
WHAT IS OPTIMALITY IN SCIENTIFIC INFERENCE?

DAVID A. SPROTT

1. INTRODUCTION

The following are only two examples of an increasing tendency to tie scientific infer-

ences to goals or decisions by imposing diverse extraneous optimality criteria:

(1) "Thirteen methods for computing binomial confidence intervals are compared based

on their coverage properties, widths, and errors relative to exact limits." Statistics in

Medicine 12 (1993), 809-823.

(2) "Six different statistical methods for comparing limiting dilution assays were evalu-

ated, using both real data and a power analysis of simulated data." In Vitro Cellular &

Development Biology 25 (1989), 69-75. These methods depended on specific statistical

goals e.g. minimizing type 1 errors vs. maximizing the ability to discriminate between

treatments.

It is reasonable to have six different methods for designing an experiment depending

on specific scientific goals. But once the experiment has been performed, yielding

an observed sample SOJ it seems contradictory to produce six different quantitative

statements of uncertainty about values of θ. The resulting complexity is noteworthy.

It is assumed that science is the study of repeatable phenomena. Its purpose is

to predict nature. This requires reproducible experiments. This leads to statistical

models of experiments in the form of probability functions P(SO] θ) of the observations

5O, usually in terms of unknown parameters θ. The primary problem of inference to

which this leads is that of inferential estimation. This consists of specific quantitative

statements of the plausibility or support by the observed data So of the various possible

values of θ. A typical example is θ — y ± s£(n_i) appropriate for normal observations.

KEY WORDS: Bayesian intervals; bias; likelihood intervals; likelihood-confidence intervals; maxi-

mum likelihood; normal likelihoods; shortest intervals.
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2. INFERENTIAL OPTIMALITY

The purpose of statistical models P is to generate the probabilities of the observations

So. For their relevance, inferences about the model should use all the information in

So. They should therefore be based on the probabilities P{SO; θ) that constitute the

model. It is suggested here that the optimality of the procedures of scientific inference

should likewise be based on these probabilities, which are intrinsic to the model. One

possibility is inferential optimality:

explanations that raise the probability P(SO\ θ) of the observed sample

So are more plausible, or more strongly supported by 5O, than explana-

tions of equal complexity that lower the probability of So.

This is simply an extension into a graded scale of the single point of zero plausibility

whereby any explanation is untenable if it makes the observed data impossible. The

reason for limiting the complexity is that the probability P(SO] θ) can be raised solely

by making P more complex, for example by adding more parameters.

Such a criterion results in considerable simplicity. Imposing extrinsic optimality cri-

teria such as best, shortest, linear, unbiased, coherent, minimum mean square error or

variance, is more complicated and, as will be exemplified, can be injurious to quanti-

tative inferential statements. Yet there seems to be an increasing tendency to do this,

as the two examples cited at the beginning of Section 1 suggest.

3. LIKELIHOOD INTERVALS

For simplicity what follows is restricted to the estimation of a single scalar parameter

θ in a specified model P(S0] θ).

Application of this inferential optimality criterion to P(SO; θ) implies that a value 0χ

is more plausible or strongly supported by the data So than a value #2 if and only if

P(So,θ1)>P(So;θ2).

Extending this to all values of θ produces a ranking given by the likelihood function

of0:

L(θ So) d^ f C(So)P(So] θ) oc P{SO θ).

For example, L(0χ; So)/L{θ2; So) = P(5 O ; 0i)/P(So; <92) = 4 means that θλ is four times

more plausible than Θ2 in the operational sense that the observed So will occur four

times more frequently in samples from the population defined by θι than in samples
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from the population defined by Θ2 This is an objective frequency that can be verified

by simulations on a computer.

An optimal inferential set for θ based on So is then defined as the set in which the

values of θ inside the set make P(SO] θ) greater than values of θ outside the set. For a

scalar parameter this set will usually be an interval, which is the case in what follows.

This is then a likelihood interval.

