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ABSTRACT

We study the consistency of generalized estimating equations. Our
consistency result differs from the known results in two respects. First,
it identifies a specific sequence of consistent solutions to be the minimax
point of a deviance function; this is stronger than the known consis-
tency results, which assert only the asymptotic existence of a consistent
sequence. Second, the minimax procedure applies and gives consistent
estimate even when the generalized estimating equation itself is not de-
fined, as would be the case if the mean function is not differentiate, or
if the support of the random observations depend on the parameters.
We also provide two practical criteria based on which we can decide
whether a solution is consistent by fairly simple computations.

Key words and phrases: Quasi likelihood estimation; generalized estimating
equations; deviance; projected likelihood ratio; Doob-Wald approach to consis-
tency.
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1. INTRODUCTION

Many data sets that arise from scientific research consist of repeated,
or clustered, measurements, which results in dependence among the
observations. It is therefore necessary to incorporate the dependence
into the estimation of the parameters and the assessment of errors.
The generalized estimating equations and related techniques are very
effective for such purposes. See Liang & Zeger (1986), and Zeger &;
Liang (1986). In the present paper we will establish the consistency
of generalized estimating equations, and provide verifiable conditions
under which consistency holds.

Applying Crowder's general theory (Crowder 1986; Small & McLeish
1994, page 96), it is not difficult to demonstrate that, with probabil-
ity tending to one, a generalized estimating equation has a consistent
solution. However, here we aim at a more specific statement of consis-
tency; that is, a specific sequence of solutions, which can be identified
in practice, is consistent. This latter statement is important because, in
many applications, a generalized estimating equation may either have
multiple solutions or have none at all; See McCullagh (1990), Hanfelt
k Liang (1995), and Li (1996).

In the classical theory of maximum likelihood estimation, the more
specific statement of consistency is known as the Doob-Wald statement,
demonstrated by Doob (1934), Wald (1949), and Wolfowitz (1949). It is
established via a property of likelihood functions, which states that the
maximizer of expected log likelihood is the true parameter value. This
implies that, under certain regularity assumptions, the maximizer of the
averaged log likelihood converges in probability to the true parameter
value.

For estimating equations, however, there is often no such likelihood
functions to which the Doob-Wald argument can be directly applied.
This is because, unlike a likelihood score function which is by definition
the gradient of the log likelihood, an estimating equation need not be
the gradient of any potential function, and hence we have no function to
maximize. See McCullagh (1990), McCullagh & Nelder (1989), Firth &
Harris (1991), and Li & McCullagh (1994). However, Li (1996) pointed
out that (i) the likelihood property used in Doob-Wald argument can
be restated as: the minimax of the expectation of the likelihood ratio
is the true parameter value, (ii) for many estimating equations it is
possible to construct a function which behaves similarly as the log like-
lihood ratio, so that the minimax of the expectation of this function is
always the true parameter value. Based on these observations Li (1996)



CONSISTENCY OF GEE 117

demonstrated that every minimax point of this function is necessarily
a consistent solution. This leaves no ambiguity when the estimating
equation has multiple solutions or has no solution at all. Moreover, the
consistency of the minimax holds even when the estimating equation
itself is not defined, as would be the case for quasi likelihood equation if
the mean function is not diίferentiable or if the support of the random
observations depend on the parameter.

In this note we will extend the minimax approach of Li (1996) to
demonstrate the consistency of generalized estimating equations. In
addition, we will provide two practical criteria by which one can judge,
via fairly simple computation, whether a solution is consistent.

In §3 we demonstrate the consistency in the special cases in which
the estimating equations do integrate to potential functions. In §4,
we describe the minimax approach to consistency, and introduce a de-
viance function that will facilitate this approach. §5 contains all the
technical preparations towards the proof of consistency: assumptions,
lemmas, and examples. The consistency in general cases will then be
demonstrated in §6. In §7, we provide two practical criteria for consis-
tency. Finally, in §8, a numerical example is carried out to illustrate
the use and effectiveness of these criteria.

2. GENERALIZED ESTIMATING EQUATIONS AND E-
ANCILLARITY

The data sets with which we shall be concerned are of the form
{Yit : t = l,...,7iΐ,z = l,...,ϋf}. The observations are independent
for different z, but dependent for different t within the same i. For
example, {Yit : t = 1,..., n^} may be the measurements from the same
subject at different times. Associated with each Yit are a p-dimensional
explanatory variable Xu and a p-dimensional regression parameter /?,
which together determine the expectation of Yit. We will denote the
whole vector {Yit} by Y, and the sample space of Y by y.

