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FAMILIES OF m-VλRiATE DISTRIBUTIONS

WITH GIVEN MARGINS AND

m(m - l)/2 BlVARIATE DEPENDENCE PARAMETERS

BY HARRY JOE

University of British Columbia

A class of ra-variate distributions with given margins and m(m — l)/2 de-
pendence parameters, which is based on iteratively mixing conditional distribu-
tions, is derived. The family of multivariate normal distributions is a special case.
The motivation for the class is to get parametric families that have m(m — l)/2
dependence parameters and properties that the family of multivariate normal
distributions does not have. Properties of the class are studied, with details for
(i) conditions for bivariate tail dependence and non-trivial limiting multivariate
extreme value distributions and (ii) range of dependence for a bivariate measure
of association such as Kendall's tau.

1. Introduction. The main purpose of this paper is to derive and
study a class of ra-variate distributions with given margins and m(m - l)/2
dependence parameters, one parameter corresponding to each bivariate mar-
gin. Of the parameters, m - 1 can be interpreted as dependence parameters
and the remainder can be interpreted as conditional dependence parameters.
The multivariate normal family is a special case with the parametrization in
terms o n m - 1 correlations and (m - l)(ra - 2)/2 partial correlations, each
(independently) being in the range (-1,1). The class considered here includes
multivariate families with different amounts of bivariate tail dependence for
different bivariate margins; the multivariate normal family does not have tail
dependence, a property which is important for extreme value behavior.

The class of multivariate distributions is defined in Section 2. Properties
studied there include: (a) partial closure under taking of margins, (b) simula-
tion from the class, (c) bivariate tail dependence, (d) ordering by concordance,
and (e) range of dependence.

Because tail dependence properties are one reason for studying non-
multivariate normal families, conditions for bivariate tail dependence are stud-
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ied in some detail in Section 3 and the form of the limiting extreme value copula
is obtained when there is tail dependence. In Section 4, the range of depen-
dence of the multivariate family as measured by bivariate measures, such as
Kendall's tau or tail dependence, is studied, particularly in the 3-dimensional
case. For purposes of statistical modelling, a wide range of dependence is
important when one has no reason to assume a special dependence pattern.

2. Multivariate Families with a Parameter for Each Bivariate
Margin. The class of multivariate distributions to be studied is given in
(2.1)-(2.3) below, after some notation.

F or i*i,...,m denotes a multivariate distribution, with continuous univari-
ate margins F\, , Fm. The higher order margins are denoted as Fs where
S is a subset of {1,2, , m} with cardinality at least 2. The densities, when
they exist, are denoted as fs and the survival functions are denoted as Fs
The notation ys is equivalent to {yi : i G S}. For specific subsets 5\ a
simplifying notation used is that the braces for the subset are omitted. C de-
notes a bivariate copula (with uniform (0,1) margins). With subscripts, Cjk,
j < fc, is associated with the bivariate margin Fjk if k = j + 1; otherwise if
k > j + 1, it is associated with the conditional distribution of the j t h and kth

variables given those indexed strictly between j and k. For S being a subset
of {1,2, , m} with cardinality less than m and j $ 5, Fj\$ denotes the con-
ditional distribution of variable j given those whose indices are in S. That
is, if Sj — S U {j} and all densities (with respect to Lebesgue measure) exist,
then Fjls(zj\ys) = flJ

oofj\s(yj\ys)dyj where fj\s(yj\ys) = fsjiys^/fsiys)-

We suppose that C(uι,U2]θ) is a family of bivariate copulas which in-
clude independence and the Frechet upper bound, such as one of the families
listed in Joe (1993). We suppose that the parametrization is such that the
dependence in C increases as θ increases and that θ = θj for independence,
θ = θu for the Frechet upper bound. For j < fc, there is a parameter θjk = θkj
and copula Cjk — C( ; θjk). For 1 < j < m, the (j,j+l) bivariate margin of F
is Fjj+ι(yj,yj+ι) = Cjj+1(Fj(yj),Fj+1(yj+ι)). Based on these bivariate mar-
gins and the copulas Cjk, the higher-ordered margins Fi...*, ,iΓ

m_/c-|_i...m,
3 < k < m, will be defined by recursion and at the last stage F = jF\...m is
defined.

For m — 3, the trivariate family is

r
— /

J—

2/35 012, 013, 023)

(2.1)

where 1̂12,̂ 312 a r e conditional cumulative distribution functions (cdfs) ob-
tained from ii2,^23 By construction, (2.1) is a proper trivariate distri-
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bution with univariate margins ^1,7*2,^3 and (1,2) bivariate margin F12,

and (2,3) bivariate margin F23. The third parameter 0χ3 can be interpreted

as a conditional dependence parameter (conditional dependence of the first

and third univariate margin given the second) with #13 = 0/ corresponding

to conditional independence and #13 = θjj corresponding to perfect condi-

tional dependence. The (1,3) bivariate margin of (2.1) can be obtained as

*i3(ifi,lfe;0i2,023,0i3) = ^123(2/1, oo, y3; 0 i 2,0 23, θ13). Note that this depends

on all of the dependence parameters. In general, it will not be the same as

C(i*\, F 3 ; 0) for some 0; see the examples given below.

For m = 4, define F234 in a similar way to F123 (by adding 1 to all

subscripts in (2.1)). Note that both F123, F234 have a common bivariate margin

F23. Then the 4-variate family is

ΓV2 ry

^ 1 2 3 4 ( 2 / 1 , 2 / 2 , 2 / 3 , 2 / 4 ; 0 1 2 , ••', 0 3 4 ) = / /
J — 00 J —0

^4|23(2/4k2, ^3; 023, 024, 034))^23(^2, dz3; 023),

(2.2)

where ^1123,̂ 4123 a r e conditional cdfs obtained from ^123,^234- The param-

eters 013,024 are interpreted as for (2.1). The 0i4 parameter is a conditional

dependence parameter (conditional dependence of the first and fourth univari-

ate margin given the second and third). As for (2.1), one can get the margins

F14, F124, F134 by letting appropriate variables go to 00 in (2.2).

It should be clear that this can be extended recursively and inductively.

