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"Interval censoring case 2" involves observation times ({/, V) with
distribution H concentrated on the set u < v and a time of interest
X with distribution F. The goal is to estimate F based only on
observation of i.i.d. copies of (l[x<u]i l[u<x<v], U, V). Groeneboom
(1991) initiated the study of the nonparametric maximum likelihood
estimator Fn of F; see Groeneboom and Wellner (1992), especially
pages 43 - 50 and 100-108. Geskus (1992) and Geskus and Groeneboom
(1994) have studied the estimation of smooth functionals (such as
the mean of F) in case 2. Under hypotheses ensuring that the
observations times U and V are close with (sufficiently) positive
probability, Groeneboom (1991) showed that a one-step approximation
Fri to the nonparametric MLE satisfies

(nlognΫ^F^ito) - F(t0)) ->d 2{|/O

2(*o)/M<o,<o)}1/3Z

where Z is the last time where standard two-sided Brownian motion
W minus the parabola y(t) = i1 reaches its maximum. While it is
conjectured in Groeneboom and Wellner (1992) that the nonparametric
MLE Fn has this same behavior, this conjecture is still unproved.

The goal of this paper is to explore alternative hypotheses
under which U and V are not close with high probability. Under
these alternative hypotheses, the one-step approximation to the
nonparametric MLE will be shown to converge at rate n""1^3 rather
than (nlogn)-"1/3, much as in interval censoring case 1 (current status
data). We will also briefly discuss the behavior of the one-step NPMLE
with k > 2 observation points and estimators of smooth functionals.
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1. Interval Censoring: Models and Estimators. We begin with a
review of interval censoring models starting with "case 1" or "current status
data".

Suppose that X ~ Fo is a "time of interest", and that U ~ H is an
"observation time". We will assume that X and U are independent random
variables. Unfortunately we do not observe (X,U) but just (l[χ<u])U) =
(Δ,tf). Thus

(Δ|J7 = u)

and if H has density function /ι with respect to Lebesgue measure, then the
joint density of (Δ, U) is

p(δ,u F0) = F0(u)δ(l -

for δ G {0,1}. The goal is to estimate the distribution function i<o,
or functions, of Fo such as the mean, based on observation of a sample
(Δ1,C71),...,(Δn,C/n)i.i.d. aβ(Δ,tO.

Another commonly arising observaton scheme involves two observation
times, and hence is called "case 2" interval censoring in Groeneboom (1990)
and Groeneboom and Wellner (1992) (which we henceforth refer to as "GW
(1992)"). Again X ~ FQ is a "time of interest", but now suppose that
(UjV) ~ H is independent of X where PH(U < V) = 1. In this case we
observe not (X, {7, V) but just

(l[x<u], l\u<x<v\, l[v<x], U, V) = (Δ, U, V).

Clearly

(Δ|U = ti, V = v) - Multinomial3(l, (Fo(«), ̂ o(v) - F0(u), 1 - F0(t;)))

and if H has density h with respect to Lebesgue measure on iZ2, then the
joint density of (Δ, U, V) is given by

))' 2(l - F0(v))δ*h(u,v)

where ίt G {0,1} for i = 1,2,3 and ίi + ̂ 2 +^3 = l For an application of this
case 2 model to data involving AIDS survival times (X = time from onset
of AIDS to death) for 92 members of the U.S. Air Force, see Aragon and
Eberly (1992). [This data set also suggests the need for regression methods
for interval censored data. See Huang and Wellner (1994), Huang (1994a,b),
Rabinowitz, Tsiatis, and Aragon (1993) for work in this direction.]

Cases 1 and 2 extend to observation schemes involving several observation
times in a variety of ways. We describe only the natural and obvious
"case k" here. Suppose that X ~ Fo is again the "time of interest",
U_ = (£7 l 5... 9 JJk) ~ H are observation times with Uj-\ < Uj for j = 1,..., &,
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and we observe (Δ,£Q where Δ, = \u3_lyUj]{X)^ 3 = 1,...,*?+ 1 where
Uo = 0, Uk+i = oo. Then

(Δ|EQ - MultinomiaU+ 1(l, (F0(tii), F0(u2) -

and if if has density Λ, with respect to Lebesgue measure on the subset
{u e Rk : 0 < t*i < . . . < uk) C Rh, then the joint density of (Δ, f7) is
given by

where fy G {0,1} for j = 1, . . . , k + 1, and £J?+J ^ = 1.

