
Chapter 9 

N onignorable N onresponse 

The techniques discussed in the preceding sections all can accommodate 
missing data and/ or unbalanced designs, but valid inferences require as­
sumptions on the missing data mechanism (MDM). The GEE method­
ology requires missing completely at random (MCAR); the likelihood 
approaches are valid with missing at random (MAR) nonresponse mech­
anisms, but then further require that the likelihood be correctly specified. 
We note that the GEE can be adapted to handle MAR mechanisms as 
well by using nonresponse weights, similar to nonresponse adjustments 
used in sample surveys (Robins, Rotnitzky and Zhao, 1995). 

If the MDM depends upon the unobserved responses, given the ob­
served responses, it is said to be nonignorable. Then the inferential 
issues are more complex, because here we need to make unverifiable as­
sumptions on the MDM in order to have valid inferences. We consider 
some examples, many of which are univariate since the issues are not 
fundamentally different for the multivariate case. 

Example 1. In estimating mean income (or a regression of income 
on covariates), nonresponse is often assumed to be more prevalent among 
those with very high or very low incomes (Greenlees, et al., 1982). 

Example 2. Studies of factors which influence wages in workers 
may be biased by the omission of workers who are not currently in the 
workforce due to unemployment (Heckman, 1976). Heckman used the 
term selection bias to describe such self-selected samples and noted the 
connection to nonignorable nonresponse. He proposed methods for deal­
ing with nonresponse in the univariate setting based on estimating the 
parameters of a model for P(missing). Such approaches are generally 
referred to as selection model approaches. 
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Example 3. Many voters respond "don't know," "undecided," or 
"will not vote" in pre-election surveys. Such respondents are usually ig­
nored and predictions are based on respondents who give a preference. 
However, voter unwillingness to commit to an answer may be nondiffer­
ential depending upon who they ultimately vote for. Baker and Laird 
(1988) reanalyze the 1948 Truman-Dewey preelection polls which were 
notorious for failing to predict a win for Truman. Their analysis sug­
gests that voters in the "don't know" or "undecided" categories were far 
more likely to favor Truman; reanalysis under this scenario predicts an 
outcome very close to the election and to the voter exit polls. 

We now turn to some longitudinal data examples. 

Example 4. In cancer chemotherapy trials, increasing emphasis 
is placed on evaluating quality-of-life of patients on different therapies. 
Quality-of-life is typically measured quarterly with a self-report question­
naire. The questionnaire is long and there is considerable missing data 
even among those patients who remain on the study protocol. Cancer 
chemotherapy patients often have periods of debilitating pain or illness, 
and a plausible assumption is that these patients would be less likely to 
make the effort to respond under these circumstances. N onresponse at 
a particular occasion is less likely to be predicted by quality-of-life score 
at the previous occasion (which might be observed), but more likely de­
pends on current unobserved score. 

Other examples of intermittent nonignorable response in longitudinal 
surveys are more difficult to find. A more common problem in this set­
ting is monotone missingness, or dropouts, when subjects are removed 
from study, dropout or otherwise become unavailable for study at some 
point. If P(dropout at t) depends only on observed covariates and past 
history, i.e., Yi/s observed prior to dropout, then dropout is ignorable. 
If P(dropout at t) depends upon the unobserved response which would 
have been obtained (say lit) had the subject not dropped out, dropout 
is nonignorable. Several examples can be found in Diggle and Kenward 
(1994). 

Example 5. The U.S. government uses an annual panel survey of 
doctoral level scientists and engineers to estimate current unemployment 
rates among scientists and engineers. A follow-up of those ceasing to 
participate in the survey revealed that a disproportionate number had 
moved abroad, relative to those remaining in the survey. Since the gov­
ernment is only interested in employment in the U.S., this is a clear 
example of nonignorable dropout. 
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Example 6. In many clinical trials, patients can be removed from 
the protocol for reasons related to the outcome of interest. For example, 
in a drug trial of psychosis in schizophrenics, the endpoint was reduction 
in psychosis after six weeks on drug (Hogan and Laird, 1997a). But many 
patients were removed from study drug early due to lack of effect. In 
cases such as this, one might argue that dropout is ignorable since it can 
be predicted by the observed prior outcomes, although the indications 
used by clinicians to remove patients from a study protocol may not be 
quantified in the data available for analysis. 

