
CHAPTER 7 

Extending the Method 

In this chapter we present some simple extensions of the NPMLE theorem 
that solve problems that are similar, but not identical, in structure. We con­
sider three situations: first, a class of problems in which the unknown latent 
distribution appears in the likelihood in a ratio form; second, the question of 
maximizing a mixture likelihood with linear constraints on the latent distribu­
tion; third, the problem of estimating the latent distribution with a continuous 
density function. 

7.1. Problems with ratio structure. We start with a simple example 
that illustrates a problem in which the unknown latent distribution shows up 
in the likelihood in a ratio form. 

7.1.1. Example: Size bias. Suppose that X 1, ... ,Xn are positive-valued 
random variables, but they arose from a population that was sampled not ran­
domly, but with probabilities that are proportional to some positive function 
w ( x) of the variable of interest. That is, suppose the underlying distribution 
of the variable X is G, with density g, but the sampling is from the density 
proportional to w ( x) g ( x). 

A classic example of this type would be if we were to sample vacationers in 
a hotel lobby and ask how long they were staying in the hotel. The vacationers 
who have longer stays are more likely to be included in the sample. 

The nonparametric MLE problem is then to find the underlying distribution 
G given knowledge of the sampling weights w(x). We can write the likelihood, 
for discrete G, as 

L(G) = n w(xi)G({xd) = n Jw(xi)~[</J =Xi] dG(<jJ) 
J w(x) dG(x) J w(x) dG(x) · 

The question is, how do we maximize such a likelihood, which now has the 
latent distribution in both numerator and denominator? 

136 
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7.1.2. NPMLE with ratio structure. We first generalize the problem. We 
desire to solve a problem of the form 

(7.1) n [I hi(cf>)dG(cf>)] 
s~p}] J H(cf>) dG(cf>) . 

We require that H ( 4>) be positive-valued. The first step is to reparameterize 
the problem by forming a reweighted version of G: 

(7.2) 
H(cf>) dG(cf>) 

dQ(cf>) = j H(c/>) dG(cf>). 

If this is done, check that we can re'Yrite the original problem as 

(7.3) 

Now we note that this is exactly of the mixture NPMLE form, where we use 
the likelihood kernels L i ( 4>) = hi ( 4>) I H ( 4>). Thus we can solve this problem 
to find a maximizing Q. To find the NPMLE for the original problem, we must 
undo the transformation (7.2), and we obtain the following result: 

PROPOSITION 27. If Q solves the modified problem (7.3), then 

dG(cf>) =. [1/(H(c/>))] d~(cf>) . 
f[l/(H(cf>))] dQ(cf>) 

solves the original problem (7.1). 

7 .1.3. Example: Size bias. In the size bias problem, we have H ( 4>) = w( 4>) 
and 

It follows that the likelihood kernels for the transformed problem are 

hi ( 4>) 
Li(cf>) = -----=..¢[¢=Xi]. 

H(cf>) 

Therefore the transformed problem is exactly that for which the empirical 
CDF, mass n-1 at each Xi, is the solution Q. Following through the next step, 
we obtain the standard solution to the weighted sampling problem, that G 
has the form 
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7.1.4. Example: Weibull competing risks. We introduce, with a motivating 
Wei bull example, another class of problems in which the maximum likelihood 
solution requires solving a ratio problem. Suppose we have a piece of machin­
ery with an unknown number of independent parts that are each subject to 
failure with a Weibulllifetime distribution. We observe the first time to failure. 
Thus we are in a setting where there are an unknown number of competing 
risks, assumed to be independent. We also do not observe the cause of failure. 

We let T1, ... , Tv be the latent failure times of the competing sources of 
risk and so 

X= min{1\, ... , Tu} 

is the observed random variable. Since the latent times are independent, the 
cumulative hazard function of the observed variable, say H ( t), is the sum of 
the individual cumulative hazards for the latent variables, in the Weibull case, 
H,.(t) = A,.tar. That is, 

u 

H(t) = LH,.(t) = LA,.t"··. 
r=l r 

We can put this into a mixture format by setting 

A='L:A,. 

and defining the discrete distribution G to have mass A,./ A at a,.. If this is 
done, we can write the cumulative hazard function in the form 

H x(t) =A· f t" dG(a). 

Thus we can see that if we have a problem with an unknown number of 
competing Weibulls, we have a mixed hazard function. We note also that if 
there are multiple latent failure variables with the same value of a, we cannot 
identify the separate Ai from this hazard function because they show up in 
the hazard only through their total. We also note that the hazard intensity 
rate has a mixed form: 

hx(t) = :tHx(t) =A· j ata·-l dG(a). 

We would like to maximize the likelihood of a sample of observations as a 
function of the unknown (A, G). 

