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Abstract

Let {Z®®)(t) : t > s} denote the reflected symmetric a-stable Lévy
process in an orthant D (with nonconstant reflection field), starting at
(s,z). For 1 < a <2,0<s<tx € D it is shown that Z(>®(t) has a
probability density function which is continuous away from the boundary,
and a representation given.

1 Introduction

Due to their applications in diverse fields, symmetric stable Lévy processes have
been studied recently by several authors; see [4], [5] and the references therein.
In the meantime reflected Lévy processes have been advocated as heavy traffic
models for certain queueing/stochastic networks; see [14]. The natural way of
defining a reflected /regulated Lévy process is via the Skorokhod problem as in
9, 3], [11], [1).

In this article we consider reflected /regulated symmetric a-stable Lévy process
in an orthant, show that transition probability density function exists when
1 < a < 2 and is continuous away from the boundary; the reflection field can
have fairly general time-space dependencies as in [11]. It may be emphasized
that unlike the case of reflected diffusions (see [10]) powerful tools/methods of
PDE theory are not available to us. To achieve our purpose we use an analogue
of a representation for transition density (of a reflected diffusion) given in [2].

Section 2 concerns preliminary results on symmetric a-stable Lévy process in
IR?, its transition probability density function and the potential operator. In
Section 3, corresponding reflected process with time-space dependent reflection
field at the boundary is studied. A major effort goes into proving that the
distribution of the reflected process at any given time ¢ > 0 gives zero probability
to the boundary.

2 Symmetric stable Lévy process

Let (Q,F,{F:}, P) be a filtered probability space, d > 2,0 < a < 2. Let
{B(t) : t > 0} be an F;-adapted d-dimensional symmetric a-stable Lévy process.
That is, {B(t)} is an IR%-valued homogeneous Lévy process (with independent
increments) with r.c.l.l. sample paths; it is roation invariant and

Blexp{i(u, B(t) — 2)}| B(0) = 2] = exp{~t/u[*} (2.1)
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118 Reflected Lévy Process

fort > 0,u € Rd, z € R. Tt is a pure jump strong Markov process. Using Lévy-
Ito theorem and Ito’s formula, it can be shown that the (weak) infinitesimal
generator of B(-) is given by the fractional Laplacian

A2 f(z) = lim C(d, ) / f%af()dg (2.2)

|El>r

whenever the right side makes sense, where C(d, ) = T'(%2)/[2-*r/2|T(2)]];
the measure v(d¢) = C(d, a)m}ﬁdﬁ is called the Lévy measure of B(-). Also,
for any t > 0,

P(B(t) # B(t-)) = 0. (2.3)
See [4], [5], [7], [8] for more information.
For a function g on R, g;(z) = dg(z)/dzi, gi;(x) = 8*g(x)/0x:0x;,1 < i,j < d.
Lemma 2.1. If f € C2(IR?) then A*/2f € Cy(RRY).

Proof: For 0 < r < s, A?éz is defined by

A2Ly(z) = C(dya) [ ¥ zﬁzm ) ge. (2.4)

r<|é|<s
Let f € CZ(IR?). For any z € IR* observe that

et TN ey 1D < 20w s Lo (1 (25)

and that as a > 0

/ |£|d+ad§ c / r= (@ dr < oo, (2.6)

l€]>1

So continuity of f and dominated convergence theorem imply that A?{i fis
well defined, bounded and continuous. Next, Taylor expansion gives

d
f(.T + 5) - f(z) = Z fz(x)gz Z fz] gl&] (2'7)
=1

1]1

where y is point on the line segment joining x and z +&. Since £ — §; is an odd
function for each ¢

1
/ fzwdé = 0 (28)

r<|€|<1

d
Note that > fi;(y)é:€; = O(|€[?) and

i,j=1

1
/ lflzlg—ligdﬁ = C’/T‘““dr < 00 (2.9)
0

0<[é|<1
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as a > 2. Since fi;(-) € Cy(IR?) it is now easily seen that liﬂ)l Af/f f is well
. :

defined, bounded and continuous. Since
A f(w) = AT f () + lim AT f () (2.10)
the lemma now follows. O

It is known that the process B(-) has a transition density function; we now give
a representation for it.

