SE

0.10

0.329
0.006
0.104

0.003

0.095
0.006

0.401
0.004
0.112

0.007

0.090

0.008

0.30

0.427

0.007
0.312

0.005

0.304

0.011

0.530
0.010
0.306

0.011

0.298

0.014

σ2

0.50

0.545
0.007

0.520
0.007

0.511

0.015
0.667

0.013
0.512

0.018

0.506

0.020

0.75

*
*

*
*

0.772

0.022

0.853
0.021
0.774

0.026

0.763

0.026

1.00

*
*

*
*

1.032

0.026
1.059

0.027
1.029
0.030

*

*
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5 SUMMARY AND DISCUSSION

Our limited simulation study has shown for the Poisson mixed model that the
unconditional mixed method (UMM) is superior to the corrected conditional
mixed method (CCMM) in estimating the fixed effects parameters. The
CCMM, on the other hand, performs better than the UMM, in predicting
the random effects, as the total mean square errors (TMSE) yielded by the
CCMM were always found to be smaller than those produced by the UMM.
In estimating the variance of the random effects, both UMM and CCMM
were found to be almost the same. The CMM always performs poorly in
estimating any parameters β or ηι (i = 1,..., k) or σ2. This uncorrected
CMM, therefore, should not be used in estimating the parameters of the
mixed model.

Note that it has been assumed in the simulation study that 7$ x~ iV(0, σ2).
But, in general, 7* (i = 1,..., k) may also follow non-normal distributions.
In such cases, the performance of the adhoc estimates E^ifii) or £7(7117J,

computed by pretending that ηι ~ iV(0, σ2), may not be satisfactory. This
shows the necessity for further investigation for the construction of a robust
corrected predictor for 7, (i = 1,..., fc), irrespective of the distribution of 7̂ .
This problem, however, does not arise in the unconditional mixed method
(UMM). But again, it does not mean that the UMM is problem free. This
is because, for large σ2, it may be extremely difficult to compute the un-
conditional marginal mean and variance of the response variable, which are
required for the construction of the estimating equations for the regression
parameters.

Further note that when the elementary functions, such as huj in (2.1)
and \i2i in (2.12) are conditionally correlated, Durairajan (1992) has given
a closed form of optimal estimating function under certain conditions and
utilizing this, Bai and Durairajan (1996) obtained optimal estimating func-
tion for means and variances of one-type and two-type branching processes.
The result of Durairajan (1992) may be used in the generalized linear mixed
model also. However, we have not considered this approach in this paper.
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