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FAMILIES OF m-VARIATE DISTRIBUTIONS
WiTH GIVEN MARGINS AND
m(m — 1)/2 BIVARIATE DEPENDENCE PARAMETERS

By HARRY JOE
University of British Columbia

A class of m—variate distributions with given margins and m(m —1)/2 de-
pendence parameters, which is based on iteratively mixing conditional distribu-
tions, is derived. The family of multivariate normal distributions is a special case.
The motivation for the class is to get parametric families that have m(m — 1)/2
dependence parameters and properties that the family of multivariate normal
distributions does not have. Properties of the class are studied, with details for
(i) conditions for bivariate tail dependence and non-trivial limiting multivariate
extreme value distributions and (ii) range of dependence for a bivariate measure
of association such as Kendall’s tau.

1. Introduction. The main purpose of this paper is to derive and
study a class of m-variate distributions with given margins and m(m — 1)/2
dependence parameters, one parameter corresponding to each bivariate mar-
gin. Of the parameters, m — 1 can be interpreted as dependence parameters
and the remainder can be interpreted as conditional dependence parameters.
The multivariate normal family is a special case with the parametrization in
terms on m — 1 correlations and (m — 1)(m — 2)/2 partial correlations, each
(independently) being in the range (—1,1). The class considered here includes
multivariate families with different amounts of bivariate tail dependence for
different bivariate margins; the multivariate normal family does not have tail
dependence, a property which is important for extreme value behavior.

The class of multivariate distributions is defined in Section 2. Properties
studied there include: (a) partial closure under taking of margins, (b) simula-
tion from the class, (c) bivariate tail dependence, (d) ordering by concordance,
and (e) range of dependence.

Because tail dependence properties are one reason for studying non-
multivariate normal families, conditions for bivariate tail dependence are stud-
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ied in some detail in Section 3 and the form of the limiting extreme value copula
is obtained when there is tail dependence. In Section 4, the range of depen-
dence of the multivariate family as measured by bivariate measures, such as
Kendall’s tau or tail dependence, is studied, particularly in the 3-dimensional
case. For purposes of statistical modelling, a wide range of dependence is
important when one has no reason to assume a special dependence pattern.

2. Multivariate Families with a Parameter for Each Bivariate
Margin. The class of multivariate distributions to be studied is given in
(2.1)—(2.3) below, after some notation.

F or Fi,...,n, denotes a multivariate distribution, with continuous univari-
ate margins Fi,---, F,,. The higher order margins are denoted as Fs where
S is a subset of {1,2,-.-,m} with cardinality at least 2. The densities, when
they exist, are denoted as fg and the survival functions are denoted as Fs.
The notation yg is equivalent to {y; : ¢ € S}. For specific subsets S, a
simplifying notation used is that the braces for the subset are omitted. C' de-
notes a bivariate copula (with uniform (0,1) margins). With subscripts, Cj,
Jj < k, is associated with the bivariate margin Fj; if k = j 4+ 1; otherwise if
k > j +1, it is associated with the conditional distribution of the j** and k"
variables given those indexed strictly between j and k. For S being a subset
of {1,2,---,m} with cardinality less than m and j ¢ §, Fj|s denotes the con-
ditional distribution of variable j given those whose indices are in S. That
is, if S; = SU {j} and all densities (with respect to Lebesgue measure) exist,
then Fj5(zlys) = [Z2 fiis(uilys)dy; where f;s(yilys) = fs;(vs;)/ fs(ys)-

We suppose that C(uj,uz;8) is a family of bivariate copulas which in-
clude independence and the Fréchet upper bound, such as one of the families
listed in Joe (1993). We suppose that the parametrization is such that the
dependence in C increases as # increases and that § = #; for independence,
6 = Gy for the Fréchet upper bound. For j < k, there is a parameter 6, = 0y,
and copula Cji = C(+;6;). For 1 < j < m, the (j,j+1) bivariate margin of F’
is Fj j+1(yj, y5+1) = Cjj4+1(F;(y;), Fj+1(y;j4+1)). Based on these bivariate mar-
gins and the copulas Cji, the higher-ordered margins Fy..x,- -, Fngq1.m,
3 < k < m, will be defined by recursion and at the last stage F' = Fj_,, is
defined.

For m = 3, the trivariate family is
F123(y1,Y2, Y3; 012, 613, 023)

yz (2.1)
- / Cra( Fiya(ta|z2; 612), Fapa(vs| 72 025)) Fa(d2s),

where Fj|y, F3); are conditional cumulative distribution functions (cdfs) ob-
tained from Fjq, F33. By construction, (2.1) is a proper trivariate distri-
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bution with univariate margins Fy, F3, F5 and (1,2) bivariate margin Fiq,
and (2,3) bivariate margin Fp3. The third parameter 6;3 can be interpreted
as a conditional dependence parameter (conditional dependence of the first
and third univariate margin given the second) with 613 = 61 corresponding
to conditional independence and 6,3 = 6y corresponding to perfect condi-
tional dependence. The (1,3) bivariate margin of (2.1) can be obtained as
F13(y1, y3; 012, 023, 013) = F123(y1, 00, y3; 012, 623,013). Note that this depends
on all of the dependence parameters. In general, it will not be the same as
C(Fy, F3;0) for some 6; see the examples given below.

For m = 4, define F34 in a similar way to Fjp3 (by adding 1 to all
subscripts in (2.1)). Note that both Fj,3, F534 have a common bivariate margin
F53. Then the 4—variate family is

Y2 Y3
Fi234(y1, Y2, Y3, Y5 012, - - -, 034) = / / 014(F1|23(y1|22,z3;012,013,023),
—00 J —00

Fyj23(yal 22, 23; 023, 024, 034) ) Fa3(d 22, d23; 033),

(2.2)
where Fjjy3, Fyjp3 are conditional cdfs obtained from Fy23, F234. The param-
eters 613,024 are interpreted as for (2.1). The 6,4 parameter is a conditional
dependence parameter (conditional dependence of the first and fourth univari-
ate margin given the second and third). As for (2.1), one can get the margins
F14, F124, F134 by letting appropriate variables go to oo in (2.2).

It should be clear that this can be extended recursively and inductively.
Assuming Fy...,,_1, F3..., have been defined with a common (m—2)-dimensional
margin F5...,,_1, the m—variate family is

Flmm(yl, *y Ym; 012, Tty alm)
Y2 Ym—1
= / . / Clm(F1|2---m—1(y1|Z2, ctty 2m—1; 912, Tty 9m—2,m—1),
—00 —00

Fm|2mm—1(ym|z27 *ty Zm—1; 0237 Tty am—l,m))
cFom—1(dzg, -+, d2zm 15623, Om—2.m—1),

(2.3)

where Fyj3..m_1, Finj2..m—1 are conditional cdfs obtained from Fy...m—1, Fp...m.