The value of θ that maximizes the probability of the observed sample is the maximum

likelihood estimate θ = Θ(SO). It is the best supported value of θ by So in that it makes

the observed So most probable. It is contained in all of the likelihood intervals. It can

therefore serve as a reference point to give the location or the position of the likelihood

function on the θ axis. More importantly it can serve as a yardstick by which the

plausibility of other values of θ can be judged. This is done by the relative likelihood

function

R(θ- So) = f L(θ] So) /L$- SO) = P(5O; θ) /P{SO\ θ). (3.1)

From the above definition, 0 < R(θ; So) < 1. Since P(SO) is a probability function it

is necessarily bounded, and so the denominator of (3.1) is finite. Optimal inferential

intervals then have the form R(Θ]SO) > c, 0 < c < 1. A fixed c then gives a level

c likelihood interval. As c varies the complete set of nested likelihood intervals is

formed reproducing the relative likelihood function. It is essential to emphasize that

one such interval does not suffice. Nor does the maximum likelihood estimate alone

suffice. As a minimum both are required. But the full information about θ contained

in So is conveyed by a graph of the relative likelihood function. This is merely the

graph of the probability of the observed sample plotted as a function of θ. Thus the

inferences are fully conditioned on the observed sample. Likelihood intervals have

the frequency interpretation that in repetitions (simulations) any value of θ within a

likelihood interval will produce So more frequently than will any value of θ outside this

interval.

No optimality criterion can be justified or proved solely on mathematical or logical

grounds. It must be judged by its practical consequences. Do the resulting inferences

seem reasonable? This is clearly a matter of opinion, and so must be discussed in terms

of practical experimental examples.

Example 1. A capture-recapture problem.
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FIGURE 1. Relative likelihood function, Example 1

Animal population sizes N are often estimated using mark-capture-recapture tech-

niques. The observations are /1 ? / 2 , . . . , where fc animals are caught i times. Then /o

is unobserved and N = Σ™ /*.

Let s — Σ°lιifi, the number of animals caught, and r = Σ S i /*> ^ e n u m b e r of

distinct animals caught, so that /0 = N — r. Assume the probability of any specified

animal being caught is 1/iV, irrespective of how often it has been caught previously.

This is the classical occupancy model, leading to the probability model
oo

P{fu...;N\s) = N

oc
N

<xL{N;r,s), N>r.

An example using butterflies gave

So = {/i = 66, h - 3 Ji = 0, i > 3}, r = 69, s = 72,
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Craig (1953), Darroch and Ratcliff (1980). Figure 1 shows the relative likelihood

function along with c = .05, .15, .25 likelihood intervals, giving the position of the

maximum likelihood estimate in each.

The main feature of Figure 1 is the extreme skewness. Values N > N = 828 are much

more plausible than values N < N. Failure to convey this would result in seriously

understating the population size N.

Quoting N — 828 alone conveys practically no information. Exhibiting a single like-

lihood interval alone fails to convey much information. For example the .05 likelihood

interval by itself simply shows that values of TV between 280 and 5,089 have relative

likelihoods c > .05. This gives no indication of the behavior of the plausibility of points

within the interval, in particular the skewness. But supplementing the likelihood inter-

val by the position of the maximum likelihood estimate TV = 828 conveys considerably

more information. Its deviation from the geometrical center of the interval, 2,684, indi-

cates the extreme skewness. From (3.1) it is apparent that while N varies from 280 to

828, the probability of the observed sample, P(SO] ΛΓ), rises from .05 of its maximum to

its maximum. But for this probability to decrease back to .05 of its maximum requires

N to increase from 828 all the way to 5,000. It is preferable to present some additional

likelihood intervals such as the .15 and .25 in Figure 1. The endpoints of all of the

likelihood intervals (the complete set) reproduce the likelihood function.

Ignoring the extreme asymmetry underlined by Figure 1 would result in seriously

understating the magnitude of N. This is reinforced numerically by the corresponding

likelihood intervals below, in which N = 828 has been included in each interval to

emphasize the skewness:

c = .25 375, 828, 2,548,

c = .15 336, 828, 3,225,

c = .05 280, 828, 5,089,

Example 2. Poisson dilution series. This is the second of the two examples cited at the

beginning of Section 1.

The density of organisms in a given medium is θ per unit volume. The original

medium is successively diluted by a factor a to obtain a geometric series of fc + 1

solutions with densities

θ/a° = θy θ/a, θ/a2, . . . , θ/ak.
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FIGURE 2. Relative likelihood function, Example 2

A unit volume of the solution with density θ/ά1 is injected into each of rii plates. Only

the presence or absence of organisms can be detected.