Other models for interval censoring are also of interest: see e.g.

Rabinowitz, Tsiatis, and Aragon (1993).

Now we turn to a description of the Nonparametric Maximum Likelihood

Estimators (NPMLE's) for these models.

For a problem slightly more general than case 1, the NPMLE of FQ was

described by Ayer, Brunk, Ewing, Reid, and Silverman (1955). The following

characterization and computational method is from GW (1992), proposition

1.2, page 41: First, order the observation times as

uw<...<u(n)

and let Δ ( φ .. .,Δ( n j denote the corresponding Δ t 's. Plot (i, Σ } = i Δ(j)),

i = 1,.. . ,n and (0,0). Form the Greatest Convex Minorant (GCM) G* of

these points. Then the NPMLE Fn of Fo is given by: Fn(U^) is the left-

derivative of the function G* at i, i = 1,. . . , n. For example, if n = 5, ί/(.) =

(1.2,1.8,2.1,3.0,3.5), and Δ(.) = (1,0,1,1,0), then Fn(1.2) = Fn(1.8) = 1/2

and Fn(2.1) = Fn(3.0) = Fn(3.5) = 2/3. The NPMLE does not specify

where to place the remaining mass, and we will leave this undefined.

Characterization of the NPMLE of Fo in case 2 was accomplished by

Groeneboom (1991), and is given in Groeneboom's part of GW (1992), pages

43 - 50. To state Groeneboom's characterization, we need the following

motivation and notation. The part of the log-likelihood for F divided by n

in case 2 is given by

n i=i

+ Δ 2 , log(F(V; ) - F(Ui)) + Δ 3 i log( l - F(V<

(1.1) = P

I log(F(υ) - F(u)) + l[υ<x] log(l - f («)))
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where P n = n " 1 Σ£=i ^(χ ,^,v;) 1S the empirical measure of the
(unobservable) triples (X2 , t/;, VJ), i = l , . . . , n . A process which records
the cumulative sums of the first derivatives with respect to F of ln(F) is the
process

( i 2 )

and the process recording the sums of minus the second derivatives is

We then define a process Vp by

VF(t) = WF(t)+ ί F(s)dGF(s).
J[o,t]

Examination of the log-likelihood ln(F) reveals that some of the observation

times Ui or V{ do not appear in the log-likelihood; to isolate those times that

do appear, we introduce

W = U?=1{ϋi : Xi < Ui or Ui < Xi <

U?=1{K : tt < ^< < Vi or K <

and

We write Γ(2) < . . . < T(m) for the ordered T 's, and let Δ ( X ) , . . . , A(m) denote
the corresponding vectors of indicators. Note that m is random and that
n < m < 2n.

The following proposition characterizing the NPMLE Fn of FQ is a
restatement of GW (1992), Proposition 1.4, page 49.

Proposition 1.1. Suppose that Γ(X) has a corresponding Δ^) = (1,0,0),

and T ( m) has a corresponding Δ ( m ) = (0,0,1). Then Fn is the NFMLE of

Fo if and only if Fn is the left - derivative of the greatest convex minorant

of the "self - induced cumulative sum diagram" formed by the points

Pi = ( G p n ( T ( i ) ) , y P n ( T ( i ) ) ) , j = 1,.. . ,m

andPo = (0,0).
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While the above characterization involves a "self - induced" cumulative
sum diagram, and hence is circular, the solution exists and is well-defined in
view of considerations involving Fenchel duality; see GW (1992), Proposition
1.3, page 46. Moreover, the above characterization leads naturally to the
following iterative convex minorant algorithm:

(i) Start with some inital guess Fύ of F0] set k = 0.

(ii) Form the cumulative sum diagram p(k+1) defined by fjj + 1 ' = (0,0),

i f + 1 > = (C p ( t ) (Γ ω ) , V^»,(Γω)), j = 1,..., m.

(iii) Let FA = left - derivative of the GCM of cumulative sum diagram
( * )

(iv) Change k to k + 1 and go to (ii).

