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1. Use of exchangeable pairs in the
analysis of simulations

Charles Stein!, Persi Diaconis?, Susan Holmes®, and Gesine Reinert*
Stanford University, INRA-Montpellier, and University of Ozford

Abstract: The method of exchangeable pairs has emerged as an important
tool in proving limit theorems for Poisson, normal and other classical approx-
imations. Here the method is used in a simulation context. We estimate tran-
sition probabilitites from the simulations and use these to reduce variances.
Exchangeable pairs are used as control variates.

Finally, a general approximation theorem is developed that can be com-
plemented by simulations to provide actual estimates of approximation errors.

1.1. Introduction

A basic computational problem of the theory of probability may be formulated in
the following way. Let X and W be two finite sets and let w be a function on X
to W. We know (except possibility for the normalizing factor) the distribution of a
random variable X taking values in X, and want to study the distribution of the
random variable W = w(X), perhaps to evaluate or approximate the expectation
Ef(W) with f a given real-valued function on W. Often X is a space of functions
(in particular sequences or graphs) and W is a subset of R¥. In typical situations,
X is so large and complicated that direct computation of E f (1) is intractable. An
example to keep in mind is the classical Ising model on an N x N x N size grid.
Here X is the space of 2V° labelings of the grid by {£1}. f W = w(X) is the sum
of all the grid labels (the so-called magnetization), direct or theoretical evaluation
of EW is impossible e.g. when N = 10.

These problems can be studied by simulation methods such as Markov chain
Monte Carlo. This paper discusses three techniques which can be used in conjunc-
tion with standard simulation procedures to get increased accuracy. The techniques
are all based on creating exchangeable pairs (X, X'). These pairs give rise to classes
of identities which suggest new estimators.

In Section [C2, exchangeable pairs are introduced. The relation with reversible
Markov chains is recalled. A basic identity for an exchangeable pair (W, W), as
given in Proposition 2 is :

p(w’) _ plw'|w)
p(w)  p(wlw’)’
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2 Charles Stein et al.

This suggests that the ratios ’; ((TU/)) can be estimated by counting w — w’ transitions

in a sequence of pairs. In the Markov chain context this is the transition matrix
Monte Carlo technique of Wang et al. [29]. The technique is illustrated on two
examples in Section[I.3} the distribution of the number of ones in Poisson-binomial
trials and the Ising model. It works well in the first example and modestly in the
second example.

Section [l uses exchangeable pairs (X, X’) to make control variates EX(W’)
for W. This is used to improve the naive estimate % Zi\il W; of EW, obtained
by N simulations of W. New estimates of Var(W) are also suggested.

Section uses exchangeable pairs to derive a closed form expression for the
error of a classical approximation (e.g., normal or Poisson) for the distribution
of W. The error is an explicit function of (W, W'). It can thus be estimated from
a sequence of such pairs and used to correct the classical approximation. A normal
example is worked through in detail. A general approximation theorem for an essen-
tially arbitrary limit is also derived and used to suggest non-parametric alternate
estimators.

Exchangeable pairs have been used to derive a class of limiting approximations
via versions of “Stein’s method”. The basic ratio identities of Section [L.4] were
used to derive approximations to the number of Latin rectangles (Stein [23]) and
to derive combinatorial formulae for balls and boxes and cycle lengths in random

permutations (Stein [27], Chapter 5). The idea is that the ratios ggz’}m‘fg may be
pw’)

OE In Section [[.4 we find versions of these ratios
which are easily computible. The explicit remainder terms of Section appear in
the earliest versions of Stein’s method. In previous work, calculus and probability
estimates were used to bound the remainders, giving Berry—Esséen like errors. Here
the emphasis will be on applications to the output of a simulation.

much easier to work with than

1.2. Exchangeable pairs

We first define exchangeable pairs and give examples and a basic ratio identity.
Then the connection with reversible Markov chains is given.

1.2.1. Definitions

An ordered pair (X, X’) of random variables taking values in the finite set X is
defined to be exchangeable if, for all x; and x5 in X,

P{X =21 and X' =2} =P{X =27 and X' =z }. (1.1)
The graph of an exchangeable pair
(X.9) (1.2)

associated with (X, X’) has vertex set X and edge set G the set of all two element
subsets {x1, 22} of X such that P{X = z; and X’ = z2} > 0. It is convenient to
use the abbreviations

px(x) P(X =x)
p(z2|r1) = pxrx (z2]21) = P{X' = x| X = xl}.

The following two propositions will be used without comment throughout. Their
proofs are immediate from the definitions.
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Use of exchangeable pairs in the analysis of simulations 3

Proposition 1.1. Let (X, X') be an exchangeable pair taking values in a finite X.
Let w be a function on X to another set W. Define random variables W and W’
by W =w(X) and W' = w(X'). Then (W,W') is an exchangeable pair.

Proposition 1.2. Let (X, X’) be an exchangeable pair taking values in a finite set
X. Let (X,G) be the associated graph. Then, for all x1 and xo with {x1,22} in G,

px (z2) _ pxx (T2|r1)
px (1) pxr|x (1|z2)

(1.3)

As a partial converse, if the associated graph (X,G) is connected and (I-3) holds
for all 1 and xo, then (X, X') is exchangeable.

Example 1.1 (Poisson—Binomial trials). Let X be a random function on a
finite set S with the collection (X (s),s € &) independent Bernouilli(p(s), s € 5).
Let S be a random element of S, independent of X (not necessarily uniformly
distributed) and define X’ by setting X'(s) = X (s) for s not equal to S but letting
X'(S) be distributed according to the conditional distribution of X (S) given S.
Then (X, X’) is an exchangeable pair. The associated graph is connected if for all
s, p(s) > 0. For this example W = ) __s X(s) is studied in Section [[3; see also
Stein [26].