Thus the observations are then y — y0, j / i , . . . , yk, where yι is the number of sterile

plates out of the rii at dilution level i. Assuming a Poisson distribution of the organisms,

and that a sterile plate is one that had zero organisms to begin with, the probability

of a sterile plate at level i is

Pi = exp(-0/α*), i = 0 , 1 , . . . , fc.

The probability of a fertile plate at level i is 1 — p». Assuming independence, the

likelihood function is proportional to the product of (fc + 1) binomial likelihoods

2 = 0

Fisher and Yates (1963 p. 9) give the following data: a = 2, k + 1 = 10, {nτ} = 5,

and So = {yi} = {0,0, 0,0,1,2,3,3,5,5}. The unit volume was 1 cc, which contained
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.04 gm of the material (potato flour) containing the organisms. Thus if θ is the number

of organisms per cc, the number of organisms per gm of potato flour is 250.

The maximum likelihood estimate is θ = 30.65 organisms/cc, so that the maximum

likelihood estimate of the number of organisms per gm of potato flour is 250 = 766.

Again the graph of the likelihood function is asymmetric, Figure 2. Thus the comments

of the previous Example also apply here. The information in the sample may be

summarized, as before, by the .05, .15, .25 likelihood intervals along with the maximum

likelihood estimate:

c =
c =

c =

.25

.15

.05

461,

422,

358,

766,

766,

766,

1,228,

1,325,

1,512,

organisms per gm.
Example 3a. Exponential failure times

The relative likelihood function of θ based on n independent observations So —

ί i , . . . , ί n is

R(θ\t) = (θ/θYexpίn-nθ/θY

θ = n/t, t =

This is shown in Figure 3 for n = 2 along with the .05, .15, .25 likelihood intervals.

For future reference t has the gamma (n, θ) distribution

Example 3b. Censored exponential failure times.

Suppose the failure times above were censored. The n items were observed for fixed

periods of time 7 i , . . . , Tn and r of the items were observed to fail at times tι,..., tr;

the remaining (n — r) items were observed to survive their periods of observation,

U > T{. The observed sample is thus So = tu ..., t r , r, Γ r + i , . . . , Γn. Since P{U > Tj) =
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0/0 = (l±u/3j2)

N

FIGURE 3. Relative likelihood, Example 3, and its normal approxima-

tion (2), Examples 4 and 5

exp(—ΘTi), the resulting likelihood function of θ is

L(θ;t,r)<x

The relative likelihood function is algebraically the same as the uncensored case with

n replaced by r and t by

i=l 2=r+l

Thus the likelihood inferences are unaffected by the censoring and so retain their sim-

plicity. In contrast, the sample space and probability functions are much more compli-

cated. In particular t no longer has the gamma (n, θ) distribution of Example 3a.

The foregoing should not be confused with the traditional Method of Maximum

Likelihood. The Method of Maximum Likelihood focuses on the asymptotic behavior

of the maximum likelihood estimate. The present approach focuses on the inferential
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use of the whole likelihood function as furnishing measures of relative plausibility. Here

the behavior of the maximum likelihood estimate is not relevant.

4. LIKELIHOOD-PROBABILITY (CONFIDENCE) INTERVALS

In Example 3a, t ~ gamma (n, 0), giving

tθ ~ gamma (n) «Φ=> z = 2tθ ~ X(2

so that z is a χ^2n) pivotal quantity. That is, for any a < b,

a/2t0 <θ< b/2to

the probability of which can be calculated using the χ^2n) distribution of z. In this way

a pivotal quantity z can be used to establish probability relationships between θ and

the observed to. This allows the assignment of probabilities to parametric intervals.

The result is a probability or a confidence interval, depending on its interpretation.

For n — 2, z ~ χ?4Λ. Then, for example,

P{0 < z < 9.488) = .95, and 0 < z < 9.488 <=> 0 < θ < 4.744/ίo

gives a .95 confidence interval for θ.

Similarly

.7108 < 2 < o o ^ .3554/to < θ < oo

is a .95 confidence interval, and

(0 < z < 3.199) U (3.519 < z < oo) 4=>

{0<θ< 1.599/to) U (1.7595/to < θ < oo)

is a .95 union of such intervals.