Let μit(β) and φ~ιVit(β) be the mean and variance of the observation
Yit. We shall assume that μit{β) = μ{Xjtβ) and Vit(β) = V{X%β) for
some known functions μ( ) and V( ). The dispersion parameter φ is
always taken to be positive. The inverse of μ is often called the link
function, and Xftβ the linear predictor. Typically, we take μ""1( ) to be
the natural link function from a linear exponential family and V(-) to
depend on μ according to that family, but in principal they can be other
functions as well. See McCullagh & Nelder (1989). The dependence
within each i is modeled by correlation matrices R(a) — {Rw(a) :
t,£' = 1, ...,τij}, where a is an s dimensional parameter and Rtt'{ )
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known functions. Across i, Rte(ά) is assumed to remain constant, in
so far as both observations Yit and Yit» are present in the cluster i.
In other words, R(a) is the same for all i except for its dimension.
In practice, the matrices R(a) need not be correctly assumed, and
is called the working correlation matrices. Whether or not R(a) is
correctly assumed, we can formally calculate the covariance matrices of
Yi = {Yit : t = 1,..., Πi} based on i?(α), as

These are called the working covariance matrices.
If the working correlation assumption were correct, then for each

fixed φ and α, the optimal linear combination of {Yn — μu(β)} which
yields the highest information about /?, in the sense of Godambe (1960),
is

q{β, φ, a) = φ~ι Σ{μi{β)}T{Wi{β, φ, α ) } " 1 ^ " Mi(/*)} = 0, (1)

where μι(β) is the rij x 1 vector {μu{β) : t — l,...n»}, /x»(/?) is the
Πi x p dimensional gradient matrix of μi(β) Equation (1), considered
as the estimating equation for β given φ and α, combined with any y/K-
consistent estimate φ(β) of φ, and V^-consistent estimate ά{β, φ(β)}
of α, is the generalized estimating equation for β. In other words, we
estimate β by solving the equation

If R(a) is the true correlation matrix, and if a is known, equation
(2) reduces to the quasi-likelihood equation as defined by Wedderburn
(1974) and McCullagh (1983). In this case, it is known that any solution
to (2), if it is consistent, is asymptotically normally distributed, and is
efficient among the solutions to linear estimating equations. See also
Jarrett (1984), McLeish (1984), Godambe & Heyde (1987).

In the sequel, we will denote the nuisance parameter (φ,aτ)τ by
7, and the combined parameter (β,jτ)τ by θ. The parameter space
for β will be written as B. Notice that if the working assumption is
incorrect, then the nuisance parameter 7 may have nothing to do with
the underlying distribution P. Therefore we will use Eβ to represent
the expectation under the distribution P for which β = β(P)- We
denote the true value of the regression parameter as /?0, and will often
abbreviate EβQ by E.
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What is remarkable is the way in which the nuisance parameters 7
enter into the equation (2). Specifically,

Eβ{q{β,>y)} = Q for all 7. (3)

Property (3) is called the E-ancillarity of the estimating equation q
relative to the parameter 7; See Small k McLeish (1988, 1989). This is
a fundamental ingredient of a generalized estimating equation, out of
which arise most of the desirable properties of the method. In particu-
lar, as implicit in Liang & Zeger (1986), if R(-) is correct, substituting
\fK consistent estimates of φ and a into (1) does not impair the effi-
ciency of the estimate of/?; even if i?( ) is incorrect, in which case ά may
not estimate anything, substituting φ and ά into (1) does not impair
the consistency and asymptotic normality of /3, as long as y/K(ά — a)
is bounded in probability for some a. Property (3) also plays a vital
role in our demonstration of consistency.

3. DOOB-WALD CONSISTENCY IN SPECIAL CASES

If an estimating equation does integrate to a potential function,
then, under certain conditions, the Doob-Wald argument can be ex-
tended to verify that the global maximum of the potential function is
consistent. In this section we sketch the proof of the consistency of
quasi likelihood estimation in these simple cases. The argument can be
extended to generalized estimating equation (2), provided that, with
respect to the regression parameter /?, it integrates to a potential func-
tion for each fixed 7. This extension is fairly straightforward and will
be omitted. For further studies of the potential functions of estimating
equations, see Li & McCullagh (1994).

