
CHAPTER 5 

Nonparametric Maximum 
Likelihood 

We now return to the nonparametric maximum likelihood problem that was 
introduced in Section 1.6 of Chapter 1, and do the necessary theory to prove 
the results given there. 

The problem is to maximize the mixture likelihood 

(5.1) L( Q) = n Li( Q) = u [/ Lj(cp) dQ(cp) rJ 
Here L1(cp) is the likelihood kernel, generally the one-component likelihood 
for a single observation, say y i, and n i is the number of times y i was ob­
served. The likelihood kernel may well depend on other auxiliary parameters 
and covariates, which will be held fixed in this discussion. As far as the max­
imization problem is concerned, the only critical assumption is that L 1 is a 
nonnegative function of cp and that the number D is minimal among all such 
product representations. That is, the terms have been grouped to the maximal 
extent. In the multinomial setting, this can substantially reduce the number 
of terms in the product. 

5.1. The optimization framework. The basic results concerning the 
nonparametric maximum likelihood estimator Q have already been outlined 
in Section 1.6. These results can be derived by putting the problem of likeli­
hood maximization into the formal setting of numerical optimization theory. 
That is, we view it as a problem of the form: maximize an objective function 
l(p) over the elements p of a set P. If this is done properly, then the results 
follow readily from standard optimization results. 

5.1.1. Reformulating the problem. The key to putting this problem into 
this framework is to examine (5.1) and recognize that the maximum depends 
directly on the possible values of the mixture likelihood vector 

L(Q) = (Ll(Q),L2(Q), ... ,Lv(Q))'. 
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We change our perspective on this problem from maximizing the likelihood 
over all latent distributions Q into the problem of determining which of the 
eligible classes of mixture likelihood vectors L( Q) gives the largest value to 
the likelihood. 

We break the formulation into three steps. 

STEP 1. Construct the feasible region of (!ltD. It will be the set of all possible 
fitted values of the likelihood vector: 

.;tt = {L( Q) = (£1( Q), ... , Lv( Q))': Q a probability measure}. 

We have already seen sets of this type in Chapter 2. 

STEP 2. Define the appropriate objective function, here (using the log 
likelihood) 

K 

l(p) :=: L nj ln(pj), 
j=l 

which we wish to maximize over all p E .;tt. 

Suppose we have found that element of .;tt, say L, that maximizes this 
objective function. 

If we were to solve the mixture problem using only these two steps, then 
there is one more step to carry out: 

STEP 3. Solve for the maximum likelihood estimators Q by solving from 
the known L for the latent distribution Q via the D equations 

L(Q) = t. 

It is instructive to compare this formulation of the problem to the normal 
theory least squares problem. In the latter one minimizes the objective func­
tion I: ( Yi - y J2 over the feasible set $i that consists of all vectors y of possible 
fitted values under the model. Corresponding to Step 3, the regression param­
eters ~ can therefrom be determined by solving, from y, 

y=X~. 

Much of the theory we derive here merely says that our optimization problem 
has many of the nice features of the linear regression problem. We examine 
the key structural features that give us this result. 

5.1.2. The feasible region. The feasible region .;tt has two key features that 
are of importance to us in the optimization problem. First, it is a convex set. 
As we shall see, this together with the concavity of our objective function, 
ensures that this is in a class of nice optimization problems. 



110 MIXTURE MODELS: THEORY, GEOME'rRY AND APPLICATIONS 

The second key feature is that the convex feasible region can be expressed 
as the convex hull of a basic set f. In our case, if we define the unicomponent 
likelihood vector to be 

L<P = (LI(¢), ... ,Lv(¢))', 

the mixture likelihood vector for the unicomponent model with parameter¢, 
then 

L(Q) =I L(¢) dQ(¢). 

It follows that if we define the unicomponent likelihood curve 

f = L(¢): ¢ E 0}, 

the desired mixture set is then 

At = conv(f). 

The elements of r can be thought of as serving as the convex version of a basis, 
in that we can represent all eligible mixture vectors by convex combinations 
from this basic set. 