9.1 Terminology 

Let us assume that for each subject, the vector of complete responses, Yi 
can be partitioned into Yi088 = (Yii, ... , Yik)T and YiMIS = (Yik+l, ... , 
Yin)T, and di denotes a subject's dropout time where tk < di :S tk+l· 
This simple model implies Yi) is always observed prior to di and never 
after. Of course, if di > tn, subjects do not drop out. 

N onignorable N onresponse: 

If 

P(tk < di:::;; tk+l I }i,~) = p (tt < di:::;; tk+l I Yi088 , YiMIS,~)' (9.1) 

i.e., the probability of nonresponse due to dropout depends on future un­
observed values YiMIS, even conditional on the past, Yi088 , then dropout 
is nonignorable. The term nonignorable comes from the fact that valid 
likelihood based inferences require specification of the nonresponse mech­
anism (which is also called the selection model), and maximizing the 
observed data likelihood of (Yi088 , di)· This will be described in Sec­
tion 9.2. 

The term informative dropouts is often used in this setting. We define 
non-informative dropout to mean: 

Noninformative Dropout: 

where the same partitioning of YiMIS, YiOBS is used in both sides of (9.2), 
and determined by tk < di:::;; tk+l· Noninformative thus implies that the 
fact of dropout implies no new information about future values that is 
not already contained in a patient's history, (Xi, Yi088 ). Conversely, if 
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equality does not hold in (9.2), then dropout is said to be informative, 
i.e., the fact of dropping out is informative about future (missing) values, 
even conditional on past history. 

It is straightforward to see that ignorable dropout and noninformative 
are equivalent concepts, and informative and nonignorable are as well. 
An advantage of the informative (noninformative) representation is that 
it makes it clear what is inherently inestimable in this setting, and what 
features of the model the results will be sensitive to. The basic problem is 
that without additional assumptions, there are no data on those observed 
after di to estimate responses for an individual with dropout di. 

9.2 Methodology: General Comments 

There are two general model-based approaches to handling nonignorable 
nonresponse (Hogan and Laird, 1997b): selection-modeling and mixture­
modeling. In this section we give a brief overview of each; detailed case 
studies are given in Section 9.3. 

Selection Modeling. As noted earlier, the term selection modeling 
refers to approaches which specify both the distribution of Yi and Ri (or 
di) and base inference on the joint distribution. The contribution of the 
ith subject to the likelihood can be expressed as 

Since p(di I Yi, '!/') depends upon the unobserved Yi's, estimation of the 
model parameters is at best difficult, and in general sensitive to model 
specification. To see why, consider the simple univariate case where 
we assume that Yi rv N(/3, e) and p (nonresponse) is monotone in Yi. 
Then intuitively, if nonresponse is independent of Yi, our sample his­
togram using the observed data should look approximately normal; if 
P(nonresponse) is monotone increasing in Yi, it will be skewed the left, 
and right skewed if P(nonresponse) is decreasing in Yi: 
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FIGURE 9.1. 

Nonresponse increases as 
Y decreases 
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Thus estimation of P(nonresponse) relies heavily on assumed normality. 
If we assume log-normality for Yi, we could see quite different results. 