The convergence properties of this algorithm for a fixed finite n have

been examined by Aragon and Eberly (1992). Although Aragon and Eberly

(1992) claim to prove global convergence of their modified ICM algorithm,

in fact their proof only shows convergence once the points of jump do not

change anymore (see their discussion of "secondary reductions" on page 132

and note that the dimension r in their Theorem 2, page 136, is fixed), and

this is unrealistic since the points of jump may change in very late stages of

the algorithm. Jongbloed (1995) has suggested a modification of the naive

ICM algorithm which guarantees its global convergence, thus improving

considerably on the results of Aragon and Eberly (1992). He introduced

a line search along the direction suplied by the ICM algorithm to obtain a

closed algorithmic map by a variant of Armijo's rule. Jongbloed (1995) also

makes a number of suggestions for computationally practical modifications of

the ICM algorithm. In practice the ICM algorithm converges quite quickly,

and is considerably faster than the EM-algorithm.

The pointwise (local) behavior of Fn is still an open problem. GW (1992)

instead have studied the one-step "surrogate" for Fn obtained from one step

of the above algorithm starting at the true distribution function F$: thus we

let F$p denote F^ when F^ - Fo. Note that this is not a true estimator

since we do not know Fo, and hence cannot start the algorithm at FQ when

dealing with data. However Fn is a useful theoretical construct which we

believe has the same asymptotic behavior as the NPMLE Fn. This is what

is termed the working hypothesis in GW (1992), page 89: if

as n —> oo for some sequence αn —> oo, then

αn(Fn(t)-Fo(t))^dZ.
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In the following sections we will not confirm (or refute!) this "working
hypothesis". But will study the behavior of Fά* under different hypotheses
than those imposed in GW (1992).

2. Known Limit Theory at a Fixed Point: Cases 1 and 2. In
this section we summarize the currently known results for the behavior of
the NPMLE's Fn at a fixed point under cases 1 and 2. The two results stated
below are from GW (1992), section 5, pages 89 and 100, respectively.

In case 1 the behavior of Fn itself is known.

Theorem 2.1. Suppose that 0 < Fo(to)y H(t0) < 1 and suppose that JFO
and H are differentiate at to with strictly positive derivatives fo(to) and
h(t0) respectively. Let Fn be the NPMLE of Fo. Then

n1/3{Fn(t0) - Fo(^o)}/{i/o(^o)/ci(/o)}1/3 ^d 2Z

where Z is the last time where standard two-sided Brownian motion minus
the parabola y(t) = t2 reaches its maximum, and where

(2.4)

Because the limit distribution described by the random variable Z
above apparently arose for the first time in the work of Chernoff (1964) in
connection with the estimation of the mode of a distribution, we propose
to call the distribution of Z Chernoff's distribution, and we say that

n ! / 3 j j?n(/0) _. Fo(/o)| is asymptotically ChernofRan times the constant

The analytical properties of the distribution of Z have been completely
determined by Groeneboom (1989); in particular, Groeneboom shows that
the density fz of Z satisfies

fz(t) - 25/3|*| exp(- | |* | 3 + 21/3αi|*|)/Ai/(αi) as \t\ - 00

where α\ = -2.3381... is the largest zero of the Airy function At and
Aϊ(αλ) = 0.7022....

The behavior of Fn in case 2 is still unknown, what has been proved is
the following result for the theoretical one-step Fn .

Theorem 2.2. Suppose that 0 < F0(t0), H(to,to) < 1, and let F^ be the
estimator of FQ obtained at the first step of the iterative convex minorant
algorithm. Suppose that /o(̂ o) > 0? h(to,to) > 0, and

h(t,t) = ]im h(t,υ)
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is continuous in / in a neighborhood of Z0 Then

(nlogn)1/3{41)(/0) - Fo(to)}/{±fo(to)/b2(to)}1/3 ^d 2Z

where Z ~ Chernoff, and where

(2-5) b2(to)=^h(to,to)/fQ(tQ).

What is happening in theorem 2.2 is that the positivity hypothesis on

h at the point (/o?^o) implies that the pair (U,V) are close together with

substantial probability. When U and V are close together and X falls

between U and V, X is known quite accurately (because U and V are

observed). Even though this occurs only occasionally, it occurs frequently

enough under the positivity hypothesis in theorem 2.2 to cause an increase in

the rate of convergence increases from the n " 1 / 3 rate in case 1 to (nlog n ) " 1 / 3

in case 2 under this positivity hypothesis. (Note that X is never "closely

bracketed" in case 1 as it can be in case 2.) Moreover, the observations with

Δ = (0,1,0) dominate the large sample behavior of Fn (̂ o)> and the other

two types of observations (with Δ = (1,0,0) or (0,0,1)) do not contribute

at all asymptotically.