We note the convex hull representation distinguishes this problem some­
what from the standard convex optimization problem, in which the convex 
region is expressed in terms of constraints that are satisfied by elements of 
the set. 

We have already considered convex hull representations of a similar type 
in Chapter 2. In that chapter we considered the convex hulls of unicomponent 
density vectors fc/J, where 

'L.f(t;¢)=1. 
t 

It follows that if the likelihood kernels are multinomial densities f( t; ¢ ), 
and nt > 0 for all t, then we can equate the likelihood vector Lq, with the 
density vector fq,. Otherwise, even in the multinomial model, the mixture like­
lihood vectors do not lie in the probability simplex, as we omit components for 
which nt = 0. 

When the likelihood is smoothly parameterized, then r is a curve. For ex­
ample, suppose f(x; ¢) is the Cauchy location density 

7T-1[1 + (x _ ¢)2]-1. 

In Figure 5.1, we show the curve r for a pair of observations (y1, y2 ) that are 
separated by two units, such as ( -1, +1), so that the curve has the form 

(We have done the usual simplification of removing constant factors, here 7T--l, 
from the likelihood.) The convex hull At of r includes the regions bounded by 
the dashed lines. 
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FIG. 5.1. The unicomponent likelihood curve r for two Cauchy observations. 
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It is not difficult to show that if the set r, is closed, then conv(f) is closed. 
This will be of some importance to the existence of the nonparametric MLE, 
so we offer some comments after stating the theorem. 

5.1.3. The objective function. The second key feature of our reformulated 
optimization problem is the concavity of the objective function. Since we are 
working in a convex set with a convex hull representation, it is natural to 
examine the properties of the objective function in terms of its behavior along 
paths 

Pe=[l-~::]po+epl 

between pairs (p0, p 1) of elements of the convex set. Restricted to this path, 
the objective function can be viewed a function of the parameter e. 
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We first determine the path derivative of the log likelihood objective func­
tion as we go along the path between any two points Po and Pl in the positive 
orthant: 

(5.2) 

The log likelihood objective function is strictly concave along any path: 

d2 (pl· ---Po· )2 
- 21([1- e]po + ep1) =-L _ __!:__2--~- < 0 ifpo i= Pl· 
de p~ 

It follows that for any Po -:j: p1, we have the likelihood-gradient inequality 

(5.3) 

(This can be proved by creating a first order 'raylor expansion in e about e = 0 
of the likelihood along the path and using the second derivative property to 
show that the remainder is negative.) This inequality will suffice to prove our 
fundamental results about the mixture maximum likelihood estimator. 

5.2. Basic theorems. We are now ready for the main results, here given 
more formally than in Chapter 1. 

5.2.1. Existence and support size. 

THEOREM 18. Suppose that f is closed and bounded and that .Jt contains 
at least one point with positive likelihood. Then there exists unique L E a.Jt, 
the boundary of .Jt, such that L maximizes l(p) over .Jt. 

The statement is a slight correction of Lindsay (1983a), which failed to state 
that if no point in .J{ has positive likelihood, then the uniqueness of the max­
imum must fail, because then all elements have likelihood zero. This theorem 
corresponds to Parts 1 and 4 of the mixture NPMLE theorem described in 
Chapter 1. 

The proof is an elementary application of a fundamental result from opti­
mization. We invite the interested reader to consult a general book on convex 
optimization, such as Roberts and Varberg (1973), to gain further perspective 
on the following description. 

The objective function l is strictly concave on the positive orthant. In par­
ticular, this means that the upper sets 

Uc = {p: l(p) :::: c} 

are closed convex sets. Since r is closed and bounded, so is .J{, and therefore 
the likelihood objective function l takes on some maximum value at some 
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FIG. 5.2. The geometry of the likelihood maximization problem, showing the unique solution. 

point with strictly positive likelihood. Geometrically, that uniqueness can be 
seen to correspond to the unique contact point between the upper set U = {p: 
l(p) 2:: l(L)} and JU. (See Figure 5.2.) 