7.1.5. Mixed hazards NPMLE. There is an obvious generalization of the 
Weibull formulation in which we have a family of distributions whose cumu­
lative hazard can be expressed as a mixture of kernel cumulative hazards, 

Hx(t) =A· f K(t; a) dG(a) "== A. K(t; G), 

and whose hazard rate therefore has the form 

hx(t) =A· f k(t; a) dG(a) =A· k(t; G), 
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where k is the derivative of K with respect to t. Such a formulation can arise 
from a competing risk framework, as in the Weibull example. 

However, this formal structure can also arise if we partition the time axis 
into regions Ar of unknown but constant hazard, writing kernel hazards of 
the form k(t; r) = .J5[t EAr], and obtaining the mixed hazard model 

hx(t) = LAr..Y5[t E ArJ. 

In this case the "latent variable" a is discrete, corresponding to the index r of 
the interval, and the setting is parallel to the mixture problem with known 
component distributions. 

We now consider the likelihood for the problem, referring the reader to the 
paper by Hsi, Lindsay and Lynch (1992) for details on how to incorporate 
censoring. We recover the density for X from the hazard specification as 

fx(t) = hx(t)exp(-Hx(t)). 

It follows that the likelihood for a sample has the form 

L(A, G)= exp (-A L K(xi; G)) Ann k(xi; G). 

We next fix G and maximize the likelihood over A to find 

Aa = n ( L K(xi; G)r1 = k;1. 

It follows that the profile likelihood for the unknown distribution G has the 
form 

L(Aa, G)= e-n n [ k(~~G) J. 
However, this problem is exactly of the ratio type we have described before 
and so we can solve it from the NPMLE theorem by transformation. 

We note that Hsi, Lindsay and Lynch (1992) obtained this solution through 
a more difficult route, and so this presentation has its value in showing the 
simple structure that lies behind the problem. See the cited paper for further 
details on the applications of this model. 

7.2. NPMLE with constraints on Q. There are a number of circum­
stances in which we might wish to maximize the nonparametric mixture like­
lihood under constraints on the unknown latent distribution Q. We might, for 
instance, need for identifiability reasons to constrain it to have mean 0 and 
variance 1. Another situation in which we might want to employ constraints 
is as follows. 

7.2.1. Profile likelihood. Suppose we wish to form a profile likelihood 
based on some function of Q that is of interest. To be specific, let us say the 
mean value of the latent distribution is of interest: 

T(Q) = J 4J dQ(4J). 
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To form a profile likelihood !L in such a nonparametric setting, we calculate 
for each fixed value of ro, the solution to a constrained maximum likelihood 
problem, 

(7.4) !L( ro) = sup{L( Q): Q 3 r( Q) = ro}. 

The results of Owen (1988) suggest that such a nonparametric profile like­
lihood might well give us a method of performing tests and constructing 
confidence intervals for sufficiently smooth functions r( Q) of the latent 
distribution. 

Although the asymptotic theory is not yet available, we believe that profile 
likelihood intervals will provide a value tool for understanding which features 
of the latent distribution are trustworthy and which are poorly determined by 
the data. If profile likelihood intervals are carried out with a good optimization 
routine, they may be substantially more time efficient than bootstrapping and 
also provide a more natural way to construct confidence sets in more than one 
dimension. 

Thus we have a modified optimization problem, and our goal here is to 
provide a theory for its solution. 

7.2.2. Linear constraints. In this chapter we will consider only linear con­
straint problems. One type of such constraint is the linear equality constraint, 
by which we mean there are a set offunctions hl(c/J), ... ,ha(c/J) and a set of 
constants h'l., ... , h~ such that we wish to maximize the likelihood subject to 
the following restrictions on Q: 

f hl(c/J) dQ(c/J) = hl. 

(7.5) 

J ha(c/J) dQ(c/J) = h~. 
We can add yet more flexibility in fitting profile likelihoods by allowing an 
additional set of linear inequality constraints: 

f kl(c/J) dQ(cfJ) ~ k~ 
(7.6) 

7.2.3. Examples with linear constraints, As examples of the equality con­
straint, the moments of the distribution of Q are the most obvious parameters 
of interest. However, we can also construct a profile likelihood for the distribu­
tion function of Q at a particular fixed value, say Q ( c/Jo), by using an indicator 
function 

to construct the linear equality constraint. 
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Here is another example that is less obvious: Suppose we are interested 
in constructing a confidence interval for a posterior empirical Bayes function, 
such as 

E[g(<P) I X= xo] = J g(cf>)f(xo; c/>) dQ(c/>). 
· J f(xo; c/>) dQ(c/>) 

(Note that xo is a constant here.) Although this posterior mean is not a linear 
function of Q, when its value is fixed at some constant c, the maximization 
takes place over a set of Q defined by the following lin~ar equality constraint: 

J [g(cf>) f(xo;c/>)- cf(xo;c/>)] dQ(c/>) = 0. 

