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ABSTRACT

In the usual Gauss-Markov (GM) framework of structural linear models,
the GM estimators of the regression parameters become inconsistent if at
least one of the regressors is correlated with the model error. The reason
for this is that the transformation matrix in the GM estimating equation,
which transforms the data to the parameter space (this happens to coincide
with the design matrix X), cannot be regarded as conditionally fixed. Us-
ing a generalization of the method of estimating function of Godambe and
Thompson (1989) to structural models, it is shown that an asymptotically
consistent and optimal (in a restricted sense) estimator can be obtained by
replacing the transfromation matrix X by E.(X), the linear regression of X
on a given set of conditioning variables; the optimality is restricted in that
it depends on the conditioning set. The matrix E,(X) can be viewed as a
working (because of restricted optimality) transformation matrix with the
desirable property of being uncorrelated with the model error but correlated
with X. Although finding an unrestricted optimal transformation matrix is
not generally feasible in practice, it is shown using the estimating function
framework that a lower bound to the asymptotic covariance can be found.
This bound is then used to propose a measure of asymptotic efficiency of
the estimator. It is observed that the concept of a working transforma-
tion matrix is equivalent to that obtained from the method of instrumental
variables. Through examples from different areas of modelling such as simul-
taneous equations, latent variables, and measurement errors, it is illustrated
that the structural model estimating function provides a unifying principle
which recovers existing results as well as leads to new results.
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1 INTRODUCTION

We consider a linear semiparametric model y = X0 + € where € ~ (0,T),
T = 0?1, X is a n X p matrix with rank p, and @ is a p-vector of fixed param-
eters. In general, I' may be 02A where A is assumed to be nonsingular and
known except for its possible dependence on 0. If some of the p-regressors,
Ti,...,ZTp, are stochastic, then such a model is termed ’structural’, while if
all the z’s are fixed, it is termed ’functional’ as defined in Fuller (1987, p. 2).
For the case of functional linear models, it is known that when the covari-
ance I depends on 8, the Gauss-Markov (GM) approach, or more generally,
the least squares (LS) approach may fail in that the resulting estimate may
be inconsistent. However, the method of estimating function of Godambe
(1960) and Godambe and Thompson (1989, henceforth GT) does give an
optimal and consistent estimate; for a good review see Godambe and Kale
(1991). For the case of structural linear models also, the GM or the LS
approach may fail when at least one of the regressors is correlated with the
model error. Some examples are the cases of latent variable, simultaneous
equation, and measurement error models which are often used in economet-
rics. In these situations, the method of generalized instrumental variable
estimation (GIVE) is commonly used, see e.g., Harvey (1981, Ch. 2, p. 80).

In this paper, for structural models we first make a connection between
the concept of instrumental variables and that of conditioning variables used
in GT methodology, and then propose a generalization of the GT estimator
termed as the structural model estimating function (SMEF) estimator. The
SMEF estimator can be used when conditional expectations in GT are not
specified but can be approximated by a linear regression function. Differ-
ent specifications of the conditioning or instrumental variables give rise to
different SMEF estimators. For a given set of conditioning variables, it is
shown that SMEF and GIVE methodologies yield identical estimates and
thus optimality of GIVE estimators can be justified from the optimality of
estimating functions. The optimality of each GIVE estimator is restricted
in that it depends on the conditioning variables. It is also shown that a
GIVE method can be improved by including a variable that is identically
one to the set of instrumental variables. This improved version of GIVE
arises naturally within the SMEF framework. Apparently, the distinction
between instrumental variables with and without the inclusion of constant
(i.e., 1) has not been emphasized in the literature. Also, since the GIVE
estimators are optimal in a restricted sense, it will be useful to have a mea-
sure of the asymptotic efficiency of the GIVE estimator. Such a measure
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is proposed by finding a lower bound to the asymptotic covariance. The
lower bound, however, is generally not attainable because the corresponding
optimal instruments are not obtainable in practice.