5.2.2. Closed and bounded? Before proceeding, we wish to address one 
question about the preceding result that sometimes arises in application. 
Boundedness of the curve r is essential, because if the likelihood vectors 
have unbounded components, then one can construct unbounded likelihoods. 
However, the requirement that the set r be closed is more of a technical re­
quirement to make the theory simple. I have not found a case where this is a 
significant issue. To illustrate, we consider some examples. 

<~> There will be cases, such as the mixture of Cauchy densities above, where 
the parameter ¢ has the range ( ---oo, +oo ). To ensure closure of r, we must 
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include the left- and right-hand limits; in the Cauchy example, the likeli­
hood vector Lq, converges to 0, the origin in both directions. We can include 
this limit point in the set f without real consequence because it can never 
appear in the maximizing mixture. (Otherwise a contradiction arises, since 
one could eliminate it from the latent distribution and strictly increase the 
likelihood.) 

• Consider next a distribution such as Bin(n, p), whose boundary parameter 
values p = 0 and p = 1 correspond to true distributions. These are limit 
points off, so that even if we were to set the parameter space as (0, 1), we 
must necessarily include them in r. Since p = 0 and p = 1 correspond to 
c/J = ± oo in the natural parameterization, we must allow for the possibility 
of putting mass at oo in our estimated latent distribution for the natural 
parameter unless we prespecizy a finite closed range, say [L, U] for c/J. This 
comment applies to many contingency table models with log linear modeling, 
and is relevant in the Rasch model discussion of Lindsay, Clogg and Grego 
(1991). 

• If the likelihood kernel is discontinuous in c/J, then the set .Jt1 may depend on 
the version of the density function that is used. For example, iff is uniform 
(0, c/J), then there are two natural versions of the likelihood L(<jJ; x) at c/J = x, 
either 1/ x or 0, depending on whether one chooses right or left continuity: 
In Figure 5.3 we have plotted such a unicomponent likelihood curve for the 
case when there are two observations, x1 = 1 and x2 = 4. To make f closed, 
we need to include all the possible limit points, which for c/J = 4 means 
including both (0.25, 0) and (0.25, 0.25). However, even though the closure 
of f appears then to contain two points L( cjJ) corresponding to the same 
value of c/J, only one of them is able to play a role in the maximum likelihood 
solution. This is because mixing using the point on f corresponding to using 
the value ljx, here (0.25, 0.25), must necessarily create a strictly greater 
likelihood than the other value, here (0.25, 0), and so will eliminate the 
other from being in the final mixture. [Exercise.] This remark can clearly be 
applied to any similar univariate parameter likelihood where the individual 
components each display a distinct finite set of discontinuities-while in 
theory we would need to include both right and left limits to apply the 
theorem, the maximum likelihood estimator will only use the limit point 
with the larger component values. 
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FIG. 5.3. The uniform likelihood curve, together with its limit points. 
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The moral of this story is that, for many problems, as long as one is careful 
about defining the parameter space to be a closed set and the likelihood vector 
components are defined to be maximal at discontinuities, there will exist a 
unique maximum likelihood estimator L, even if r is not technically closed. 

5.2.3. Gradient characterization. We now turn to the second part of the 
mixture NPMLE theorem, the gradient characterization. Recall from Sec­
tion 1.6 of Chapter 1 the gradient function 

DQ(¢) == ~ni [~:~~~ -1]. 
As derived there, this is the path derivative of the log likelihood ln(L( Q)) for 
the one parameter mixture 

evaluated at 1T = 0. 
We can relate this to our formal optimization theory as follows. From this 

we see that 

That is, the gradient function equals the first derivative of the objective func­
tion l along the path from the current fitted vector toward a basic vector. (That 
the derivatives match up in this way is a consequence of the linear structure of 
the mixture model). Put into this form, we are then in the setting for classical 
optimization theory. We can record the basic result in terms of a theorem: 

THEOREM 19. The following three statements are equivalent: 