Assuming .Fi...m_i, i*2—m have been defined with a common (m—2)-dimensional

margin i^.-m-i? the m-variate family is

Ή .m(2/i, * * ,2/m;0i2, * ,0im)
ΓV2 ΓVm-l

— j "I C f im(i ? i | 2 . . .m_i(2/l |^2, *,^m-i;012, * *,0m-2,m-l),
J—oo J—00 yZ.oj

Fm\2...m-l(ym\Z2i ' ' ' , ̂ m-l! #23, " * *, 0m-l,m))

* *, 0m-2,m-l),

where F ψ . .m-i,^m|2 m-i a r e conditional cdfs obtained from i*\...m_i,i<2.. m

Similar to (2.1)-(2.3), one can define a family of m-variate distributions

through survival functions, Fs Let Fj — 1—Fj be the univariate survival func-

tions. The bivariate margins with consecutive indices are Fjj+ι(yj, 2/7+1; 0j,j+i)

= ClJ+1(Fj(yj),Fj+1(yj+1)]θjj+1), where C * j + 1 is the copula linking the

univariate survival functions to the bivariate survival function. The m-variate

case is like (2.3) with all F's replaced by F's and the integrals having lower
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limits yj, j = 2, , m — 1 and upper limits oo. This leads to

l

/
JV2

2,- ' , 2 m -i; #23? * ' ?^m-l,m)) . ,.

* ,d^ m - i ; #23, ' # *?0ra-2,ra-l)?

It is straightforward to show that this family is the same as that from (2.1)-
(2.3) with C*k(u, v) = u + υ-l + Cjk(l -u,l-v)oτ Cjk(u, v) = u + v - 1 +
C*k(l-u,l-v).

Models (2.3) and (2.3') are a unifying method for constructing multivari-
ate distributions with a parameter for each bivariate margin. Note that these
models can be generalized into a nonparametric family with Cjkt 3 < &> a s the
indices. The standard multivariate normal family is a special case of (2.3) and
two other special cases, which have been used previously by the author, are
given in Example 2 below.

EXAMPLE 1. Let Fj = Φ, j = 1, ,m, where Φ is the standard normal
cdf. The bivariate normal copulas are C{u\,v,2\θ) — Φ^(Φ~1(/^i), Φ " 1 ^ ) ) ?
— 1 < θ < 1, where Φ# is the bivariate normal cdf with correlation 0, means
0 and variances 1. Then for (2.3), with k - j > 1, θjk = Pjλ;.(j+i,...,λ:-i) ̂ s

the partial correlation of variables j and k given variables j + 1, ,fc — 1.
[The proof of this is given in the Appendix.] For this parametrization of the
multivariate normal family, all values of {θj^^j < k} in (—1, i)77^™-1)/2 are
possible. The margins Fjk with k — j > 1 are also bivariate normal.

EXAMPLE 2. Joe (1994) used the extreme value limits of (2.3) to get
families of multivariate extreme value distributions that have a parameter for
each bivariate margin. The starting families of copulas were

θ > 1, (2.4)

and

C(uuu2',θ) = u1+u2-l + [(l-u1)-θ + (l-u2)-θ-l]-1/\ θ>0. (2.5)

Some properties and discussion of these families are given in Joe (1994) and
will not be repeated here. In (2.4), θ = 1 corresponds to independence and
θ —» ex) corresponds to the Frechet upper bound; in (2.5), the corresponding
values are 0 and oo. There is no known multivariate family of copulas with
m(m - l)/2 distinct bivariate dependence parameters that have (2.4) or (2.5)
for all bivariate margins.
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EXAMPLE 3. A special case consists of the multivariate distributions aris-
ing from a first order Markov chain based on a copula C and a marginal
distribution F. That is, CJJ+I — C for all j and Cjk corresponds to indepen-
dence if k - j > 1. In this case, for m > 4, (2.3) can be more simply written
as

= /
J—

where the transition distribution is F^i_ι(xi\xi-ι) = B(F(xi-\),F(x{)) and

EXAMPLE 4. This example is given to show a case where all bivariate mar-
gins belong to the same family; however the multivariate family is very limited
in its range of dependence. Let C(u\,U2',θ) = u\U2(l + 0(1 — ̂ i)(l — u2))->
- 1 < θ < 1, be the Morgenstern (1956) family. Let Cjj+i have parame-
ter 0j,j+i in this family and let Cjk correspond to independence (θjk = 0)
for k — j > 1. Also let all of the univariate margins be uniform on (0,1).
Then for (2.1) to (2.3), the bivariate margins have copulas Fjk in the Morgen-
stern family with parameters α^^, which satisfy αjj+2 = 0 J J + I 0 J + I J + 2 / 3 and
α j J + ^ = 0jj+i0j+^_iij+£αj+iij+^_i/9 for i > 3. A short proof of this is given
in the Appendix.

Note that it is not essential that the copulas Cjk all belong to the same
family if one is concerned only with constructing some multivariate distribu-
tions and not with whether one can get a parametric family with a wide range
of dependencies.

A few definitions used in the remainder of the article are given next.

DEFINITION. Concordance ordering. Let F,F' be bivariate distributions
with univariate margins JFi,/^. The F' is larger in concordance (or positive
quadrant dependence) than F if F\x, y) > F(x, y) for all #, y. This definition
is from Yanagimoto and Okamoto (1969) and Tchen (1980).

DEFINITION. Bivariate tail dependence. A bivariate copula C(w, υ) has
(upper) tail dependence if C(w, u)/(l —u) converges to a constant 6 in (0,1] as
u —> 1, where C is the survival distribution corresponding to C. This definition
is from Joe (1993).

DEFINITION. Positive and negative quadrant dependence. Let F be a
bivariate distribution with univariate margins Fi,F 2 . F is positive (negative)
quadrant dependent if it is larger (smaller) in concordance than i*\F2, that is,
F(x,y) > F1(x)F2(y) (F(x,y) < F1(x)F2(y)) for all x,y.
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DEFINITION. Kendall's tau. Let F be a bivariate continuous cdf and let

(XL, Y\),(X2,Y2) be independent random pairs with distribution F. Then

T = 2 Pr((Xi - X2)(Yi ~ I2) > 0) - 1 = 4 / F dF - 1.

DEFINITION. Bivariate Freciiet bounds. Consider the family of bivariate

cdfs with univariate margins F\,F2. The Frechet upper bound is min{i<i(a:),

F2(y)} and the Frechet lower bound is max{0, Fι(x) + F2(y) - 1}.

Next we obtain some properties of (2.3).

PROPERTY 1. Partial closure. Marginal densities of the form i^ j+i^. j+j .

with k > 1 have form (2.3). This follows directly from the recursive definition

and shifting of indices by adding j — 1 to all indices in (2.3) and letting m =

k - j + 1. i^ j+i^.j+fc has parameters 0jj+i, , flfc-i,*.