The organization of the paper is as follows. Section 2 provides moti-
vation of the proposed method of SMEF for optimal instrumental variable
estimation. For this purpose both GM and GT estimators are first reviewed
from functional and structural model perspectives. The SMEF method is
presented in Section 3. Several illustrative examples are given in Section 4.
Finally, Section 5 contains concluding remarks.

2 MOTIVATION OF THE PROPOSED METHOD
WITH REVIEW

It will be helpful to review methods for functional linear models, i.e., models
with fixed regressors. We will first consider the GM theorem (which gives
BLUE-best linear unbiased estimator) and later the GT theorem which gen-
eralizes GM and gives the optimal method of estimating function. In parallel,
problems arising from structural models will be discussed for motivating the
proposed method.

2.1 Gauss-Markov Theorem

For the GM set-up, it is assumed that z-variables are fixed and I" does not
depend on 6. According to the GM theorem, the optimal (BLUE) estimator
0L, UE is obtained as a solution of the estimating equation

X'T Y (y-X0)=0, (2.1)
and is given by R
OBLUE = (X’I‘_lX)‘lXI‘—ly. (2.2)
The estimator éBLUE has the small sample optimality of BLUE. Also, under
standard regularity conditions, we have as n — oo,

OBLUE —a Npl0, (X'T71X)71]. (2.3)

Note that we have used somewhat loosely the above notation for the asymp-
totic distribution because the covariance matrix depends on n. Now observe
that the estimating equation (2.1) has four components:

(i) the n-vector of zero functions y — X 0; a zero function is a function of
y or 6 (or both) such that it is zero in expectation,

(ii) the n x n inverse covariance matrix I'"!, it gives differential weights
to zero functions depending on their precision,
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(iii) the p X n transformation matrix X’ which transforms the zero function

vector from the data space (of dim n) to the parameter space (of dim
p), and

(iv) the p-vector of zeros on the right hand side of the equation; the trans-
formed zero functions from the left hand side are set equal to zero
which is closest under the mean squared error norm.

It may be of interest to note that the solution of the estimating equation
(2.1) enjoys robustness (in the sense that the estimator remains unbiased
and consistent) when I represents a working covariance matrix. This occurs
in situations where the true covariance is difficult to specify or approximate.
This robustness property holds more generally as was observed by Liang and
Zeger (1986) in defining generalized estimating equations. If ¥ denotes the
working covariance, we have a sandwich-type variance for the suboptimal
estimator, é, as n — 0o, and is given by

0 -4 N,[0,Q7'X'S'ITE1XQ 7Y, Q=(X'S"'X). (24)

In the above, there is quite a bit of flexibility in choosing the working co-
variance matrix (it can be stochastic, for example), the main requirement
being that the covariance term in the normal approximation (2.4) must be
Op(n~1). Similarly, we will define the concept of a working transformation
matrix which will be useful in dealing with structural linear models in Sec-
tion 3. If a (working) transformation matrix F' other than the optimal one
X' is used, then the resulting suboptimal estimator 8(F) is also robust with
a different sandwich-type variance expression. We have as n — oo

O(F) =4 N[0, (F'T71X)"Y(F P I F)(X'T™IF)71]. (2.5)

So far the covariates X were considered fixed, i.e. as a matrix of constants.
However, if X is random as in the case of structural models, then provided
that X is independent of €, the GM theorem remains valid conditional on
X. Alternatively, if X is only uncorrelated with but not necessarily inde-
pendent of €, then the optimality of the GM-estimator becomes asymptotic,
see Section 3.3.

Now for structural models, X is often correlated with e, i.e., y — X6.
For example, in the case of distributed lag model, we have for 1 <t < T,

ye = T8 + o1 + €, (2.6)

where given {&;,y:—1}, €& ~ (0,02) and uncorrelated over ¢. A typical exam-
ple from econometrics may define the variable y; as rate of consumption and
x; as disposable income at time t. Here GM fails because the set of vari-
ables {y;—1 : 1 <t < T} which are part of covariates are not independent
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of model errors {¢; : 1 <t < T'}. Using the concept of estimating equation,
Durbin (1960) showed that the least squares method for the model (2.6)
does provide consistent estimates using the fact that for each time ¢, the
elementary estimating equation is unbiased because ¢; is uncorrelated with
the covariates x; and y;—;. However, Durbin did not establish optimality of
the least squares estimate, although he did define an optimality criterion of
the estimating equation and showed that the score equation for parametric
models does satisfy the optimality criterion. Interestingly enough, around
the same time, Godambe (1960) established a stronger optimality property
of the score function. Further developments on Godambe’s optimal estimat-
ing functions led to a general result of GT (1989) from which optimality of
the least squares estimate for the distributed lag model easily follows.