Similar to (2.1)—(2.3), one can define a family of m—variate distributions
through survival functions, Fs. Let F; = 1—F} be the univariate survival func-
tions. The bivariate margins with consecutive indices are F; ;+1(y;, ¥j+1;6;.j+1)
= C7i1(F(y;), Fi+1(yj+1);05,+1), where C7 .., is the copula linking the
univariate survival functions to the bivariate survival function. The m-variate
case is like (2.3) with all F’s replaced by F’s and the integrals having lower
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limits y;, j = 2,---,m — 1 and upper limits co. This leads to

F]...m(yl, sy Ymy 0127 . '30771.—1,’!71) =
(e oo —
/ N / Cfm(Flp---m—l(yl’zZa Ctty Zm—1, 012a T 0m—2,m—l)7

Y2 Ym-—1
Frjpm-1(Uml22, 5 Zm=15 023, -+, 0m—1,m)) (2.3)
s Fymo1(dzg, - d2pm_1; 023, Om—2 m—1), '

It is straightforward to show that this family is the same as that from (2.1)-
(2.3) with C%(u,v) = v+ v— 14+ Cjk(1 —u,1 - v) or Cjx(u,v) =u+v—1+
Ch(l—u,1-v).

Models (2.3) and (2.3’) are a unifying method for constructing multivari-
ate distributions with a parameter for each bivariate margin. Note that these
models can be generalized into a nonparametric family with Cjk, j < k, as the
indices. The standard multivariate normal family is a special case of (2.3) and
two other special cases, which have been used previously by the author, are
given in Example 2 below.

ExampLE 1. Let F; = @, j = 1,---,m, where ® is the standard normal
cdf. The bivariate normal copulas are C(uy,u2;8) = ®g(®1(uy), @~ (u2)),
—1 < 8 < 1, where ®y is the bivariate normal cdf with correlation #, means
0 and variances 1. Then for (2.3), with k —j > 1, 0;x = pjr.(j41,-k-1) I8
the partial correlation of variables j and k given variables j + 1,---,k — 1.
[The proof of this is given in the Appendix.] For this parametrization of the
multivariate normal family, all values of {8;x,j < k} in (=1,1)™(m~1)/2 are
possible. The margins Fjx with £ — 7 > 1 are also bivariate normal.

ExaMPLE 2. Joe (1994) used the extreme value limits of (2.3) to get
families of multivariate extreme value distributions that have a parameter for
each bivariate margin. The starting families of copulas were

C(uy,u2;0) = 1=[(1—u1)?+(1—ug)? — (1—uy)? (1 —up)?)H/?, 6>1, (2.4)
and
Cluy,ug;0) = ug +ug —1+[(1—ug) 0+ (1 —up)? —1]7Y¢,  6>0. (255)

Some properties and discussion of these families are given in Joe (1994) and
will not be repeated here. In (2.4), § = 1 corresponds to independence and
f — oo corresponds to the Fréchet upper bound; in (2.5), the corresponding
values are 0 and oo. There is no known multivariate family of copulas with
m(m — 1)/2 distinct bivariate dependence parameters that have (2.4) or (2.5)
for all bivariate margins.
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ExaMPLE 3. A special case consists of the multivariate distributions aris-
ing from a first order Markov chain based on a copula C and a marginal
distribution F. That is, Cj 41 = C for all j and Cj; corresponds to indepen-
dence if k — 7 > 1. In this case, for m > 4, (2.3) can be more simply written
as

Y2 Ym-—-1
F1,---,m(y1,"‘,ym) =/ / Flj2(y1lz2)Fmim—l(ymlzm-—l)

F..m-1(dzy, -+ -, dzpm_1),

where the transition distribution is Fj;_;(2i|zi-1) = B(F(z:i-1), F(2:)) and
B(u,v) = 9C(u,v)/0u.

ExaMmpPLE 4. This example is given to show a case where all bivariate mar-
gins belong to the same family; however the multivariate family is very limited
in its range of dependence. Let C(uy,u2;6) = uruz(l + 0(1 — u1)(1 — uz)),
—1 < 6 < 1, be the Morgenstern (1956) family. Let C; ;41 have parame-
ter 0; ;41 in this family and let Cjx correspond to independence (6;x = 0)
for k — j > 1. Also let all of the univariate margins be uniform on (0,1).
Then for (2.1) to (2.3), the bivariate margins have copulas Fjx in the Morgen-
stern family with parameters aj, which satisfy a; ;42 = 0;;4+160;4+1,;42/3 and
ajive = 0;5410540-1,j400541,j+¢-1/9 for £ > 3. A short proof of this is given
in the Appendix.

Note that it is not essential that the copulas C;x all belong to the same
family if one is concerned only with constructing some multivariate distribu-
tions and not with whether one can get a parametric family with a wide range
of dependencies.

A few definitions used in the remainder of the article are given next.

DeFINITION. Concordance ordering. Let F, F' be bivariate distributions
with univariate margins Fy, F. The F” is larger in concordance (or positive
quadrant dependence) than F if F'(z,y) > F(z,y) for all z,y. This definition
is from Yanagimoto and Okamoto (1969) and Tchen (1980).

DEFINITION. Bivariate tail dependence. A bivariate copula C(u,v) has
(upper) tail dependence if C(u,u)/(1 —u) converges to a constant é in (0,1] as
u — 1, where C is the survival distribution corresponding to C. This definition
is from Joe (1993).

DerINITION. Positive and negative quadrant dependence. Let F be a
bivariate distribution with univariate margins Fy, F,. F is positive (negative)
quadrant dependent if it is larger (smaller) in concordance than Fj F5, that is,
F(z,y) 2 Fi(2)Fa(y) (F(z,y) < Fi(z)Fy(y)) for all @, y.
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DEFINITION. Kendall’s tau. Let F be a bivariate continuous cdf and let
(X1,Y1),(X2,Y2) be independent random pairs with distribution F. Then
T=2PI‘((X1—X2)(Y1—Y2)>0)—1=4deF—1.

DErFINITION. Bivariate Fréchet bounds. Consider the family of bivariate
cdfs with univariate margins Fi, F3. The Fréchet upper bound is min{Fj(z),
F5(y)} and the Fréchet lower bound is max{0, Fi(z) + F5(y) — 1}.

Next we obtain some properties of (2.3).