Let Y = {Yi : i — 1, ...,n} be independent observations with mean
μi(β) and variance Vχ(β) where, similarly as in §2, μι{β) = μ{Xiβ) and
Vi(β) = V(Xiβ) for some known functions μ and V. Let s(β, Y) be the
quasi score function

s{β,Y) = ΣμiWVΓHβM - μi(β)) (4)
i=l

PROPOSITION 1. Suppose that the quasi score integrates to
some potential function /(/?, Y); in other words (dl/dβ)(β, Y) = s(β, Y),
and that there is a measure v with respect to which the integral of 1^^
does not depend on β; that is

ί (5)
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Then, under certain regularity conditions, the global maximum ofl(β, Y)
is a consistent estimate of βo.

PROOF. The argument is similar in spirit to that used in Gourier-
oux, Monfort, and Trognon (1984). For each β, define a probability
measure dQβ(y) = eι^^du(y)/c. Differentiating equation (5) with re-
spect /?, we find that μ(β) = f ydQβ(y). Since /(/?, y) is a linear function
of y, it follows that El(β, Y) = f /(/?, y)dQβo{y) for all β. Hence

E{l{β,Y) - l(βo,Y)} = J{l(β,y) - l(βoMdQβo(y)

< log J eι^~ι^dQβo{y)

= log J{dQβ(y)/dQβ0(y)}dQβ0(y) = 0.

That is, the expectation El(β,Y) is maximized at β0. The rest of
the argument follows Wald (1949), with appropriate regularity con-
ditions imposed to ensure that n~ιl(β, Y) converges in probability to
n~ιEl{β, Y) uniformly in β. D

4. A DEVIANCE FUNCTION AND A MINIMAX
APPROACH

The argument of the last section depends on the existence of the
potential function /(/?, Y), and is inapplicable if no such function exists,
as is the case for many applications. Thus the questions arise: What is
the crucial element in Doob-Wald argument? Must one have something
like a likelihood function to maximize in order to apply this argument?

At first sight, the existence of a likelihood function seems essential:
if there is a function /(/?, y) , whose expectation is uniquely maximized
at /?o, and if f(β,Y) converges in probability to Ef(β,Y) uniformly
in /?, then the maximizer of f(β,Y) will be a consistent estimator of
the maximizer of Ef(β,Y). But a more careful look at the Doob-
Wald argument reveals that the maximization of a likelihood is not
indispensable: if we can uniquely identify the true parameter value
βo by examining the function Ef(β,Y), may it be the maximum, the
minimum, the turning point, or the minimax, then the β that can be
identified in the same way by empirical version of Ef(β,Y), namely
/(/?, y ) , should be a consistent estimator of βo.

To illustrate this idea, let {Yί,..., Yn} be independent and identically
distributed observations with a common density Pβ(yi). Since βo is the
maximizer of Eβo logp^(Yi), it is also the minimax point of the function
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Eβolo&{Pβ'{γ\)l Pβ(γι)} I n symbols,

sup Eβo log{pβ>(Yι)/pβo(Y1)} = inf sup Eβo \og{pβ>(Y1)/pβ(Y1)}.
β'eB βεBβ'B

This suggests that the minimax of n~ι Σ\og{pβι(Yi)/pβ(Yi)}, namely
the β defined by the relation

^ _ _ , .„.,#)} = irfsup^iogW(^)/^(^)},

should be a consistent estimator of β0. This is indeed the case: it can
be easily verified that β defined above is identical to the maximum
likelihood estimate in this case. See Li (1996).

The passage from the maximum of a likelihood to the minimax of
a likelihood ratio is important because, unlike the likelihood, the like-
lihood ratio can be generalized to many estimating equations, so that
the minimax argument applies very generally. Li (1993a) introduced
such a generalization to quasi likelihood equations. This is then fur-
ther extended in Li (1993b) to generalized estimating equations, which
is now recorded below.

DEFINITION 1. Let, in the notation of 12, θλ = (βuφuaj)τ

and θ2 = (β2,φ2,a2)
τ be two points in the parameter space θ. Let

D : θ x θ x y H> Rι be the function

D(θuθ2) =

The deviance function of the generalized estimating equation (2) is a
mapping R : B x B x y *-ϊ Rι defined by

R(βu β2) = D{βx, φifa), ά(βu φiβ,))- fa φ(β2), ά(ft, φih))}-

The centering function of R(βι,β2) is the mapping J : B x B H-> j?1

defined by

J(βuβ2) = ED{βι,Eφ(β1),Eά(β1,Eφ(β1));

β2,Eφ(β2),Eά(β2,Eφ(β2))}.
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Notice that the dependence of D and R on the random observations
is suppressed from the notation. The next proposition provides some
elementary properties of J, which can be verified along the lines of Li
(1993a).