Example 1.2 (Random permutations). Let X be a random permutation of
{1,2,...,n}, uniformly distributed. Let X’ = (I,J)X where the transposition
(I, J) is uniformly chosen, then (X, X’) is an exchangeable pair and the associated
graph is connected. This exchangeable pair was used in the very first application
of “Stein’s method” to prove the limiting normality in Hoeffding’s Combinator-
ial Limit Theorem (Stein [25], Stein [27], Chapter 3). Instead of multiplying by
a random transposition, X’ can be built from 2z by multiplying by any random
permutation chosen from a symmetric probability distribution. The construction
of an appropriate exchangeable pair may depend on the function w of interest; the
computations are simpler if W’ is close to W. See Fulman [11] for an instructive
example. The idea can be used for any group. Stein [24] employed it for studying
the trace of a random orthogonal matrix.

Many further examples are given in Section There is a large literature on
exchangeability. Informative treatments are in Kingman [16], Aldous [I], Diaconis
[6]. Most of this literature deals with potentially infinite exchangeable sequences
and is not relevant for present purposes.

1.2.2. Rewversible Markov chains

Let X be a finite set and w(x) a probability defined on X. A stochastic matrix
K (x1,x9) is reversible with respect to  if

m(x1) K (21, 22) = m(a2) K (22, 21) for all z1,x2 € X. (1.4)

In the physics literature Condition (L4) is called detailed balance. Comparing (L3)
and (4) we see the following result.

Proposition 1.3. Let w, K be respectively a probability and stochastic matrixz on a
finite set X. Define a pair of random variables X and X' by

P(X =1, X = xg) = m(z1) K (z1,72).

Then (X, X') is an exchangeable pair if and only if K is reversible with respect to .
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4 Charles Stein et al.

Proposition allows the rich variety of techniques for constructing reversible
Markov chains to be adapted for constructing exchangeable pairs.

Example 1.3 (Metropolis algorithm). Let X be a finite set. Suppose we are
given a probability distribution px(x) known to within a constant factor. We are
also given a stochastic matrix a(z,y) with a(z,y) > 0 if and only if a(y,z) > 0.
As given, the matrix « has no relation to px(z). We can change the stationary
distribution of «a to px () by accepting transitions from x; to xzo with probability
B(x1,x2) and thus staying at x; with probability 1 — B(x,x2). If (X, X’) denote
successive states of the new chain with X distributed as px (z), the exchangeability
condition (L3]) becomes

px(z2) pxx (T2|71)
px(z1) pxr|x (z1]72)
a(r1,22) (71, T2)

T al@s, 21)B(@2, 1) (15)

This condition can be satisfied in many ways, but most conveniently by

px (z2)a(z2, 1) 1).

px @)@ 7s) (1.6)

ﬁ(ﬂ?l, 132) = min(
The Metropolis algorithm originated as a device for sampling from a stationary dis-
tribution px known to within a constant factor. The exchangeable pair constructed
above gives a px-reversible Markov chain

K(xy,22) = pxx(x2]z1). (1.7)

For history and a literature review on the Metropolis [1§] algorithm see Billera and
Diaconis [4]. A large collection of algebraic techniques for constructing reversible
Markov chains for problems such as contingency tables with fixed row and column
sums appears in Diaconis and Sturmfels [7].

Rinott and Rotar [21] have used the connection between exchangeable pairs
and reversible Markov chains in their work on normal approximation. Of course,
techniques like the Gibbs sampler (also known as the heat-bath algorithm) can be
similarly used. Fishman [9] and Liu [I7] give current accounts of a host of other
methods for constructing reversible Markov chains.

In the following sections we will suggest running the associated Markov chains
as a way of estimating probabilities px (z) via the ratio identity (IC3)) in Proposi-
tion [[Z. Then, convergence issues become important. We will not try to summarize
the developing literature. See Aldous and Fill [2], Fishman [9], Liu [I7] or Newman
and Barkema [19].

To conclude this section, we call attention to two widely used techniques of
computational statistical mechanics which seem seldom employed by statisticians.
The first is a method for dealing with large holding probabilities for algorithms
such as the Metropolis algorithm. For some problems the holding probability can be
explicitly computed. The current state can be weighted by the inverse of the holding
probability and a different state can be chosen. This is explained as “continuous
time Monte Carlo” in Newman and Barkema [I9], Section 2.4. An example is in
Section 3.2 below. Here is a brief description.

Instead of spending a large proportion of time holding at some state, we can
change the Markov chain to another one, that never holds by redistributing the
diagonal probability among the other states.
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Use of exchangeable pairs in the analysis of simulations 5
In more detail, we define a new Markov chain

_ fracK (z,2")1 — K(z,x) if 2’ #x
K(z,2") = {

0 otherwise

This new chain is reversible with regards to the unnormalized weight m(x)(1 —
K(x,x)):

K(x, ')

m(z)(1 — K(z,2)) Ko m(2)K (z,2") = n(2") K (2, 2)
= 7(=)(1-K(2, x’))%

If we run the original chain X1, X, ..., X and estimate [ fdr by & Eil F(X5)
we count each X; that holds J times with weight 1 + J. If X; = x, then let J, be
the holding time at z. If the probability of holding at z is denoted by h(z), then
P(J; = J)=h(z)’(1 — h(z)) and

h(x) 1
E(J;) = ——— d 1+ J, .
(o)== @4 BU+L) =157
Thus, if 29, 21, ..., 2R is the realization of the K chain, the appropriate estimator

is

R J)
Z Ef (1.8)

The second idea is a method of estimating expected values under a range of
parameter values from simulation at one (or a few) parameter values. The rough
idea is to use exponential tilting to reweight the samples. For this to work, the
original samples must be chosen from a broad distribution to avoid uncovered parts
of the space. These ideas are explained as entropic sampling methods (Section 6.3)
and flat histogram methods (Sections 8.1, 8.2) in Newman and Barkema [19]. Wang
et al. [29] is a recent extension. An example is in Section 3.2 below.