PROPERTY 2. Densities without integrals. Assume the Fj are differen-

t i a t e with densities / j , j = 1, , m, and that the family of copulas have sec-

ond order derivatives and hence densities c(^i, u2\ θ). Then the family (2.3) of

cdfs have densities. Although (2.3) has a representation in terms on integrals,

the density f\...m of (2.3) does not involve integrals. (The density f\m however

does involve integrals.) The proof of this is based on induction/recursion and

the following observations.

Let Cjk(uι,v,2) = c{u\,U2\θjk) Then, omitting the parameters θjk.

§̂7̂ 112(2/112/2) = CI 2 (JPI(»I) , F2(y2))fι(yι) do not involve integrals and simi-

larly for Fz\2ih\2\

( b ) *1|23 = af^l3(^l |2>^3|2)> ^3|12 = ^ ^ 1 3 ( ^ 1 1 2 , ^ 2 ) 5 /l23 = dyidψdy3

= ci3(^i|2(2/i 12/2)̂ 312(2/212/3)) /i|2(yi|2/2)/3|2(2/3|2/2)/2(2/2) do not involve inte-
grals;

(c) for m > 4, with the inductive assumption that i ϊi |2...m_i, Fm\2...m-ii

h'-m-u f2..'m,f2.-m-i do not involve integrals, then /i|2...m-i5/m|2...m-i do

not involve integrals, and

^ l | 2 m = ^

dmF\...m
fl—m — ~~ 7j = c lm(^l|2 m-l? -Pm|2 -m-1 )/l|2 m-l/m|2 m-l/2 m-l

do not involve integrals. Similarly, Fm+ι\2...m and f2...m+ι do not involve inte-

grals.

PROPERTY 3. Simulation. The procedure to simulate a random vec-

tor from (2.3) is to first simulate (x2, , z m _i) from i<2,...jm-i and second

to simulate a bivariate uniform random pair (v>ι,um) from the copula C\m.
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Then x\,xm can be obtained as Gj1^), I = l,ra respectively, where Gι —
^|2, ,m-i The resulting (#i, , xm) is then appropriate. Simulating from a
bivariate copula is straightforward for the known families using the conditional
approach (see below) or a representation such as a mixture of conditionally
independent distributions (Marshall and Olkin, 1988). Note that G\,Gm have
closed forms if the Cjk's have closed forms; however the functional inverses
need not have closed form. If Gt does not have closed form, then X£ can be
obtained numerically as the root of the equation Gι{xt) — U£, say using the
Newton-Raphson method. Simulation from .F2, ,m-i can be based on the ideas
in the preceding three sentences since its density /2,. .,m-i can be decomposed
as a product of conditional densities, for example, /2/3I2 *' */m-i|i,—,m-2

PROPERTY 4. Concordance ordering. As Cjk increases in concordance (as
θjk increases) with other bivariate margins held fixed, then from property 1
and (2.3), Fj...k(yj, , yk) is increasing in θjk for all y2 , i — j , , &, and hence
Fjk(yj,yk) is increasing in θjk for all yj,yk

It can be checked (for example, with the multivariate normal family) that
a stronger concordance property such as uFιs increases in concordance as C12
increases in concordance" does not hold.

Now to get closer to one of the goals of this paper, we mention some tail
dependence properties associated with (2.3).

PROPERTY 5. Tail dependence. For the trivariate case given in (2.1), if C12
and C23 have upper tail dependence and some regularity conditions hold, then
F13 has upper tail dependence. For the general ra-dimensional case in (2.3),
if Cjj+i, j = l, , r a - 1, have upper tail dependence and some regularity
conditions hold, then Fjk, k - j > 1, all have upper tail dependence.

The precise statement of this result and its proof are given in Section 3
together with some necessary lemmas on tail dependence.

PROPERTY 6. Range of dependence. How close does family (2.3) come to
covering all theoretical {r^} or {δij}Ί Some answers are provided in Section 4.
Here rt j is Kendall's tau for the (i, j) bivariate margin, and δ{j is the (upper)
tail dependence parameter for the (i, j) bivariate margin.

Because of Property 1, we make the following final remark for this section.
The family (2.3) has only partial closure in that Fj^.j+ki k > 1, have the
same form but other margins have different forms. Hence the use of the family
requires the decision of how to assign variables to the indices if there is no
natural order to the variables. Some numerical checks for the families in
Example 2 in Joe (1994) suggest that bivariate margins Fjj+k, k > 1, are
close to those in (2.4) or (2.5) if the bivariate margins i*j,j+i are the ones with
the most dependence.
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3. Tail Dependence Results. In this section, the quantities needed

for analyzing tail dependence of multivariate distributions are given and used

to prove tail dependence of (2.3) under some conditions. The same quantities

are then used for deriving the limiting multivariate extreme value copula of

(2.3) when all bivariate margins have upper tail dependence.

To stress ideas and concepts, we assume the existence of derivatives and

other regularity conditions as needed. Some equivalent conditions for bivariate

tail dependence are given first. Sometimes it is more convenient to work with

exponential margins than uniform margins. For a bivariate copula C, let

(3.1)

The definition of upper tail dependence in Section 2 becomes

exG{x,x) -> δ e (0,1], x -> oo. (3.2)

Now assuming that G has derivatives to second order, let G 1 | 2(x|y) = ey — yXiy)

and Gι\2 — 1 — Gι\2. Then

exG(x,x) = ex Gll2(x\y)e-ydy
Jx

ί° — f°° —
— / ^ i | 2 ( x l x ~~ v)evdυ = / Gχ\2{x\x + v)e vdυ.

J -oo Jθ

Assuming that exG(x,x) converges as x —>• oo and that

Gll2(x\x + υ) -+ a(v) (3.3)

for all υ (v < 0 is needed below), where a is continuous and a < 1, then by

the Bounded Convergence Theorem,

exG(x,x)^ / a(v)e~vdv. (3.4)

Jo

Tail dependence holds if and only if a is not identically 0 (a.s.) on (0, oo).

Now let g be the density of G. Then

roo roo

/
roo roo

exG(x, x) = ex / g(yu y2)dy

roo roo

= / / exg(x + vi,x
Jo Jo

Assuming that

exg(x + V!, x + υ2) -> b{υu υ2) (3.6)
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and that the Lebesgue Dominated Convergence Theorem can be used in (3.5),

roo roo

exG{x,x) —• / / b(vi,v2)dv\dv2

Jo Jo

and tail dependence holds if and only if b is not identically 0 (a.s.) on (0, oo)2.