PROPERTY 1. Partial closure. Marginal densities of the form Fj ji1,..j+&
with £ > 1 have form (2.3). This follows directly from the recursive definition
and shifting of indices by adding j — 1 to all indices in (2.3) and letting m =
k—3+1. Fj;41,. j+x has parameters 6; 11, -, 0k_1 k-

ProOPERTY 2. Densities without integrals. Assume the F; are differen-
tiable with densities f;, j = 1,---,m, and that the family of copulas have sec-
ond order derivatives and hence densities ¢(u1, u2;6). Then the family (2.3) of
cdfs have densities. Although (2.3) has a representation in terms on integrals,
the density fj...n, of (2.3) does not involve integrals. (The density fi, however
does involve integrals.) The proof of this is based on induction/recursion and
the following observations.

Let ¢;k(u1,u2) = c(u1, ug; k). Then, omitting the parameters 6,y,

(a) Fip(y1ly2) = g%%gﬁl/fz(yz) = 5-Cr2(Fi(t1), Fa(%2)), fr2(w1]92) =

%Fm(yllyz) = c12(F1(n1), Fa(y2)) fi(y1) do not involve integrals and simi-
larly for F3|2>f3|2;

3

(b) Fijg3 = 5‘3;013(F1|2’ Fy3), Fauz = %Cls(Flp, F3p2), f123. = 3575;12%1%
= c13(F1j2(y11y2), F3j2(2193)) - f1j2(y11y2) f312(y3ly2) f2(y2) do not involve inte-
grals;

(c) for m > 4, with the inductive assumption that Fyjs..m—1, Fnj2..m—1>
frm—-1, f2..m, f2..m—1 do not involve integrals, then fi|g..n_1, frm|2..m-1 dO
not involve integrals, and

0
Fip.m = ’aTzclm(Flp---m—l,Fm|2~~m—l)’
O F..om
fiom = m = cim(Fij2.m—1> Fimjzem—1) f1j2--m—1 Fm|2m—1 f2.-m—1

do not involve integrals. Similarly, F,,}1js..u and f2..m41 do not involve inte-
grals.
ProPERTY 3. Simulation. The procedure to simulate a random vec-

tor from (2.3) is to first simulate (z3,--+,Zm—1) from Fj,..n,m—1 and second
to simulate a bivariate uniform random pair (%1, u,) from the copula Cip.
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Then z1,z,, can be obtained as GZI(W), £ = 1, m respectively, where Gy =
Fys,...m—1- The resulting (21, -+, 2,) is then appropriate. Simulating from a
bivariate copula is straightforward for the known families using the conditional
approach (see below) or a representation such as a mixture of conditionally
independent distributions (Marshall and Olkin, 1988). Note that G, G, have
closed forms if the Cjx’s have closed forms; however the functional inverses
need not have closed form. If G, does not have closed form, then z, can be
obtained numerically as the root of the equation Gy(z¢) = uy, say using the
Newton-Raphson method. Simulation from Fj ... ,—1 can be based on the ideas
in the preceding three sentences since its density f; ... n—1 can be decomposed
as a product of conditional densities, for example, fafajp -« fn—1]1,-;m—2-

PROPERTY 4. Concordance ordering. As Cji increases in concordance (as
0;r increases) with other bivariate margins held fixed, then from property 1
and (2.3), Fj..k(yj,- -, yx) is increasing in 6, for all y;, 7 = j,- -+, k, and hence
F;r(yj,yk) is increasing in 6 for all y;, yx.

It can be checked (for example, with the multivariate normal family) that
a stronger concordance property such as “Fi3 increases in concordance as Cyo
increases in concordance” does not hold.

Now to get closer to one of the goals of this paper, we mention some tail
dependence properties associated with (2.3).

PRrROPERTY 5. Tail dependence. For the trivariate case given in (2.1),if Cq,
and C,3 have upper tail dependence and some regularity conditions hold, then
Fy3 has upper tail dependence. For the general m-dimensional case in (2.3),
if Cj;+1, 5 = 1,-+-,m — 1, have upper tail dependence and some regularity
conditions hold, then Fji, k — j > 1, all have upper tail dependence.

The precise statement of this result and its proof are given in Section 3
together with some necessary lemmas on tail dependence.

PROPERTY 6. Range of dependence. How close does family (2.3) come to
covering all theoretical {r;;} or {6;;}? Some answers are provided in Section 4.
Here 7;; is Kendall’s tau for the (¢, j) bivariate margin, and 6;; is the (upper)
tail dependence parameter for the (i, j) bivariate margin.

Because of Property 1, we make the following final remark for this section.
The family (2.3) has only partial closure in that Fj... 4k, £ > 1, have the
same form but other margins have different forms. Hence the use of the family
requires the decision of how to assign variables to the indices if there is no
natural order to the variables. Some numerical checks for the families in
Example 2 in Joe (1994) suggest that bivariate margins Fj 4k, £ > 1, are
close to those in (2.4) or (2.5) if the bivariate margins F} ;41 are the ones with
the most dependence.
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3. Tail Dependence Results. In this section, the quantities needed
for analyzing tail dependence of multivariate distributions are given and used
to prove tail dependence of (2.3) under some conditions. The same quantities
are then used for deriving the limiting multivariate extreme value copula of
(2.3) when all bivariate margins have upper tail dependence.

To stress ideas and concepts, we assume the existence of derivatives and
other regularity conditions as needed. Some equivalent conditions for bivariate
tail dependence are given first. Sometimes it is more convenient to work with
exponential margins than uniform margins. For a bivariate copula C, let

G(z,y)=C(l-€e",1-¢7Y). (3.1)
The definition of upper tail dependence in Section 2 becomes
e“G(z,z) — 6 € (0,1], =z — oo. (3.2)

Now assuming that G has derivatives to second order, let Gyj5(z|y) = ey%%)
and —G_1|2 =1- G1|2. Then

“Gla,a)=¢ [ Culaly)e vy
0 -’3_ oo
= / Gyp(z]z — v)e"dv = / Ghja(zlz + v)e ™ do.
—oo 0
Assuming that e*G(z,z) converges as © — oo and that

Guja(ele + v) - a(v) (3.3)

for all v (v < 0 is needed below), where a is continuous and ¢ < 1, then by
the Bounded Convergence Theorem,

e*G(z,z) — /Ooo a(v)e™"dv. (3.4)

Tail dependence holds if and only if a is not identically 0 (a.s.) on (0, o).

Now let g be the density of G. Then
_ 00 foo
e*G(z,z) = ex/ / 9(v1, y2)dy1dy2
o oo (3.5)
= / / e“g(z + v1, T + v2)dvidv,.
o Jo

Assuming that
e“g(z + v1, ¢ + vg) — b(vy, v2) (3.6)
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and that the Lebesgue Dominated Convergence Theorem can be used in (3.5),

e“’@(z,z)—»/ / b(vy, va)dvidvg
o Jo

and tail dependence holds if and only if b is not identically 0 (a.s.) on (0, c0)2.