2.2 Godambe-Thompson Theorem

For functional linear models, the GT theorem is more general than GM in
that variance is allowed to depend on the mean parameters. For structural
linear models, the GT theorem generalizes the GM theorem by allowing
hierarchical conditioning with respect to a set of variables related to the
random covariates. Consider, for example, the case of the distributed lag
model (2.6). The conditioning variables are defined in a hierarchical manner
for the vector of zero functions {g; := y; — i3 — ay;—1,1 < t < T} by the
increasing sequence of conditioning sets A; = {zy,yp—1,1 <t' <t} U Ag for
1 <t < T, where Ay denotes the initial conditioning set, i.e., all those z’s
which are independent of error. Here the corresponding o-fields define the
conditional expectation operator to be denoted as E.(-). For ¢t > 1, define
E;(-) as E(-|At—1). Then for the random variable involving ¢, we define E,
as F;. Now, for a prespecified E.(-), the zero functions g; are required to be
conditional zero functions, i.e., E;(g:) = 0; this holds for the above example.
We need the conditional covariance of the T-vector g which for our example is
easily seen to be the diagonal matrix oI using the hierarchical conditioning
argument, and also need the conditional transformation matrix —E.(8g/86")
for @ = (B',a)’, which is simply (21,...,2r) where 2; = (z},y:—1)". Now,
the GT optimal estimating function has the same form as that of GM (see
(2.1)) except that covariance and transformation matrices are replaced by
the corresponding conditional ones. It is easily seen that for the model (2.6),
this leads to the LS estimating equation.

To define the GT-optimality criterion with respect to a given E(-), con-
sider in general K subsets A; C ... C Ak of the conditioning variables cor-
responding to the K subsets of the conditional zero function vector g(y, 6)
of dimension n. Now denoting by GV, the conditional transformation matrix
of gradients, —E.(0g/80')’, and T, the conditional covariance of g which
will be block diagonal with K blocks, the optimal estimating function of GT
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for estimating @ is given by
G.T';'g(y,6) =0. (2.7)

It is assumed that G, has full rank and a unique solution éMEF exists
where MEF denotes the method of estimating function. Clearly, the resulting
estimator depends on E, i.e., the conditioning variables. Note that in the
particular case of Ay = A, 1 <k < K, i.e., when the conditioning variables
are common for all g;’s, 1 < i < n (which implies that E, = E,), there
are two special cases which give rise to GM: firstly when all covariates are
constants, i.e., A; corresponds to the trivial conditioning variable for the
sure event, and secondly when all covariates are conditioned, i.e., A; = X.

Now, consider the class of estimating functions F'T'; g defined by trans-
formation matrices F such that F'T;!G, is nonsingular. This is a linear
class of unbiased estimating functions except that coefficients of the linear
combination are allowed to depend on the parameter @ and the conditioning
variables. Then, the GT-theorem states that the optimal F is given by G,
in the sense that it "minimizes” the following expression

V(F) = [Ei(F'T; G [E(F'T; ' F)[EL(GIT; ' F) ™ (28)

with respect to the partial order of nonnegative definite matrices. The above
criterion is referred to as the small sample optimality criterion of estimating
functions. A simple proof of the GT theorem is as follows. First observe
that it is enough to show that

E\[F'T;'F] - E\(F'T;'G.)[E:(G.T;'G.)| L EL(G.T;'F) >0, (2.9)

i.e., nonnegative definite. The above requirement follows easily from the ma-
trix version of the Cauchy-Schwarz inequality, namely, 31, — 32 22'21 3520
for a partitioned covariance matrix ¥ with diagonal elements 31;, 392 and
off-diagonals as X9 and X9;. In our case, X corresponds to the covariance
of [(F'T;'g),(GTs'g)T. .