For both techniques, the computational effort can be considerably diminished by
maintaining an additional book-keeping array along with the current state X. For
example, the book-keeping array for the 2-dimensional Ising model is the number
of 4 vertices with a given neighborhood pattern, and the number of — vertices with
a given neighborhood pattern.

1.3. First examples

This section sets out the basic machinery of transition matrix Monte Carlo. Two
examples are considered in [3:2 the number of ones in Poisson—Binomial trials
is studied, while the most straightforward application application of exchangeable
pairs offer little improvement, eliminating, holding and tilting give large gains over
naive Monte Carlo. In[T.3-3] transition rate Monte Carlo for a variety of Ising model
simulations are summarized.
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6 Charles Stein et al.

1.3.1. Transition matriz Monte Carlo

Consider the simulation problem described in the Introduction. Consider X7, X,
X3, ..., Xn with X; distributed as px (x). The joint distribution of the X; may be
arbitrary, for example independent and identically distributed or the realization of
a Markov chain. The naive estimate of Ef (W) is

1 N
¥ 2 f@(X). (19)

Suppose we construct an exchangeable pair (X, X’) as described in Section 1.2
above and can calculate PX (W' = w) with W’ = w(X’). Then as an estimate of
pww (w2|wy ), abbreviated by p(wz|w: ), we can use

N X /
— . 5W,'= 1:P (W) =w
O (1.10)
i=1 YWi=w
Then, for all wy and wy for which both p(we|wi) and p(w|ws) are positive we
estimate the ratio % by
p(wa|wr)
plwiws)

From these ratio estimates all ratios of all probabilities, and so all probabilities,
can be estimated, provided the sample is large enough for the connectedness of the
graph (C2) to be reflected in the sample. We assume throughout that the graph of
the exchangeable pair is connected

To go from ratios to probabilities, form a matrix with rows and columns indexed
by W having (w,w’) entry

p(w'w)

plw|w’)
In applications, this is often a sparse matrix. For example, for W a birth and death
chain, the matrix is tridiagonal. For (w,w’) with zero entry in the matrix there may
p(w)

p(w)*
Fitzgerald et al. [T0] have suggested reconciling these various estimates by least

squares. Treat p(w) as parameters in

be many paths in the graph giving estimates of

Take logarithms on both sides
fw) = £(w') = C(wlw') —€(w|w)
and solve for £(w) by minimizing
> (Ew) = £(w') = £(wl!) +£(w|w))”
with the sum over pairs (w,w’) with p(w|w’)p(w’ |w) # 0.

A more careful reconciliation of different estimators is complicated by correlation
and inhomogeneity of variances.
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Use of exchangeable pairs in the analysis of simulations 7

W Ordinary MC Ratio Truth

0 0.08350 0.0829528 0.0909091

1 0.2607 0.2605 0.266270

2 0.3176 0.3180 0.319504

3 0.2064 0.2066 0.210676

4 0.0956 0.0957 0.0856013

5 0.0304 0.0304 0.0225984

6 0.0052 0.0052 0.00395255

7 0.0006 0.0006 0.000454696
Total Var. 0.0888 0.0868 0

Table 1: Table for d = 10, N=10,000

W Ordinary MC Ratio Truth

0 0.04720 0.046644 0.06250

1 0.2128 0.2129 0.2074

2 0.3220 0.3222 0.2947

3 0.2289 0.2290 0.2417

4 0.1245 0.1246 0.129372

5 0.04670 0.04672 0.04826

6 0.01530 0.01531 0.01304

7 0.00250 0.00250 0.00261

8 0.00010 0.00010 0.0003923
Total Var. 0.0700 0.0706 0

Table 2: Table for d = 15, N = 10,000

A version of this idea was applied by Wang et al. [29] who implemented it for the
Ising model with substantial success. They chose X, ..., Xy from the Metropolis
algorithm and used the proportion of (wq,ws) transitions to estimate p(ws|wy).
A clear exposition with variations close to (ILI0) is given by Fitzgerald et al. [10].
Some of their numerical results are described in Section [[L33] below.

1.3.2. A Poisson—Binomial example

Let X' be the space of binary d-tuples x = (z(1),...,2()). Fix 6;,1 <i < d with
0 < 6; < 1. In our numerical illustrations below 6; = 14%1 Let W =1{0,1,...,d}
and w(X) =W = 2% | X(;) with Xy ~ Be(6:),i = 1,...,d. We form Xo, X,...
by running a reversible Markov chain on X'. This proceeds by choosing a coordinate
I uniformly in 1 < i < d and replacing the I** coordinate of the current vector
by an independent binary random variable with chance of success 6;. The chain is
started in stationarity. Tables 1, 2, 3 show results of a small trial for d = 10, 15, 18.

Remarks. We do not see any difference between the transition matrix approach
and naive Monte Carlo. Neither approach reached points in the extreme tails of the
distribution and for the bulk of the distribution they seem equivalent. Since this
ratio estimator is computationally costly, there is not much to recommend it here.
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8 Charles Stein et al.

W Ordinary MC Ratio Truth
0 0.06590 0.06489 0.05263
1 0.18780 0.18698 0.18395
2 0.29730 0.29713 0.27960
3 0.24110 0.24168 0.24926
4 0.12810 0.12898 0.14757
5 0.055700 0.056082 0.06208
6 0.018600 0.018728 0.01934
7 0.004300 0.00433 0.00459
8 0.001100 0.001107 0.0008419
9 0.000100 0.000101 0.000121
Total Var. 0.0701 0.0661 0

Table 3: Table for d = 18, N = 10,000

We next compare the transition Monte Carlo approach with Naive Monte Carlo
for the chain run without holding. Call this chain Yp,Y7,Y5, ..., following (L.8)
above we have
PX'=y|X =y)

POT= =) =)

(1.11)

In our example:

0 1-6;
My) = Dot
Cige=1 Jiy; =0
1
= 7O =29(y) +n-w(y)
d
where © = 291 and ~(y) = Z 0;.
=1 7:y;=0

To describe the complete procedure, choose a binary vector Yy by flipping coins
with probability of success 0;,1 < i < d. The process updates each time according
to the following rules giving Y7,Ys,.... Let w(Y;) = W; be the sum of elements
in Y;.

e With probability P,,(y) = % the chain goes up and an index j at

which y; is zero is turned into a 1, j is chosen with probabilities %.

e With probability Pigwn(y) =1— % the chain goes down and an index

£ at which yy is one is turned into a zero, ¢ is chosen with probabilities
1-6(0) 1 B 1-6(0)

d(1 = h(y)) Piown(y) w(y) =0 +7(y)

This construction satisfies (TIT]).