P R O P O S I T I O N 2. The centering function J(βuβ2) has the fol-
lowing properties:

(i) Jtfufo) = "</(&, βι) for all β1, β2 in B

(ii) J(βo,β) is the negative quadratic form

, Eφ(β), Eά(β, Eφ(β))}{μi(β) - μi(βo)}.

If the matrices W's in (ii) are all positive definite, and if β is iden-
tifiable by the assumption of the mean; that is, different βs correspond
to different sets of means {μit(β)}, then J(βo,β) < 0 for all β in B.
This, combined with (i), implies that

supJ(/%,/?)=inf

Thus, intuitively, if R(β,β') converges to J(β,β'), then any β that
satisfies the minimax relation

sup #(/?,/?) = inf sup R(β,β')

should be a consistent estimator of /?0 This will be proved rigorously
in the next two sections.

5. ASSUMPTIONS AND LEMMAS

We shall frequently use the condition of stochastic equicontinuity,
which can be found in Pollard (1984, page 139). The following defini-
tion is a combination of the condition Cl and Lemma 2.1 of Crowder
(1986); it is to assume that a sequence of random functions and the
corresponding sequence of centered random functions are both stochas-
tically equicontinuous. Let T be a compact set in a Euclidean space,
let {/n(ί;Xχ,...,Xn) : n = 1,2,...}, abbreviated as {/n(ί,X)}, be a se-
quence of random functions defined on T, and let {fn{t) : n = 1,2,...}
be a sequence of (deterministic) functions of ί, considered as the "cen-
tering" functions of {/n}.
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DEFINITION 2. Let T be a compact set in a Euclidean space.
The sequence of random functions, {fn(t,X)}, and the associated cen-
tering sequence, {/n(*)}, o,re said to obey condition Cl if the following
are satisfied:

(i) {fn(t,X)} is stochastically equicontinuous on T; that is, for
each e > 0, η > 0 there is a positive number δ > 0 such that,

l imsupPί sup \fn(t,X)-fn{s,X)\>e}<η ,

(ti) {fn{t)} is equicontinuous on T;

(in) There is t0 G T such that {/n(ίo) n = 1, 2,...} is bounded.

By the Arzela-Ascoli theorem (Conway 1990, page 175) and the
compactness of T, (ii) and (iii) imply that {fn(t)} is totally bounded.
Therefore, if {φ(β)} and {Eφ(β)J obey Cl, then the set Fo = {Eφ(β) :
β e B,n = 1,2,...} is contained in a compact set, F say. And, without
loss of generality we assume that F is such that inf{\φ — φ'\ : φ e
F o , φ1 G Fc} > CQ for some e0 > 0. Suppose that, in addition to Cl, we
have the convergence

φ(β) - Eφ(β) 4 0. (6)

By Lemma 3.2 of Crowder (1986), the pointwise convergence (6), to-

gether with assumptions (i) and (ii), implies the the uniform conver-

gence snpβeB \φ(β) — Eφ(β)\ A 0. It follows that, with probability

tending to one, the set {φ(β) : β G B} lies in F, because

P{φ(β) e F for all β} > P{\φ(β) - Eφ{β)\ < e0 for all β}

= P{8xιp\φ(β)-Eφ{β)\<eo}-+l.

This proves the following result.

LEMMA 1. Suppose {φ(-),Eφ( ) : n = 1,2,...} obeys Cl, and
suppose (6) holds. Then, with probability tending to one, {φ{β) : β G
B} is contained in a compact set F.

With this construction, the condition Cl is easily passed from simple
functions to composite functions, a passage of importance since we
are to study the limit behaviour of the substituted estimates such as
ά(β, φ(β)) as a random function of β.

LEMMA 2. Suppose {<£(•), Eφ{ )} obeys Cl on B, and {ά( , •), Eά{; •)}

obeys Cl on B x F. Then {ά( ,φ(-)),Eά(ΊEφ( ))} obeys Cl on B.
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PROOF. By Billingsley (1968, page 221), conditions (ii) and (iii),
as applied to {φ( ),Eφ( )} and {ά( , ),Eά( , •)}, imply that the sets
{Eφ(β) : β E B,n = 1,2,...} and {Eά(β,φ) : (β,φ) <E B x F,n =
1,2,...} are bounded. So for any β £ B,

sup\Eά(β,Eφ{β))\ < sxxpsup\Eά(β,φ)\ < supsupsup|£ά:(/3,(/>)| < oo.
« n φeF n βς-B φeF