In the following section our goal is to examine the behavior of Fn ' under

hypotheses which force the pairs (U, V) to have U sufficiently separated from

V to maintain the n " 1 / 3 convergence rate as in case 1.

3. New Limit Theory for Case 2 at a Fixed Point. Now suppose
that the joint distribution H of observation times (UjV) in case 2 has a

density function which puts sufficiently little mass along the diagonal u = υ

in the sense that the integrals

/•Λf h(iι <?Λ

* l ( « ) = /

and

2(v) Ξ /
Jo

h{u'v) -du
F0(v) - F0(u)

are finite for w , v i n a neighborhood of ί0. [On the other hand, note that if
h is the uniform density on {(«, υ) : 0 < u < v < 1} and Fo has a density / 0

which is positive at w, then &χ and &2 are both infinity at u.] Here are two
simple examples showing that this is possible.
Example 1. Suppose that 0 < € < 1,

x 2
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and that Fo is the uniform distribution on [0,1], Then it is easily calculated
that

0Λ_e](u), k2(v) = α£logί^

where α£ = 2(1 - c)~2. In this case the marginal densities hι,h2 are given
by

Ai(tt) = α£{l - e - «}l[o,i_e](tt), h2(v) = ae{υ - e}l[cA](v).

Example 2. Suppose that for some α > 0 we have

h(u,v) = [F0(v) - Fo(«)]α/o(«)/o(«)l[o<u<ϋ<M]/

where
rM rv

ca(F0) = / / [FQ(v) - Fo(u)]afo(u)fo(v)dudv .
Jo Jo

Then it is easily calculated that

The marginal densities h\, h>2 are given by

h(u) = ̂ -^-Λl - Fo(u)r*, h2(v) = 'J^.F0(v)^ .
1 + a ca{lΌ) 1 + a ca{fo)

Of course it is not necessary to suppose that H and F are directly
connected as in example 2; example 2 was formulated to obtain explicit
formulas for k\ and &2 To reinforce this, here is one more example of the
same type which does not yield explicit formulas for the fc 's, but still makes
them finite at points u with fo(u) > 0.
Example 3. Suppose that for some a > 0 we have

h(u,v) = da(υ - tt)αl[o<u<t;<Aί]

where da = (a+l)(a+2)/Ma+2. Then kλ{u) and k2(u) are finite if fo(u) > 0;
in this case the marginal densities /fci,/&2 are given by

hiu) = d β ( l+α)- 1 (M-t t )
1 + β l [ O f Λ ί ] («) , h2(v) = d α ( l+α)" 1 t ; 1 + β l [ o^ ] (

To formulate our theorems, we will need to assume a little bit of
asymptotic negligibility as follows. First, for each fixed e > 0 define "tail"
or "high - level contributions" versions of the functions k\, &2 by

rM fy v\

F0(v) - F
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and
u i \- Γ h(u,v)

2(V; e) = Jo Fo(v) - Foiuo(v)

Then we will require that

(3.6) α / ki(u; eα)du —> 0 as α -+ oo
J(to,to+t/αt]

for each e > 0 and i = 1,2. It is easily checked that (3.6) holds in examples
1- 3.

We shall prove the following result for the 1-step estimator F^', it

parallels Groeneboom and Wellner (1992), theorem 5.3, page 100.

Theorem 3.1. Let Fo and H have densities / 0 and h respectively, and

suppose that h\, h,2, fci, and k<ι are continuous at to and /(to) > 0. Suppose

that (3.6) holds. Let 0 < F 0 (ί 0 ), JΓ(<o,ίo) < 1, and let F^ be the estimator

of Fo, obtained at the first step of the iterative convex minorant algorithm.

Then

nWffiito) - Fo(to)}/{±fo(to)/c2(to)}1/3 ->d 2Z

where Z ^ ChernofF and

(3.7) c2(ί0) = | M h ( t )

Fo(to) 1 V " y ' ^ J ' 1 - fb(ίo) "

According to the "working hypothesis", formulated at the beginning of

Chapter 5 of GW (1992), this leads us to believe that the NPMLE has the

same limiting behavior at to as Fn under these hypotheses.