A relation between a and b (when both are non-zero) is as follows:
a(v) = lim, e*t? f;o g(z,z + v)dz = lim, e*tV ff: gz +v+ w,z+ v)dw =
JZ> b(w,0)dw. Hence a(v) is increasing in v and under some regularity condi-
tions, a(v) — 1 as v — oo. This requires that b(-,0) is a density on (—oo, )
but b5(-,0) is just the limit of the conditional densities g,);(z + -[z). Note
that the condition of a(v) increasing in v is closely related to the condition
@llz(zlx + v) increasing in v for all z; this latter condition is the stochastically
increasing positive dependence condition.

ExaMPLE 5. For illustration, we give these quantities for two families
of bivariate copulas which are listed in Joe (1993); one family has upper tail
dependence and the other does not have tail dependence.

(i) Consider the family C(u,v;8) = 1 —[(1—u)? + (1 —v)? — (1 —u)®(1 -
v)?]/¢, @ > 1. Independence obtains when # = 1 and upper tail dependence
holds when 6§ > 1. Let G,Gyjp,g be as defined above. It is straightforward
to verify the following: €*G(z,z) — 2 — 21/% as z — o0, Gypp(zlz + v) —
1—(14€%) 1418 = g(v), —00 < v < 00, as T — 00, and €®g(z +v1,z+v2) —
(0 —1)e~0(+u)(e=0n1 4 e=0v2)=241/0 — p(y; v,) as ¢ — co. Note that a(v) is
increasing in v and that a(v) — 1 as v — oo.

(i) A family due to Frank (1979) is C(u,v;6) = —6'log([n — (1 —
e~%)(1 - e7%)]/n), —0 < 6 < o0, where = 1 — e~?. It is straightfor-
ward to show that as ¢ — oco: e*G(z,z) — 0, Gip(zlz + v) ~ B /[(1 -
e ) (1406 +0e%?)] = 0, e®g(z 4 v1, 2 +v3) ~ fe=="172 /(1 —e~%) — 0.

THEOREM 3.1. Suppose that Ci2,Cq3 have upper tail dependence and
that the Lebesgue dominated convergence theorem can be applied to (3.7)
below. Then Fi3 in (2.1) has upper tail dependence and the tail dependence
parameter is given in (3.8).

ProoF. Let Fyq, Fp3 be defined as in (3.1) with Cy2, Ca3 respectively. Let
a be defined as in (3.3) with subscripts 12 or 32 for the (1,2) or (2,3) bivariate
margin respectively. Putting exponential margins in (2.1) and omitting the
parameters 6, leads to

Y2
Fi23(y1, 92, y3) =/ Clg(F1|2(y1|zz),F3|2(y3122))e—zzdz2
0



H. JOE 129

and _
Fi3(z,z) =1 - Fi(z) — F3(z) + Fis(z,z)
[e e} [e e}
=1- / Fyjp(z]z)e™ dz — / Fp(z|2)e™*dz
o 0
+ [ CuFup(al2), Faplalz))e"d:
= [ ClFiplalo), Faafal)e-z
Hence
e“Fi3(z,7) = Cra(Fip(z|z + v), Fapp(z|z + v))e do (3.7)
-z
o —
- / Cua(1 — a12(v), 1 - agy(v))e"dv (3.8)
assuming the Lebesgue dominated convergence theorem can be used and a2, asz
are the limits for Flp, F33 as in (3.3). ]

REMARKS. 1. The condition of Cj9,C23 having upper tail dependence is
essentially necessary. For example, let Co3(u,v) = Ci3(u,v) = uv, Ci2(u,v) =
I-[(1-w)f+(1 -0 -1 -u)°1-0)°"% 0 > 1. Then eFi3(z,z) ~
e [Z[1— (1 + ) 1*1/9]e~vdv — 0 as z — oo.

2. For the result of Theorem 3.1, positive dependence for the copula C;3
is not necessary. Even if C13 corresponds to the Fréchet lower bound, Fj3 can
have upper tail dependence - under regularity conditions, the tail dependence
parameter is [ ™% max{a;2(v) + asz(v) — 1,0}dv.

3. If Cy3 has upper tail dependence and Cy4,Cq3 do not, then it is possible
that Fi3 has tail dependence. (A sufficient condition is that Cyq, Co3 satisfy
the positive dependence condition, ak,2(u|v) > u for all v > vy for some
vo € (0,1), k = 1,3.) This case is not so interesting for the goal of getting tail
dependence for every bivariate margin.

THEOREM 3.2. Suppose that C; i1, j = 1,---,m — 1, have upper tail
dependence and that all copulas Cj; have densities. For (2.3) with exponen-
tial univariate margins, suppose that for j,k, with k > j, that the following
pointwise convergences hold as x — oo:

() Fjlig1, (@l + vjp1, -2 4+ 0k) = @540, (0541, -5 0k),

(i) Fyjpo1(z]@ + 05y, + vh_1) = kg, ko105, -, V1),

(iii) €° fj .. k(z + vj, -, T + vk) = bj . k(v5, -+, k),
and that the functions on the right hand sides of (i), (ii), (iii) are not identi-
cally 0 (a.s.). Also assume that the Lebesgue dominated convergence theorem
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applies for the integrals in (3.9), (3.10), (3.11), and that Cjx (k—j > 1) is such
that (3.12) is positive, then Fji, k — j > 1, all have upper tail dependence.

Proor. This is by induction starting with the result in Theorem 3.1.
We assume as in the proof of Theorem 3.1 that all univariate margins are
exponential distributions. Note from property 2 in Section 2 that all multi-
variate densities exist. The trivariate argument works to show that Fj .o,
j=1,---,m— 2, have tail dependence. Suppose that it has been shown that
F; ;+:; has upper tail dependence forall 2<:<{,£>2. For2<k-—j<{,

exfj’j'l'l (1?, x) = exfj,,.,yk(fl:, T, 07 Ty 0)

00 foO  foO 0o 3.9
= / / / .. / e"”fj,...yk(a: + v, + vk)dvj - dog. ( )
0 0 -z -z

From condition (iii) and assuming that the Lebesgue dominated convergence
theorem applies in (3.9) over the region (0,00)% x (—00,00)*=91, the right
hand side of (3.9) converges to [;° [7° [5 -+ [7_bj . k(vj, -+, k) dv;j -+ - dog,
and b;,...x must not be identically 0 (a.s.) since by (3.2), the left hand side of
(3.9) is positive. For 2 < k — j < £, we also have

. o0 oo 00_
e“Fjjt(z,z) = /0 / - / Fjljtt,k(@|T 4+ 541,00 0k)
- -

- €% fit1, k(T + Vjg1, 0, T+ Vk)dVj 4y - - - dug.