Remark. Instead of going up or down, we can also directly choose the index of Y’
to change by choosing index ¢ with probability

oY) (1 — ;)0
d(1 = h(y))
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Use of exchangeable pairs in the analysis of simulations 9

At each time 7 record the probability P,,(Y (7),7) of going up if ¥; = y(7) is
observed, and the holding times B(y(7)) = 1/(1 — h(y(7))). To simplify notation,
we write Py, (7) for Py, (Y (7),7), B(1) for 8(y(r)), h(1) for h(y(r)) and w(r) for
w(y(7)).

We observe Y7, ..., Yy. At the end of the run the naive estimate (incorporating
a speedup without holding) is

ETE{L...,N}:w(T)=w B(r)
>l Br

plw) = (1.12)

The ratio estimators are
ZT;w(T)zw Piown(T)
> ro(r)=w B(T)
ET:w(T)zw Pup(7)
>y B(T)

Then our estimator is built from the ratios:

plw —1|w)

plw + 1|w)

(wlw - 1)
(w — 1w)

v oplw) P
W)= 1)~

together with Zz_oﬁ(w) =1 to obtain p(w). Specifically, write p1(0) = ¢, p1(j) =

p(7) x p1(j — 1) and then
L p1(j)
) = = (A —. (1.13)
Zi=o p1(7)
Simulation results are given in Tables 4 and 5. We see a marked improvement:

e First, eliminating holding gives an improvement of about a factor of 3 (com-
pare the first columns of Tables 1 and 4).

e Second, the transition matrix approach gives improvements of an order of 10
(compare the first two columns of Table 4 or the first two columns of Table 5).

As a third variation, we employ the flat histogram method outlined at the end
of Section 2. In Table 1 above p(10) = P(W = 10) = 2.50521 x 107%. It is not
surprising that there were no Monte Carlo trials with ten successes. One way of
investigating the tails is to sample from X™* where

P(X*=2)=Z"n(w(@)P(X =2)

with a known weight function n(w), chosen to tilt the distribution to large values
of w. A natural choice is n(w) proportional to the reciprocals of conjectured values
of P(W = w). In the example to follow, n(w) was taken as the inverse of Poisy(w)
with A the mean of W. The Metropolis algorithm was used to sample from the dis-
tribution of X*. The probability that W* = w was estimated by the ratio method.
Then these numbers were multiplied by n(w) and renormalized to sum to one.

As an example, for d = 10 with A\ = 2.5, a Markov chain of length N = 10*
produced the values given in Table 6.

Comparing with the true values, there is a big improvement in the estimates
of the upper tail values. The sum of absolute errors is .00346312. This shows some
deterioration. Perhaps a compromise can be used to reduce this effect. Very similar
improvements were observed in trials with d = 20 (e.g. P(S20 = 20) = 1.95729 x
10720, 5(20) = 6.32623 x 10721, 5(20) = 1.13414 x 10~2° based on 10* trials).
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W No-hold MC Ratio Truth
0 0.089593 0.090624 0.090909
1 0.26896 0.26621 0.26627
2 0.31977 0.32032 0.31950
3 0.20793 0.21047 0.21068
4 0.086466 0.085350 0.085601
5 0.023173 0.022639 0.022598
6 0.0037734 0.0039319 0.0039525
7 0.00034131 0.00045885 0.00045470
8 . . 0.00003306878307
9 0.00000137786596
10 0.00000002505211
Total Var. 0.013190217 0.001309314 0
Table 4: Table for d = 10, N = 10,000
w No-hold MC Hold-Ratio Truth
0 0.055758 0.053261 0.052632
1.0 0.17837 0.18409 0.18395
2.0 0.27270 0.27890 0.27960
3.0 0.24988 0.24883 0.24926
4.0 0.15004 0.14743 0.14757
5.0 0.066245 0.062305 0.062078
6.0 0.021428 0.019493 0.019344
7.0 0.0047119 0.0046758 0.0045865
8.0 0.00082380 0.00089075 0.00084194
9.0 0.000044097 0.00012792 0.00012093
Total Var. 0.0294353652 0.0018954746 0
Table 5: Table for d = 18, N=10,000
j 0 1 2 3 4 5
p(4) .0909 .2663 .3195 2107 .0856 .0226
p(4) .0867 .2637 3217 2110 .0893 .0238
p(4) .0913 2673 .3298 .2196 .0847 .0220
j 6 7 8 9 10
p(j) .0040 .00045470 .00003307  1.37787 x 10~ 2.50521 x 10~8
p(j) .0043 .00053721 .00004043 1.5738 x 1076 3.14043 x 10~8
p(J) .0038 .00043782 .00003184 1.27737 x 106 2.37551 x 10~8

Table 6: Comparison of estimates in Poisson—Binomial case, d = 10, A = 2.5
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Use of exchangeable pairs in the analysis of simulations 11

1.3.3. Another example: The Ising model

The Ising model may well be the most thoroughly studied object of theoretical
physics. A huge number of techniques have been invented for simulation and analy-
sis. Because of this, it makes a good testing ground for new ideas. Here we set out
the basic approach of exchangeable pairs. Closely related ideas have been previ-
ously developed (Wang et al. [29], Fitzgerald et al. [10]) and we give a brief report
of these simulation results.