Theorem 2.2. The transition probability density function of B(:) is given by

p(s, z;t, 2)

=(4m)" Y2t — )~V / % exp {—Zzt—_lm;lﬂz - x|2} dr (2.11)
0

for0<s<t<ooxze R, where g(+) is the density function of the square
root of an % -stable positive random variable.

Proof: By homogeneity enough to consider s = 0,z = 0. Let ¢ > 0. By
(2.1) and Proposition 2.5.5 (on pp. 79-80) of [13] it follows that B(t) =
(B1(t),...,Bg(t)) is sub-gaussian and that there exist independent one-dimensional
random variables S, Uy, ..., Uy such that U; ~ N(0,2t%/%),1 <i < d,S is 5-
stable positive random variable and (By (t), ..., Ba(t)) ~ (S2Uy, S2Us, ..., 82 Uy).
Denoting by g(-) the density of S'/2, the joint density of (Uy,...,Uqs, S/?) is
given by

L\Y2 7\ e L
h(ﬁl,-.-,ﬁd,T)Z(E> (;) Q(T)GXP{‘WZQZ}-
=1

Using the invertible transformation (&1,...,&4,7) — (r&y,...,7€4,7) on
IR? x (0,00) the joint density of (Bi(t),...,Ba(t),S'/?) is given by

= 1 1 1
h(yi,--- = ZhlZy..... =
(ylv 7yd’T) rd (ryl’ ) Tyd,’r>
d/2 d/a d
1 1 1 1 14,
) e et
Now integrating w.r.t. r we get (2.11). a

oo

Remark 2.3. From the preceding theorem it follows that [ Ti,cg(r)dr < o0
0

for k = 2,3,... Indeed note that g(-) depends only on «; so if we consider k-
dimensional symmetric a-stable Lévy process then the transition density will
be given by (2.11) with d replaced by k; and as the density is well defined at
z = z the claim follows.

Proposition 2.4. Denote py(s,z;t, z) = Op(s,z;t,2)/0s, pi(s,z;t,2)
= 0p(s,x;t,2)/0m;, pij(s,m;t,2) = ?p(s, x;t, 2)/0x;02,1 < 0,5 < d.
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(i) Fixt > 0,z € R%. Let ty < t; then D, Do, Pi, Pij, 1 < 4, < d are bounded
continuous functions of (s,x) on [0,t] x IR%.
(i) For anyt > 0,5 >0

sup{|Vzp(s,x;t,2)| : 0 < s < t,|z —z| > 6} < K(d,0) (2.12)

where K(d,$) is a constant depending only on d,0 and V, denotes gradient
w.r.t. T-variables.

Proof: (i) Since ye‘-’lz,yze‘y2 are bounded, using Remark 2.3 and dominated
convergence theorem, the assertion can be proved by differentiating w.r.t. s,z
under the integral in (2.11).

(ii) Since y@+2¢=v" is bounded, differentiating under the integral in (2.11) we
get for all0<s <t |lz—z| >4

|Vap(s,2;t, 2)|
< K(d) 0/ g(r) (|z 3 zl>d+1 (2r(|::;ll/a)d+2exp {—ﬂ;%}dr
< k() (%)d“ O/OOg(r)drzK(d,é).

]

The following result indicates a connection between the transition density and
the generator; though it is not unexpected, a proof is given for the sake of
completeness.

Theorem 2.5. For fizedt > 0,z € IR® the function (s, z) — p(s,x;t, z) satisfies
the Kolmogorov backward equation

po(s,z;t, 2) + Agﬂp(s,x;t, z)=0,s<t,z¢€ R¢ (2.13)

where pg s as in the preceding proposition and x in Ag‘/ 2 signifies that A%/? is
applied to p as a function of x.

Proof: By the preceding proposition and Lemma 2.1 AY 2p(s,x;t,z) is a
bounded continuous function. Put u(s,z) = p(s,z;t,2),s < t,x € R*. Us-
ing Ito’s formula (see [7]) for 0 < s < ¢ < t,z € IR?