The expression (2.8) is the asymptotic covariance of the estimator 6(F),
see equation (2.12) below and compare it with the sandwich-type finite
sample covariance of @(F) in (2.5) when a working transformation ma-
trix is used for GM. For scalar 6, the optimality criterion V(F') reduces
to E1[E.(g*)?]/|E1E(dg*/06)]* where g* = F'T;'g. Except for the condi-
tioning variables, this is same as the original criterion of Godambe (1960).
For the multiparameter optimality criterion considered here, see also the im-
portant contributions of Durbin (1960), Kale (1962), and Bhapkar (1972).

An illuminating interpretation of the large sample optimality of the es-
timating function G.T'; lg comes from the projection approach of McLeish
(1984), see also McLeish and Small (1988). If a complete parametric model is
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postulated, then the corresponding score vector ¢, (y, @) leads to asymptot-
ically optimal maximum likelihood estimates. The optimal EF turns out to
be closest to 4 in the conditionally linear class (in that the coefficients may
depend on the conditioning variables used in E.) generated from g under
the covariance norm, because the orthogonal projection of ¢, on g is

Ec(psg')T;'g = —E.(09'/00)T; g, (2.10)

using the fact that 0 = 0(Ecg)/08' = E(9g/08') + Ec(gpj). The asymp-

totic optimality of the estimator éMEF follows from the approximate rep-
resentation (see Godambe and Heyde, 1987),

F'T;'g(y,0) = [E\(F'T;'G.)](6 - 6) + 0p(1), (2.11)

which implies that

O(F) — 6 —4 Ny[0, V(F)). (2.12)
Note that a consistent estimate of V' (F') can be obtained from the expression
(2.8) by dropping the E; operator and substituting consistent estimates for 8
if necessary. The small sample optimality of estimating function follows from
the corresponding property of the score function g (see Godambe, 1960)
which seems natural in view of the projection argument. The only difference
is that the general class of functions used in defining optimality of the score
function is reduced to a linear class, within which the criterion V' (F) is
minimized. Now, the small sample optimality of the estimator éMEF is
unknown in general. However, if we assume that G, = —E.(8g/08’) is equal
to —(0g/d8'), i.e., without the expectation operator, then the representation
(2.11) becomes exact for linear models, which in turn, implies that éMEF
has optimality similar to but stronger than BLUE. The reason is that unlike
BLUE, the linear class for MEF is larger because it allows for coefficients
of the linear combination to depend on 6 as well as on the conditioning
variables; see Godambe (1994) and Singh (1995) for similar results in the
context of estimation for linear models with random effects.

2.3 Relation Between Conditioning and Instrumental Vari-
ables

Consider the methodology of GIVE for estimating §-parameters of the struc-
tural model, y— X0 = € ~ (0,T). For simplicity, assume I" does not depend
on 6. It is further assumed that for ¢ > p, the n X ¢ matrix of instrumen-
tal variables, W (say), is well correlated with the n X p matrix of model
covariates X but uncorrelated with the model error e. The n x p optimal
instrument matrix W, obtained from W is given by the linear regression
of the p-vector & on the g-vector w. Note that the number of instruments



184 SINGH AND RAO

is the same as the number of z-variables, i.e., p, but the number of instru-
mental variables is g, which is at least as large as p. It is further assumed
that z— and w-variables are such that plim(X'T'"'W,/n) is nonsingular.
Now, the conditioning variables used in MEF can serve as w-variables, and
G. = —FE.(0g/00") = E.(X) as w-specific optimal instruments. Here only
one conditioning set A; is involved so that E, = E,. However, under a given
semi-parametric modelling, the information may not be sufficient to compute
the actual conditional expectation E.(X) for finding w-specific optimal in-
struments. Instead, an approximation given by the linear regression function
(E.(X), say) may be used as the instrument matrix. With this approxima-
tion, MEF and the method of instrumental variables will be equivalent if the
instrumental variables coincide with the conditioning variables.