A relation between a and b (when both are non-zero) is as follows:
a(υ) = lim^ ex+v f£° g(z, x + υ)dz — lim^ ex+v J^υ g(x + υ + w, x + υ)dw =
f^°υ b(w,0)dw. Hence a(υ) is increasing in υ and under some regularity condi-
tions, a(υ) —> 1 as υ —• oo. This requires that δ( ,0) is a density on (-00,00)
but δ( ,0) is just the limit of the conditional densities g2\ι(x + m\x) Note
that the condition of a(υ) increasing in υ is closely related to the condition
Gι\2(%\x + v) increasing in υ for all x; this latter condition is the stochastically
increasing positive dependence condition.

EXAMPLE 5. For illustration, we give these quantities for two families
of bivariate copulas which are listed in Joe (1993); one family has upper tail
dependence and the other does not have tail dependence.

(i) Consider the family C{u, υ;θ)=l- [(1 - u)θ + (1 - υ)θ - (1 - u)\l -

υ)6]1/6, θ > 1. Independence obtains when θ = 1 and upper tail dependence

holds when θ > 1. Let G^G^g be as defined above. It is straightforward

to verify the following: exG(x,x) —> 2 — 2λlθ as x —> 00, G\\2(x\x + v) —>

l - ( l + e ^ ) - 1 + l y ^ = a(υ), -00 < υ < 00, as x -* 00, and exg(x + vι,x + υ2) -»

(θ- l)e-θ^+v*\e-θυi +e-θv2y2+ιlθ = ^ ^ ^ ^ as α: -^ 00. Note that o(t ) is
increasing in υ and that a(v) —> 1 as υ —> 00.

(ii) A family due to Frank (1979) is C(u,υ;θ) = -6>"1log([7/ - (1 -

€~θu)(l - e~θv)]/η), -00 < θ < 00, where 77 = 1 — e"θ. It is straightfor-

ward to show that as x -*• 00: ea7Gί(x,x) -» 0, Gfi|2(a?la? + ^) ~ ^ " ^ / [ ( l -

^ : - υ )] -+ 0, e^(a: + ι;i,a: + V2) - Θe'x'v^"^/(l-e-θ) -* 0.

THEOREM 3.1. Suppose that C\2,C2z have upper tail dependence and
that the Lebesgue dominated convergence theorem can be applied to (3.7)
below. Then F13 in (2.1) has upper tail dependence and the tail dependence
parameter is given in (3.8).

PROOF. Let F12, F23 be defined as in (3.1) with C12, C23 respectively. Let
α be defined as in (3.3) with subscripts 12 or 32 for the (1,2) or (2,3) bivariate
margin respectively. Putting exponential margins in (2.1) and omitting the
parameters θjk leads to

tV2

1̂23(2/1,2/2,2/3) = / C13(F1ι2(y1\z2),F3\2(y3\z2))e~Z2dz2
Jo
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and
F13(x, x) = l - F^x) - F3(x) + F13(x, x)

roo ΛOO

= 1- / F1{2(x\z)e-Zdz- / F3ι2(x\z)e'zdz
Jo Jo

+ I C13(Fll2(x\z),F3]2(x\z))e-zdz
Jo

C13(F1\2(x\z),F3\2(x\z))e-*dz./
Jo

Hence

F13(x, x) = / C13(Fll2(x\x + υ), F3\2(x\x + v))e-ydv (3.7)
J — X

i: - a12(υ), 1 - a32(υ))e-υdυ (3.8)

assuming the Lebesgue dominated convergence theorem can be used and αχ2, a32

are the limits for Fι\2,F3\2 as in (3.3). I

REMARKS. 1. The condition of C\2,C23 having upper tail dependence is
essentially necessary. For example, let C23(u, υ) = C\3{u,v) = uυ, Cι2(u,υ) =
1 - [(1 - u)θ + (1 - υ)θ - (1 - u)\l - υ)ψθ, θ > 1. Then e*F13(x,x) -

e-χ J ^ [ i _ (i + eθv)-ι^lθ)}e-υdv - . 0 as a -> oo.

2. For the result of Theorem 3.1, positive dependence for the copula C\3

is not necessary. Even if C\3 corresponds to the Frechet lower bound, F\3 can
have upper tail dependence - under regularity conditions, the tail dependence
parameter is J ^ e~v max{αi2(t>) + «32(^) — 1? 0}dv.

3. If C\3 has upper tail dependence and C\2, C23 do not, then it is possible
that F\3 has tail dependence. (A sufficient condition is that C\2,C23 satisfy
the positive dependence condition, C^|2(^|t;) > u for all υ > υ0 for some
VQ G (0,1), k — 1,3.) This case is not so interesting for the goal of getting tail
dependence for every bivariate margin.

THEOREM 3.2. Suppose that Cjj+i, j = l, ,ra — 1, Aave upper tail
dependence and that all copulas Cjk have densities. For (2.3) with exponen-
tial univariate margins, suppose that for j,k, with k > j , that the following
pointwise convergences hold as x —> oo;

0) Fj\j+i, »,k(x\x + υi+i>' mm'>x + vk)-* αj,j+i,-Aυj+i> ' Ίvk),

(ii) Fk\^.Ίk_Ύ(x\x + vj, -,x + υk-i) -> αk,j+i,...,k-i(vj, - ,υk-i),

(Hi) exfj}...yk(x + Vj,- ,x + υk)-+ bjy...ik(vj, ,υ k ),

and that the functions on the right hand sides of (i), (ii), (Hi) are not identi-
cally 0 (a.s.). Also assume that the Lebesgue dominated convergence theorem



130 FAMILIES OF m-VARIATE DISTRIBUTIONS

applies for the integrals in (3.9), (3.10), (3.11), and that Cjk (k-j > 1) is such

that (3.12) is positive, then Fjk, k — j > 1, all have upper tail dependence.

PROOF. This is by induction starting with the result in Theorem 3.1.

We assume as in the proof of Theorem 3.1 that all univariate margins are

exponential distributions. Note from property 2 in Section 2 that all multi-

variate densities exist. The trivariate argument works to show that Fjj+2,

j = 1, , m — 2, have tail dependence. Suppose that it has been shown that

Fjj+i has upper tail dependence for all 2 < i < ί, i > 2. For 2 < k - j < I,

exFjJ+1 (a?, x) = exFj^k(x, a?, 0, , 0)

ΓOO (3.9)ΓOO ΓOO ΓOO ΓOO

= / / / • • • /

Jo Jo J-x J-x

From condition (iii) and assuming that the Lebesgue dominated convergence

theorem applies in (3.9) over the region (0,oo)2 x (—oo, oo)*"-7'""1, the right

hand side of (3.9) converges to /0°° /0°° / ^ / ^ δjf...,*(t;j, , vk) dvj ..dυk,

and bjy...jk must not be identically 0 (a.s.) since by (3.2), the left hand side of

(3.9) is positive. For 2 < k - j < I, we also have

ΓOO ΓOO

(*>*)= / •

Jo J-x
exfj+ι,...,k(x + Vj+w -,x + υk)dυj+1 -dvk.