E{ule, B(c)) — u(s, B(s)) — / (uo(r, B(r)) + A 2u(r, B(r))|dr| B(s) = z} = 0.

That is

/p(C, y;taz)P(&x; ¢, y)dy - p(s,x;t,z)

R4
C

- / / [Po(r,yst, 2) + A p(r, s t, 2)lp(s, @ v, y)dy dr.

s JRd
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By Chapman-Kolmogorov equation, l.h.s. of the above is zero. As the above
holds for all ¢ > s and the quantity within double brackets is bounded continuous
in (r,y), by Feller continuity one can obtain (2.13) from the above letting c | s.
O

We next look at the O-resolvent (or potential operator) associated with the
process B(-). For a measurable function ¢ on IR?, z € IR? define

oo

Gy(x) = /(p(z) /p(O,x;t, z)dt dz = /(p(z)p(O,x;t, z)dz dt  (2.14)
0 R4

R4 0

whenever the r.h.s. makes sense. Since 0 < a < 2 < d, using (2.11) it is not
difficult to see that

a 1
/ p(O,x;t,z) = Cm,z 75 T (215)

0
which is the so called Riesz kernel.
Theorem 2.6. Let ¢ € C’g(ﬂ%d) and @, i, pi5,1 < 1,5 < d be integrable w.r.t.
the d-dimensional Lebesgue measure. Then (a) G € CZ(IRY), (b) (Gp)i(z) =
(c) A2Gp(z) = —p(x),@ € R, 0

We need a lemma

Lemma 2.7. If f € LY(IRY) N L™ (IR?) then Gf is well defined, bounded and
continuous.

Proof: Let {T;} be the contraction semigroup associated with B(-). Observe
that

1 o}
Gf(z) = /th(x)dt+ / /f(z)p(O,a:;t, z)dz dt. (2.16)
0 1 JRrd
Since Ty f is continuous for each ¢ > 0 and |T3f(-)| < || flloo it is clear that the
first term on r.h.s. is bounded and continuous. By (2.11)
|f(2)p(0,a:;t, z)l(l,oo)(t)l < K t-d/alf(z)| 1(1,00)(t)

which is integrable as 0 < a < 2 < d. So continuity of p in £ now implies that
the second term on r.h.s. of (2.16) is bounded and continuous. m

Proof of Theorem 2.6: By Lemma 2.6 we get Gy, Gy;, Gp;; are bounded
continuous. A simple change of variables yields

%[ch(a: + he;) — Go(z)] = / / oz + he}i) — w(z)p(O,x; t,z)dz dt
0 Rd

[e o)

- //mmmmwwm
Rd

0
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by dominated convergence theroem; thus (Gy);(xz) = Gy;(z). An analogous ar-
gument gives (Gy);(z) = Gepy;(x) for all . By Lemma 2.1 note that A%/2Gy is
well defined, bounded and continuous. To prove the last assertion, by Chapman-
Kolmogorov equation we get

Aa/ZG(,O(.’L') = lim TiGQO(x) - G‘*P(x)
tl0 4

o0

= ltiﬁ)l% // 0xt—|—szdzds~//g0 p(0; z; 8, 2)dz ds
0 R

d

= lim1 // p(0,z;s,2)dz ds| = —p(x)

L 0 R4

for each z € IR?, completing the proof. a

3 Reflected process

Let D = {z € RY : 2 > 0,1 < i < d} be the d-dimensional positive or-
thant. The reflection field is a function R : [0,00) x R% x R? — IM4(IR)
where M 4(IR) is the space of (d x d) matrices with real entries. We write
R(t,y,z) = (ri;(t,y,2)). We assume the following

Assumptions (A1) The function (y,z) — r;;(t,y,2) is Lipschitz continuous,
uniformly in ¢, for 1 <4,5 <d.

(A2) For i # j, there exist v;; such that |r;;(t,y,z)| < vs; for all t,y,2z. Set
V = ((vs5)) with v;; = 0. We assume spectral radius of V =o(V) < 1.

(A3) Take r;(-,+,)=1,1<i<d.

(A2) is a uniform Harrison-Reiman condition that has proved useful in queueing
networks; (A3) is just a suitable normalization.