Let (V, G) be a regular graph of degree d > 0. Let m be the number of elements
in the vertex set V. In the examples below, the graph is an n by n square lattice on
a torus with d = 4,m = n?. Let X be a random function on V to the two-point set
{—1,1}, uniformly distributed. Let H; = ) X, W = Evhvz Xy, Xu,, where the
first sum is over all elements of V and the second sum is over all edges {vy,v2} of
G. We are interested primarily in the case where m is large. We want to study the
joint distribution of H; and W or, equivalently, their moment generating function

Z(\,v) = BEeMWri

Physicists call Z the partition function and study its various logarithmic derivatives
and other related functions. For simplicity we study the special case Z(\,0) which
gives the distribution of W alone. We focus on estimating the logarithmic deriva-
tive of Z(\,0) at a particular value of A. This is called the energy in the physics
literature.

Let (X, X’) be an exchangeable pair obtained from X by setting X’ equal to the
result of changing the sign of Xy where V' is uniformly distributed in V independent
of X. Let W’ be related to X’ as W is to X. Our aim is to study the transition
probabilities

P{W’=w2|W:w1} (1.14)

from which the pointwise distribution of W can be reconstructed. The analysis will
be based on the exchangeable pair described above. Note that the Markov chain
used to simulate realizations may be very different from the single site dynamics
which underly our exchangeable pair. Thus the Markov chain may be generated
by the Swendsen-Wang algorithm or, in the case of a bipartite graph (V,G) by an
alternating (checkerboard) algorithm. To compute an estimate of (T.14) consider
the random variables

Yv = Z X’u/(sv,'u/ (g)

v’:(v,v")neighbors

W = %XU:XUYU.

Then
W =W =w(X') —wX) =-X,Y,.

Thus the conditional distribution of W’ — W given X is given by PX{W' — W =
d} = %, where s(d,z) = |{v : X, Y, = —d}|. This gives the needed ingredients
to take the output of a Markov chain X, X7, ..., where

P{X; =z} =Z7'(\,0e*@P(X = z).
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12 Charles Stein et al.

Then, the procedure outlined in Sections [[LZ.1], can be used. This first derives
estimates of ratios in (I.I4) and then of P(W = w). These may be used to estimate
A b

- by

D wer pw (w)
> DWW (W)

(Here Z' denotes the derivative.)

A version of this approach has been implemented by Fitzgerald et al. [10]. They
carried out a large simulation to assess the improvement in mean-square error due
to their version of the transition density method. They studied the expected value of
H? (magnetic susceptibility) when A = .42 and p = 0. This is just slightly above the
critical temperature. Their Markov chain was the result of a single sweep through
the 900 sites. In this case the true expectation is known. They chose N = 5 x 106
sweeps and repeated the entire run 500 times. They calculated the average error
fort =1,...,5 x 10%. They found relatively smooth decrease of the mean-squared
error in t. The transition density method improved mean-squared error over the
naive estimator by about 25%.

They carried out a similar experiment for another functional (specific heat) and
found an improvement of about 7%.

Fitzgerald et al. [L0] report a more naive method of estimating p(w’|w) based
on counting the proportion of w to w’ transitions in a chain generated by single site
updates showed no improvement over the naive estimator. We hope to try adjusting
for holding times in later work.

1.4. Exchangeable pairs as auxiliary variates

This section develops the use of the exchangeable pairs (X, X’) and (W, W') con-
structed in Section for estimating the mean ¢ = EW and variance 02 =
E(W — €)2. The idea is to use EW(W’ — W) as an auxiliary variate combining
it with observed values of W by linear regression, making use of negative corre-
lation. Because these estimates (especially that of the variance) are motivated by
pretending that the joint distribution of (W, W) is normal, they cannot be ex-
pected to work well in all situations, but they are not strongly dependent on the
assumption of normality. Estimates of mean and variance are needed to apply the
more refined developments of later sections.

Techniques for combining estimates to reduce the variance are known variously
as control variates, antithetic variates, or regression methods. They are discussed
and illustrated in the books of Hammersley and Hanscomb [13] or Fishman [9]. We
have not found the exact suggestions below in previous literature.

Section [[L4.1] sets out the needed formulae.

1.4.1. Basic formulae

As usual, we have an exchangeable pair (X, X’) of random variables taking values
in a finite set X. We want to estimate the mean ¢ and variance o2 of W = w(X)
where w is a real-valued function on X'. We have available the results of a simulation
X1, Xo,..., Xg which is marginally distributed as X. To implement the techniques
of this section we must be able to compute or approximate

2

Dy, =EX(W/-W;) and Dy, =EX (W -W;)". (1.15)
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Use of exchangeable pairs in the analysis of simulations 13

As will be seen below, D1 ; is negatively correlated with W;. It is natural to seek a
linear combination which has smaller variance than the naive estimator

S
— 1
== 1.1
W S;:lw (1.16)

This will be done using classical regression to estimate the best linear combination
from the data. Using identities for exchangeable pairs we can also give a natural
estimate for the variance. We first describe our estimators and then give their
derivation.

Let

S
Z (1.17)

Col»—'

s
Z and

An estimate & for € = EW is

CQ |

- S (Wi — W)(D“—Dl)

§=W+aD,, witha=— (1.18)
Zz 1(D1 7 Dl)
An estimate 62 for 02 = VarW is
D s w
6’2 _ (Zz 1 2 1)(21 I(W W) ) (119)

25 Z 71(W W)(Dlz _Dl)

To begin, let us show that W and EX (W’ — W) are negatively correlated. For this
assume without loss of generality that the mean £ = 0. First, (W' + W)(W' — W)
is an antisymmetric function of (W, W’), so that E(W’ + W)(W’ W) =0 =
EW’2 — EW?2. Thus EW’? = EW?2. Then
EW -w)? = EW)’+EW?-2EWW’
= 2EW? —2EWW’' = 2E(W (W' —W))
= —2E(WEX(W'-W)).