In the next section, we present a generalization of the GT theorem to ad-
dress the question of optimality when E,(X) is used in estimation for struc-
tural model parameters; the resulting estimates are termed SMEF estimates.
We also consider the problem of finding asymptotic efficiency of a w-specific
SMEF estimator. To this end, a lower bound for the asymptotic covariance is
derived. The corresponding matrix of optimal instruments (E.-(X), say) is
unfortunately not obtainable in practice. Thus, E.(X) can be interpreted
as the conceptual optimal (in the unrestricted sense) transformation ma-
trix while E.(X), corresponding to specified instrumental variables, as the
working (because of restricted optimality) transformation matrix. In the fol-
lowing, it will be assumed for simplicity that there is only one conditioning
set, i.e., Ay = A1, 1 <k < K in the GT framework.

3 PROPOSED METHOD OF STRUCTURAL
MODEL ESTIMATING FUNCTION

We propose two SMEF estimators 9(811)\/IEF and 9(821)\/IEF corresponding to
two choices of conditioning or instrumental variables w: (1) the w-variables
are prespecified but do not contain the constant 1; w in this case will be
denoted by w(;), and (2) the w-variables are prespecified and contain the
constant 1. In each case, we establish optimality of the SMEF estimator
in a suitable class in a manner analogous to that of the MEF estimator of
GT. Next the quesiton of the asymptotic efficiency of the SMEF estimator
is considered in Section 3.3.

3.1 The Estimator é(SliVIEF

This case gives rise to commonly used instruments. Here the linear regres-
sion function E.(X) passes through the origin, because the constant 1 is not
one of the w-variables. It turns out that the optimality of the estimator us-
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ing E.(X) as instruments derived from estimating functions is equivalent to
the well known property of w-specific optimal instruments in GIVE method-
ology. To see this, let us first define the operator E, on the random variable
f(y,0) with respect to a set of g variables w(;)(q > p) as

Ec(f) = 'w,(l)[El (w(l)w’(1))]_lE1 (wa)f) = 'w’(1),3, (3.1)

where (3 is the g-vector of regression coefficients of f on w(;). Note that
since the regression function chi f) is through the origin, the w-variables are
not centered. The operator Cov.(f) is defined as Cov,(f — Ec(f)), and is
given by

Cove(f) = Ei(f?) - Eilf(Ee(f))],
El(f2) - El(f'w'u))[(El(w(1)'w'(1))]_1E1(w(1)f)- (3:2)

With this definition of E, and 5506, we have for the semiparametric struc-
tural linear model, g =y — X0 ~ (0,T"), T = oI,

Ec(g) =0, I'.= 6&10(9) =T, (3.3)

because by definition, g is uncorrelated with the conditioning variables, w.

We now have the following generalization of the GT theorem. Let G, =
E,(X) be defined elementwise by (3.1). Thus G, is W (1)B where W ;) is
the n X ¢ matrix of observations on the g-vector w(;), and B is the ¢ x ¢
matrix of regression coefficients [El(w(l)w’(l))]‘lEl('w(l)m’ ) where « is the
p-vector of z-variables. Since B is unknown in general, a consistent estimate
can be substituted to approximate G, as

Wy = WyB =Wy (W, W) Wi, X. (3.4)

Therefore W ;), is the (orthogonal) projection of X on the column space of
W (1). Note that for general T, i.e., for T' = 62A, W), will be defined as
W1y (W(,T W (1)) 'W{;;T ' X to ensure invariance of W 1), to trans-
formations of y — X 0, and to achieve optimal instruments (see below). Now
in the linear class of estimating functions defined by n x p transformation
matrices F (which may depend on the parameters @ and are in the column
space of W ;)) such that F'T~1G, is nonsingular, the optimal F is given
by G, in the sense that

V(F) := [E((FT™'G.)]  [E\(F' T F)|[E1(GL ' F)] ™ (3.5)

is minimized. The term minimi 1?.’cion is defined as in the case of the GT
criterion (2.8). the estimator Og\(gF is obtained by solving (when G, is
replaced by its estimate W y),)