In the case with covariates, multivariate responses and arbitrary pat­
terns of missingness, it is generally not possible to permit all possible 
models because of nonidentifiability problems. In fact, nonidentifiability 
can arise in the simple response setting where n = 2, each Yij is dichoto­
mous, and there is missingness in Yi2 only. In this case, one must either 
impose restrictions on f(Yi) or on f(Ri I Yi) where ~ is an indicator of 
missing Yi2, to estimate the model parameters. Little and Rubin (1989, 
Chapter 11) show that the following models are not identifiable: 

(1) f(Yi) = h(Yil)h(Yi2) and f(~ I Yi) = f(~ I Yi2), 

(3) f(Yi, ~) completely general, 

and, in addition, a model which specifies that all two-way associations 
are non zero: (Yil, ~), (Yi2, ~) and (Yi1, Yi2). Thus the only possible 
nonignorable model in this setting is 

(4) f(Yi) arbitrary and f(~ I Yi) = f(~ I Yi2). 

Applications of selection modeling in this setting typically presume 
a simplified model for dropout or nonresponse, partly in order to over­
come technical limitations, partly to ensure identifiability and partly to 
have reasonable assumptions about the MDM. In the dropout (mono­
tone missing) setting a typical assumption is P(dropout) depends only 
on current unobserved value. Diggle and Kenward (1994) and Troxel et 
al. (1998) assume missingness depends only on current unobserved value. 
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Random Effects Selection Models 

A somewhat different approach, which is especially suitable for lon­
gitudinal data, is random effects selection modeling. Here we allow 
P(dropout) to be a function of unobserved random effects. Recall the 
random effects model 

where as usual, we take bi and ei to be independent Nq(O, D) and Nn(O, CT2 I). 
We now further assume that di has a distribution which depends upon 
bi. For example, suppose we are fitting linear models, so that 

and (boi, b1i) represent the ith individual's unobserved, random, residual 
slope and intercept. If we assume that 

i.e., dropout given bi does not depend upon Yi, then we still have non­
ignorable dropout since f(di [ ~OBS, ~Mrs,'l,b) will in general depend on 
Y.MIS 

~ . 

An attractive feature of this model is that it follows immediately that 

and the marginal distribution of (~OBS, di) is obtained as 

This model was originally proposed by Wu and Carroll (1988) who as­
sumed that the probit of the probability of dropout at each occasion, 
conditional on being at risk, was linear in b1i and an indicator of period. 
The probit model allows a closed form expression for the integral, in 
terms of the cumulative normal, but the complex nature of the compu­
tations led them to seek alternative approximations. 

Schluchter (1992) and DeGruttola and Tu (1994) independently no­
ticed that if di (or some transformation of di) is N1 ( uf 'l,bo + bf '!,b1, T 2 ) 
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where Ui is a vector of covariates, then the marginal distribution of 
(Ji0 BS, di) is easily obtained as 

The marginal distribution for JiOBS is the same as the usual random 
effects distribution, but di has a factor-analysis structure rather than a 
random effects structure. That is, the model for Ji0 B8 resembles ordinary 
random effects, while that for di resembles factor analysis. If there is no 
censoring of the di 's then the analysis is relatively straightforward. In 
many cases, however, di may be censored. In the case of informative 
dropouts in clinical trials, di is time to dropout due to endpoint related 
reasons; hence noninformative dropouts (e.g., withdrawals due to non 
informative reasons) and completers will be censored. 

Notice that this particular random effects selection model also implies 
that 

E(YiOBS I xi, di) = xpBs/3 + zpBs D'l/Jt(di- uf '1/Jo)/('1/Jf D'l/Jt + r2), 

i.e., the conditional mean of JiOBS depends linearly upon di. From the 
joint distribution of (Yi, bi, di), it is also straightforward to see that the 
conditional mean of bi given di is likewise linear in di. Wu and Bailey 
(1988, 1989) noted that the model 

E(bi I di) ~ ;f;o + ;f;l di 

holds approximately for a broad class of random effects section models 
even when the normal assumption on di does not hold. More generally, 
Follman and Wu (1995) term these random effects models as shared pa­
rameters models, and have extended the methodology to the generalized 
linear model setting. 