It follows that E(WEX (W’ — W)) < 0, with strict inequality unless W = W'.

To motivate the estimate & of ([LI8) observe that both W and W + D; are
unbiased estimates of ¢ = EW. It is reasonable to estimate £ by a linear combination
of these with coefficients adding to 1 determined from the data in the same way as
a regression coeflicient. This leads to

£ =a(W+Dy)+(1—a)W =W +aDy,
with a given in ([LI8).
This is related to the problem of finding the best linear predictor of W using
EX(W’ — W). Indeed, writing
W=¢(+aEX(W - W) +R (1.20)

with ER = 0,ERW = 0, the coefficient yielding the smallest variance between
observed and predicted is

 Cov(W,EX(W' — W)
 Var(EX(W' —W))
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14 Charles Stein et al.

Estimating a leads to (II¥)). Note that estimating
=W —aEX(W - W), (1.21)
we obtain
Var(§) = VarW (1 — Corr® (W, EX (W' — W))).

Note that this quantity is smaller than VarW, and thus improves on the standard
estimate of estimating £ by W.

To understand this approach better, we now focus on the perfect case. Suppose
we have an exchangeable pair (W, W’) and a constant A, 0 < A < 1, such that

EY (W' - W) = -A(W - ¢). (1.22)

There are many examples when (L22)) is satisfied, see [27]. Because w’ — w is an
antisymmetric function in (w,w’) we have

EE" (W' = W) =0= - E(W —¢),

yielding £ = EW. Note that £ can also be written as

1
E=W+ XEW(W'—W). (1.23)
We see this as the sum of two antithetic random variables because

EW —W)* = 2EWEY (W’ — W),

thus EWEW/(W' — W) < 0, so W and EW (W' — W) are negatively correlated.
Under (L22)), we have

E(W —W)* = —2XEW (W — ¢) = —2A\(EW? — £2) = —2\Varl¥,

so that the two components have covariance

1 1
COV<W, XEW(W’ - W)> = XEV{/’EW(W’ — W) = —VarW.
We also remark that given (L22) we know that

_1EW —W)?

A 2 VarW

We estimate A\ using the regression approach :

> (D1 = Dy)(W; = W)

A= 44
2 (Wi —W)2
and
o BOV Wy
2\
i _ D NW -

28, (Dri — D) (Wi = W)
This leads to (T19).
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Use of exchangeable pairs in the analysis of simulations 15

Approzximate case
Suppose now that

EV (W —W) = -AW — &) +R. (1.24)
Here, (L24]) and exchangeability imply that if EW = £ then ER = 0 and conversely

if ER =0 then EW = ¢.
If we want to estimate & we can write

_ Low i L
§=W+SEV (W —W) - TR

The right hand side leads to the antithetic variables W — + R and +EW (W’ — W):

11
COV<W - 3R XEW(W' - W)>
_ r e lpvw -
E<W TR-& BV (W W))

(e (v tne)]

1
= —Var(W — XR) < 0.

As to the estimate of variance; if R is small, it can be effectively neglected and
calculations for the perfect case above are in force; yet a further justification for &
is given next.

As a regression problem

Write £ = W — (EWW’ — W), this is an unbiased estimate of . For all § to

minimize its variance:

Var(§) = VarW —25Cov(W,EVW' — W) + 3*Var (EV W' — W)
Cov(W.EW W' — W)

Choose - = Var(EV W' — W)

In fact, with our perfect case notation

\ = 1 VarEWY W' — W
B3 Cov(W,EWW’' — W)’

This can be estimated by:

> i(Dig = D1)?

A= TS, WD, DY)

Another extension is the following. To simplify we have been conditioning on
the values of W; = w(X;). It is also possible to rewrite all the above conditioning
on the larger state X;; this is what is suggested in practice.
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16 Charles Stein et al.

1.5. Distributional approximations

The basic theorem of this section is an identity which provides an explicit expression
for the error of an approximation to the distribution of a real random variable by a
continuous distribution coming from a rather large class, which contains the normal
distribution as well as the uniform distribution, for example. A corollary provides
simple bounds for the error of the normal approximation to the expectation of a
smooth function, as can be found in Stein [27]. This same idea has been applied
by many people to obtain bounds of Berry—Esséen type for the error of the normal
approximation. In this section the aim is to explore the possible application of
this idea to the analysis of simulations. As in Stein [27], Chapter 6, we first derive
a characterization for a continuous distribution. This is obtained essentially by
integration by parts. Let I = [a, b] be a real interval, where —oco < a < b < co. For
abbreviation, we call a real function f on I regular if f is finite on I and, at any
interior point of I, f possesses a right-hand limit and a left-hand limit. Further, f
possesses a right-hand limit f(a+) at the point a and a left-hand limit f(b—) at
the point b. Thus the set of discontinuity points of f is countable.

Proposition 1.4. Let p be a reqular, strictly positive density on an interval I =
[a,b], where —oo < a < b < co. Suppose p has a derivative p' that is regular on I,
having only countably many sign changes and being continuous at the sign changes.
Suppose

/Ip(x)| In(p(x)| dx < 0. (1.25)
Let
_r@
vie) = L, (1.26)

and suppose that v is regular. Let F be the class of all reqular functions on I
possessing (piecewise) a regular derivative on I such that

[ @l < (127
/I‘f(a?)w(a?ﬂp(a?)da: < o0. (1.28)

Then, in order that a random wvariable Z be distributed according to the density p
it is necessary and sufficient that, for all functions f € F we have

E(f(Z)+v(Z)[(Z)) = f(b=)p(b=) — f(a+)p(a+t). (1.29)

Note that from (C2Z7) we have that Ef'(Z) exists, and (L28) ensures that
EY(2)f(Z) exists.

Example 1.4. For the standard normal density ¢ we have ¢'(z) = —z¢(x), and
¢,¢" are regular on (—o0,00); ¥(x) = —x is regular on (—o0, 00), and

1 1
| dr = ——— 2 dr = .
[elmowlas = = [rodr = o
We obtain that Z is standard normal if and only if, for all functions f € F we have
E(f(2) - 2(2)) = 0.