I(l)*r_lg(ya 0) =0. (36)
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We have, for large samples,

~ 1 _ _
ORUEF — 0 —a Npl0, (W), T W (1)) 7). (3.7)

In fact the estimated asymptotic covariance matrix takes the sandwich form
(Wi D7 X)H (W), T 7' W (1), )(X'TT'W(y),) ™" (compare with (2.5)),
which can be simplified by noting that W{;,,["'X is the same as
W'(l)*I‘_IW(l)* using the properties of the projection form (3.4). The esti-

~(1
mator O(SI)\/IEF is asymptotically optimal in the sense that it minimizes the
asymptotic covariance V' (F'). This optimality is restricted in that the class
of transformation matrices F' is allowed to depend only on W ;). The (esti-

mated) asymptotic covariance further simplifies to [(X ’I“IW(I))(W'(I)I“1
W(l))_l(W'(l)l"_IX )]~! which can be seen to coincide with the known re-

sult for optimal instruments under GIVE methodology (Harvey, 1981, p.
80).

3.2 The Estimator é(Sz)MEF

In this case the linear regression E,(X) is allowed to have the intercept
term, and thus is more general than E.(X) of Section 3.1. In fact, E,(X)
now corresponds to the commonly used definition of linear regression in
which the regressors (w-variables in the present case) are centred. For a

random variable f(y, 8), E, is defined with respect to conditioning variables
w = (l,w’(l))' as

E(f) = Ei(f)+ Coui(f,wqy)Covi(wgy)  wa) — Ey(w())]
Ey(f) + Er(fw')[Br(ww')] " [w — By (w))
By (fw')[Br(ww')] 'w (3.8)

Il

where Cov; (f,w(y)), for example, is E1[(f — E1(f))((w() — E1(w(1)))’]. The
operator é\o’vc( f) is defined as before by Cov; (f — E.(f)) except that E.(f)
is different in this case.

Analogous to é(SlI)\/IEF’ the optimal SMEF estimator é(Szl)VIEF can be de-
fined from (3.4) with W, instead of W ;), and its asymptotic covariance
will be (W.I'"1W,)~!. Note that it will have stronger optimality property
because of a larger linear class of estimating functions due to introduction
of the unit vector in W. Thus, this SMEF estimator will be superior to the
usual GIVE estimator unless the constant 1 is already used as one of the
instrumental variables. However, its optimality is still restricted because the
class of transformation matrices is allowed to depend only on W.
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3.3 Asymptotic Efficiency of the SMEF Estimator

Using the framework of estimating functions, we consider the question of
defining an optimal choice of conditioning variables such that they are cor-
related with the covariates X but uncorrelated with y — X8, and that they
give rise to minimum asymptotic covariance in the class of all SMEF esti-
mators. To this end, let 8° denote the true unknown value of @ and define
X, as the residual of X after regressing on y — X8°, i.e., for j = 1 to p, the
jth column xcj, of X, is (the n-vector X ¢; denotes the jth column of X)

Tejr = xcj — Covi(zcj,y — X0O)T ! (y — X6). (3.9)

Note that if ¢¢; is uncorrelated with y — X 6°, the corresponding zcjx will
coincide with it. For given 6°, the regression coefficients in (3.9) can be
estimated consistently as follows. Since I' = oI, it may be reasonable
to assume that Covi(zcj,y — X6°)/0? is also of the form 7;(8°)I where
7i(8) = Covi(zij,yi — x.0)/0? for all i = 1 to n. Now 7;(6°) can be
estimated consistently as a function of 8° by using

4;(8°) = o;(y — X6°) /no?. (3.10)

In an analogous manner o2 (if unknown) can be consistently estimated as
a function of °. Note that for general I', 4;(8°) should be modified to
w;-I“l(y — X0%/n. Thus for a given 8°, X, can be computed. However,
since 6° is unknown, it is not computable in practice.