Hence (iii) holds for {Eά( ,Eφ(-))}. To prove (ii), let e > 0, and let
δo > 0 be such that

limsupsup{|£ά(/?, φ) - Ea(β', φ')\ : \\β - β'\\ < δ0, \\φ - φ'\\ < δ0} < e.
n—ϊoo

This is possible by stochastic equicontinuity of {ά( , •)} and compact-
ness of B x F. Let δι > 0 be such that limsupn_^oosup{|£l(^(i5) —
Eφ(β')\ : ||/3 - β'\\ < δx} < δ0. It follows that

limsnpsnip{\Eά(β,Eφ(β)) - Eά{β',Eφ{β'))\ : \\β - β'\\
n—> o o

To prove (iii), let e > 0, η > 0. Since

lim P{φ(β) G F, for all β G B} = 1,
71—> OO

we can, and do, assume φ(β) G F without altering our limit argument.
Let δ0 > 0 be such that

limsupP{sup \ά(β, φ) - a(β', φ')\ > e} < η/2,
n—>oo

supremum being over the set {(/?, φ, βf, φ1) : \\β - β'\\ < δ0, \\φ - φ'\\ <
δo} Let δι > 0 be such that

- φ{β')\ > δ0} < η/2,
n—>oo

supremum being over the set {(β,β') : \\β - β'\\ < ίi} Put δ =
min{<5o, δι}. It follows that

limsupP{ sup ά(β,φ(β))-ά(β',φ{β'))
l ^ Ί Kn->oo

<limsupP{ sup ά(β,φ(β))-ά(β',φ(β'))
"-><» \\β-β'\\<S
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sup
S-β'\\<δ

φ(β) - φ(β')

< limsupP {sup ά(β, φ) - ά(β', φ') > e} + % < η,
n—y<x>

where the supremum on the last line is over the set {\\β — β'\\ < δo,\\φ —

Φ'\\ < δ0}. •

L E M M A 3. Suppose (a) for each β G B and φ G F, φ(β) -
Eφ(β) A 0 and ά(β,φ) - Eά(β,φ) 4 0, and (b) {φ(β),Eφ(β)} obeys
Cl on B, and {ά(β,φ),Eά(β,φ)} obeys Cl on B x F. Then the se-
quence of random functions

{ά(;φ(-))-Eά(;Eφ(-)):n = l,2,...} (7)

converges weakly in C(B) to a random function degenerated at con-
stant 0; where C(B) is the class of continuous functions defined on the
compact set B.
P R O O F . First, we show that for each β e B, ά(β, φ(β))-Eά(β, Eφ(β))
converges in probability to 0. In other words, the finite dimensional dis-
tributions of the sequence of random functions (7) converge to those
of the random function degenerated at constant 0. Let e > 0, and let
δ > 0 be such that

l i m s u p P J sup \ά(β,φ) - ά{β,φ')\ > e/2J - 0. (8)

From the discussion preceding Lemma 1, assumptions (a) and (b) imply
that the sequence {ά( , ) : n = l,2,...} converges weakly to constant 0
in C(B x F). It follows that

l imsupP {\ά{β, Eφ(β)) - Eά{β, Eφ(β))\ > e/2}
n—xx)

<limsupP{ sup \ά(β,φ) - Eά{β,φ)\ > e/2} = 0. (9)
n-Λoo βeB,φ£F

Therefore,

hmsnpP{\ά(β,φ(β)) - Eά(β,Eφ(β))\ > e}

= \imsupP{\ά(β,φ(β)) - Ea(β,Eφ(β))\ > e, \φ(β) - Eφ(β)\ < δ}
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[by assumption (a)]

< limsupP{\ά(β,φ(β)) - Eά(β,Eφ(β))\ > e, \φ(β) - Eφ(β)\ < δ,
n—>oo

\ά(β, Eφ(β)) - Eά(β,Eφ(β))\ < e/2} [by (9)]

-ά{β,Eφ{β))\>e/2,

\φ{β) - Eφ(β)\ < δ] = 0, (10)

where the right most limit equals 0 because it is no more than the left
hand side of (8). By Lemma 2 we know that the sequence (7) obeys
Cl. This, together with (10), implies that the sequence (7) is tight in
C(B). This proves the asserted result. •

At this stage it is helpful to see through an example just what
assumption Cl means, and how it can be verified for a specific moment
structure. We do so by look into the moment estimate of φ suggested
by Liang & Zeger (1986). The assumptions about the estimates of a
suggested may be investigated following a similar procedure.