From conditions (i) and (iii) and assuming that the Lebesgue dominated con-

vergence theorem applies in (3.10) over the region (0, oo) X (-oo, oo)*~"J'~1, the

right hand side of (3.10) converges to

roo roo roo

/ / " / αjj+ir ,k(vj+ii ' 'ivk)bj+i, .,k(vj+ι, - ,vk)dυj+1 "

Jo J—oo J—oo

and αjj+i,...,* cannot be identically 0 (a.s.). With similar assumptions,

roo roo roo

ex~Fk-lyk{x,x)^ / / •••/ a jb , i f . . . , fc- i (v j , ---5^- i )
^ 0 J— oo J—oo

bj^k-iivj, - , Vk-i)dvj dvk-u

and αkjr..fk-ι cannot be identically 0 (a.s.).

Now, for k = j + ί+l,

roo roo

exTjk(x,x) = ••• Cjk(Fj\j+ίt....k_1(x\x + υ j + ι , •• ,x + vk-i),
J—X J—X

iΓfe|j+i,...,fe-i(a;|a; + vj+1, ,x + υk-ι))

• ex/j+i>...(jt_i(x + Vj+ι, - ,x + vk-ι)dvj+1 • • dvk-1 (3.11)
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/ΌO Z O

J— OO J—

assuming that the Lebesgue dominated convergence theorem applies to (3.11)

in (—oojoo)*"-7'""1. If Cjk{u\,u2) > 0 when u\,u2 < 1 (for example, if Cjk has

positive quadrant dependence, C jk{u\,u2) > (1 — ̂ i )( l — ̂ 2))? then (3.12) is

positive. (3.12) in general will be positive unless zero values of Cjk occur only

when djj+ιr.Ίk-i and akj+1^.^-1 a r e positive. |

REMARK. The assumptions given in Theorems 3.1 and 3.2 are not really

too strong since they do hold in special cases such as those in Example 2 of

Section 2.

Next we derive the multivariate extreme value copula associated with

(2.3) when all bivariate margins Cjj+i have upper tail dependence. Some

details and background are given in the Appendix of Joe (1994).

For a multivariate distribution with exponential univariate margins, the

multivariate extreme value limit which has the Gumbel margin H(XJ) —

- e ^ } , j = l, ,m, is

lim Fί1... m(xι + log ra, , xm + log n).
n—» oo ' '

This is equivalent to

exp{- lim n[l - Fh...im(x1 + log n, , xm + log n)]}. (3.13)

The limit in the exponent of (3.13) can be calculated in more than one way

depending on the form of the copulas Cjk> Two different forms are described

briefly with the limits being expressed in terms of the functions a and b in

Theorem 3.2. The formulas below are generalizations of the special cases given

in Joe (1994), which result from the families given in Example 2 of Section

2. The use of the families of copulas in (2.4) (respectively (2.5)) leads to an

extreme value limit with exponent given in (3.16) (respectively (3.18)).

The first form below is convenient if 1 - Cjk is simple (for all j , k). From

(2.3),

l-Flr..,m(xir-',xm)= / •••/ [l-Cιm(Fι\2i...im-uFm\2i...im-i)]
Jo Jo

dF2,..Ίm-l + 1 - ί2 f... fm-l(s2, ' ' *, *m-l) (3.14)
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so that a recursion formula is possible for the limit in the exponent of (3.13).

Let M = logn. Then n times the integrand in (3.14) is:

rx2+M ra7m_i+M

I '" [ί ~ CimίF^. m-lixi + M\Z2,
Jo Jo

^m|2,...,m-l(&m + M\z2, , 2m-l))]

* /2, .,m-l(z2, * ',Zm-i)dZ2 ' ' ' dzm-\

.,m-l(*l + M\υ2 + M, , Vm^ + M),

2,...,m-l (^m + ^1^2 + M, , Vm-i + M))]

• eM f2,.~,m-l(v2 + M, , Vm_! + M)dl72 rfVm-1

•/—o
/

oo J—oo

(3.15)

under conditions similar to those in Theorem 3.2. Let rjjk(%ji" Ί%k)i with

j < fc, k - j > 1, be the similar limit to (3.15) starting with Cjk instead of

Cirn and let ηjj+1(xj, xj+1) = lim n[l - FJJ+1(XJ + log n, xj+x + log n)]. Then

lim n[l — Fιr.Ίm(xι + log n, yxm + log n)], in the exponent of (3.13), is

m/2

/t ί m + i - t (xf , , xm+i-i) if m is even

τ/t,m+i-t(^t, , Xm+i-i) + exp(-a?(m + 1)/2) if TO is odd.

The second form is based on the identity

m

< x 1 ? ,Xm < xm) = ^ P r ( X 2 > a:,-)

> Xj,Xk > Xk,Xi < XiJ < i < k).

The limit in the exponent of (3.13) is then based on lim n exρ(-z; - log n) =
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- z ), limra[l - Fjij+1(xj + l o g n , Z j + 1 + logn)] = Cj,j+i(zj,Zj+i), and

lim n Pr(Xj > Xj + log n, Xk > Xk + log n, Xi < X{ + log n,j<i<k)

[Xj+l fXk-1

= / / Cjk(FJlj+h...jk_1(xj + M\vj+1 + M, , ^ _ i + M),
y_M J-M

i^ij+i,...,*-;^* + Af |VJ+I + M, , vk-i + M))

• e M / i + i , . . . Λ -i(^+i + M, , VAΓ-1 + M)dυj+1

-^ / * * * / Cjk(l
J—oo J—oo

1 - αjfej+i^.^-i^j+i - Efc,

(3.17)
under conditions similar to those in Theorem 3.2, for &-j > 1 and (Xj, , Xk)
having distribution î ,...,̂  with form (2.3). Let the limit in (3.17) be denoted
by ζjk(xj, , Xk)- Then lim n[l - Fli..Ίm(x1 + log n, , xm + log n)] is

^ exp(-Xi) - Σ Cjk(xj, , «ib)- (3.18)

The final result of this section is to show that for a bivariate copula with
tail dependence, the extreme value limit (3.13) has the same tail dependence
parameter δ.