Let s > 0,z € D. The Skorokhod problem in D corresponding to {B(t) : t > s}
and R consists in finding F;-adapted r.c.l.l. processes Y (%) (t), Z(5:2)(¢),t > s
such that -

(i) Z©2)(t) € D for all t > s;

(i) ¥, (s) = 0, Y **)(-) is nondecreasing, 1 < i < d;

(iii) Yi(s’z)(-) can increase only when Zi(s’z)(-) = 0; that is, for 1 <i < d,t > s,

t

YO W) = [ 100)(Z07 0¥ ) s (3.1)

8



Amites Dasgupta and S. Ramasubramanian 123

(iv) Skorokhod equation holds, viz. for 1 <i<d,t > s

ZED@M) = i+ Bi(t) — Bi(s) + Y5O 1)

t
+3° [ i, YOO (), 269 (u-))dY, P (w)  (3.2)
J#i s
or in vector notation
t
Z®)(t) = z + B(t) — B(s) + / R(u, Yo (u—), 2 (u—))dY &2 (). (3.3)

Solving the deterministic Skorokhod problem path by path one can solve the
above stochastic problem. Indeed the following result is given in [11].

Proposition 3.1. Assume (A1) - (A3). For each s > 0,2 € D there is a unique
pair Z($2) (1), Y ($2)(.) solving the above problem; also

YD) < (1= V)TLE)(1), aus. (3.4)
fort > s where L\®®)() is given by

Lgs’x) (t) = sup max{0, —[z; + B;(t) — Bi(s)]}.
s<u<t
Moreover {(Z(®)(t),Y®2)(t)) : t > s} is an Fi-adapted D x D-valued Feller
continuous strong Markov process. Any discontinuity of Y 5%) (-, w) or Z(®) (- w)
has to be a discontinuity of B(-,w). If R is a function only of t, z then {Z(5*)(t) -
t > s} is a D-valued Feller continuous strong Markov process. |

The z-part of the above viz. {Z(5%)(t) : t > s} may be called the reflected (or
requlated) symmetric a-stable Lévy process.

Proposition 3.2. Assume (A1) - (A3) and let 1 < a < 2. Then
Elvar (Y®®)(.);[s,t])] < oo for allt > s > 0,z € D, where var (g(-);[a,b])
denotes the total variation of g over [a,b].

Proof: As Yi(s’x) (-) is nondecreasing for each i it is enough to show that
B9

< 00; also we may take s = 0,z = 0. Since a > 1 note that E|[B;(t)|* < oo for
all 1 < o < a. As B(‘) is symmetric note that it is a martingale. (3.4) of the
preceding proposition implies

EYOw)|¢ <CE [ sup IBi(r)|] < C E|B;(t)|* < o0
0<r<t

by Doob’s maximal inequality for any 1 < o/ < a. The required conclusion now
follows. O

Note: In the context of reflected processes, the reflection terms are usually
specified only for z on the boundary. However, no matter how the reflection
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field is extended to D or IR?, only the values on the boundary determine the
process; Theorem 4.5 of [12] and its proof can be easily adapted to our situation.

The next result concerns expected occupation time at the boundary.

Theorem 3.3. Assume (A1) - (A3); let 1 < a < 2. Then for s >0,z € D,t >
s

t

E / Lon (269 (1)dr | = 0. (3.5)

S

Proof: We consider only s=0. Note that dD={x € IR? : ;=0 for some i}. Let
H = {z € R*: min|z;| < 1}. Let ¢ € CZ(IR%) be such that (i) 0 < ¢(-) < 1,

(i) 0D = {p = 1}, (iii) ¢(-) =0 on H® and (iv) ¢, ¢;, p;; are integrable.