Note that the conclusion of Theorem 3.1 agrees with the result for case
1 in the sense that the corresponding constant is cχ(to) given in (2.4) which
should be compared to the present formula (3.7) for 02(̂ 0)-

To give perhaps just a bit more explanation for the difference in the
rates of convergence and the difference between 62(̂ 0) and 02(̂ 0) appearing
in Theorems 2.2 and 3.1, the reader should compare the proof of Lemma
5.5 in GW (1992) with the proof of Lemma 6.1 given here in section 6.
In particular, the variance calculation at the bottom of page 101 of GW
(1992) deserves comparison to the (co)variance calculation here starting in
the display below (6.16): In GW (1992) only two of the four terms at the
bottom of page 101, the second and third, contribute (equally) to the limiting
quantity (2/3){h(to,to)/f(to)}t appearing at the top of page 102; note that
the first and fourth terms on page 101 (corresponding to Δ = (1,0,0) and to
Δ = (0,0,1) respectively) do not contribute at all, and the normalizations
are chosen so that the logarithmic factors arising from the integrals in the
second and third terms are cancelled by the normalizations. In contrast,
taking s = t in the covariance calculation in the proof of Lemma 6.1 here,
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all four terms in the display following (6.16) contribute equally and lead to
the expression for C2.

Is ra"1/3 the optimal rate of convergence under the current hypotheses?
We claim that it is. Gill and Levit (1995) used Van Trees inequality to
establish lower bounds for estimation of Fo(to). Their Theorem 3 shows that
the optimal rate of convergence of any estimator of Fo(to) is (n logn)" 1 / 3

under Lipschitz hypotheses on Fo and positivity of the observation density
h along the diagonal as in Groeneboom's theorem 2.2. By modifying the
proof of Gill and Levit (1995) (but maintaining the Lipschitz hypotheses on
J^o), it is easily shown that the optimal rate of convergence is n " 1 / 3 under
our separation hypothesis (3.6).

We close this section with a calculation of the constant c 2 (t 0 ) appearing

in theorem 3.1 in both examples 1 and 2.

Example 1, Continued. In this case 02(^0) is

Example 2, Continued. In this case 02(^0) is given by

It is instructive to plot examine plots of cχ(to), C2(̂ o)> a n c ^ Ci(^o)/C2(^o)
examples 1 and 2.

4. Interval censoring, Case k. Now our goal is to outline what

happens when there are k different observation points ί/i,.. ,l/fc. We

suppose that U_ = (U\,..., £/*) ~ H with density h on {u G Rk : 0 <

u\ < . . . < uk < M}. Suppose that X ~ F on [0, M]. Set

and write Δ = ( Δ i , . . .jΔjb+i) where Uo = 0, Uk+i = M. Then the joint
density of Δ and U_ is

ib+it
where δj 6 {0,1} for j = 1, . . . , k + 1, and E j ί ί * j = l H e n c e

Ar+l

logp(ί, ffi F) = £ ί,- log{F(^ ) - Fiuj-!)} + log Λ(fi),
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and, with Fe = (l-e)F+ eG,

d k+1

Now suppose we observe (Δ^ΪT,-)? i = l , . . . , n i.i.d. with the same
distribution as (Δ,Ϊ7) . The log-likelihood of the data (divided by n) is

-j n k+1

(4.8) ln(F) = -^

(4.9) = ]

where P n is .the (unobservable) empirical measure of (X;,IZ 2), i = l , . . . , n
on Rk+1. We regard F(UJ), j = 1 , . . .,& as "parameters" to be estimated.
Thus the derivatives of the log - likelihood with respect to F(UJ) = θj are

_d_

Thus, paralleling GW (1992), we define

k

and

Let hj(uj-ι,Uj) denote the marginal densities of the pairs (ί7j-i, ί/j),

j = 2,..., k. We first state a conjectured theorem concerning the one-step

NPMLE Fn corresponding to the type of hypotheses in GW (1992); in this

first theorem at least some of the pairs (t/j_i,£/j) are close together with

substantial probability - and these pairs dominate the asymptotics because

of the resulting additional factor of (log n) 1 / 3 in the convergence rate. Our

second conjecture will impose hypotheses requiring separation of all the pairs

(E/j _i, t/j), j = 2,.. ., fc, along the lines of the hypotheses imposed in section

2.