Thus confidence intervals at any specified confidence level are not unique. This raises

the question of optimal confidence intervals. Constancy of the coverage frequency is a

relatively mild restriction and does not guarantee sensible intervals. In fact it is easy

to produce exact confidence intervals that do not even depend on the data.

Such deficiencies can be avoided if confidence intervals are likelihood intervals. Li-

kelihood-confidence intervals are optimal confidence intervals in the sense that they

include the most plausible values of the parameter. They are also unique.
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For example, from the χ?4x distribution of z, the c = .15 likelihood interval

Λ7ΘO <θ< 3.O60O «=* -68 < 40/0 = z< 12.16

is the unique .937 likelihood-confidence interval.

It should be emphasized that likelihood measures the relative plausibility of specific

values of the parameter within an interval. Likelihood cannot measure the plausibility

of the intervals themselves.

Probability measures the plausibility of the intervals. Probability cannot measure the

relative plausibility of specific values of a continuous parameter, since the probability

of any specific value of a continuous variable is zero.

The domains of application of likelihood and of probability are therefore comple-

mentary.

5. NORMAL LIKELIHOODS

Normal likelihoods are useful for simplifying the inferential structure and for obtain-

ing approximate likelihood-confidence intervals.

A normal likelihood has the form

R N ( δ ] y ) = e x p ( - )

d 2

where /(<$; y) = ^ l o S Rίsl v)
dδ

is the observed information.

If this holds in repeated samples it suggests that us can be treated as a iV(0,1)

pivotal quantity. The inferences then take the simple classical form of the estimation

statements

δ = δ ± su, 5 = 1 φ(δ;y), u - JV(0,1).

This is a complete set of nested likelihood-confidence intervals, thus reproducing the

likelihood function. Functional invariance gives corresponding likelihood-confidence

intervals for any 1-1 function of δ by ordinary algebraic substitution.

These results seldom hold exactly, but often hold approximately, as the following

examples show.

Example 4. Exponential failure times, Example 3a.
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For the parameter δ = 01 / 3,

R(δ\t) w RN(δ]t), with I(δ\t) = 9n/δ2.

The inferences take the revealingly simple form of estimation statements

θ = 0(1 ± u

143

). (5.1)

As an example of functional invariance, the likelihood function and corresponding

likelihood-confidence intervals of the survivor function TΓ = exp(—τθ) — P(t > r) can

immediately be obtained from (5.1),

r = -θ'1 log π(l ± u /3>/n)3.

This gives inferences about τ given TΓ, TΓ given r, or π, r jointly.

These are complete sets of reasonably accurate nested likelihood-confidence intervals.

They are shown for θ when n = 2 in Figure 3. The approximate probabilities and

likelihoods are obtained from u ~ JV(Q, 1) and exp(—\u2), respectively. For example

setting u = 1.96 gives the approximate .146 likelihood .95 confidence interval θ =

£(1 ± 0Λ620u)3. In this case the exact probabilities can be calculated for comparison

from the χ?4Λ distribution of z. Some results are given in the following Table

2.576

1.960

1.645

0.674

l-a
N

.99

.95

.90

.50

1 - α

.991

.946

.892

.483

CL,

.024,

.131,

.246,

.796,

cu

.032

.139

.252

.796

c
N

.036

.146

.258

.797

Here, 1 - α v̂, 1 — a are the approximate normal and the corresponding exact prob-

abilities; ex,, cu are the exact left and right hand relative likelihoods and CJV is the

corresponding approximate normal relative likelihood of the resulting intervals. For

exact likelihood intervals CL — cu-

These results apply to any gamma likelihood. They therefore apply to the censored

Example 3b with n replaced by r provided r φ 0. If r — 0 the resulting likelihood

cannot be approximated by normality. Thus the accuracy of the coverage frequencies

in repeated samples will decrease for values of θ that make P(r = 0) non-negligible.



144 Sprott

The corresponding result for δ — log θ is

δ = δ ± — 7 ^ <=> θ = 0exp ( ± — 7 ^ I . (5.2)

6. BIAS CORRECTIONS

In contrast with the above approach, inferences are usually based on a statistic t(y).