1. Q maximizes l( Q). 
2. Q minimizes supq, DQ(¢). 
3. supq,{DQ(¢)} = 0. 

PROOF. If we let L play the role ofp0 in the likelihood-gradient inequality, 
we see that for Q to maximize the likelihood, it suffices that 

d1CL,L(Q))::: o, 
for all Q. Therefore, it is sufficient that 

d1(L, L(c/J))::: o, 
for all ¢; hence statement 3 implies 1. Item 1 implies 3 because ifthe gradient 
is anywhere positive, we can necessarily increase the likelihood along that 
path. Finally, Q must minimize the sup gradient at the value 0, because if 
there were Q1 with supremum less than zero, we could use the likelihood­
gradient inequality (5.3) to show Q1 has greater likelihood than Q. o 
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5.2.4. Properties of the support set. This completes the proof of the second 
part of the theorem. Now, the third part: 

THEOREM 20. The support of any maximum likelihood estimator Q lies in 
the set 

PROOF. Consider the one parameter family of mixtures 

If cp is a support point of Q, then Q8 continues to be a true probability measure 
for some negative values of e. It follows that the maximum value is taken on 
an interior point of the allowable range of s. This implies that the derivative of 
the likelihood along the one parameter path equals zero at this point; however, 
this derivative is just the gradient function D Q ( cp). o 

These results have very simple geometric interpretations. For any candi­
date mixture likelihood vector L in .!It, the gradient function determines a 
hyperplane 

that contains the point L. If L is indeed L, the maximum likelihood point, 
then this hyperplane :It is a support hyperplane to the set .!It and separates 
that convex set from the convex upper set of the log likelihood objective 
function U = {p: l(p) ::: l(L)}. Lying exactly in the support hyperplane 
are all the support vectors L¢i. See Figure 5.4. This interpretation al­
lows us to apply Caratheodory's theorem (Section 2.3.4) to characterize 
the existence of a discrete latent distribution that maximizes the likeli­
hood: 

THEOREM 21. The solution L can be represented as L( Q), where Q has no 
more than D points of support. 

We note that if we are in the setting of the multinomial exponential family 
of Chapter 2, we can employ the superior bounds on the mixture representa­
tions that were given there, with a bound of roughly D j2. (See the discussion 
of index in Chapter 2 for more precise descriptions.) However, we emphati­
cally note that it was absolutely critical that the mixture likelihood vectors 
lie in the probability simplex for this reduction to take place. For example, 
in a normal mixture model with fixed a-2 , one can construct sets of data for 
which the bound D is attained simply by spreading the observations widely 
apart. 
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5.3. Further implications of the theorems. 
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1.4 

5.3.1. Duality theorem. We specify two versions of the dual problem, with 
the understanding that they are equivalent, but the first one arises naturally 
in the context of the problem, whereas the second is in the form of a classical 
optimization problem: 

DUAL 1. Minimize l(p) subject to the constraints p:::: 0, and d 1(p,L(cp))::::: 
0, for all cp E !!. 

DUAL 2. Maximize l(w) subject to the constraints w:::: 0 and "L WiLi(cf>)::::: 
0, for all cp E !!. 
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THEOREM 22. If the mixture MLE solution is L, then p = L solves Dual 1 
and Wi = nil Li solves Dual 2. 

PROOF. First, L satisfies the constraints of Dual 1 by our gradient char­
acterization theorem, so it is a feasible solution. Next, the fact that L is in 
the mixture set and the definition of the constraint set imply that for any 
other feasible point p, d 1 (p, L) ::5 0. The likelihood-gradient inequality (5.3) 
therefore implies that 

l(L)::::: l(p) + d(p,L) :::::Z(p), 

for any other feasible p, as was to be shown. Dual 2 can then be solved simply 
by a change in variables in Duall, namely, Wi :=nil Pi· o 

We now note that Dual 2 has the form of a classic optimization problem: 
minimize a convex objective function ( -l) over a region described by linear 
inequality constraints. The solution to this can therefore be found by using 
standard optimization programs, with the possible limitation that there are 
infinitely many linear constraints whenever there are infinitely many c/J, a 
subject we must deal with later. 