Mixture-Models. As we have seen, with random effects selection mod­
els the conditioning f(di I Yi) can be reversed to f(Yi I di); this concept 
underlies mixture models, which index the joint distribution of (Yi, di) 
by f(Yi I di) f(di). This is in contrast to selection models which index 
the joint distribution by f(Yi)f(di I Yi). Because the target of inference 
is ordinarily the parameters in f(Yi), the selection models seems more in­
tuititive to many statisticians. In addition, the dependence of Yi on di in 
f(Yi I di) is difficult to appreciate in a causal setting since it implies early 
values of Yi may depend on subsequent dropout. Perhaps the best way 
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to think about the mixture model is simply as an alternative method for 
factoring f(~, di) which offers some advantages over the selection model. 
Iff(~ I di) = f(Yi,MIS I Yj,088 )J(Yi,088 I di) then the missingness is non­
informative. In the general case where f(YiMISIYi,088 ) depends on di as 
well, missingness is informative. When inference is desired for f(~) we 
must "mix" over the distribution of di, giving 

hence the term mixture models. 

Random effects mixture models have been considered by Wu and 
Bailey (1988), Hogan and Laird (1997a) and Mori et al. (1992). These 
models offer some advantages over selection models, in that simpler es­
timation approaches are available, even with censored observations. For 
example, f(di) may be estimated using the Kaplan-Meier estimator, and 
f(Yi,088 I di, Xi) may be estimated from those with observed failure 
times, provided the censoring of di is unrelated to Yj,088 . Since here 
censoring means noninformative dropout or completers, this condition 
holds. With no censoring, estimation is very straightforward and can be 
done using standard techniques for longitudinal data analysis once one 
specifies a model for f(~ I Xi, di, (3, 8). See Hogan and Laird (1997b) for 
details. 

Little (1993) gives a general method for analyzing multivariate data 
with missing values which is appropriate when one can classify subjects 
on patterns of nonresponse, Ri· Here again, models for f(~ I ~ = ri) 
are posited, and constraints on P(~l~) are used in order to make the 
models identifiable. Little (1993) calls these pattern mixture models since 
potentially there is a different pattern for f(~) given each nonresponse 
pattern. A general review of mixture and selection models for dropouts 
in given in Little (1995). 

9.3 Examples 

In this section we will illustrate the use of selection models and mixture 
models to analyze non-ignorable data. Both examples are drawn from the 
literature (Fitzmaurice et al., 1996, and Fitzmaurice and Laird, 2000); 
the reader is referred to these articles for more detail. 

A Selection Model. This example involves bivariate repeated measures 
rather than longitudinal data, but the basic methodology is the same. 
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The data come from a sample survey of mental health among children. 
Many variables were assessed, including a measure of the child's emo­
tional or internalizing behavior. This is measured by interview from an 
appropriate informant using a standardized scale, and then dichotomized 
for analysis. It is common in mental health surveys, especially of chil­
dren, to use two or more informants. In this case, the identical informa­
tion was gathered from both a parent and a teacher, hence the bivariate 
dichotomous outcome. 

Because children could not participate without parental consent, there 
was little missing data in the parent assessment. However, there was con­
siderable missing data in the teacher response. Many parents refused to 
give permission for the teacher assessment. In addition, many teachers 
simply failed to respond even when permission was given. There were 
2,501 parents who returned valid questionnaires, but teacher assessments 
were not available for 43% of these. The investigators hypothesized that 
non-response was non-ignorable and that the cases of externalizing be­
havior were under represented among the observed teacher responses. 
This belief stemmed in part because some parents who refused permis­
sion for the teacher interview did so because they were concerned that 
the teacher would give the child "bad" ratings. This is of course not clear 
evidence of non-ignorable nonresponse, but does provide a rationale. 