A statistic is usually presented as a method of data reduction to produce an estimate

θ = θ(y) of θ. This leads to a study of optimal properties of estimates. Unbiased

estimates with uniformly minimum variance (UMVs) are particularly favored; also

best linear unbiased estimates (BLUEs). Since the maximum likelihood estimate θ

is usually biased, this leads to attempts to correct θ for its bias and to calculate the

variance σ | of the resulting approximately unbiased estimate θ. The following examples

illustrate the undesirable scientific consequences this approach can produce.

Example 5. Exponential failure times of components connected in series.

Miyramura (1982) applied the above procedure to systems of components connected

in series, assuming individual exponential failure times. The results for a single com-

ponent were:

θ = [l-(2/ΰ)}θ,

where v = 2 I £>«/& j / I !>*?/# ) '
n

rh = ΣriZi/

where U are failure times, r̂  are determined by the censoring mechanism, and the Zi

determine the structure of the system in series. The properties of the above estimates

έ?, σ^2, were assessed by simulations.

One of the numerical examples given yielded θ = .035, θ = .028, σ-θ = 0.024 in a

sample of n = 2. Viveros (1991) noted that the use of this to produce intervals gives

the .95 confidence interval -.019 < θ < .075. Since values θ < 0 are impossible, such

intervals may be called incredible.

n \ 2 / / n
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Although the probability of the entire system in series is complicated, because of

the underlying exponential distributions the resulting likelihood function is a simple

gamma θkexp(tθ). This suggests using the normal approximation to the likelihood of

S = θ1'3 of Example 4. Using (5.1) gives the estimation statements

0 = 0(1 ± uβy/n)3, u ~ 7V(0,1).

The simplicity of this may be compared with the unbiased results above. Also for θ =

.035, n — 2, the resulting .95 likelihood-confidence interval is .005 < θ < .109, shown

in Figure 3, which is at least credible.

Simulations show that the coverage frequency of intervals produced this way are very

close to those obtained by assuming u ~ iV(0,1), Viveros (1991). Thus, these are a

highly efficient set of nested approximate likelihood-confidence intervals.

This example also illustrates that if simulations are required, the right quantities

should be simulated. One should simulate samples from the original model. But to set

up confidence intervals it is rarely appropriate to examine the frequency properties of

the resulting estimates, including the maximum likelihood estimates, and their vari-

ances formed from these simulated samples. The frequency properties of the resulting

quantities u above formed from the simulated samples should be examined. These

quantities have the form of a Student t pivotal, a function of two random variables.

Example 6. Capture-recapture.

For the capture-recapture data of Example 1 Darroch and Ratcliff (1980) estimated

the bias of N to be 230, which looks large. They obtained the estimate N — 668 with a

reduced bias, and quoted its standard error as s = 333. The corresponding estimation

statement would be

Some of these intervals are shown in the Figure 4 in relation to R(N\ r, s).

The same comments apply as in the preceding example. The intervals are shifted

well to the left of the likelihood function. Their lower bounds include values of N

which, if true, would make it impossible to have obtained the observed sample. The

lower .99 confidence bound, u = 2.576 gives N = —147 which is again incredible; the

lower .95 bound, u — 1.96, gives N = 15, which is unrealistic since r = 69 distinct

animals have already been observed; essentially the same is true of the lower .90 bound.
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ΛΓ= 828(1 ±0.1870)

900 1800 2700 3600 4500 5400

N

FIGURE 4. Confidence intervals corrected for bias, and normal approxi-

mation (2) to likelihood, Example 6

Conversely, the upper bounds of the intervals exclude values of N that would make

the observed sample have high probabilities, .644, .75, .81 or more relative to the most

probable sample.

Again the bias reduction along with the use of the asymptotic variance, without

regard for the shape of the likelihood function, drastically understates the magnitude

of TV.

The use of δ = TV~1/3 with a modification of (5.1) gives the complete set of nested

approximate likelihood-confidence intervals as

TV = 828(1 ± 0.1870u)-3, u ,1),

shown also in Figure 4. The accuracy of the resulting confidence intervals NL, Nu,

as determined by the tail probabilities P(r < 69|iV^), P(r > 69|Λ^), using the exact

distribution P(r-Ί N\s) = Λ r s ( ^ ) Δ r 0 5 , has been examined by Viveros (1992). This
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250 = 766 exp(±0. 2948M)

200 400 800

25Θ

1000 1200 1400 1600

FIGURE 5. Confidence intervals corrected for bias, and normal approxi-

mation (3) to likelihood, Example 7

accuracy is affected by the extreme discreteness of the observations. This can be

improved by using a continuity correction, Sprott (1981).