THEOREM 3.3. Let C be a bivariate copula and let F(xι,x2) = C(l -
e~Xl,l - e~X2). Suppose limw_i C(u,u)/(1 - u) = δ, where δ e (0,1] and
limn F

n(xι + log n, x2 + log n) — H{x\,X2) = exp{—η(xι^x2)} with univariate
margins exp{-e~a7j}? j = 1,2. Let C*(uι^u2) = H(- log[— log^i], — log[—log
t*2]). Tien l i m ^ i C*(w, t*)/(l - u) = tf.

PROOF. From (3.13) and (3.2),

η(x, x) = lim n[l - F(a? + log n, x + log n)]

= lim n[e-χ-ι°zn + e-
χ"logn - ~F(x + log n,x + log n)] - 26"^ - δe~x.

Now,

C*(t*, «)/(l - u) = [1 - 2u + exp{τ7(- log[- log u], - log[- log t*])}]/(l - u)

a s u —>• 1. I

4. Range of Dependence. We should get a "wide" range of dependence
from (2.3), especially if the family of copulas include both the Frechet upper
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and lower bounds. Let us measure the range of dependence via possible sets

of {ζij^i < j } , where ζij is a measure of dependence for the (i, j) bivariate

margin. We study the trivariate case in more detail and make generalizations

where possible to higher dimensions.

Three-dimensional case. This case is easier to study than the general

multivariate case since two of the three bivariate margins can be considered

arbitrary, and then the third bivariate margin has constraints given the other

two. Also this case provides insight into what is possible for the multivariate

case.

We will follow (2.1) in thinking of the (1,3) bivariate margin as depend-

ing on the (1,2) and (2,3) margins. One can argue that (2.1) has a full range

of dependence if CΊ 2,6*23 have a full range of dependence from the Frechet

lower bound to the Frechet upper bound and likewise for C13 (because then

perfect positive and negative conditional dependence are possible). This ar-

gument should extend to the multivariate case in (2.3). The analysis of the

range of dependence is not so straightforward when one is trying to have

positively dependent distributions only (Cfi2,C23,Ci3 between independence

and the Frechet upper bound) such as in the case of multivariate distribu-

tions with upper tail dependence. Hence we consider looking at the range

of possible (Ci2>C23>Ci3) where ζjk is a measure of dependence for the (j, k)

bivariate margin. The Pearson correlation coefficient is not suitable because

it is not invariant with respect to the choice of the univariate margins F{\ for

example, the correlation coefficient for the Frechet upper bound with margins

ίi,i<2 is not 1 unless F\ — F<ι. Instead we use ζ equal to Kendall's tau for

a measure of monotone dependence invariant with respect to the univariate

margins, and ζ = #, the upper tail dependence parameter given in Section 2

(δjk = limu_+i Cjk(u, u)/(l - u)).

For the bivariate normal distribution, r = (2/π) arcsin(p) (see, for ex-

ample, Kepner, Harper and Keith, 1989). Hence, for the trivariate normal

distributions, the constraint — 1 < P13.2 < 1 is the same as

or

P12P2S - [(1 - /&)( ! - plzψ2 < Piz < PUP2Z + [(1 - p\2){l -

- cos(0.57r(ri2 + T2z)) < sin(0.5πri3) < cos(0.57r(ri2 -

or
- 1 + |TΪ2 + r 2 3 | < r 1 3 < 1 - | r 1 2 - τ 2 3 | . (4.1)

As shown in Theorem 4.1 below, the bounds in (4.1) are bounds for general

F23 that are compatible with ^12,^23, that is, within the trivariate normal

family, all of the possible values of (rχ2, r i 3 , T23) for trivariate distributions are

attainable.
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THEOREM 4.1. Let F123 be a continuous trivariate distribution with bi-

variate margins -Fi2, ̂ 3 ,^13. Let Tjk be the value of Kendall's tau for the

(j,k) bivariate margin. Then inequality (4.1) is satisfied and the bounds are

sharp.

PROOF. Let (Xn,Xi2,Xi3), i = 1,2, be independent random vectors

from the distribution i*i23. Then Tjk = 2ηjk - 1, 1 < j < k < 3, where

ηjk = Pτ((Xυ - X2j){Xik ~ X2k) > 0). Then η13 = P r ( ( X n - X21)(X12 -

X 2 2) 2 (^i3 - X23) > 0) = P r ( ( X n - X21)(X12 - X22) > 0, (X 1 2 - X 2 2)(Xi3 -

X23) > 0) + P r ( ( X n - X21)(X12 - X22) < 0,(Xi2 - X 2 2 ) ( ^ i 3 - ^23) < 0).

Hence an upper bound for 7713 is min{7/i2, r/23} + min{l - τ/i2,1 - 7723} and a

lower bound is max{0,7/12 + 7723 - 1} + max{0, (1 - 7/12) + (1 - 7723) - 1}. After

substituting for Tjk and simplifying, inequality (4.1) results. The sharpness

follows from the special trivariate normal case. I

From the construction of (2.1), one might expect the upper (lower) bound

in (4.1) to be attained for any family C( θ) that includes the Frechet upper

(lower) bound. This is proved in the next theorem under some conditions on

F12 and F23.

THEOREM 4.2. Let F123 be defined as in (2.1). Let r i 2 ,r i3,r 2 3 be the

values of the KendalΓs tau for the three bivariate margins. If C13 in (2.1) is

the Frechet upper bound and F~^(Fι\2(yi\y2)\y2) is (strictly) increasing in y2,

then τi3 = 1 — |τχ2 — Γ23I. Similarly, if C\z is the Frechet lower bound and

F~p(l- 1̂12(2/1̂ 2)12/2) is (strictly) increasing in y2, thenτ13 - - l + | r i 2 + r 2 3 | .