We first consider the analysis if we had complete data in order to 
specify a data model. One objective is simply to estimate the overall 
prevalence based on both the teacher and parent ratings. Secondly, we 
want to study the relationship of covariates to the behavior ratings, and 
the interaction between covariates and informant on ratings, adjusting 
for nonresponse. Here we will consider just two covariates, sex and a di­
chotomized measure of dissatisfaction with family life. These questions 
can be addressed by using a bivariate logistic regression model, with indi­
cators for informant, the covariates and their interactions. The data for 
each subject can be thought of as arising from a 2 x 2 cross classification 
of each child on the two responses, and is thus multinomial. The basic 
model parameterizes the three independent parameters of the multino­
mial into two parameters corresponding to two the marginal log-odds 
and one corresponding to the odds ratio. 

For example, consider the model which has main effects for informants 
and both covariates: 

logitP(Yij = 1) = /3o + f31Ij + f32X1i + f33X2i 

where Yij denotes the response of the jth informant for the ith child, 
I 1 = 1 (for parent informant), and h = 0 (for teacher informant), and 
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X1i and X 2i denote the sex, and dissatisfaction variable for the ith child. 

This model implies that there are informant differences in prevalence, 
as well as gender and dissatisfaction effects on prevalence, but that the 
informant effects do not depend on covariates. For simplicity, we assume 
that the OR is constant, i.e., not dependent on the covariates. This 
completes the specification of the data model. The model so defined, as 
well as ones including interaction terms, is fit using maximum likelihood. 

To accommodate the missing teacher responses, we also use a logistic 
model for the response, non-response indicator, say, R = 1 if observed, 
and zero otherwise. The model can include as predictors the parent 
report, the potentially unobserved parent report, the covariates given 
in the data model as well as possibly other covariates of nonresponse, 
and their interactions. If the non-response model includes the teacher 
observation as a predictor, then the model is nonignorable, because non­
response depends upon the potentially unobserved teacher response. If 
it includes only the parent observation and not the teacher, the model is 
MAR, and if it includes neither it is MCAR. Thus an advantage of this 
modeling approach is that different assumptions from the Rubin (1976) 
missing data paradigm can easily be fit and tested. 

However, it is not possible to fit completely saturated models, because 
then the resulting estimation problem is ill conditioned, i.e., the param­
eters cannot be uniquely identified from the observed data. To see this, 
consider the case where there are no covariates in any model. Assume 
further that we fit a model for nonresponse that includes both parental 
and teacher observations, and their interaction and a data model that 
has an intercept and the informant effect. In this setting, the three pa­
rameters of the data model plus the four parameters of the nonresponse 
model completely determine the probabilities underlying the 2 x 2 x 2 
cross-classification of parent observation, teacher observation, and re­
sponse indicator. However, we do not directly observe this 2 x 2 x 2 
table; rather, we observe the 2 x 2 table for parent and teacher observa­
tion given R = 1, and we observe the parent margin of the same 2 x 2 
table for R = 0. Thus the saturated model is clearly not identifiable with 
the observed data. 

One strategy which is possible with count data is to only fit mod­
els with degrees-of-freedom equal to directly observed cells; another is 
to evaluate the rank of the information matrix to determine estimabil­
ity. Neither of these approaches work reliably but Glonek (1999) gives 
a straightforward approach to determi~ing model identifiability for the 
categorical data setting. 
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Fitzmaurice et al. (1996) fit by ML a single data model with four 
different nonresponse models to the data. The data model assumes main 
effects for informant, gender and dissatisfaction, and the informant by 
dissatisfaction interaction; the nonresponse models all include the main 
effects of the covariates. The MCAR model includes no effects for parent 
or teacher observations. The MAR model includes parent observation. 
The third model replaces parent observation with teacher observation 
and the final model includes main effect for both parent and teacher 
observation. The MCAR and MAR models give identical results for 
the data model, as expected. Comparing the log-likelihoods suggests no 
evidence for preferring MAR to MCAR, and the estimated prevalence 
of internalizing disturbance is nearly the same for teachers and parents, 
and for the teacher complete cases (0.189). 