For 0 < € < 1 define ¢, on R by ¢.(z) = ¢(z/e). Note that
Pes Pe,ir Pe,ij €Cy(IRY) N L (IRY); also they are supported on ¢eH C H. Clearly

111101 ©e(2) = 1ap(2), for all z € R (3.6)

Next define g, on IR? by

oo

0e(z) = / ——eda) / p(0,25t, 2)dt dz. (3.7)

R4 0
By Theorem 2.6, A%/?g, = 6%,906,0 < € <£1. We now claim that
sup e¥|ge(z)] > 0ase | 0. (3.8)
T

Putting s = t/e® in (3.7) and as |p(-)| < 1 we get
1
€*]ge(z)] < € / /p(0,$;e°‘s,z)dz ds
0 JRd
o0
+e* / le(2)] / p(0,;€%s, 2)ds dz
R 1

= Ii(z;€) + Ix(x;e€).
As p(0,z;€%s,-) is a probability density sup|/i(z;€)| < €* — 0. As ¢ is inte-
grable, by (2.11)

0 d/a
1
sup |Ix(z;¢€)] < ea/|<pe(z)|/0<———€as) ds dz
T P /

1
= Cea_d/go(zz)dz:C ea/w(z)dz
R? R?
= Ce* -0
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whence (3.8) follows.

We next show that

sup €*|Vge(z)] — 0 as e | 0. (3.9)

By Theorem 2.6, and putting s = /e gives

o o .
8—351_95(3”) = /—sﬂe,i(z)/p(O,x;e s,z)ds dz
0

Rd
1 o0
= /——Qpi (g) - /p(O,x; €%s,z)ds dz.
R 0

Since ¢; is integrable for 1 < i < d, an argument similar to the derivation of
(3.8) gives

sup€*|Vge(z)| < C e* ' - 0ase |0

because a > 1; this proves (3.9).

Now applying Ito’s formula to €*g.(Z(*%)(-)), denoting Z(©)(-) by Z(-), Y (0:#)(.)
by Y(-) and taking expectations we get

El9.(2(0) - ©9.(2)] = E [ o.(2(r)dr
0

+E / (R(w,Y (u=), Z(u=))e*Vg(Z(w)),dY (w)).  (3.10)

By (3.8) L.h.s. of (3.10) tends to zero as € — 0. As R is bounded, Proposition
3.2 and (3.9) imply that the last term in (3.10) goes to zero as € — 0. Finally,
as |¢e()| €1, (3.6) and (3.10) now imply (3.5). 0

Remark 3.4. A function ¢ as indicated in the proof of the preceding theorem
can, for example, be obtained as follows. Let H; be a closed set with smooth
boundary such that 0D C Int (Hy) C H; C Int (H),eH; C Hy for 0 < € <
1, q(H;1) < oo where Ay denotes the d-dimensional Lebesgue measure. Take
w(z) =0,z ¢ H and

1
p(z) = e exp — ;% € Hy;
1—exp [—- (;15++;15)}
1 d
¢ can be extended as required. a

Using Theorem 3.3 we now improve on it!
Theorem 3.5. Assume (A1) - (A3), 1 < a < 2. Then for s >0,z € D,t > s
P(Z*®)(t) € dD) = 0. (3.11)
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Proof: Let ((z) = Kexp{* (;15 +...+ ;15)}, where K > 2
1 d

wry={ ¢ o=} . i<t
0 Ir| > 1

)

For ¢ > 0 define f.(z) = h(C(z/€)),z € R? Clearly f. € CZ(IR%) and
Ofc(2)/0z; = 0 for any z € 0D,1 < i < d. It is not difficult to see that

1%1 fe(z) = 1op(2), 2 € R® (3.12)

(for z ¢ dD note that z; > ¢ for all ¢ for some ¢ > 0; hence ((z/€) > 1 for all
small €). Next, an argument as in Lemma 2.1 gives for € > 0

_G G 1

SLlelAa/Qfe(z)l < Te o= (3.13)
for suitable constants C1, Cs.
Now we claim that for 2 € D\OD,
A*2f(z) > 0asel0. (3.14)

Indeed let z ¢ OD; there exist rg > 0,¢ > 0 such that (z; +&;) > ¢,1 < i <d for
|€] < ro. Choose €y > 0 so that for all € < €9, (((z+&)/€) > K exp{—de?/c*} > 1
for |¢| < ro. Therefore fc(z + &) =0 = f.(z) for all |¢| < ro, € < € and hence

AP2fe) = [ g € g (3.15)
[€]>7o

Since H%I(TOYOO)(KD is integrable and Aq(8D) = 0, by (3.12), (3.15) now the
claim (3.14) follows.