E X A M P L E 1. For simplicity, we assume that πi = n for all i. Let
B be a compact set in RP. Liang & Zeger (1986) suggested estimat-
ing φ by averaging over the residues based on the marginal moment
assumptions, as follows

Actually, Liang & Zeger used (K — p)n as the denominator; we can
ignore the finite number p without affecting the limit argument. Let β
be an arbitrary but fixed parameter value, and βf a point in an open
ball Oβ centered at /?, whose radius is yet to be determined. Let e and
η be two positive numbers. By direct calculation,

\μu(β') +μu(β)\} * \μ*(P) ~ μ*(β)\

We now verify that {φ(β)} is stochastically equicontinuous if the fol-
lowing conditions are satisfied
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(i) For each ί, the sequences {μui') ' i — 1,2,...} and {Vit( ) :
i — 1,2,...} are equicontinuous and the second sequence is
bounded away from 0.

(ii) There are parameter values βa and βb for which {μit{βa) '•
i = 1,2,...} and {Vit(βb) : i = 1,2,...} are bounded.

By (i) and (ii), for each ί, \μit(β)\ is bounded for i = 1,2,..., and
β e B. Therefore, since n is finite, \μa(β)\ < Mx. Similarly, l/Vit{β) <
M2. Hence (11) implies that

1.

sup \φ(β') - φ(β)\ < - Λ Σ {\Yit\ x sup \μit(β') - μit(β)\}
β'eo0 Kn i t β>eO

Σ SUP iMit(̂ ) - μu(β)\K n Σ SUP

Σ { l y « - ^(β)\2 x ̂ up |vit(/?') - vit{β)\).

Assumptions (i) and (ii) also imply that the sequence

+ /4(A>)} : K = 1, 2,...}

is bounded, and so both {{Kn)~ι Σiit \Yit\ : i — 1,2,...} and
{(Kn)~ιΣiyt \Yit - μ%t{β)\2 i = 1,2,...} are bounded in probability.
In other words, there is a positive number M3 for which

or Σ\Yit-μit{β)\2>Mz}<e-

By assumption (i) we can find δ > 0 as the radius of Oβ such that

max { sup \μit(βf) - μit(β)l sup \Vit(β') - Vit(β)\\

for all ί = l,2,...,n;i = 1,2,.... Then, l i m s u p ^ ^ P ί l ^ ' ) - φ{β)\ >

η) < e and, hence, {</>(•)} is stochastic equicontinuous. Evidently as-

sumptions (i) and (ii) also imply that {Eφ(-)} is a equicontinuous and

bounded sequence. Therefore {φ(β),Eφ(β)} satisfies Cl. •
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From Lemma 3 and the argument preceding Lemma 1, it is easy to
see that, with probability tending to one, the random set {ά(β, φ{β)) :
β e B} is contained in a compact set in Rs. We write the set as A,
and write the compact set B x F x A in RP+1+S as θ . It now takes
only a small step further to obtain the limit behaviour of the deviance
function introduced in the last section.

L E M M A 4. Suppose that, in addition to the assumptions of Lemma
3, the sequence of random functions {rΓιD{θι,θ2) — n~ιED(θι,θ2) :
n = 1,2,...} obeys Cl in θ 2 , and that for each (θuθ2) G θ 2 ,

n-1D{θuθ2) - n-1ED(θuθ2) 4 0.

Then the sequences {n~1i?( , ),n~ 1J( , •) : n = 1,2,...} obey Cl in
B2, and n~1{i?( , •) — J( , •)} converges weakly in C(B2) to a constant
function 0.

The proof is similar to that of lemma 3, and will be omitted.

6. CONSISTENCY OF GENERALIZED ESTIMATING EQUA-
TIONS

We are now ready to prove that any minimax point of the function
R{β\ >β2) is consistent. As we shall see in the next section, under mild
conditions, any minimax points are solutions to generalized estimating
equation (2). In other words, we can identify the consistent solutions of
(2) by verifying that they are minimax points. Two numerically more
convenient criteria will be presented in the next section.

The function J(β, β0) plays the same role as the Kullback-Leibler
information number in the Wald's proof of consistency of maximum
likelihood estimate, and R(βuβ2) plays the role of log likelihood ra-
tio. However, in our case, neither R(βι,β2) nor J(β\,β2) has the form
f(β2) — f{β\)' This is why a minimax deviance procedure must be used
in place of the maximum likelihood procedure used in the Wald's proof.