Now, treating X . as conditioning variables, it easily follows that the
optimal transformation matrix E.(X) is X,. We will now show that the
asymptotic covariance corresponding to X . provides a lower bound for the
asymptotic covariance of an SMEF estimator. To see this, note that for any
given set of conditioning variables w, Cov;(w,y — '8) = 0 by definition,
and therefore, E; (zw') = E)(z.w') where z, is the p-vector of z,-variables.
This implies using the definition E.(z) = B'w (see 3.4) that

Ei[z.@,] = E1(Ec(@)Ec(2')] + Er(2x — Ec(@)) (@« — Ee(x))].  (3.11)
In terms of the corresponding consistent estimates, we have
XiX* == W,*W* + (.X* - W*)’(X* - W*)- (3.12)

Incidentally, the above decomposition also follows easily by noting that W,
is the (orthogonal) projection of X, on W under the Euclidean norm. Now
for general T, (3.12) takes the form

XX, =wW.r''w,+ (X, -W,)T X, -W,). (3.13)
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It follows from (3.13) that (W.I'"'W,)"! — (X.T"!X,)™! is nonnegative
definite for any choice of w-variables and therefore X, provides optimal in-
struments. Although X, is not computable in practice as it depends on
0°, a consistent estimate of the corresponding minimum asymptotic covari-
ance can nevertheless be obtained by replacing 6° in (X'.I'"!X,)"! by a
consistent estimate given by an SMEF estimator. Note that the matrix
W . plays the role of a working transformation matrix. To see this ob-
serve that the covariance matrix (W.I'"1W,)~! is asymptotically equiva-
lent to (W.,I1X,) "L (W.D" W, )(X.T'"'W,)~! in view of the comments
given below (3.7) and the fact that W’.I'"1 X is asymptotically equivalent
to W.I''X,.

We thus propose the following measure of asymptotic efficiency of an
SMEF estimator

asy.eff(Ogvpr) = |(X.T71X.) 7Y x (Wir—tw,) ! |~L. (3.14)

Alternatively, in the above definition of efficiency, trace can be used instead
of the determinant operator.

4 EXAMPLES OF SMEF ESTIMATORS

4.1 Latent Variable Models

Consider a linear model y = X0 + va + 8, 6 ~ (0,T), with T' = 031,
v ~ (0,02I) and § uncorrelated with v. Here v corresponds to a latent
covariate and is therefore unobserved. A typical example may define y as
production of a company, z as size and v as management motivation. If we
treat va + & as the model error € with mean 0 and covariance I', where
T = 021, 02 = @02 + 02, then X and e will be correlated in general due
to the presence of the covariate v in €. Such problems are often addressed
in longitudinal surveys where data can be obtained for a second occasion.
Assuming that the parameters 6, a, and the latent variables v do not change
over the two occasions, then from the model

Y1 — Y2 = (X1 — X2)0 + (61 — 82), (4.1)

where the subscript 1, for example, denotes the first occasion, one can esti-
mate @ by GM provided X; — X5 has full rank. (Note that if the model has
an intercept term, then X; — X5 will have a column of zeros which should
be dropped. In other words, the intercept can’t be estimated from the model
(4.1)). Alternatively, we can treat X; — X, as instrumental variables be-
cause they are uncorrelated with €; = y; — X160 and €2 = y, — X 20, while
they are correlated with X = (X, X%)’. Thus, from Section 3.1, we can



STRUCTURAL MODEL ESTIMATING FUNCTIONS 189

find é(Sll)\/IEF as a solution of
(X1 - X2),T Hy - X0) =0, (4.2)

where y — X0 = [(y, — X10)', (yo — X20)']', T has %I on the diagonal and
a?02I on the offdiagonal, and (X; — X3), is similar to (3.3) except that
Wy is replaced by X; — X5. Again it is assumed that X; — X has full
rank. If the model has an intercept term, then all the linear functions of
are not estimable. Note that in practice it may be difficult to estimate I and
therefore a working covariance may be used to obtain suboptimal estimates.
Alternatively, using the suboptimal estimates as initial consistent estimates,
we can estimate I' as in Zellner’s feasible GLS approach and then obtain
optimal estimates in a second step.