(3.10)

From conditions (i) and (iii) and assuming that the Lebesgue dominated con-
vergence theorem applies in (3.10) over the region (0, 00) X (—00,00)¥~7=1 the
right hand side of (3.10) converges to

[ee] [e o] o e]
/ / . / g g1,k (V51505 VE)D 41 (Vi1 o o o5 VR )V 41 - - g,
0 —00 —00

and a; j41,...x cannot be identically 0 (a.s.). With similar assumptions,

_ (o] o0 o0
e Fr_1x(z,2) —>/ / / @k j k=1(Vjy * *y Vk=1)
0 —00 —00

bkt (Vs Dkt )d0j - - - dvg_1,

and agj,... k-1 cannot be identically 0 (a.s.).

Now, for k =j+ £+ 1,

[ e} o0
e"Fx(z,z) = / e Cik(Fjjg1,h-1(2|T + vj41, 5 T + V1),
-z

Fijs1,k-1(2]2 + 041,75 T + vk-1))
. ezfj+1,...,k_1(a: + Vj41,° T+ vk_l)dij ce dvk__l (311)
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00 oo
N / .. / Cjk(1 — aj,]-+1,...,k_1(vj+1, B Uk—l),
—00 — 00

1=ak 1, k=1(0j41, -, Vk—1))
(3.12)
: bj+1,m,k—1(vj+1’ . 'avk—l)dvj+l eedvg_q
assuming that the Lebesgue dominated convergence theorem applies to (3.11)
in (—00,00)*=971 If Cjk(u1,u2) > 0 when uq,uz < 1 (for example, if Cjx has
positive quadrant dependence, Cji(u1, u2) > (1 — u1)(1 — u2)), then (3.12) is
positive. (3.12) in general will be positive unless zero values of C ;) occur only
when a;;41,... k-1 and ag j41,... k—1 are positive. 1

REMARK. The assumptions given in Theorems 3.1 and 3.2 are not really
too strong since they do hold in special cases such as those in Example 2 of
Section 2.

Next we derive the multivariate extreme value copula associated with
(2.3) when all bivariate margins C; ;41 have upper tail dependence. Some
details and background are given in the Appendix of Joe (1994).

For a multivariate distribution with exponential univariate margins, the
multivariate extreme value limit which has the Gumbel margin H(z;) =
exp{_el‘)}a Jj=1--,m, is

lim FT. (21 +logn,: -, 2y + logn).
This is equivalent to
exp{—limn[l — Fy ..n(z1 +1logn,: -, z, + logn)]}. (3.13)

The limit in the exponent of (3.13) can be calculated in more than one way
depending on the form of the copulas Cji. Two different forms are described
briefly with the limits being expressed in terms of the functions @ and b in
Theorem 3.2. The formulas below are generalizations of the special cases given
in Joe (1994), which result from the families given in Example 2 of Section
2. The use of the families of copulas in (2.4) (respectively (2.5)) leads to an
extreme value limit with exponent given in (3.16) (respectively (3.18)).

The first form below is convenient if 1 — Cj is simple (for all j, k). From
(2.3),

z2 Tm—1
l‘Fl,u-,m(ml, .. ‘,l'm) = / . . / [1 — Clm(Fl|2,~~,m—17Fm|2,---,m—1)]
0 0
dF:Z,m,m—l +1- Fz’...,m_l(.’vg, ey (Em_l) (3.14)
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so that a recursion formula is possible for the limit in the exponent of (3.13).
Let M =logn. Then n times the integrand in (3.14) is:

o+ M Tm-1+M
n/ / [1 —Clm(Flp’...,m_](zl +M|Z2""7Z7n—1)’
0 0

Fm|2,-~,m-—1(z‘m + MlzZ’ Tty zm—l))]

. f2,~--,m—1(22, Tty Zm—l)dzz cordzymo
Z2 Tm-—1
= / / 1= Cim(Fi2,cim—1(21 + Mlvg + M, -, 050y + M),
-M -M

Fm|2,'--,m—l("l"m + MI’U2 + M7 cyUm-1 + M))]
My m1(va+ M, Op_y + M)dvy - - - dvp_y

x?2 Tm-—1
— / : / [1-Cim(l = a1 m-1(v2 — 21, -, V1 — 1),
— 00

1- am,?-'-,m—l(v2 — Tyt Un—1 — xm))]
b2, m—1(V2,, Vmo1)dvg - - - AUy
(3.15)
under conditions similar to those in Theorem 3.2. Let n;x(z;,---,zk), with
J < k, k-3 >1, be the similar limit to (3.15) starting with C;; instead of
Cim and let n; j41(2;,2;41) = im n[l — F} j41(z; +1log n, 241 + logn)]. Then
limn[l — F...m(21 +logn, -, 2, +logn)], in the exponent of (3.13), is

m/2
Z’r],',m+1_i($,', ey $m+1—i) if m is even
=1

i (3.16)

Z Miymt1-i(Tis* s Tmi1-i) + eXP(—z(m+1)/2) if m is odd.
=1

The second form is based on the identity

m

1-Pr(Xy <21y, X < ) = 3 Pr(X; > 25)
=1

- ZPI(XJ' >z, Xp > ap, X; L 34, < 1 < k).

i<k

The limit in the exponent of (3.13) is then based on lim n exp(—z; —logn) =
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exp(—2;), lim n[l — Fj jy1(z; +logn, 241 + logn)] = (jj41(zj, 2j41), and
limnPr(X; > z; +logn, X > zx +logn, X; < z; +logn,j < i< k)
i1 Tk-1 _
= /M /M Cik(Fjjjz1,mp-1(2j + Mlvjp1 + M, - o1 + M),

Frjit1, e h—1(Tk + M|vjpr + M, -+ vy + M))
) erj+l,-~-,k—1(”j+1 + M, 061 + M)dvjgg -+ - dvog—y

Tj41 Tg—1 __
- / / Cie(1 = aj 41, k-1 (Vjg1 — 5, -+, Vk—1 — 25),
— 00 —00

1 —agjt1, k=1(Vjp1 — Thy -+ Vo1 — Tk))

0541, k=1 (Vjp1s o 5 Vk—1)dVj 41 - - - dVR
(3.17)
under conditions similar to those in Theorem 3.2, for k—j > 1 and (Xj,-- -, X%)
having distribution Fj...; with form (2.3). Let the limit in (3.17) be denoted
by (jk(zj, -+, zk). Then imn[l — F,.. (21 + logn,- -, 2, +logn)] is

ZGXP(—%’) - chk(wj,--o,:ck). (3.18)

i<k

The final result of this section is to show that for a bivariate copula with
tail dependence, the extreme value limit (3.13) has the same tail dependence
parameter 6.