If we wish to do inference on the quantiles of Q, we can turn to the linear 
inequality constraints version ofthe problem. For example, if we fix the median 
of Q to be a specified value, say c, then we can maximize the likelihood subject 
to the two simultaneous linear inequalities: 

f .fo"[ c/> :::; c] d Q( c/>) 2: 0.5, 

J .fo"[c/>::: c] dQ(c/>) 2: 0.5. 

In this fashion, one could construct the profile likelihood of the median of Q. 

7.2.4. The constrained NPMLE. We now consider the properties of the 
NPMLE if there are equality and inequality constraints in the form (7.5) and 
(7.6). Because the constraints are linear, we can extend our previous geometric 
analysis to allow for their consideration. We construct an extended likelihood 
vector in (D +a+ b)-dimensional Euclidean space, 

L * ( c/>) := ( ~~: ~ ) ' 
k(c/>) 

and we let its convex hull be At*. The elements of At* are of the form 

(~~~~). 
k(Q) 

Let 

be an arbitrary vector of dimension D +a+ b, and define the log likelihood 
objective function on this space by 

]) 

l(x.) = L ni ln(pJ, 
i=l 

noting that the last a-1-b coordinates are given zero weight, so that the objective 
function is not strictly concave any longer. 
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Next, we define the suitable set over which the optimization will take place. 
The set of latent distributions that give extended likelihood vectors that meet 
our constraints lie in the set 

.Jt;ons = .Jt* n {x:q = h 0 } n {x:r::::; k 0 }. 

The observation to be made here is that .Jt;ons is a convex set, and so we can 
establish some results directly about this optimization problem. 

PROPOSITION 28. If the likelihood vector curve is closed and bounded and 
the mixture set contains points of positive likelihood, then: 

1. !{there are only linear equality constraints, then there exists a unique max­
imizing vector L. 

2. If there are both equality and inequality constraints, then the maximum 
likelihood vector may not be unique, but there. does exist a convex set of 
maximum likelihood solutions. 

3. In either case, all solutions can be represented as a mixture with D + a + b 
or fewer components. 

PROOF. For part 1, we note that the equality constraints form .Jt;ons by 
taking a slice through .Jt*. The resulting cross section set is still of dimension 
D and the objective function is still strictly concave on this set. The strict 
concavity gives the uniqueness. Concavity implies the presence of the solution 
on the boundary of .Jt~ns and.hence the boundary of .Jt*. 

For part 2, we lose strict concavity of the objective function on .Jt;ons when 
we have inequality constraints, because the coordinates of x corresponding to 
the inequality constraints can now be varied without affecting the objective 
function. Under nonstrict concavity, we can only make the weaker statement. 

Part 3 follows from the fact that the solutions must lie in the boundary 
of the set .Jt*, so we can apply Caratheodory's theorem with the dimension 
reduced by one. o 

7.2.5. A simple algorithm. Problems of this type can be solved by the tech­
nique of Lagrange multipliers. We will describe here the case where all con­
straints are ofthe linear equality type. Our problem is then to jointly maximize 
over Q and the Lagrange multipliers A1, ... , Aa the objective function 

L ni 1n(Li( Q)) + A1[h1( Q)- hn + · · · + Aa[ha( Q)- h~]. 

Our approach will be to treat the Lagrange multipliers A. as fixed, and to 
maximize just over Q at first. We can readily find the gradient function for 
this new criterion to be 

(7.7) 

With this gradient function, we are ready to solve the problem. We can 
either use a straightforward gradient algorithm from this point, or we can 
use the EM algorithm with constraints, and just use this gradient function to 
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check the convergence. Our output will be a mixture solution fb._(cp). Note that 
the Lagrange gradient (7.7) does not depend on the initial condition!' specified, 
but only the multipliers A. themselves, and so the same is true of Qx(cp). 

Our next observation is that even though this Qx ( cp) need not satisfy our 
initial constraints, we can easily solve for the set of linear constraints that it 
actually does satisfy: 

J h1(cp) dQ(cp) = J h1(cp) dQx(cfJ) := hi(A.) 

J ha(cfJ) dQ(cp) = J ha(cfJ) Qx(cp) := h~(A). 
Checking backward, we find that if weA had started with hi(A.), ... , h~(A.) as 
our initial constraints h~, ... , h~, then Qx(cfJ) and A1, ... , Aa would have been 
the solutions to the Lagrange multiplier problem. 

That is, we did not obtain the value IL(h~, ... , h~,) of the profile likelihood 
with our original h~, ... , h~, but we do end up with another value of the profile 
likelihood, namely, 

IL(hi, ... , h~). 

It follows that reconstruction of the profile likelihood can be carried out by 
interpolation over a selected region of Lagrange multiplier values, chosen to 
give h* values in the right region. This operation is particularly simple if there 
is a single constraint function h (cp) which is nonnegative, because then h*(A) 
is monotonically decreasing in A. [Exercise.] 