Let J be the subset of the indices {2,..., k} consisting of those satisfying

hj(to,to) > 0.

Conjectured Theorem 4.1. Suppose that 0 < Fo(to), H(t0,.. ,,tfo) < 1?

and let Fn be the estimator of FQ obtained at the first step of the iterative
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convex minorant algorithm. Suppose that /o(^o) > 0 and hj(to,to) > 0 for
j £ J where J is nonvoid and

tiΛt, t) = lim hΛt, υ)

is continuous in t in a neighborhood of to for all j G J . Then

Fo(to)}/{±fo(to)/b(to)}1/3 ^d 2Z

where Z ~ ChernofF, and where

(4.io) Hto) = 1
ό

When k = 2 and J = {2}, then conjectured theorem 4.1 reduces to the
statement of GW (1992), Theorem 5.3, page 100. Note that the conclusion
of the conjectured theorem 4.1 can be restated as

- F0(t0)}/{^/o

2(ίO)/d(ίo)}1/3 ->«ι 2Z

where

(4.11)

To state our conjectured theorem for A; observation points under
hypotheses similar to those in section 2, we define

Ju Fo(υ)-Fo(u) Jo FQ(V)-F0(U)

for j = 2 , . . . , k where hj denotes the joint density of (ί/j-i, Uj), j = 2 , . . . , k
as before. We will suppose that all of the functions kmj , j — 2,...,fc,
m = 1,2, are finite, and moreover that with

hj(u, υ)
κlj\u't t) = / "77"

Ju *0

and

pM h(u v}

( V ; €) = Jo F0(v) - F0(u)
we have

(4.12) a I kmj(u;ea)du —> 0 as a -> oo
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for each e > 0 and j = 2 , . . . , &, m — 1,2.

Conjectured Theorem 4.2. Let F o and if have densities / 0 and Λ,

respectively, and suppose that hi, /ifc, &ij, and fc2j, j = 2,...,fc are

continuous at t0 and /(ίo) > 0 where hi, hk are the marginal densities of

Uι, Uk respectively. Suppose that (4.12) holds. Let 0 < Fo(to),H(to,to) < 1,

and let Fn be the estimator of FQ, obtained at the first step of the iterative

convex minorant algorithm. Then

/ { i } 1 / 3 -+d 2Z

where Z ~ Chernoff, and where

5. Discussion and Further Problems. First a summary of
the rationale for, and possible advantages of, the alternative hypotheses
suggested here:

• Under the alternative hypotheses we obtain limit theorems for the

NPMLE at a point (or at least the theoretical construct Fή') which

are comparable with case 1, and give the possibility of addressing the

question of how much is gained by two observation times over one

observation time.

• Study of the properties of smooth functionals such as EpQX under

case 2 may be easier under the separation type hyptheses and certainly

will be considerably easier under the "strict separation hypothesis"

P(V -U>e) = l.

• Realism: in practice, separation of the observation times U and V may
be forced by practical or economic considerations.

• Mathematical completeness: we need to understand how these

estimators behave on as much of the parameter space

Θ = {(F0,H) : Fo a d.f. on £ + , H a d.f. on R+2^}

as possible.

Despite the slow rates of convergence of the NPMLE or the one-
step NPMLE in cases 1, 2, and k, smooth functionals such as means or
other moment estimators, are sufficiently smooth to enjoy n~1'2 rates of
convergence; this has been shown in GW (1992) and Huang and Wellner
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(1995) for case 1, and in Geskus (1992), Geskus and Groeneboom (1995a,b)
for case 2 under a "separated" observation times formulation as investigated
here. See Groeneboom (1995) for further work on the the behavior of smooth
functionals for case 2 data without "separation" type hypotheses - where the
question is still not quite resolved. Efficient estimates of the parametric part
of the Cox proportional hazards model with case 1 data, and with case 2
data under a "strict separation hypothesis" as mentioned above, have been
constructed by Huang (1996), and by Huang and Wellner (1995) respectively.

Here are a few problems suggested by the above development.