5.3.2. Gradient bounds on the likelihood. The result that follows shows 
that if we compute the log likelihood at a candidate estimator Qc, getting 
l (LQc), then we can determine from the gradient function D Qc ( cjJ) not only if 
we have the solution, but also both upper and lower bounds on the maximum 
value of the likelihood. 

THEOREM 23. Let Qc be the current mixing distribution in an iterative 
algorithm designed to find the maximum likelihood estimator. Define 8 = 
supq, DQc(c/J). Then 

A(8)::::: l(L) -l(LQJ::::: B(8)::::: 8, 

where B(8) := nln(l + 8/n), A(8) := B(8)- n*ln[l + 8/n*] and n* = n -·· 
mink{ni}. 

PROOF. For the lower bound, see the not-so-simple argument in Lindsay 
(1983b). For the upper bound, we can use Dual 2. The point 

[n: 8] LQc 

meets the linear constraints of the optimization problem, so it is a feasible 
solution. It follows that 

l ([n: 8 J LQc) ::5 l(w), 

which gives the desired upper bound. o 
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In any algorithm, it is useful to have a way to determine how much more 
computation might be needed to converge to the solution. The preceding result 
shows that the maximum of the gradient function can be used for this. We will 
consider convergence criteria for algorithms further in the next chapter. 

5.3.3. Link to m-component methods. The preceding results enable us to 
contrast the properties of the global maximum likelihood estimator of the 
latent distribution Q, and estimators formed by maximizing the likelihood, or 
solving the likelihood equations, when the latent distribution is restricted to 
having a fixed number of support points. In this section, we extend the results 
of Section 3.3. 

Let Qm be a latent distribution, such as described in Chapter 3, that maxi­
mizes the m-point mixture likelihood. Earlier we derived part of the relation­
ship between the gradient function and the EM algorithm that is often used 
to find Qm. That is, we noted that the EM algorithm for the weights can be 
written as 

irj,new = irj,o!d[1 + n-1 DQ(cf>)], 

so that the weights increase or decrease according to the sign and magnitude 
of the gradient function. In addition, it is easy to check that the new support 
points move left or right from the old ones in agreement with the direction of 
the greater gradient. [That is, if DQ ( 4>) is positive at a support point cp, then 
the EM algorithm puts the new point to the right.] 

Next, the following basic results are from Lindsay (1981): 

THEOREM 24. Suppose 4>* is a support point of Qm. If the gradient function 
is twice differentiable in 4> at cp*, then: 

1. DQ (cp*) = 0. 

2. D'Q~~ ( 4>*) = 0. 

3. D'~"' (4>*):::: L: nk[(Lk(cf>*)/(Lk( Qm))]2• 

PROOF. [Exercise.] These arise in a straightforward way through manipu­
lation of the likelihood equations and the formula for the gradient. o 

The global MLE is, of course, an m-point MLE as well, for some m, so that 
it satisfies all three of the above properties. However, it satisfies a stronger 
property than statement 3 because each support point is at a local maximum 
of the gradient and so 

5.3.4. Moment and support point properties. We have already mentioned 
some properties of the non parametric MLE in Section 5.2.4. We now mention 
a few further results that can be found in Lindsay (1981). One of the more im­
portant results is relevant in the search of the parameter space !1 for potential 
support points. 
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PROPOSITION 25. Suppose that the parameter cp is real-valued and that for 
every i, the likelihood kernel Li(¢) is unimodal in¢, with unique mode at ;pi· 
Then all the support points of Q lie in the interval 

[m~n ;pi, m~x ¢i]. 
L L 

PROOF. [Exercise.] Show that the gradient function is increasing whenever 
¢ :::: mini ;pi and decreasing for ¢ :::: maxi ;pi· Since the latent support points 
are in the set of maxima to the gradient, this proves the result. o 

The next result relates to the dispersion score vz of Neyman and Scott 
that was introduced in Chapter 4. We recall from Section 4.1 that if the one­
component solution is also the NPMLE, then it is necessarily true that 

I:U2C ¢,xi) ::; 0, 

because this score is also D~ ( ¢) and we would otherwise have a local failure of 
the gradient inequality. We can extend this result to any of the support points 
of Q, say¢*, by recalling the second derivative inequality, D~(¢*):::: 0. With 

some further manipulation, we can relate this again to the dispersion score 
in that it is equivalent to requiring that 

L E[vz(<P, xdh(<P) I X= xi; Q]:::: 0, 

for every nonnegative function h(cp). In the one parameter exponential family, 
(2.2), one can use the last equation to show that the sample variance is always 
smaller than the estimated variance under the model: 

n-1 I)xi- .X) 2 s Var(X; Q). 