THEOREM 3.3. Let C be a bivariate copula and let F(zy,z2) = C(1 —
e ,1 — e~"2). Suppose lim,_,; C(u,u)/(1 — u) = &, where § € (0,1] and
lim, F™(zy +logn,zs+logn) = H(z1,22) = exp{—n(z1,22)} with univariate
margins exp{—e~%1}, j = 1,2. Let C*(uq,uz) = H(— log[— log u;], — log[— log
ug]). Then limy_; C (u,u)/(1 — u) = 6.

Proor. From (3.13) and (3.2),
n(z,z) = limn[l — F(z + logn,z + logn)]

= lim n[e™®718" 4 ¢==18" _F(z 4 logn, +logn)] ~ 2% — fe°.
Now,

C™(u,u)/(1— ) = [1 — 2u + exp{n(— log[— log u], - log[— log u])}]/(1 — «)
~l=2u4 w01 -u) -6

as u — 1. |

4. Range of Dependence. We should get a “wide” range of dependence
from (2.3), especially if the family of copulas include both the Fréchet upper
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and lower bounds. Let us measure the range of dependence via possible sets
of {(ij,¢ < j}, where (;; is a measure of dependence for the (¢, ) bivariate
margin. We study the trivariate case in more detail and make generalizations
where possible to higher dimensions.

Three-dimensional case. This case is easier to study than the general
multivariate case since two of the three bivariate margins can be considered
arbitrary, and then the third bivariate margin has constraints given the other
two. Also this case provides insight into what is possible for the multivariate
case.

We will follow (2.1) in thinking of the (1,3) bivariate margin as depend-
ing on the (1,2) and (2,3) margins. One can argue that (2.1) has a full range
of dependence if Cy2,C53 have a full range of dependence from the Fréchet
lower bound to the Fréchet upper bound and likewise for C13 (because then
perfect positive and negative conditional dependence are possible). This ar-
gument should extend to the multivariate case in (2.3). The analysis of the
range of dependence is not so straightforward when one is trying to have
positively dependent distributions only (Ciz,C23,C13 between independence
and the Fréchet upper bound) such as in the case of multivariate distribu-
tions with upper tail dependence. Hence we consider looking at the range
of possible ({12,(23,(13) where (j is a measure of dependence for the (j,k)
bivariate margin. The Pearson correlation coefficient is not suitable because
it is not invariant with respect to the choice of the univariate margins F;; for
example, the correlation coefficient for the Fréchet upper bound with margins
Fy, F; is not 1 unless F; = F,. Instead we use { equal to Kendall’s tau for
a measure of monotone dependence invariant with respect to the univariate
margins, and { = §, the upper tail dependence parameter given in Section 2
(6jk = limyy Ci(u, u)/ (1~ u)).

For the bivariate normal distribution, 7 = (2/7)arcsin(p) (see, for ex-
ample, Kepner, Harper and Keith, 1989). Hence, for the trivariate normal
distributions, the constraint —1 < py3.0 < 1 is the same as

p12p23 — [(1 — sz)(l - P§3)]1/2 < p13 < p12pas + [(1 - P%z)(l - 933)11/2

or
—¢0s(0.57(T12 + T23)) < sin(0.57713) < cos(0.57 (T2 — T23))
or
=1+ |2+ me3| <73 < 1= |12 — 73] (4.1)
As shown in Theorem 4.1 below, the bounds in (4.1) are bounds for general
F,3 that are compatible with Fj,, F,3, that is, within the trivariate normal

family, all of the possible values of (713, 713, T23) for trivariate distributions are
attainable.
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THEOREM 4.1. Let Fj33 be a continuous trivariate distribution with bi-
variate margins Fyg, Fa3, F13. Let ;i be the value of Kendall’s tau for the
(j, k) bivariate margin. Then inequality (4.1) is satisfied and the bounds are
sharp.

Proor. Let (X1, Xi2,Xi3), ¢ = 1,2, be independent random vectors
from the distribution Fjp3. Then 7;, = 2n;p — 1, 1 < j < k < 3, where
nik = Pr((X1; — X2;)(X1k — X2k) > 0). Then mz = Pr((X11 — X21)(X12 —
X22)%(X13 — Xa3) > 0) = Pr((X11 — X21)(X12 — Xa2) > 0, (X312 — X29)(X13 -
X33) > 0) + Pr((X11 — X21)(X12 — X22) < 0,(X12 — X22)(X13 — Xa3) < 0).
Hence an upper bound for 73 is min{ny2, 723} + min{1 — 72,1 — 723} and a
lower bound is max{0, 12 + 723 — 1} + max{0, (1 — m12) + (1 — 723) — 1}. After
substituting for 7;; and simplifying, inequality (4.1) results. The sharpness
follows from the special trivariate normal case. ]

From the construction of (2.1), one might expect the upper (lower) bound
in (4.1) to be attained for any family C(-;8) that includes the Fréchet upper
(lower) bound. This is proved in the next theorem under some conditions on
F12 and F23.

THEOREM 4.2. Let Fiz3 be defined as in (2.1). Let Ty3, 713,723 be the
values of the Kendall’s tau for the three bivariate margins. If Ci3 in (2.1) is
the Fréchet upper bound and Fi;(Fm(yﬂyg)lyz) is (strictly) increasing in ys,
then 713 = 1 — |12 — Tes|. Similarly, if C13 is the Fréchet lower bound and
F3721(1—F1|2(y1|y2)|y2) is (strictly) increasing in yz, then T3 = —1+ |12+ To3]-

Proor. Let (X;1, Xi2, Xi3), ¢ = 1,2, be independent random vectors from
the distribution Fjp3. The proof in Theorem 4.1 for (4.1) is based on

max{0, Pr(E;) + Pr(E;) — 1} + max{0, Pr( EY) + Pr(E35) — 1}
< Pr(Ey N Ey) + Pr(E; N E3) (4.2)
< min{Pr(E,),Pr(E3)} + min{Pr( EY), Pr(E5)},

where the events Ej, E; are {(X11 — X21)(X12 — X22) > 0} and {(X13 —
X23)(X12 — X22) > 0}. The upper bound in (4.2) is attained if E; C E or
Ey C Eq. The lower bound in (4.2) is attained if £y C ES or E; C EY or
E$ C Ey or ES C Eq [equivalently, Ey N E2 = ¢ or E{N ES = ¢].