The results for the MCAR and the two nonignorable models are given 
Table 1. 

There is not much variation in the estimated coefficients of the data 
model across any of the nonresponse models; probably because there 
is little evidence from any model that nonresponse depends either on 
parent or teacher observation. Note that the large standard errors for the 
coefficient of teacher response in both of the nonignorable nonresponse 
models indicate that there is little information in the data about this 
coefficient. In addition, the standard errors for the data model are also 
very large when both teacher and parent observations are included in 
the model. The Fisher Information matrix for this model, evaluated at 
selected parameter values about the maximum was always non-singular, 
however. 

In this example, the overall conclusions about prevalence and the 
effects of covariates on prevalence vary little under different assumptions 
on the nonresponse mechanism. It is important to keep in mind that 
the class of nonignorable models considered was limited, and using other 
models might show a bigger impact. Despite that, the results do not give 
credence to the hypothesis that the missingness was nonignorable. The 
models fit were kept simple to avoid identifiability problems, but even 
so, the estimation of the non-response model and also of the data model 
showed large levels of uncertainty. 
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Table 1 

Measurement Parameters N onresponse Parameters 

Model/Parameter Estimate SE Parameter Estimate SE 

MAR 
Intercept -1.472 .106 Intercept .266 .071 
Informant -.280 .125 Yp .105 .106 
Dissat .417 .136 Dissat .086 .083 
Gender -.411 .086 Gender -.075 .081 
Informant x Dissat .549 .166 
Ln(OR) .648 .156 

-2 Log-Likelihood = 7,097.84 
GOF: X 2 = 7.31, 10 df, (p ~ . 70) 

NI 
Intercept -1.927 .515 Intercept .132 .160 
Informant .176 .521 Yr 1.498 2.819 
Dissat .437 .133 Dissat .042 .101 
Gender -.414 .086 Gender -.045 .100 
Informant x Dissat .529 .163 
Ln(OR) .646 .156 

-2 Log-Likelihood = 7,097.58 
GOF: X 2 = 7.04, 10 df, (p ~ .72) 

NI 
Intercept -1.966 2.223 Intercept .124 .539 
Informant .215 2.224 Yr 1.733 14.963 
Dissat .438 .132 Yp -.010 
Gender -.413 .086 Dissat .039 
Informant x Dissat .528 .163 Gender -.044 
Ln(OR) .643 .228 

-2 Log-Likelihood = 7,097.57 
GOF: X 2 = 7.04, 9 df, (p ~ .63) 

A Mixture Model. Here we use data from a clinical trial on contra­
ception to illustrate the use of mixture models to handle nonignoragle 
nonresponse. In the trial, two dose levels of a drug were compared. The 
design called for injections at baseline and every three months for one 

.476 

.200 

.217 
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year. The primary outcome of interest was the presence or absence of a 
side effect, amenorrhea, during the previous three months. The vector 
of outcomes for a person who completes the trial is a 4 x 1 vector of 
indicators of amenorrhea (Yi). The trial objective was to compare trends 
in prevalence of amenorrhea in the two groups. However, there were 
many subjects who failed to return for subsequent scheduled injections, 
and it was thought that this might be related to the presence of amen­
orrhea (which is not observed) during the previous period. We describe 
an analysis presented in Fitzmaurice and Laird (2000). 

With the mixture model, we need to specify a model for how the 
outcomes (Yi) depend upon treatment group, and time of dropout, and 
another model for time of dropout. Since there are only three dropout 
times (excluding completing), and the dropout times are observed for 
everyone, it is easy to simply estimate the dropout probabilities for each 
time, stratified by treatment group, using the sample proportions. De­
note these probabilities by 1rik where i indexes treatment group and k is 
time of dropout, k = 1, ... , 4, the last value indicating a completer, and 
1ri+ = 1, i = 1, 2. 