This can be found in Stein [22] and has been explored by many authors.
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Use of exchangeable pairs in the analysis of simulations 17

Example 1.5. For the uniform Ula,b], oo < a < b < 00, we have ¢'(x) = 0 on
[a,b], and ¢, ¢’ are regular on [a,b]; ¥(x) = 0 is regular, and

/ )| Inp(x)| dz =In(b — a) < oco.

We obtain that Z is Ula, b] if and only if, for all functions f € F we have

E(f'(Z)) = f(b=) = f(a+).
Example 1.6. For exponential exp(}\), I = [0,00), we have ¢'(x) = —A¢(z) on
[0,1], and ¢, ¢' are regular on [0, 1]; ¥(z) = —A is regular, and

(o)
/ ‘lnp ‘dx—/ Ae M (Az + | InA|) dz < co.
0
We obtain that Z is exp()) if and only if, for all functions f € F we have
E(f'(Z) = M(Z)) = =Af(0+).

Example 1.7. For the arcsine law p(z) o (z(1 — m))f%, I =[0,1], the density p
is not finite at the endpoints of I, so p is not regular, and Proposition [L4 does not
apply.

See Diaconis and Zabell [§] and Hudson [15] for more characterizations.

Proof of Propositionm Pmof of mecessity

From we know that [, f/(z)p(x)dx exists, and from (L28) we know that
I f I dx exists, so we may apply integration by parts. We have
Bf(Z) = / e

|
@‘
\_/
/@
L

fla+)p(a+) /f

= f(b—)p(b—) — f(a+)p(a+) /f
= f(b=)p(b—) — flat+)p(at) — (2).

Proof of sufficiency

Let Z be a real random variable such that, for all functions f € F, (IL29)) holds,
and let h be an arbitrary measurable function for which

/ |h(z)|p(2)dz < oc. (1.30)
T
Let f be the particular solution of the differential equation

f'(2) +¥(2)f(2) = h(z) — Ph (1.31)
given by

; (1.32)
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18 Charles Stein et al.

where

Ph = /h(z)p(z) dz.
I
We want to show that f € F, for then, (.29) holds, yielding

0 = E(f'(2)+¢(2)f(Z)) — f(b=)p(b=) + f(at+)p(a+)
Eh(Z) — Ph.

As the class of all measurable regular functions h satisfying (L30) contains the
indicator functions of Borel sets and hence is is measure-determining for p, this
would prove that Z has density p.

From we have that f is regular and f(b—)p(b—) = f(a+)p(a+) = 0 and

/1|f (2)|p(2) dZS/I\h(ZHP(Z) dZ+Ph+/I\f(Z)¢(Z)|P(Z) dz,
so that it suffices to prove that (L28)) holds. We have
[lrev@bed = [1rewe)de
I I

) [
/Ip(z) / |h(x) — Ph|p(z) dz dz.

Denote by ¢; < ¢z < --- the sign change points of p’ and hence of ¢, and note that
due to the continuity assumption ¥ (c;) = 0,7 = 1,2,.... Let A; = (ai,,a4,),1 =
1,2,... be the intervals where ¢» > 0 and let B; = (b;,,b;,),5 = 1,2,... be the
intervals where ¢ < 0. Then

Pl [ = b
[ [ o) - palpta) o = > [ 56 [ 1)~ Polpta) e i

p(2)
oo b
_]Z:l/Bj w(z)/z |h(z) — Ph|p(z) dx dz.

Note that ¥(z) = (Inp(z))" and Inp(z) is regular, so we can apply integration by
parts again to obtain that the above equals

Z { /A |h(z) = Phlp(z) n(p(=)) dz — [|h(x) — Phlp(2)],? } dx dz
- Z /B_ {‘h(m) - Ph‘p(x) In(p(z)) dx — [|h(x) — Ph|p/(x)} Zji }dzdz

< /I |h(z) — Ph|p(z)In(p(x)) dx
+|h(b=) = Ph|p'(b—) + |h(a+) — Phlp'(a+)

< 00,

due to (L25). O
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Use of exchangeable pairs in the analysis of simulations 19

Proposition [[.4] will be used to obtain a general approximation theorem. Under
the assumption of Proposition [L4], let for convenience

d(z) = —1p(x). (1.33)
Note that, from ([C29),

and
EY(Z)Z = bp(b—) — ap(a+) — 1.
We will often have the case that
E¢(Z) =~ 0, E¢(2)Z ~ 1.

Theorem 1.1. Assume that Z is a random variable having distribution with proba-
bility density function p satisfying the assumptions of Proposition[L4. Let (W, W)
be an exchangeable pair of real random variables such that E(p(W))? = 02 < oo,
with ¢ defined at (L33) and let

E@W’) — (W) (W’ - W)

)\ =
202

(1.34)

Then, for all piecewise continuous functions h on R to R for which E|h(Z)| < o,
Eh(W) — Eh(Z)
—Ef(W) — 5 5B(0(W) = 6(W) (F(W') - £(W)
_EEW <¢(W’) — (1= A0?)p(W) ) FOV), (1.35)

o2

where f is defined by

fw) = = (Uh)(w) (1.36)

and

f'(w) = (Vh)(w) = (Uh)'(w). (1.37)

Remark. In the normal case, the second summand in (L37) can be viewed as
E(Vh)(Y), where Y is distributed according to the probability density function 7
defined by

o(W') — o(W)

ﬂ—(y) =E o2 6{W<y<W’}~

for all y. This distribution has been called the zero bias distribution by Goldstein
and Reinert [I2], but has appeared many times before in the literature in disguise;

see Goldstein and Reinert [12] for references.

Remark. It is useful to think about how (I.35) could be small. One instance when
it is small is if
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20 Charles Stein et al.