To prove the theorem we consider only the case s = 0. Denote Z(©%)(.), Y(0:2)(.)
by Z(-),Y(-). We want to prove that for z € D,t > 0,
t
ling / A2 f(Z(r))dr = 0. (3.16)
0
By Theorem 3.3 and (3.13) for each € > 0,

B / Lon(Z(r) A2 £.(Z(r))dr = 0. (3.17)
0

For ¢ > 0, put D, = (2¢,00)%. In view of (3.17), to prove (3.16) it is enough to
prove that

lim & 1p,(Z(u)AY2f(Z(u))du =0 (3.18)
0
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for any fixed ¢ > 0. If z € D,, €| < ¢ note that z; + & > ¢,1 < i < d. So one
can choose ¢y > 0 such that f.(z + &) =0 for all || < ¢,z € D, e < . Hence
for any € < ¢

u))A%/? u 1
Lo, (Z(w)) A f.(2( >)|s|§ / G <C

The required assertion (3.18) and hence (3.16) now follows by (3.14) and dom-
inated convergence theorem.

1
ac’

Now to prove (3.11) (with s = 0), first consider the case x ¢ 9D. Since
Ofe(-)/0z; = 0 on 0D, and Y (-) can increase only when Z(-) € 9D, by Ito’s
formula

E[f.(2(t)] - fu(z) = / A2f(2

By (3.12), (3.16) letting € | 0 in the above we get (3.11).

Next let = € dD; for ¢ > 0 let n = ni”) = =inf{r > 0: Z(r) € D.}. By strong
Markov property and the preceding case

E[l,4(m1ap(Z(t))] =

Note that {nﬁ’”) <t} 1 Q (modulo null set) as ¢ | 0; otherwise we will get a
contradiction to Theorem 3.3. Letting ¢ | 0 in the above we get the required
conclusion. This completes the proof. O

Note: It may be interesting to compare the proofs of Theorems 3.3, 3.5 with
those of their analogues for reflected Brownian motion given in [6].

In the following Vap(r,y;t, z) = Vap(r, - t, 2), Ag‘/zp(r, y;t,z) = Ag‘/ p(r, 3 t, 2)
denote respectively the operators V,A®/2 applied as function of y-variables.
Our main result is

Theorem 3.6. Assume (A1) - (A3); let1 <a<2. For0 <s<t<oo,r€
D,z € D define

pf(s,zit,2) = p(s,a;t,2)

—l—E/(R(u,Y(u—),Z(u—))Vgp(u,Z(u);t,z),dY(u)) (3.19)

where Y (-) = Y(s’z)(-),Z(J = Z62) (). For0 < s < t,x € D,z € 8D take
pfi(s,z;t,2) = 0. Then (i) p® is continuous on {0 < s <t < oo,z € D,z € D},
it is also differntiable in (t,2); (i) for any Borel set AC D,s <t,x € D

P(Z&9(t) € A) = /pR(s,a:;t, z)dz. (3.20)
A

In case R is independent of y-variables, p® is the transition probability density
function of the Markov process Z(-). a
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We need a lemma

Lemma 3.7. Hypotheses and notation as in the Proposition 3.2. If
(Sn,Tn) — (s,2) then for a.a. w, forT > s

var (Ym0 (- w) = YO (L w)[s,T]) — 0

sup [ZGm®n) (8 w) — 2D (tw)| — 0.
s<t<T

Proof: Denote Z(M () = ZGnan)() Y () = Ynen) () Z(1) = Z(&2)(),
Y (-) = Y(&%)(.). We first consider the case s,, < s for all n. Clearly Z("(¢,w),
Y™ (t,w),t > s is the solution to the Skorokhod problem corresponding to
Z™(s,w) + B(-,w) — B(s,w). For any T > s note that

var (|[B(-,w) — B(s,w) + Z(")(s,w)] — [B(-,w) — B(s,w) + z]; [s, T])
= 1ZM(s,w) — .