7.3. Smooth estimates of Q. This author is not, on the whole, in favor of 
the idea of using continuous densities to estimate the latent distribution. Al­
though the argument that nature is continuous has some compelling features, 
in most models the level of information about the latent distribution is simply 
too small to consider any discrimination about the form of this distribution. 
In essence, as indicated in Chapter 1, one can obtain reasonable estimates 
or intervals only for the smoothest of functionals of the latent distribution, 
and the goal of actually discerning the true density is typically impossible for 
all practical purposes. However, there are certainly some examples, especially 
in image analysis, where the prior information that the picture is relatively 
smooth is important in performing a useful analysis. 

Therefore, some further references in this regard will be given for the sake 
of readers with a particular statistical ·interest in a smooth estimator. In addi­
tion, at the end there will be a suggestion of my own about how to directly use 
the nonparametric likelihood approach and still obtain a smooth estimator by 
maximum likelihood. 

7.3.1. Roughening by smoothing. One approach that has been taken is 
to take a very smooth initial estimator, such as normal latent distribution, 
and apply the EM algorithm to it for a few steps. The EM algorithm formula 
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generalizes very simply to the gradient updating of density functions by the 
formula 

If we start with a normal density, the first step takes us to a mixture of n 
normal densities, each with smaller variance. Laird and Louis (1991) call this 
"smoothing by roughening." A similar approach is recommended by Vardi and 
Lee (1993). 

7.3.2. Deconvolution. Another approach is to extend the idea of kernel­
based density estimation into the domain of the latent distribution. There 
have been a number of papers in this regard, of which we might mention 
Fan (1991). The method usually relies on the convolution type mixture and is 
found in the literature under the keyword deconvolution. The most important 
lesson from this literature is that the best possible rates of convergence are 
extremely poor, and therefore density estimation is practically impossible. 

7 .3.3. Series expansion. Another set of workers have developed analogues 
of series expansions to use for fitting the latent distribution smoothly. Gal­
lant and Nychka (1987) called this a semi-nonparametric approach. A similar 
approach is carried out by Walter and Hamedani (1991) in the context of em­
pirical Bayes estimation. 

7.3.4. A likelihood method. We can easily extend the nonparametric max­
imum likelihood idea to construct estimates with smooth densities possessing 
any prespecified degree of smoothness. In particular, we can choose the esti­
mated density to have a likelihood nearly that of the global nonparametric 
maximum likelihood estimator. 

We start with a family of densities g( ¢; fJ, 7) on the parameter space .0. The 
parameter fJ is assumed to determine the central location of this density and 
7 is a dispersion parameter, with the distribution concentrating about fJ as 
7 -+ 0. Of course, the normal density is such a family, but in many situations 
the natural conjugate density family might be more suitable because it would 
avert numerical integration problems. 

If we have a known component model, there might be a natural way to con­
struct a kernel family that gives some target smoothness to the probabilities 
over physically neighboring components. For example, in positron emission 
tomography, one could construct a discrete distribution over the sites cp that 
are neighbors to site 0, with the dispersion parameter 7 reflecting the amount 
of mass spread to the neighbors. 

Ideally this construction is done so that we can explicitly calculate the 
marginal distribution of X when g is the latent distribution. 'rhat is, we 
desire 

f.*(x;Oj,7) = f {(x;cp)g(cp;Oj,7) dcp 
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to be readily calculable. Note that under our specifications, as r ---+ 0 this 
density should go to the unicomponent density f ( x; () J), and we so assume. 

Suppose we replace our basic discrete class of latent distributions L, 7T J Ac/>j 
with arbitrary convex combinations of latent distributions of the form 

L 7Tjg(cf>; Oj, r). 

The resulting class of mixture densities for X can now be expressed as convex 
combinations of new family of basic densities, namely, 

X"' L 7TJf*(x; OJ, r) = j f*(x; (), r) dH(O). 

Now we can describe a strategy. For each fixed r we can calculate the 
NPMLE for this new family of mixtures. If the answer is fin then we have a 
resulting smooth density estimator for the original problem, namely, 

Qr(c/>) == J g(cf>;O,r) dHr(c/>), 

with corresponding distribution Qr. The selection of r can be based on like­
lihood considerations. 'I'he NPMLE for the problem necessarily has higher 
likelihood, but if we target a fixed difference 

lnL(Q) ·-lnL(Qr) = 8, 

then consistency will follow from the Kiefer-Wolfowitz (1956) result. 
Moreover, if we set 8 sufficiently small, say 0.005, the arguments of Chapter 

6 imply that the resulting estimator will differ very little from the NPMLE in 
inference for nonparametric functionals. However, this will come at the cost 
of losing much of the smoothness of the estimator. 
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