A. Does the MLE itself have the same behavior as Fn ' under the hypotheses
of either theorem 2.1 or theorem 3.1? In other words, does the "working
hypothesis" hold!

B. What is the behavior of the NPMLE of the mean and other smooth
functionals under these hypotheses? [I conjecture that it will be easier
to prove. In fact, this has now been carried out by Geskus and
Groeneboom (1995a,b).]

C. What is the rate of convergence for (F,H) pairs "between" the
alternative hypotheses of theorem 3.1 and those of theorem 2.1? Is
there a way of unifying the various cases by using a random - norming?

D. Are the conjectured theorems 4.1 and 4.2 true? Do they remain true for
the NFMLE Fn itself?

6. Proofs for Section 3. Proceeding as in GW (1992), we introduce

the processes Wn and Gn defined by

where WF0 and GF0 are defined by GW (1992), page 45, (1.25), and page

49, (1.29), respectively. The process vί°' is defined by

θ(t ) — TQ\tQ) 1 ttvjr^ 7(^l j , t > U.

We have the following result for Vn corresponding to GW (1992) lemma
5.5.

Lemma 6.1. Suppose that the hypotheses of theorem 3.1 hold, and define
the process Un by

J7(°)(t) = n2/3{FjO)(*o + n-VH) - V(°\t0)}, t G R,
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where ui°\t) = 0, if t < -ton'1/3. Then U^ converges in distribution,
in the topology of uniform convergence on compacta on the space of locally
bounded real-valued functions on Λ, to the process ί7, defined by

U(t) = y/c2(t0)W(t) + \h{tQ)c2{t0)t2, t e Λ,

where W is (standard) two-sided Brownian motion on i£, originating from
zero and c2(to) ίβ a s defined in (3.7).
Proof. We first show that the process

(6.14) Z(°)(ί) = n2f3{wW(to + n"1 / 3ί) - Wi°\t0)}, t > 0

converges, in the topology of uniform convergence on compacta, to the
process

(6.15) t h+ y/c2(t0)W(t), t > 0.

To do this, we will use Kim and Pollard (1990), theorem 4.7, or equivalently
lemmas 4.5 and 4.6.

We first verify the hypotheses of lemma 4.5: note that Zh '(t) =
/ for the family of functions {flr( , *i)}*i>*o defined by

(6.16) +

Then Pg(XjU)V,to,tι) = 0 for all to,tι so (iii) of lemma 4.5 holds easily.
To check (ii), fix 0 < s < t. Then

Pg(; to + s/α)g(>, t0 + t/α) = ί -—dH^u)
J(to,to+a/α] *0(U)

+ Jue(to,to+s/cί]J Fo(v)-Fo(u)dH{u'v)

= /
(to,to+s/α]

i \(

to+s/α] 1 - F0(υ

c2{u)du

where c2(u) is as defined in (3.7). Hence by continuity of hι,h2,kι,k2 (and
hence also of c) in a neighborhood of to it follows that

t0 + s/a)g(;t0 + t/α) -+ sc2(t0)
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hence (ii) holds. To verify (iv) we compute

aPg2( , t0 + */α)l{|ir(.,ίo+*/β)|>βe}

F0(v)-Foiu

F0(v)- F ^

u, v)

/ kι(u]ae/4)d
Ju€{to,to+t/a]

/ k2(v]ae/A)d
Jυ£(to,to+t/a]υ€(to,to+t/a]

+

easily for the two end terms and by (3.6) for the two middle terms. Thus
(iv) of Kim and Pollard's lemma 4.5 holds, and hence by lemma 4.5 finite-
dimensional convergence of the processes Wn holds. •

Now we want to apply Kim and Pollard (1990), lemma 4.6 to deduce
tightness and hence weak convergence of the processes Wn . The classes of
functions we need to consider are

GR = {9M)> \h-to\<R}, R>0

where the functions flf( ,ίi) are given for t\ > 0 in (6.16); for t\ < 0 an
obvious analogous expression holds. First note that an envelope function for

GR{x,u,v) =

The classes QR are clearly uniformly manageable for their envelopes (under
the assumption that k\, &2 are finite) since they are of the form finite sum
of indicator of an interval times a fixed square integrable function. Thus (i)
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of lemma 4.6 holds. To show that (ii) holds, we compute

rto+R
r ftO+K 1 ftθ+K

PG2

R<A{ dH1(u)+ k^du
ιJt0-R ro{U) Jto-R

fto+R rto+R I .