For Cy3 being the Fréchet upper and lower bound respectively, (2.1) be-
comes Fy(y1,yz,y3) = [ min{F|5(y1|2), F32(y3]2)} F2(dz) and Fr(y1, 92, y3)
= [¥ max{Fj(y1]z) + F52(ys|z) — 1,0} Fy(dz). For Fy, representations
for the two vectors are X13 = 'I‘(Xu,Xlz) and X23 = ’I‘(Xgl,Xzz) where
r(Z1,22) = F3_|21(F1|2(z1|x2)|x2). The function 7 is increasing in z;, and if
7 is also increasing in zq, then (X317 — X21)(X32 — X22) > 0 implies (X33 —
X23)(X12 — X22) > 0 or Ey C E3, and the upper bound in (4.1) is attained.
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The condition on r is an ordering on Fjs, F35 that is studied in detail in
Fang and Joe (1992). For FJ, representations are X;3 = s(X11,X12) and
Xo3 = 8(X21, X22) where s(z1,22) = F3—|’~}(1 — Fyjp(z1]z2)|2e). If s is increas-
ing in z, then (Xu—le)(Xlz—Xzz) <0 1mphes (X13—X23)(X12—X22) > 0.
That is, Ef C E, and hence the lower bound in (4.2) is attained. A suffi-
cient condition for s to satisfy the given condition is that both Fyj5(+|y) and
F3)5(+|y) are stochastically increasing in y (or cdfs decreasing in y). More gen-

erally, the condition on s is equivalent to an ordering on F}, and F3;, where
Fry(z,y) = Fa(y) — F2(F7 (1 = Fi(2)), ). 1

Theorem 4.2 applies to the families of bivariate copulas in Examples 2
and 5, using results in Fang and Joe (1992).

Now, we go on to discussion of §;; which is relevant only if all of the
bivariate margins Fj; of (2.1) are positively dependent. (If, for example,
Fi2(u,v) < uv for all u,v near 1, then Fyp(u,u)/(1-u) < (1—u)?/(1-u) =0
as u — 1; that is, the tail dependence parameter é is 0.) From Section 3, we
can assume that Cy9,C23 have upper tail dependence so that 612,023 > 0. The
value of é;3 is then given in Theorem 3.1. Unlike Kendall’s tau, it does not
appear possible to obtain a closed form sharp bound on the range of §;3 given
612,693. Let 695(812,623) and 6{;3(612,623) be the largest and smallest possible
values of 613 given 812, 823. It is not hard to get ranges that 635 and 65 must
fall into. These are given in the next theorem.

THEOREM 4.3. Let ® be the standard normal cumulative distribution
function. Then

21—B(|®1(1-0.5812)—B 1 (1-0.5823)|)] < 6%5(b12, 623) < 1—|612—b43| (4.3)
and

max{O, 612+623—1} S 51113(512,523) S 2[1—¢(¢_1(1—05612)-}-@—1(1—05623))]
(4.4)

Proor. Let (Uy, Uz, Us) have a trivariate distribution with uniform uni-
variate margins. Then Pr(Us > u|U; > u) = Pr(Us > u,Us > u|U; > u) +
PI‘(U3 > u,Up < ulUl > U) = PI‘(U3 >u,U; > 'LL|U2 > U) + PI’(U3 > u,U; <
u|Uy > u) < min{Pr(U; > u|U; > u),Pr(Us > u|Uz > w)} +1 - Pr(U; >
u|Uy > u). By taking limits as u — 1, §;3 < min{6;2,823} + 1 — ;2. Similarly
by interchanging the subscripts 1 and 3, 613 < min{é;2,623} + 1 — d23. From
these two upper bounds on 6,3, 61% <1 — 632 — 623]. For the lower bound on
613, Pr(Us > u|Uy > u) = Pr(Us > u, Uy > u)/ Pr(Uz > u) > Pr(Us > u,U; >
u|Uy > u) > max{0,Pr(Us > u|U; > u) + Pr(U; > u|U; > u) — 1}. By taking
a limit as u — 1, the lower bound in (4.4) obtains.
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An analysis of the inequalities in the preceding paragraph suggests that
they are not tight. Hence we provide a lower bound for 6% and an upper bound
for 6%, from a specific trivariate family with bivariate upper tail dependence.
This family is the Hiisler-Reiss (1989) family and it will not be repeated here
because its form is not simple. (The Hiisler-Reiss family is an extreme value
family with a bivariate dependence parameter for each bivariate margin and
it is closed under all margins; it obtains as a certain limit of the multivariate
normal family and does not fit into the class in this paper.) The bivari-
ate margins have copulas in the family C(u1,ug;A) = exp{—(—loguz)®(A +
0.5A"log[(—log uz)/(—log uy)]) — (— log u1 )®(A + 0.5A" ! log[(— log u; )
/(=loguz)])}, A > 0, where ® is the standard normal distribution function and
A = 0 corresponds to the Fréchet upper bound and A — oo corresponds to inde-
pendence. The relation between the tail dependence parameter § and Ais A =
®~1(1 - 0.56). For the trivariate family, the constraints on the three parame-
ters A1z, A13, A23 are —1 < g(A12, A13, A23), 9(A13, A23, A12), 9(A12, A2s, A13) < 1,
where g(a,b,c) = (a® + b2 — c?)/(2ab). Each of these inequalities reduce to
[A2s — A12] < A13 < A1z + Ags, which then yield the upper limit in (4.3) and
the lower limit in (4.4). ]

REMARKS. Numerical calculations for the families in Example 2 show
that the bounds from the Hiisler-Reiss family can be improved (but there is
no closed form formula). As an example, we take §;2 = 0.3,823 = 0.7. For the
family (2.3’) with m = 3 and (1,2) and (2,3) margins with copulas in the family
(2.5), the Fréchet lower and upper bounds for Cj3 lead to 813 = 0.150,0.521 re-
spectively. The corresponding bounds from the Hiisler-Reiss family are 0.155,
0.515. The corresponding nonparametric bounds from Theorem 4.3 are 0.0,
0.6. The bounds from the first paragraph of the above proof appear to be
better as 6;9, 623 increase.

Four dimensions and higher. Similar to other problems for multivariate
dependence concepts, results get harder to prove in higher dimensions. As in
the three-dimensional case, if the family C(+;0) has the range of dependence
from the Fréchet lower bound to the Fréchet upper bound, then (2.3) has a wide
range of dependence structure. However the analysis of this range through 7;;
or §;; is harder in that we cannot get simple bounds that are sharp. One could
get inequalities for 7j; in terms of 7, with j <i <4/ <k, (4,i) # (4, k), but
these would not be as easy to picture as in the three dimensional case.