THEOREM 1. Suppose

(a) The sequence {φ{β), Eφ(β)} obeys Cl in B, {ά(β, </>), Eά(β, φ)}
obeys Cl inBxF, and{n-ιD(θuθ2),n-ιED{θuθ2)} obeys
Cl in θ 2 ;

(b) For each fleθ, φ(β) - Eφ(β) A 0, ά(β, φ) - Eά(β, φ) 4 0,

and rΓ1D(θuθ2) - rΓιED(θuθ2) 4 0;
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(c) For each β in B, β φ βo, the sequence of quadratic forms
{n~1J(β,βo)} satisfies

>0.

Then any parameter value β that satisfy the relation

sup R(β, β) = inf sup R(β, β') (12)

is a consistent estimate o

Notice that the estimates 0, ά need not be consistent; in fact, they
need not converge in probability at all. Furthermore, the theorem as-
serts that all minimax points (if there are more than one) are consistent.
The proof of the theorem is along the lines of Theorem 1 of Li (1996);
here we only describe the idea briefly and highlight the difference.

PROOF. Let Oβ0 be an arbitrary but fixed open ball centered at the
true parameter value βo. Let β φ βo and Oβ be an open ball whose clo-
sure does not contain βo. By assumptions (a), (b), and Corollary 1, the
sequence n~ι{R(β, βo) — J(β, βo)} converges weakly in C(B) to the ran-
dom function degenerate at constant 0. This, together with assumption
(c), implies that with probability tending to 1, inf^o^ n~ιR(β\ β0) > δ
for some positive δ that may be dependent on β. Now the class of such
open balls {Oβ : β G B \ Oβ0} form an open cover of B \ Oβ0. By
compactness of B \ Oβ0 there is a finite subcover {Oi : ί = 1, ...,&}.
Now on each O^ there is a ^ > 0 such that, with probability tend-
ing to one, inϊβ'zOi n~1R(βf, βo) > δι. It follows that, with probability
tending to 1, mΐβt^Oβ0

r^~1R(β^ βo) > δ for some positive δ. Since
n-ιR(βu β2) > udβ>ίo0o n~lR(P, βo), we see that

lim P { inf sup rΓιR{β, β') > δ\ = 1. (13)

Meanwhile, by a similar argument, one can show that for every positive
δ>0

lim P {inf sup rΓιR{β, β1) < δ] = 1. (14)
n->oo ^βEBβ,eB >

However, (13) and (14) imply that, with probability tending to one,
any minimax point β of R(β, β1) is in Oβo. In other words, β converges
in probability to βo Π
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7. TWO PRACTICAL CRITERIA FOR CONSISTENCY

Theoretically, Theorem 1 solves the consistency problem. Practi-
cally, the search for the global minimax of R(β, β') may be numerically
difficult, and so we need simpler criteria for consistency. In this sec-
tion we will introduce two such criteria. To achieve these, we need to
assume that the function R(β, β') do not behave too irregularly along
the straight line β2 = β\, specifically, that, with probability tending to
one, the following condition is satisfied

inf sup R(β, β') = sup inf R(β, β'). (15)
β£B β'eB βεB

Roughly, the condition requires that, as β moves pass the true param-
eter value βo, the mode of the function R(β, •) moves continuously. For
further discussion of this point, see Li (1996). In practice, such con-
tinuity is almost always satisfied; It is a challenge to find a counter
example. Nevertheless, condition (15) is not implied by the antisym-
metry of the function of i?, nor assumption (iii) of Theorem 1. The
latter two conditions only guarantee that

Pin"1] inf sup R{β,β') - sup inf R(β,β')\ < e) -> 1 for each e > 0,
1 β€B β'€B P€BP€B }

as can be seen from the proof of Theorem 1. Condition (15) is not
crucial from a theoretical point of view because, as we have seen, the
minimax β defined in (12) is consistent whether or not (15) holds. And,
without requiring condition (15), we can show that β is efficient using
a method similar to that used in the proof of Theorem 2 of Li (1996).
However, the condition does simplify the computation and discussion,
because it guarantees that the minimax point of R is necessarily a
solution to the generalized estimating equation. Let B be the set of all
solutions to the generalized estimating equation (2).