+ / k2(v)dv+ / ——dH2(v)\
Jto-R Jto-R 1 ~ FQ{V) ')which is easily seen to be O(R) as R —• 0. Hence (ii) holds. Furthermore,

for *i < t2,

g(x,u,v,t2) - g(x,u,v,tl) EE

Therefore

Γ k2(v)dv + f2 —±—dH2{v)\

which is of the order t2 - t\ for t2,t\ near ί0. Thus (iii) holds. Similarly,
using the assumption (ii), for e > 0 there exists K so that

PG2

R1[GR>K] < eR

for R near 0; i.e. (iv) holds. Hence we conclude from Kim and Pollard

(1990) lemma 4.6 that the stochastic equicontinuity condition holds, and by

lemmas 4.5 and 4.6 together that the processes Wn converge weakly in the

topology of uniform convergence on compact to the process y/c2(to)W(t)
where W is two-sided Brownian motion starting from 0.

To complete the proof of lemma 6.1, it suffices to show that

(Fo(u) - Fo(to))dG^\u) Ξ T$>\t)

converges in probability, uniformly on compacts, to the deterministic

function fo(to)c2(to)t2/2. But

(Fo(u) - i W M ^ + *i

(Fo(v) - F0(t0)){-^- + k2(v)}dv}

\fo(to)c2(to)t2
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uniformly on compact t intervals in view of our hypotheses on /o, hi,ki,
i = 1,2, while

Var(Ti°\t)) = 0 ( » /

uniformly in t in compacts. Hence the desired convergence holds, and the
proof of lemma 6.1 is complete. D

Now set α0 = Po^o)? and define, for a > 0,

T(°\a) = sup{* G £ : K(0)(*) " (<* " ^ o ) ^ 0 ^ ) is minimal} .

The second key lemma needed in proving theorem 3.1 is the analogue of GW
(1992), Lemma 5.6, page 103. In fact we will not give the (rather long) proof
here.

Lemma 6.2. Suppose the hypotheses of theorem 3.1 hold. Then for each
e > 0 and Mi > 0, there is an M2 > 0 so that

sup n^lT^ao + n'^a) - to\ > M2\ < e.a) - to\ > M2\

Proof of theorem 3.1. As in GW (1992) equation (5.16) we have

+ n"1/^) < t0)

where CLQ and Tn \ά) were defined just before the statement of lemma 6.2.
Now it follows from lemmas 6.1 and 6.2 that

+ n-^a) -t0): a e R}

converges in the Skorohod topology on D(R) to {T(a) : a G R} where

T(a) = sup{/ G R : U(t) - ac(to)t is minimal} .

Hence, with d = l/fo(to)j

P(Ti°\a0 + n-ιl*a) < t0) = P(n^3{Tio\ao + n " 1 ^ ) - t0) < 0)

-, P(Γ(α) < 0)

= P(Γ(α) - da < -da)

= P(T(0) < -do)

by the stationarity of {T(a) - da : a e R} proved in Groeneboom (1989);
note that

T(a) = sup{/ G £ : y/c2(t0)W(t) + -/o(^o)c2(^o)(^ - dα)2 is minimal} .
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Now Γ(0) is the last time when

W ( c 2 ( t 0 ) t ) + ^ f o ( t o 2

is minimal. By Brownian scaling

W(c2(t0)t) + i/o(ίo)c2(ίo)ί2 =d α{W(s) + s2)

for s = bt, b = {2/o

2(ίo)c2(ίo)}1/3/2, and α = y/c2(t0)/b. Thus

(6-17)

is the last time when W(s)+s2 is minimum. By symmetry of the distribution
of Brownian motion with respect to the time axis, this means that (6.17)
has the same distribution as the last time Z when W(s) — s2 is maximum.
Thus

P(T(0) < -dα) = P(Z < -dα^

= P(Z < -α±{2c2(to)/fo(to)}1/3)

= P(Z > α±{2c2(to)/fo(to)}1/3)

by symmetry of the distribution of Z about 0. Hence we have

P(nV3(lio\to) - fb(ίo)) > α) ^ P(2Z{i/o(ίo)/c2(ίo)}1 / 3 > α),

and the conclusion follows. •
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