Example 7. Dilution series.

Mehrabi and Mathews (1995) applied a bias reduction to the maximum likelihood

estimate in the Poisson dilution series model of Example 2. For the data of Example 2,

the resulting approximately unbiased estimate is θ — 28.666, with estimated standard

error 5 = 1 /yjlφ',y)= 9.0351, giving

25(9 = 717 ± 226u, u ~ N(0,1),

as shown in Figure 5. The intervals again understate the magnitude of θ. The lower

limits include values of θ that would make the observed sample have probabilities as

small as .04, or even .005, of the maximum probability. The upper limits exclude values
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that would make the observed sample have probabilities as large as .35, or .47 or more

of the maximum possible.

In this case the appropriate procedure is to use δ = log 0 (as did Fisher), the likelihood

function of which is almost normal, giving from (5.2) the complete set of approximate

likelihood-confidence intervals

250 = 766exp(±.2948u), u ~ iV(071),

shown also in Figure 5.

These examples indicate that reducing statistical bias can introduce a more im-

portant and obvious scientific bias. The positive statistical bias in these examples is

important in forcing attention to values of the parameter larger than the maximum

likelihood estimate, thus reinforcing the message conveyed by the asymmetry of the

likelihood. Ignoring these facts results in seriously understating the value of the para-

meter.

However, if the problem involves the combination of a large number of estimates a

bias correction may be necessary. For otherwise the biases may accumulate and result

in a misleading likelihood function as in the next Example.

Example 8. The common variance problem.

An example is the common variance problem, the most extreme case of which is pairs

of observations (xiΊ yi) ~ N(ξi, σ2), independently. Then di — (x~yi) ~ N(0,2σ2). The

maximum likelihood estimate is σ\ = d?/4 with expected value σ2/2. The maximum

likelihood estimate based on k such pairs is σ\ = Σi=i ^ / ^ the expected value of

which is σ2/2. Thus σ2 —» σ2/2 as k —> oo, which is inconsistent. Essentially the profile

likelihood assigns 2k degrees of freedom to estimating σ2 instead of k degrees of freedom.

This equally implies that care is necessary in eliminating incidental parameters ξim

It is interesting that this difficulty does not arise in the corresponding problem of

the common mean, where (x^ yι) ~ N(δ, σ2). In the case of the common variance the

difficulty is avoided by using the marginal likelihood of σ arising from the marginal

distribution of σ2. This is based on the χ?fcN distribution, and so assigns k degrees of

freedom to estimating σ2.

It might be argued that it was never the intention to interpret (0, s) in the form

of the estimation statement θ = θ ± su, u ~ N(0,1). This would simply raise the

question, What quantitative interpretation does (0,5) then have?
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The scientific inferential interpretation of maximum likelihood estimation requires

the existence of an appropriate approximate normal likelihood RN(S] y) which is sum-

marized by the unadjusted maximum likelihood estimate δ and the observed infor-

mation /( ί y) = 1/s2. In the common variance problem these are supplied by the

marginal likelihood function.

7. LENGTH OF INTERVALS

Much the same can be said about length as about bias. Any likelihood-confidence

interval obtained from a skew likelihood can easily be shortened. Merely replace a large

interval in the long tail of the likelihood function by a short interval in the short tail.

The decrease in probability produced by deleting a larger part of the long tail, where

the change in probability is slow, is restored by the increase in probability produced by

adding a smaller part of the short tail, where the change in probability is rapid. This

invariably shortens the interval and destroys its likelihood property.

Example 3a, Figure 3 provides a simple example of this. The interval 0.1660 <

θ < 3.090 is a .146 likelihood-.94 confidence interval. Its length is 2.920. The interval

0 < θ < 2.260 is a .94 confidence interval of length 2.260. This decrease in length

is obtained at the price of including values of 0 near zero that make it impossible to

have obtained the observed sample, and excluding large values that make the observed

sample relatively probable.