COROLLARY 1. Suppose (a) the condition (15) is satisfied, (b)
the minimax of R is in the interior of B, (c) i?( , •) is a differentiate
everywhere in B2. Then, under the assumptions of Theorem 1, any
solution β of equation (2) that satisfies

) = 0 (16)
βeB

is consistent.
PROOF. Let β be a (any) minimax of R. Under the assumptions (a),

(b), and (c), it is easy to show that β is in B. The argument is similar to
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the proof of Theorem 3(b) of Li (1996), and the detail is omitted. Now

let β be a solution to (2) that satisfies (16). Since β is the minimax,

and since β € B, we have

0 < sup R(β, β) < sup R(β, β) = 0; so sup R(β, β) = 0.
βB

Since βeB, the above implies R(β,β) < 0. But, since β € J3, (16)
implies R(β, β) < 0. Hence, by the antisymmetry of R, R(β, β) = 0.

Now let βo be the true value of the parameter /?, let e > 0 and p > 0
be arbitrary but fixed, and let Oβ0 be the open ball of radius p centered
at βo. By an argument similar to that used in the proof of Theorem 1,
there is a positive number η for which

P { sup n~ιR(βOj β) < -η\ -> 1, as n -> oo. (17)
ιβίoβ

 }

Now by Lemma 4, the sequence {n~1i2( , •) : n = 1,2,...} is stochasti-
cally uniformly equicontinuous, therefore there is a δ > 0 for which

\imsvLpP{sup\n-ιR(βuβ2)-n-ιR(β[,β2)\ > η/2} < e, (18)

where the supremum is taken over the set {(βuβ[,β2) G B3 : \\βι —
β[\\ <δ}. By Theorem 1,

C δ) = 1. (19)

Combining (18) and (19), it follows that

),β)-R(βo,β)\>η/2}<e. (20)

Hence, by (17) and (20),

n-too

< lim sup P{/? i Oβo, rΓι sup R(βo,β) < -η,
n-*oo β$Oβ0

n-1suv\R(β,β)-R(β0,β)\<η/2} + e

< lim sup P {n-ιR{βQ, β) < -η, n"1 \R(β, β) - R(β0, β)\ < η/2} + e
n—>oo

< lim sup P {nΓιR{β, β) < -η/2} + e = e.
71—>OO
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Since e is arbitrary we conclude that P(β £ Oβ0) -> 0. •

If we do not want to find all the solutions of (2), we can use the
following immediate consequence of Corollary 1.

COROLLARY 2. Under the conditions of Corollary 1, any solu-
tion β of (2) that satisfies

is consistent.

() = 0 (21)
βeB

Thus, in order to determine whether a solution β belongs to a con-
sistent sequence, it suffices to check whether #(/?, β) < 0 for all β. We
now apply the minimax-deviance approach to a numerical example.

8. A NUMERICAL EXAMPLE

EXAMPLE 2. Let {Yit : t = 1,2; i = 1,..., 30} be thirty bivariate
observations. For each z, (lα, l y follows a bivariate normal distribu-
tion with expectation located at an unknown point of a cardioid and
correlation matrix completely unspecified. That is

( μ\ \ ( 2cos/?-cos2/3 \ (x/ v λ . / 1 a\

V μ f J = [ 2 8 m / ? - s i n 2 / 3 J ^rθ(YιUYi2) = φ ^ a χ J ,
where θ = (/?, 0, a) are unknown and β is the parameter of interest.
Thirty observations are generated with β = τr/4, φ = 0.3 and a =
0.3, and are presented in Figure 1. There are four solutions to the
generalized estimating equation. The solution β = 0 will be ignored
since it has nothing to do with data. The data and the solutions are
presented in Figure 1.

The three non-trivial solutions are βQ = 0.28τr, βι = 0.91π, and β2 =
1.92π. In this simple example, the likelihood function is available, and
it takes a global maximum at /30, a local maximum at β2, and a global
minimum at β\. Plotted in Figure 2 is the curve l(β) — sup^/6B R(β, /?');
so the minimum point of l(β) is the minimax of R(β,βr). Thus by
Theorem 1, β0 is a consistent solution. Figure 2 also indicates that
lφ0) — inf/^β l(β) = 0; in other words sup^G β R(βo> β) = 0. So Corol-
lary 2 also tells us that βo is consistent.
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Figure 1: Multiple solutions for the cardioid model. bO, bl, b2 are βo, βu
$2- The three +'s mark the positions that correspond to the three solutions.
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8 -

saddle point = consistent solution

200 300

beta

Figure 2: Saddle point of the deviance function. The curve is
supβ,eBR(β,β') as a function of β. The minimum point corresponds to
the saddle point of R.
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