One can strengthen this dispersion result--that the fitted model is biased 
in the direction of overdispersion-even further by using the full force of the 
gradient inequality. The following is a challenging exercise: Let [;1, ... , f;m be 
the support set for Q in a one parameter exponential family, in the natural 
parameter. For every value oft such that t+t;i is in the parameter space for all 
i, the following inequality of sample and model moment generating functions 
holds: 

n-1Letx, ::S J etxdF(x;Q). 

This result is not in Lindsay (1981), but can be proved by using the gradient 
inequality and the fact that the exponential family density has exponential 
form. Differentiating twice with respect to t leads to the variance inequality 
above. 

5.4. Applications. At this point we offer some simple examples that may 
help elucidate these mathematical structures and methods. 



NONPARAME'rRIC MAXIMUM LIKELIHOOD 121 

5.4.1. A binomial mixture. First, we have some plots that illustrate how 
one can use the gradient function. In Figure 5.5 we have shown a sequence 
of plots for a particular sequential optimization scheme. The data are the 
sibship data of Chapter 2, and we use the binomial mixture model discussed 
there. In the algorithm that was used, the nonparametric mixture estimator 
was found by first finding the best one support point model, then the best 
two and so on, until we find that we can no longer increase the likelihood by 
adding support points; that is, the gradient inequality is satisfied. One can 
use the EM algorithm with a fixed number of support points, iterate until 
convergence and then check the gradient function. If it is greater than zero at 
some point cf>, then one can add that support point to the rest in a way that 
increases the likelihood and then return to the EM, but with one larger support 
size. 

The first plot shows the best two support point model. In accordance with 
the above discussion, we see that the two support points show up as zeros and 
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the derivative of the gradient is zero there. However, the gradient inequality 
is certainly violated, and indeed the support points are local minima to the 
gradient. Next, the three point fit also violates the gradient inequality and 
we can see that the likelihood can be increased by adding mass near p = 1. 
When this is done, we achieve the gradient inequality, as can be seen in the 
lower two frames. 

5.4.2. Empirical CDF. In Figure 5.6 we show the rather simple geometry 
that arises for the nonparametric distribution function problem of Section 
1.7.1. In this case, the likelihood kernel was Li(cf>) = ~[4> =xi]. Thus for a 
sample of size two, the likelihood "curve" f consists of three points only: ( 1, 0) 
at 4> = x1, (0, 1) at 4> = x2 and (0, 0) for any other value of cf>. As noted earlier, 
the nonparametric maximum likelihood estimator corresponds to the sample 
proportions at the two observed values, a point on the simplex determined by 
the convex hull of these three points. 

We can use this problem to illustrate the dual problem approach. Here the 
constraints of the dual problem become 

Vcp -¢> Wi :S n. 

The problem is to maximize I: ni ln(wJ subject to these constraints. The so­
lution is obvious: Set Wi equal to its maximal value n. This in turn implies 
that the solution to the primal problem is L = nifn. Thus turning to the dual 
problem simplifies the optimization problem to a triviality. 

5.4.3. Known component distributions. We return briefly to the case of the 
known component densities (introduced in Section 1.3.1). Nonparametric max­
imum likelihood in this case is just a special case ofwhat we have described, in 
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FIG. 5.6. The likelihood curve for the nonparametric distribution problem. 
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which the latent variable cfJ is just the index of the known component density. 
Roeder, Devlin and Lindsay (1989) give a relatively complete description of 
the implications of the theorem in this setting. In addition, see Vardi and Lee 
(1993), where one can find references to literature in areas other than mixture 
models in which pieces of the non parametric maximum likelihood theory have 
been developed. 