Like unbiasedness, length is not functionally invariant. Shortest intervals in 0 will

not be a shortest interval in δ(θ), such as the survivor function π = exp(-θτ). Thus

the justification for such a procedure involves motives that rest outside the field of

objective scientific inference.

8. BAYESIAN INTERVALS

The purpose of prior distributions appears to be to convert likelihoods into probabil-

ities, thus eliminating likelihood. Additionally, Bayesians calculate (shortest) intervals

of highest probability density. This eliminates the advantage of the functional invari-

ance of both probability and of likelihood, introducing the problems discussed in the

previous two sections. The same can be said about equal tail intervals. Addition-

ally, equal tail intervals do not seem to be reasonable if the posterior distribution is

highly skewed. (This seems similar to difficulties with two-tail tests of significance.)
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And neither probability nor probability density is capable of making comparisons of

plausibility of points, θλ vs. θ2. For the probabilities of θλ and of θ2 are zero; and the

density ratio f(θι)/f(θ2) is not well-defined owing to lack of functional invariance. For

example, if δ = log θ

f(δi)/f(δ2) = \f(θi)/f(θ2)] (ΘΦ2) φ m)/f(θ2).

As was the case of shortest intervals, the justification for such a procedure rests outside

of scientific inference.

In keeping with the criterion of inferential optimality, the optimal inferential use of

Bayes would appear to be

(1) retain the likelihood function for establishing likelihood intervals;

(2) use the posterior density function to assign probabilities to these

likelihood intervals.

The Bayesian approach would then consist in supplementing the likelihood with

probability, retaining both as complementary measures of uncertainty.

9. DISCUSSION

The essential role of the likelihood function in inductive inference has been stressed

repeatedly by Fisher since Fisher (1921, 1925 and every subsequent edition, e. g. 14th

ed. pp. 10, 11).

But the first use of the whole likelihood function as an inferential entity on which to

base inferences, as in Section 3, was in Fisher (1956, p. 73), arguing "The likelihood

supplies a natural order of preference among the possibilities under consideration.".

He also exhibited a graph of a relative binomial likelihood function (Fisher 1956 p.

76). Since then there has been an increasing use of the likelihood function to measure

inductive uncertainty or plausibility directly in terms of likelihood, see, for example,

Edwards (1992), Sprott (2000). In all of the preceding there is no mention of optimality

principles. But the natural order mentioned above by Fisher is the ordering that ranks

evidence in favor of values of θ by how probable these values make the observed sample.

This implicitly implies the criterion of inferential optimality in Section 2.

For the sake of simplicity, except for Example 8 attention has been restricted to

estimation statements in models having a single scalar parameter θ. That the result is

not entirely academic is shown by the variety of practical examples it covers.
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However, multiparametric problems θ = δ, ξ, are more complex. One of the dif-

ficulties is that of separate estimation — obtaining estimation statements about the

parameter of interest δ as in Sections 3-5, which are valid in the absence of knowl-

edge of the incidental parameters ξ. This gives rise to marginal, as in Example 8,

conditional, pivotal, integrated, profile likelihoods, and perhaps other kinds of likeli-

hoods. Sometimes an appropriate likelihood cannot be found; the parameter δ cannot

be adequately separated from ξ. For an example, see Farewell, Viveros, and Sprott

(1993). General methods of handling these and associated problems in models P(SO] θ)

— f({Vi}i {$i}i {£J)> s u c h a s the assessment of the assumed / and of the repeatability

of the parameter of interest, 52 = δ, are discussed and exemplified in Sprott (2000).

Some have criticized this paper as being unbalanced in portraying only the attractive

side of likelihood. For instance it is said that the paper ignores the devastating examples

of completely misleading maximum likelihood estimates such as those of Ferguson

(1982) and of Le Cam (1990, specifically p. 158). But the examples of the mixture

of normal distributions and of the three parameter log normal distribution cited by

Ferguson and by Le Cam are caused by approximating probability functions by density

functions, and can thereby be remedied, e. g. Barnard (1966), Edwards (1992, Section

8.4). However there may be other mathematically contrived examples that cannot be

resolved in this way. Interested readers can study the above references for themselves,

bearing in mind that this is not a paper on maximum likelihood estimation. Moreover

the paper is restricted to scientific inference, that is, the information that a given body

of data contains about the issues under study.
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