For any w such that B(-,w) is continuous at s we have z,, + B(s,w) — B(sn,w) —
z. Boundedness of R and (3.4) imply

/R(u,Y(")(u—), Z™ (u=))dY ™ (u,w)| — 0 as n — oo.
Sn

Thus |Z(™(s,w) — | — 0, and hence the result follows by Proposition 3.9 of
[11]. O

Next let s, > s for all n. For any n, Z(t,w),Y (t,w),t >
('v

sy, is the solution to
the Skorokhod problem corresponding to Z(s,,w) + B(-,w) —

B(sp,w). Clearly
var ([zn + B(,w) — B(sn,w)] — [Z(sn,w) + B(-,w) — B(sn,w)]); [sn, T])
= |Z(sp,w) — Ty
So by the arguments as in [11]
var (Y™ (,w) = Y (-,w); [50, T))

sup |ZM(t,w) — Z(t,w)]
sn<t<T

S CIZ(Snaw) - znl
< ClZ(sp,w) — Tyl
Note that for s < t < s, we may take Z(™(t,w) = z,,, Y™ (t,w) = 0. Clearly

var (Y (-,w);[s,sn]), sup |z, —Z(t,w)|,|Z(sn,w)— x| all tend to 0 as s, — s
s<t<spn
by right continuity. The required conclusion is now immediate.

Proof of Theorem 3.6: Since dY (**)(-) can charge only when Z(**)(.) € 9D
and d(z,0D) > 0 for z ¢ D, well definedness of (3.19) follows from (2.12) and
Proposition 3.2.

Assertion (i) now follows from properties of p (viz. (2.11), (2.12), Proposition
2.4), boundedness and continuity of R and Lemma 3.7.

To prove assertion (ii), in view of Theorem 3.5, it is enough to establish (3.20)
when A C D.
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Fix t > s; let € > 0. Apply Ito’s formula to p(r, Z(5®) (r);t,2),s < 7 < (t — ¢€)
corresponding to the semimartingale Z(>*)(-) and use Theorem 2.5 to get

pt—e€,Z(t—¢€);t,z) = p(s,z;t,2)

+ / (R(r,Y (r—), Z(r—))Vap(r, Z(r);t,2),dY ()

+ a stochastic integral. (3.21)

Let f be a continuous function with compact support K C D. By (3.21) for
any € >0

E/f(z)p(t —€6,Z(t—e);t, 2)dz = /f(z)p(s, z;t, 2)dz
D D

t—e

+E/f(z) / R(r,Y (r—), Z(r—))Vap(r, Z(r); t,2),dY (r))dz (3.22)

D s

For any w, note that p(t — €, Z(t — €,w);t,2)dz = 07— .)(dz) as € | 0. And
since P(Z(t) # Z(t—)) = 0 it now follows that

leiin(r)l[l.h.s. of (3.22)] = E[f(Z2>® (¢))]. (3.23)

As d(K,0D) > 0, by (2.12), Proposition 3.2 and boundedness of f(-), R(-)

13%1[1«.}1.& of (3.22)] = / f(2)p"(s,z;t, 2)dz. (3.24)
D
Thus
[ 1w it 2z = ELF(2 1) (3.25)
D

for any continuous function f with compact support in D.

Next for any open set F C D, let {f,} be a sequence of continuous functions
with compact support in D such that f,, T 1p pointwise. Clearly

lim E[f,(Z07(1))] = E[Lr(Z(2))]. (3.26)

n—oo

Taking expectation in (3.21) and letting € | 0 we get

pR(s,x;t,2) = liﬁ)l Elp(t—e€,Z(t —€);t,2)] > 0.
€
Therefore by monotone convergence theorem

lim fn(z)pR(s,m;t,z)dz = /lp(z)pR(s,m;t,z)dz. (3.27)

n—odo

D D

Now (3.25), (3.26), (3.27) imply that (3.20) holds for any open F' C D, and
hence for any Borel set A C D.
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Finally, the last assertion is immediate from (ii); this completes the proof. O
We conclude with the following questions.

1. Can (z, z) — pB(s,z;t, z) given by (3.19) be extended continuously to D x D?
2. Is pf(s,z;t,2) > 0 for s < t,x,2 € D?

3. When is pf* symmetric in z, 2?
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