PROOF. Let (Xn^Xi2,Xi3)^ i = 1,2, be independent random vectors from

the distribution F123. The proof in Theorem 4.1 for (4.1) is based on

max{0, PΓ(JBI) + Pr(£2) - 1} + max{0, Pr(£f) + Pr(£2

c) - 1}

Π E2) + Pr(£f Π Ec

2) (4.2)

), Pr(£2

c)},

where the events EUE2 are {(Xn - X2\){X\2 ~ ^22) > 0} and {(X13 -

-Ϊ23X-XΊ2 ~ ^22) > 0}. The upper bound in (4.2) is attained if E\ C E2 or

E2 C Eι. The lower bound in (4.2) is attained if Eλ C E\ or E2 C E{ or

E{ C E2 or Ec

2 C Eλ [equivalently, Ex Π E2 = φ or E{ Π E\ = φ].

For Cχ3 being the Frechet upper and lower bound respectively, (2.1) be-

comes Fu(yuy2,y3) = / ^ mm{Fι\2(yι\z), F3\2(y3\z)}F2(dz) and FL(yuy2,y3)

= J^2

ooτmx{Fι\2(yι\z) + F3\2(y3\z) - 1,0}F2(dz). For Fv, representations

for the two vectors are JΓ13 = r ( X n , X i 2 ) and X 2 3 = r (X 2 i ,X 2 2 ) where

r(xι,x2) = i^2(-^112(^11^)!^)- The function r is increasing in x 1 } and if

r is also increasing in x2, then (Xn — X21XX12 — ̂ 22) > 0 implies (X13 —

- X22) > 0 or Eι C E2, and the upper bound in (4.1) is attained.
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The condition on r is an ordering on i*i2, ^32 that is studied in detail in

Fang and Joe (1992). For FL, representations are X13 = s(X\\,Xι2) and

X23 = s(X21,X22) where s(x1,x2) = F~^(l - F^x^x^x^. If s i s increas-
ing in z 2 , then (Xn- X2i)(Xι2- X22) < 0 implies (X13--^23X^12-^22) > 0.

That is, E{ C E2, and hence the lower bound in (4.2) is attained. A suffi-

cient condition for s to satisfy the given condition is that both Fx\2{-\y) and

^3|2('b) a r e stochastically increasing in y (or cdfs decreasing in y). More gen-

erally, the condition on s is equivalent to an ordering on F*2 and JF 3 2 , where

F*20r, y) = F2(y) - F12(F^(1 - F^x)), y). I

Theorem 4.2 applies to the families of bivariate copulas in Examples 2

and 5, using results in Fang and Joe (1992).

Now, we go on to discussion of δjk which is relevant only if all of the

bivariate margins Fjk of (2.1) are positively dependent. (If, for example,

F\2(u, v) < uv for all u, υ near 1, then Fι2(u, u)/(l — u)< (1 — u)2/(l — u)-+0

as u —> 1; that is, the tail dependence parameter δ is 0.) From Section 3, we

can assume that C12, C23 have upper tail dependence so that ^12, ̂ 23 > 0. The

value of £13 is then given in Theorem 3.1. Unlike Kendall's tau, it does not

appear possible to obtain a closed form sharp bound on the range of £13 given

^12?̂ 23- Let ^(^12,^23) and δ^3(δι2^δ2s) be the largest and smallest possible

values of £13 given £12, #23- It is not hard to get ranges that δ^3 and <5f3 must

fall into. These are given in the next theorem.

THEOREM 4.3. Let Φ be the standard normal cumulative distribution

function. Then

(1-O.5<512)-Φ-1(1-O.5<523)|)] < ^ 1 2 , ^ 2 3 ) < l- |«i2-«2 3 | (4.3)

and

max{0,£1 2+<52 3-l} < ^3(^12,^23) < 2[l
(4.4)

PROOF. Let (Z7i,ί72?^3) have a trivariate distribution with uniform uni-

variate margins. Then Pr({73 > u\U\ > u) = Pr(ί73 > u,U2 > u\Uι > u) +

Pτ(U3 > u,U2< u\Ut > u) = Pr(*73 > «, Uτ > u\U2 > u) + Fτ(U3 > u,U2 <

u\Uι > u) < mm{Ϋτ(Uι > u\U2 > u),Pr(U3 > u\U2 > u)} + 1 - Pr(i72 >

u\U\ > u). By taking limits as u —> 1, δι3 < min{ίi 2,ί 23} + 1 - δχ2. Similarly

by interchanging the subscripts 1 and 3, £13 < min{^i2,ί23} + 1 - <$23 From

these two upper bounds on <$i3, δ^3 < 1 - \δχ2 — ̂ 231 - For the lower bound on

<$i3, Pr(tf3 > u\U! >u) = Pr(C/3 > u, UΎ > u)/ Fτ(U2 > u) > Pr(C/3 > tι, Ux >

u\U2 > u) > max{0,Pr(C/3 > u\U2 > u) + Pr(ϊ7i > u\U2 > u) - 1}. By taking

a limit as u —• 1, the lower bound in (4.4) obtains.
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An analysis of the inequalities in the preceding paragraph suggests that

they are not tight. Hence we provide a lower bound for δ^3 and an upper bound

for δι3 from a specific trivariate family with bivariate upper tail dependence.

This family is the Hύsler-Reiss (1989) family and it will not be repeated here

because its form is not simple. (The Hύsler-Reiss family is an extreme value

family with a bivariate dependence parameter for each bivariate margin and

it is closed under all margins; it obtains as a certain limit of the multivariate

normal family and does not fit into the class in this paper.) The bivari-

ate margins have copulas in the family C(u\,U2',\) — exp{ —(—log^2)Φ(λ +

0.5A"1 log[(- logu2)/(- logUl)]) - ( - log t*i)Φ(λ + O.δλ"1 log[(- log U l )

/(— log w2)])}, λ > 0, where Φ is the standard normal distribution function and

λ = 0 corresponds to the Frechet upper bound and λ —> 00 corresponds to inde-

pendence. The relation between the tail dependence parameter 6 and λ is λ =

Φ - 1 ( l — 0.5£). For the trivariate family, the constraints on the three parame-

ters Ai2,λi3, λ23 are - 1 < #(λ 1 2 , λχ3, λ 2 3 ) ,#(λi 3 , λ2 3, λ i 2 ) ,#(λi 2 , λ2 3, A13) < 1,

where g(a,b,c) = (a2 + b2 — c2)/(2ab). Each of these inequalities reduce to

|λ23 — λχ2 | < λχ3 < λχ2 + λ23, which then yield the upper limit in (4.3) and

the lower limit in (4.4). I

REMARKS. Numerical calculations for the families in Example 2 show

that the bounds from the Hύsler-Reiss family can be improved (but there is

no closed form formula). As an example, we take <$12 = 0.3, £23 = 0.7. For the

family (2.3') with m = 3 and (1,2) and (2,3) margins with copulas in the family

(2.5), the Frechet lower and upper bounds for C13 lead to £13 = 0.150,0.521 re-

spectively. The corresponding bounds from the Hύsler-Reiss family are 0.155,

0.515. The corresponding nonparametric bounds from Theorem 4.3 are 0.0,

0.6. The bounds from the first paragraph of the above proof appear to be

better as <$i2,£23 increase.