For example, for m = 4, using (4.1), bounds for 714 given 713, o3, T34, T13, T24
are

—14max{|r13+ 734, |T12+ T24|} < 714 < 1 —max{|T13— 34|, |T12— T24|}. (4.5)

These bounds do not depend on 7,3; so far we have not found nonparametric
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bounds involving 7,3 that can be better than (4.5). In numerical examples for
families in Examples 1,2,5, there is a substantial effect on the bounds for 4
when 793 is varied and the remaining 7’s are held fixed. For 4-variate normal
distributions, using 7 = (27)arcsin(p) and —1 < p14.23 < 1 yields bounds for
T14 given the other 7’s. These bounds are not the same as (4.5,) implying
that, unlike for m = 3, the nonparametric bounds of (4.5) are not sharp for
the 4-variate normal family. From numerical simulations for the family in
Example 5 (ii), the bounds from the 4-variate normal family are not bounds
in general. For example, with 79 = 734 = 0.5, 793 = 0.3, 713 = T4 = 0.4,
the upper bound for 74 from the 4-variate normal family is 0.854, the upper
bound from Example 5 (ii) is 0.862 and (4.5) leads to 0.9.

Similarly, (non-sharp) bounds for é14 given 812,823,834, 613, 824, Which
extend (4.3), (4.4), can be obtained. These are

max{0, 12+ 624 — 1,813+ 834 — 1} < 614 < min{1 — |612 — 24/, 1 — |613 — b34]}.

(4.6)
As for Kendall’s tau, 714, we have not found improved bounds that make use
of the (2,3) margin.

The bounds in (4.5) and (4.6) can be extended to higher dimensions. The
hard problem is to get improved bounds that are not so simple.

5. Discussion. We have studied a method of iteratively mixing con-
ditional distributions to get families of multivariate distributions, including
the multivariate normal family, with one dependence parameter for each bi-
variate margins and with some of the parameters having an interpretation for
conditional dependence. Appropriate choices of copulas lead to multivariate
distributions with bivariate tail dependence, a property that the multivariate
normal family does not have. However, in general, the new families do not
have all marginal distributions in the same family. Also permutation sym-
metric copulas do not result as a special case. There are some other possibly
undesirable properties but the important property that does hold is the wide
range of possible dependence, as studied in Section 4. There are applications
where one may need more than m(m — 1)/2 dependence or multivariate pa-
rameters for a m—variate distribution; in these cases, it is important that the
parameters are interpretable.

It appears that when studying parametric families of multivariate dis-
tributions, as opposed to bivariate distributions, that there must be some
unsatisfactory properties. The properties of simplicity in form and breadth
of dependence structure are not compatible. For example, the families of
multivariate distributions given in Section 4 of Joe (1993) have closed—form
cdfs and all bivariate margins in the same parametric family but do not have
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much breadth of dependence structure. Further research includes finding other
methods for constructing parametric families of multivariate distributions that
have a wide range of dependence. For some applications involving (ordinal)
categorical variables, it would be desirable to have a multivariate family with
closed form cdf’s and a wide range of dependence.

Appendix

1. ProorF oF MULTIVARIATE NoRMAL RESULT IN ExamPLE 1: Starting
with Fj ;11 bivariate normal, we show that if Fj ... j4+m—2 (m > 2) are (m—1)-
dimensional multivariate normal, then Fj}.. ;1m_1 are m-dimensional multi-
variate normal. It suffices to show that Fj ..., in (2.3) is multivariate normal
assuming that Fi .. ,—1 and Fy..., are multivariate normal, for m > 3.

Let ®q, ¢q respectively denote the multivariate normal cdf and pdf with
zero mean vector and covariance matrix 2. Let

1 le} [ 1 z312] [222 E?m:l
, and
pim 1 Yor Yoo Ymz 1
be the covariance matrices associated with Cim, Fi,..m—1 and F; ..., respec-
tively. Also let a;; = [1 — 2122572212, @mm = [1 = Zm255 Tom]'/? and

C2 = (22, "y 2m-1), ¢ = (21, ", 2m). With bivariate normal copulas and
univariate standard normal margins, (2.3) simplifies to

/m . ./xm—l dr (wl — 212C2’ Zm 2m2C2) ¢, (€2)dCa. (A1)

a1l Amm

R =

Writing ®r as an integral, (A1) becomes

(allamm)_l / 1 o / "’ ¢R (zl - 212C27 Em ; 2m2C2) ¢222 (42)dc (A2)

a1 mm

Clearly, the integrand of (A2) is a constant multipied by the exponential of
a quadratic form in zy,-- -, zpy, so that (A2) corresponds to a m—dimensional
multivariate normal cdf. Let the covariance matrix of the resulting multivari-
ate normal distribution be denoted by

1 212 Oim
Ya X Yom

Olm  Ym2 1

The squared reciprocal in (A2) of (27)™/2 times the constant is |So|(1 —
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p3.)a% a2, it is also equal to

1 omm Yi2 |
|X22] - | - Y [T Tom]l-
Om1 1 Ym2

Hence (1 - p3,)ael,r, = @ya, — (01m = TraT52 Bam)? o1 ol = (0im =
2122;21 Yom)/[a11@mm])?. Since (by Property 4) o1,, must be increasing as pim
increases, p1m = (01m —2122;2122711) /[@11@mm], which is the partial correlation
of the variables 1 and m given variables 2,---,m — 1.

2. PROOF OF RESULT IN EXAMPLE 4 FOR MORGENSTERN’S CoPuLA. It
suffices to prove the result for the (1,3) and (1,4) margin. The general case
obtains by changing indices and using induction. The conditional distributions
are Fj5(zj]z2) = 2 + 0;22;(1 — z;)(1 — 222), j = 1,3, etc. Hence

1
F13((E1,(L'3) = / F1|2(:L'1|22)F3|2((E3|22)d22 = $1Q)3+012023(E1(1-—:131)1)3(1—:1)3)/3
0

by direct calculation and aj3 = 6126,3/3. Next with ags = 623,
1 1
Fiy(z1,24) = / / Fija3(21|22, 23) Fyja3(24| 22, 23) f23(22, 23)d22d 23
o Jo

1 1
= / / F1|2((l)1IZQ)F4I3(.'I}4|23)f23(22, 23)d22d2‘3
0 JO
=124 + 0120340123:1)1(1 — :1,‘1):174(1 — $4)/9,

and Q14 = 0120340123/9. |
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