The above estimator é(Sll)\/IEF can be easily improved by adding a column

of ones in X; — X5 to obtain 9(821)\/IEF Moreover, the second estimator has
an additional advantage in that it allows for estimation of the intercept
term if it is present in the model. Also the asymptotic efficiencies of SMEF
estimators can be computed as given by (3.14).

4.2 Simultaneous Equation Models

Consider a system of two equations

¥y = Xubu tyeew +ew = X1H00) + e
Yoy = X@Bwe +ynae +ee) = X0 € (4.3)

where e(1) ~ (0,T(1)), €2) ~ (0,T2)), X 3y = (X (1), ¥(2)), 01) = (Bly» ()’
and so on.

A typical example may define y(;) as consumption expenditure, y() as
income and z’s as other explanatory variables. Since the regressors and
model error are obviously correlated, we can’t use GM. A commonly used
solution is two stage least squares in which W = (X 1), X(g)) is used as a
common set of instrumental variables for each equation. Thus for (4.3a), in
stage I, §(o) is obtained by regressing the y(2)-variable on w-variables, and
in stage II, parameter estimates are obtained as

g - - -1
Oy = (Wi Ty X ()™ Wi Ty (4.4)
where W (1), denotes the optimal instruments obtained by regressing X E"l)

on W, ie., Wy, is (X (1), §(2))- It is easily seen that the SMEF estimator

égl)\/IEF with W as conditioning variables will be identical to the above
estimate. Moreover, it can be improved by adding the unit vector in W and
its asymptotic efficiency can be calculated as discussed earlier.
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We remark that all parameters of the two equations can be estimated
simultaneously but it requires estimation of covariance between €(1) and €(3).
For this reason, the method of three stage least squares is commonly used.

Using SMEF, alternative estimators can be developed as in the case of two
stage least squares.

4.3 Models with Measurement Error

Consider the model y = Z6 + 4, d ~ (0,T'g), 5 = 021, where Z is subject
to measurement error. Thus the observed Z is X, where X = Z + U, U is
the measurement error which is assumed to be uncorrelated with the model
error . For the jth column uc; of U, it is assumed that uc; ~ (O,UﬁjI )
and uncorrelated over j, 1 < j < p. A typical example may define y as corn
yield and Z as nitrogen content in the soil as considered by Fuller (1987, p.
2). Now rewriting the model as y = X + € where € = (§ — U#), we have
a structural linear model with X correlated with €. The covariance T of €
will depend on unknown parameters o2 and @ and has the form I' = 021
where 02 = 02 + Zjaﬁjﬂjz. Often an instrumental variable is obtained by
taking a second independent observation on Z, see e.g. Fuller (1987, p. 52).
Denoting the first and second observations on Z as X; and X5, 0 can be
estimated from

XYy - X.10)=0. (4.5)

Similarly, using X; as the instrumental variable, another estimate can be
obtained, and then a final estimate can be obtained by combining the two.

Above estimates can be alternatively obtained as é(Sll)\/IEF’ and can be further

improved by using 9(821)\/IEF

5 CONCLUDING REMARKS

For structural linear models, two alternative SMEF estimators using instru-
mental variables were considered based on a generalization of the GT theory
of estimating functions. The first SMEF estimator uses the available instru-
mental variables but does not include constant as an instrumental variable.
The second SMEF estimator includes constant as an instrumental variable
and was shown to be more efficient than the first SMEF estimator. These
estimators correspond to the commonly used estimators based on GIVE
methodology. However, the advantage of using constant as an instrumen-
tal variable does not seem to have been emphasized in the literature on
GIVE methodology. Using the theory of estimating functions, a measure of
asymptotic efficiency was proposed by finding a lower bound to asymptotic
covariance of all GIVE estimators. Such a measure is expected to be useful in
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practice as optimality of each GIVE is restricted to its own class. Through
several examples drawn mostly from econometrics, it was shown that the
SMEF methodology provides a useful generalization of the GM methodol-

ogy as well as an important unified statistical technique for dealing with
linear models with stochastic regressors.
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