Four dimensions and higher. Similar to other problems for multivariate

dependence concepts, results get harder to prove in higher dimensions. As in

the three-dimensional case, if the family C( θ) has the range of dependence

from the Frechet lower bound to the Frechet upper bound, then (2.3) has a wide

range of dependence structure. However the analysis of this range through r t j

or δ{j is harder in that we cannot get simple bounds that are sharp. One could

get inequalities for Tjk in terms of r t t / with j < i < if < &, (i,i') Φ (j > &), but

these would not be as easy to picture as in the three dimensional case.

For example, for m = 4, using (4.1), bounds for r i 4 given r i 2 , r 2 3 , r 3 4, τ13, r 2 4

are

< τ14 < l - m a x { | r i 3 - r 3 4 | , | τ i 2 - τ 2 4 | } . (4.5)

These bounds do not depend on r 23; so far we have not found nonparametric
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bounds involving T23 that can be better than (4.5). In numerical examples for
families in Examples 1,2,5, there is a substantial effect on the bounds for τ\±
when T23 is varied and the remaining r's are held fixed. For 4-variate normal
distributions, using r = (2τr) arcsin(p) and —1 < P14.23 < 1 yields bounds for
T14 given the other r's. These bounds are not the same as (4.5,) implying
that, unlike for m — 3, the nonparametric bounds of (4.5) are not sharp for
the 4-variate normal family. From numerical simulations for the family in
Example 5 (ii), the bounds from the 4-variate normal family are not bounds
in general. For example, with τ12 = T34 = 0.5, r23 = 0.3, r 1 3 = τ24 = 0.4,
the upper bound for ri 4 from the 4-variate normal family is 0.854, the upper
bound from Example 5 (ii) is 0.862 and (4.5) leads to 0.9.

Similarly, (non-sharp) bounds for #14 given ^12,^23^34^13^24? which
extend (4.3), (4.4), can be obtained. These are

max{0, δ12 + δ24 - M i 3 + * 3 4 - l } < δϊ4 < m i n { l - \δ12-δ24\,l- \δ13-δ34\}.

(4.6)
As for Kendall's tau, ri4, we have not found improved bounds that make use
of the (2,3) margin.

The bounds in (4.5) and (4.6) can be extended to higher dimensions. The
hard problem is to get improved bounds that are not so simple.

5. Discussion. We have studied a method of iteratively mixing con-
ditional distributions to get families of multivariate distributions, including
the multivariate normal family, with one dependence parameter for each bi-
variate margins and with some of the parameters having an interpretation for
conditional dependence. Appropriate choices of copulas lead to multivariate
distributions with bivariate tail dependence, a property that the multivariate
normal family does not have. However, in general, the new families do not
have all marginal distributions in the same family. Also permutation sym-
metric copulas do not result as a special case. There are some other possibly
undesirable properties but the important property that does hold is the wide
range of possible dependence, as studied in Section 4. There are applications
where one may need more than m(m - l)/2 dependence or multivariate pa-
rameters for a ra-variate distribution; in these cases, it is important that the
parameters are interpretable.

It appears that when studying parametric families of multivariate dis-
tributions, as opposed to bivariate distributions, that there must be some
unsatisfactory properties. The properties of simplicity in form and breadth
of dependence structure are not compatible. For example, the families of
multivariate distributions given in Section 4 of Joe (1993) have closed-form
cdfs and all bivariate margins in the same parametric family but do not have
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much breadth of dependence structure. Further research includes finding other

methods for constructing parametric families of multivariate distributions that

have a wide range of dependence. For some applications involving (ordinal)

categorical variables, it would be desirable to have a multivariate family with

closed form cdf 's and a wide range of dependence.

Appendix

1. PROOF OF MULTIVARIATE NORMAL RESULT IN EXAMPLE 1: Starting

with -Fjj+i bivariate normal, we show that if i7j?...j+m_2 (m > 2) are (m— 1)-

dimensional multivariate normal, then i<j?...?j+m_i are m-dimensional multi-

variate normal. It suffices to show that Fιr..jTn in (2.3) is multivariate normal

assuming that .Fi,...,m_i and F2,...,m are multivariate normal, for m > 3.

Let ΦΩ, ΦQ respectively denote the multivariate normal cdf and pdf with

zero mean vector and covariance matrix Ω. Let

R =

be the covariance matrices associated with C Ί m , FiΓ . . ? m_i and F2 )...,m respec-

tively. Also let on = [1 - Σ12Σ^Σ21]
1/2, amm = ' [ ί - Σ^Σ^ΣL]1'2 and

C2 = (Z2 >' * ?^m-i)'? C = {zi > * '->zm)'- With bivariate normal copulas and

univariate standard normal margins, (2.3) simplifies to

1

LΣ2i

Σ12

Σ 2 2 .
and

Σ22

Σ m 2

Σ2m

1

fX2 fXm-1

y •••
J—00 J—00

- Σ12C2 %m -
(Λl)

Writing ΦR as an integral, (Al) becomes

' Z\ - Σ12C2
1 / ••• / ΦR ( "

J—00 J—00 \

. (A2)

Clearly, the integrand of (A2) is a constant multipied by the exponential of

a quadratic form in z\, - ,zm, so that (A2) corresponds to a m-dimensional

multivariate normal cdf. Let the covariance matrix of the resulting multivari-

ate normal distribution be denoted by

r 1

Σ21 Σ22

The squared reciprocal in (A2) of (2τr)m/2 times the constant is |Σ 22|(1 -
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/>L)αiiαmm; ^ i s also equal to

-<22

Hence (1 - p2

lm)a2

na
2

mm = α ? ^ ^ - ( σ l m - Σ i 2 Σ 2 2

1 Σ 2 m ) 2 or p\m = (σlm -

Σi2Σ^ 2

1 Σ 2 m )/ [αi iα m m ] ) 2 . Since (by Property 4) σlm must be increasing as ρlm

increases, p\m = {σ\m — Σi2yΣ>22Σ2πι)/[aιιamm]^ which is the partial correlation

of the variables 1 and m given variables 2, , m - 1.

2. PROOF OF RESULT IN EXAMPLE 4 FOR MORGENSTERN'S COPULA. It

suffices to prove the result for the (1,3) and (1,4) margin. The general case

obtains by changing indices and using induction. The conditional distributions

are F^2(XJ\X2) = %j + #j2£j(l - χj)(l - 2z 2 ), j = 1,3, etc. Hence

,X3) = /

by direct calculation and αi3 = 0i2#23/3. Next with CK23 =

/ι4(x1,X4)= / /
Jo Jo

Jo Jo

and α i 4 = θι2θ34a23/9. I
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