5.4.4. The multinomial case. We recall the multinomial geometry dis­
cussed in Section 2.3. One nice feature of the multinomial problem is that 
one can picture the behavior of the nonparametric maximum likelihood 
estimator L as a function of the sample frequencies vector, denoted by d in 
Chapter 4. For example, it is clear that if d falls in the set of eligible mixture 
density vectors, then L = d (since d always globally maximizes the likelihood 
objective function l over the entire probability simplex and by assumption is 
also a mixture vector). This property was used in Lindsay, Clogg and Grego 
(1991) to show that the nonparametric mixture approach was equivalent to a 
conditional approach for estimating certain auxiliary regression parameters. 

If d is not in the set of mixture vectors, then one can partition the proba­
bility simplex into regions corresponding to the number of components in the 
maximum likelihood solution. The reader is invited to consider how this might 
be done using the examples of Chapter 2. 

5.5. Uniqueness and support size results. The final problem we ad­
dress is the uniqueness of the estimator of the latent distribution, saved for 
last due to its technical difficulty. We will here just describe the basic issues 
and refer the reader desirous of more details to other sources. 

Thus, to date, we have shown the uniqueness of the estimated mixture 
likelihood vector L. Can we infer from this the uniqueness of the latent distri­
bution estimator Q? That is, can we infer from L the latent distribution itself 
by solving for Q in 

L =I L(c/J) dQ(c/J). 

From a geometric point of view, this may seem unlikely because the interior 
of the convex hull of a curve, such as At= conv(f), generally has infinitely 
many representations in terms of elements of its generating set f. (We saw 
this in Chapter 2.) What saves the day for us is that the solution Lis on the 
boundary of At. We describe a strategy for proving uniqueness that works for 
many important examples. 

5.5.1. The strategy. We first note that the gradient function at the maxi­
mum likelihood estimator is completely determined by L and is not related to 
the choice of Q. Thus from L we can unambiguously determine the full set of 
points { o/1, ... , cPr} that satisfy 

(5.4) 

and so are candidates to be in the support set of Q. 
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TASK 1. Show that (5.4) has at most r ::::: D solutions, subject to D Q ( cp) ::::: 0; 
that is, the solutions must also be local maxima. The proof of this property 
must depend on the gradient function having a polynomial type structure that 
bounds the number of solutions to such equations. [Although this is related 
to the ideas of Chebyshev systems (Chapter 2), those ideas are not strong 
enough to work here.] 

If Task 1 is completed, the set of possible support points is fixed at 
{ ¢1, ... , c/Jr} and we proceed to: 

TASK 2. We must now see if the weights are uniquely determined by the 
equations 

L 1TjL(c/Jj) =f... 
This is just a set of linear equations in w i, so it suffices to show that every set 
of D unicomponent likelihood vectors {L(c/Jj)} is linearly independent. This 
is simpler than Task 1, in that we can apply the ideas of Chebyshev systems 
directly to obtain this result, as discussed in Chapter 2. 

5.5 .2. A geometric approach to Task 1. The first proofs of uniqueness used 
special properties of the likelihood kernel involved to complete Task 1 [for 
the Poisson model, see Simar (1976); for the exponential, see Jewell (1982)]. 
In essence, in these cases, the gradient could be written as an exponential 
polynomial, and certain long known bounds on the number of zeros to these 
polynomials could be used [P6lya and Szego (1925)]. However, this was a piece­
meal approach to the problem, when clearly there were more general truths 
at work. 

In Lindsay (1983a), the problem was attacked from a geometric point of view 
for a unicomponent exponential family and it was shown that the number of 
zeros to the gradient function could be bounded by considering the geometric 
structure of the unicomponent likelihood curve. In effect, there was a way 
to consider the complexity of the curve r that gave a bound on the number 
of support points; the bound depended on the number of zeros to a certain 
polynomial, but was always less than D. 