£V = o BO(W) = 60) (7 (W) = 101))
= B0V) - 5o (6(W) — 97) [ (w)du

From (34) we have that

2/\102 E(o(W') —¢(W)) (W' = W) =1,
so that
f'(w)— Tlgg (A(W') — 6(W)) (F (W) — F(W)) ~ 0

Moreover, if
EVo(W') = (1 - Xo?)p(W)

then

g (S0

o2
relating to Condition (L22)).

Proof of Theorem M1l Let f € F be a function on I to R, where F is as in
Proposition [l For any antisymmetric function F on R? to R,

EF(W,W’) =0. (1.38)
Applying this to the function F' defined by
(¢(w2) — d(w1))(f (w1) + f(w2))

Flws,we) = 2202
| ot
4 2= 00 () ),
we obtain
g 20200 v - A= 200 )~ ] <o

This can be rewritten in the form

AN _ 02
E[_ o)1) + V) =L Ae2)o)

AN w’

fw)

By Proposition [[.4], the distribution of Z is characterized by the property that, for
all functions f € F,

E(f(Z)+v(Z2)[(Z)) = f(b=)p(b=) — f(a+)p(at).
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Use of exchangeable pairs in the analysis of simulations 21

This suggests that, in order to prove that Eh(W) is approximately equal to Eh(Z),
it is appropriate to substitute for f a solution

f(w) = (Uh)(w)

of the differential equation
f'(w) = ¢(w) f(w) — f(b=)p(b=) + f(a+)p(a+) = h(w) — ER(Z).  (1.39)

We use the solution given in (L36), so that f(b—)p(b—) = f(a+)p(a+) = 0. We
substitute f/(W) — (h(W) — Eh(Z)) for p(W)f(W) in (I29) and rearrange terms,
obtaining

Eh(W) — Eh(Z)

no_ w’
—E f'(W)_W/W F(w) dw —

(W') — (1 = Ao®)g(W)

Ao2

USIE

Using the definition of V' in (I37), we obtain (L3H). This finishes the proof. [

In connection with simulations, we suggest using Theorem [[1] for simulating
the error in the distributional transformation by simulating the quantities on the
right-hand side of (L35]). Let us concentrate on the standard normal case. Many
more examples will be necessary to fully understand this method. Suppose we want
to estimate Eho(W) where hg is a reasonable piecewise continuous function and W
is a random variable which we suspect has an approximately normal distribution.
In principle, we apply Theorem [T to the function A defined by

h(w_’f) = ho(w). (1.40)

g

We estimate 02 and £ and )\ as in Section [[4] before. In the following, we write
a — (3 for “«a is replaced by 3”.

Ef/(Wa—f) _ %Zf(wt&—ﬁ)
§
/ W/—f 1 t £/ Wt,_é
o/ (FF) - TXE(H)
W' —W W' —¢ W —¢&
e () - (55)

L g W= W (ox, (W€ (W€
_);Z:E t2§& (E f( 3 ) f< o >>

and

and

W' —-w W -—-¢£ W —¢ 1 Dy Wy —¢§ Wy —¢
E< Ao + o )f( o )H;Z(Sﬁ—’_ o >f< o >,

t

pretending that é , ;\, and & are constants.
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In an elementary case with EW = 0,EW? = 1,EW(W') = (1 — \)W, and
W’ € {W — ¢, W,W + ¢} (where ¢ could be small, of the order n~2), for a given h
with Eh(Z) = 0 we would need to numerically approximate the function

flw) = e /w h(x)e_é dx.
Then we put
f'(w) = h(w) + wf(w).

Given W; we generate Y; uniformly from the interval (W;, W; + ¢), and we can
estimate the error in the standard normal approximation by

1 R
=2 (/) = /().
t=1

If ¢ is small then this sum will be small.

Often there might not be an obvious candidate for a distributional approxima-
tion. Let (W, W') be an exchangeable pair. We want to approximate the distribution
of W. Put

ar(w) = EW=U(W -W)

az(w) Lpw=ww —w)?

2
and define the density

c woan(®) g,
eJo 2= —00 < w < 00,

p(w) = a0

where ¢ is determined by the condition that [ p(w)dw = 1. Note that

P w) _ on(w) - ap(w)
plw) az(w)

is of Pearson type. If p satisfies the assumptions of Proposition [[.4] with p(—oc0) =
p(00) = 0, then any random variable Z has density p if and only if, for all f € F,

Ef'(Z)+ ¢(2)(Z) = 0.

Theorem 1.2. In the above situation, let Z have density p defined by (I1)). Then,
for all regular functions h such that [ |h(z)|p(x)dz < co we have

En(W) = Eh(Z) = —E{R1 <i> (W, W’)},

Q2

where

(w' = ) (f (') = ) — 3 (w' =)’ (7' (w) — Flaw))(1.41)

N =

Ri(f)(w,w') =

and

1 z
g(z) = ?)/ (h(z) — Ph)p(z) dx. (1.42)

p —oo
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Proof of Theorem We use the antisymmetric function

Flww) = 30 —w) () + ()
= (0~ w) )+ 5 (' —w) (F) ~ F(w))
= (v —w)f(w +%(w' w) f(w’);—f(w)
30 ) (F() = Fw)) = (o =) (5 () + )

'~

L, 2 f(w') + f(w)
—w)f(w)+§(w—w) —

where R (f)(w,w') is given in (LAI). Thus, from (L38),
0=EF(W,W)
giving
0 = EEV (W —W)f(W)+ %EEW (' — w2 W) 7W) ; W)
+ER(f) (W, W).
Put g(w) = as(w) f(w), so that

We obtain

ER(f)(W,W') = E

Here, h and g are related through g given in [.42) O

In particular,

Eh(W)

Eh(Z) + EEV R, <o%) (W, W)

Eh(Z) + ERy(g)(W),

where
Ralo)) =BV =R (L) ().

Thus, from R observations we can estimate

. 1 &
Eh(W) = Eh(Z)+EZEXtR1<O%) (W, W}).
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