For the outcome model, we could again contemplate estimating P(Yij) 
as a function of time and treatment group, stratifying on dropout status. 
But it is immediately obvious that there are no data to estimate P(Yi4 ) 

if dropout occurs on the third occasion, and similarly for }i3, Yi4 with 
dropout at the second occasion, etc. Another issue, which also arises 
with the selection model, is that if only a few dropouts occur, then even 
the identifiable parameters will be poorly estimated. A solution to both 
of these problems is to fit simpler model which indicates how outcome 
depends on dropout, and condition rather than stratify on dropout. 

Fitzmaurice and Laird (2000) fit several models to investigate the 
sensitivity of results to modeling assumption. The first model assumes 
that logit(P(Yij = 1)) follows a quadratic in time, with different time 
coefficients for each dose group, and with intercept depending upon time 
of dropout (modeled as a dummy variable). That is, the effect of dropout 
is to shift up or down the overall level of amenorrhea, but not to change 
the shape. Thus effectively, the shape of the curve for early dropouts is 
extrapolated from the shape which is fit to the later dropouts and the 
completers. A more complex model allowed the shape to depend on both 
dropout status and treatment group, but was assumed to be the same 
for all dropouts (within a treatment group) at times 1, 2 and 3. They 
compared the results of these models with an ignorable model where 
logitP(Yij = 1) is just quadratic in time, with different coefficients for 
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each dose group. In principle, a complete likelihood could be specified for 
the Yij 's and ML estimation used for the regression parameters and any 
association parameters, but they used GEE to estimate the regression 
models and the empirical variance for the estimated standard errors. 

The final step is to obtain estimates of the marginal P(Yij = 1) = J-lij, 
conditional on dose but not dropout. This is simply a summation, 

/1ij = 2:=PCYij = 11 time, treatment, dropout= k)1rik, 
k 

where the estimated probabilities of P(Yij = 1) are the anti-logits from 
the fitted regression models. 

The results of model fitting are given below for the difference in mean 
vectors, say 8j = J-lhj - J-llj for the high and low groups at time point j. 
There is very little variation in the estimated 8j, for any of the three 
models, except time 4 where the most complicated model estimates half 
the difference of the other two, but no model suggests that the treatment 
groups are different at the end of the trial. 

Generalized Linear Mixture Models 

Marginal rates of amenorrhea at the four study time pointime 

under three different modelling assumptions about dropout 

J 
Model Timej Difference S.E. z p 

MCAR 1 0.017 0.023 0.73 0.4629 
2 0.089 0.025 3.54 0.0004 
3 0.109 0.030 3.65 0.0003 
4 0.052 0.036 1.46 0.1437 

Dropout 1 0.016 0.023 0.72 0.4734 
affects level 2 0.091 0.026 3.57 0.0004 

3 0.112 0.030 3.71 0.0002 
4 0.053 0.035 1.52 0.1275 

Dropout 1 0.016 0.023 0.70 0.4864 
affects slope 2 0.100 0.029 3.39 0.0007 

3 0.105 0.041 2.55 0.0108 
4 0.025 0.056 0.44 0.6614 
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Summary. With both the selection model and the mixture model ex­
amples, the use of several different models which reflect different assump­
tions about dropout are used to explore the sensitivity of results to model 
assumptions. We emphasize that this is perhaps the best use of the var­
ious methods available for handling nonignorable dropouts. In both of 
our examples, investigators felt that the nonresponse process was nonig­
norable, but in neither case did our models give evidence of that. Bear in 
mind that there are many possible models that one can fit, however, and 
some may well give different results. An alternative to estimating the 
model parameters would be to fix them at prespecified values. This has 
the advantage of ameliorating the problems of small number of dropouts 
and lack of identifiably. 
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