These results are easy to visualize for the case of two observations. In Fig­
ure 5.7 we have shown how, in the case of the normal mixture, with scale 
parameter 1, the shape of the likelihood curve L( 4>) depends very strongly 
on the distance between the two observations. If the observations are 1 unit 
apart, Say Xl = -0.5, X2 = 0.5, We get the "balloon" shape of f 1, enclosing 
a convex region. It is clear that the NPML estimator has one support point. 
If the observations are 3 units apart, shown as f3, the curve has a substan­
tial indentation and the corresponding latent distribution estimator has two 
support points. The boundary case occurs when the observations are exactly 
2 units apart, shown as r2. In the two-dimensional case, these results can be 
obtained by analyzing the sign of the curvature of the likelihood curve. Unfor­
tunately, these results were very difficult to obtain in higher dimensions, and 
hard to generalize outside the exponential family. 



00 
0 

1.0 ci --- ' 

0 
0 

0.0 

NONPARAMETRIC MAXIMUM LIKELIHOOD 

0.2 0.4 0.6 0.8 

FIG. 5.7. Three different unicomponent likelihood curves for the normal model. 
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5.5.3. A gradient function representation. Therefore, we examine a great 
simplification of the proof. Since it relies on a powerful result from the theory 
of totally positive kernels, we merely illustrate the general method of attack 
here without pretending to be complete. For more, see Lindsay and Roeder 
(1993). 

The key to the result is deriving a representation of the gradient function 
of the form 

(5.5) 

which we now construct. We start with the easy-to-prove representation 

f[ f(x·cf>)J ~ 
n-1DQ(c/>) = f(x; Q) d[F(x)- FQ(x)] 

Next, define the positive measure A by the relationship 

dA(x) ~"' d[P, + FQ](x). 
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(If we were to divide by 2, we would have a probability measure representing 
the mixture of the empirical CDF and the mixture distribution under Q .) 
The key here is that A is a measure that dominates (in the measure-theoretic 
sense) both the empirical CDF F and the model distribution F Q, regardless 
of whether the latter is discrete or continuous. 

The Radon-Nikodyn theorem therefore implies that we can write density 
functions h1 and h0 , with respect to the measure dA(x), for F and FQ, and 
that the representation (5.5) holds. We can calculate the densities explicitly: 
Suppose that F has mass F( {yk}) at a set of observed data points Y1. ... , y x. 
(In our case, most likely K = D, the number of distinct factors in the likeli­
hood.) Then we can write the Radon-Nikodyn derivatives as 

and 

h () dF(x) ~ ----·, xE{Yl, ... ,yx}, ~ I F({x}) 
1 x = dA(x) = OF,({x})+FQ({x}) 

d F Q ( x) l ~ F Q ( { x}) --' 
ho(x)= dA(x) = [({x})+FQ({x}) 

otherwise, 

X E {yl, ... ,yx}, 

otherwise. 

Returning to the gradient representation (5.5), we next recognize that it 
has the form 

C(cf>) = f A(x; c/>)B(x) dA(x). 

We next apply some powerful results from Karlin (1968). If A(x; cf>) is a strictly 
totally positive kernel, A is a positive measure and the function B(x) is nonzero 
and has no more than M sign changes (relative to the measure A), then the 
variation diminishing property of the totally positive kernel implies that C ( cf>) 
has no more than M sign changes unless it is identically zero. 

Applying this to our case, we see that the difference in densities B(x) = 
h1(x)- ho(x) can have at most 2K sign changes, one to each side of a data 
point. (It is negative between observations, but possibly positive at each obser­
vation.) It follows that if the family of densities is based on a totally positive 
kernel,· then either the gradient will be identically zero or it will have at most 
K local maxima. 

Lindsay and Roeder (1993) used this fact to show that in the exponential 
family, regardless of whether it is discrete or continuous, then either the latent 
estimator Q is unique or the gradient function is identically zero at the maxi­
mum likelihood solution and the latent estimator is nonunique. The latter can 
happen only with discrete f for which some mixtures are nonidentifiable, as 
in Chapter 2. 
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