
CHAPTER 2 

Structural Features 

This chapter is devoted to developing a mathematical understanding of the 
structures that are inherent to the mixture model, ranging from the simple 
properties of moments Up to rather complicated features of exponential family 
mixtur.es. Sections 2.1 and 2.2 contain the material of greatest practical impor­
tance because they address features of the mixture model useful for diagnostic 
purposes. The material thereafter is very important for understanding the is­
sues of identifiability of the latent distribution Q, but can be skimmed and 
returned to as needed for the later chapters. 

2.1. Descriptive features. 

2.1.1. Some simple moment results. One of the nicest mathematical fea .. 
tures of the mixture model is the simple way in which the latent distribution 
Q enters into the calculation of expectation. Simply by reordering the order of 
integration (or summation), we obtain the fact that if t(x) has expectation r( cp) 
under the unicomponent model f(x; ¢),then it has expectation J r(cp) dQ(cp) 
under the mixture model f(x; Q). This is easily shown using the latent vari­
able <I>: 

E[t(X); Q] = E[E[t(X)ici>lJ = E[ r(<P)j. 

Using the latent variable also simplifies the calculation of variances under the 
mixture model: 

(2.1) Var[t(X); Q] = Var(E[t(X)i<I>]) ·I· E(Var[t(X)i<P]). 

To illustrate these formulas, suppose that X comes from a mixture of Pois­
son densities with mean parameter¢. Then the following simple relationships 
between the marginal mean and variance of X and the latent variable <P hold: 

E(X; Q) == E[<I>], 
Var(X; Q) = Var[ <f>j + E[<l>]. 

[Exercise.] Manipulation of these equations then shows that the variance of X 
in a Poisson mixture model is inflated, compared to a unicomponent Poisson 
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model, in the sense that the variance-to-mean ratio is inflated to a value larger 
than the ratio 1 of the unicomponent model. 

Examination of the variance formula (2.1) shows that there is a general 
sense in which the mixture model will create extra variation over the uni­
component models that generate it. This section of this chapter is devoted to 
two important diagnostic features of the mixture model related to the way the 
extra variability will show up in the observable distribution of X: 

e There is a tendency for the presence of the mixture model to be evident in 
the form of multimodality. 

• A comparison of a multicomponent mixture distribution with the unicom­
ponent model yields a very strong form of stochastic ordering between the 
two, related to the heavier tails the mixture distribution will have. 

2.1.2. Shape and modality. We have already seen that in the normal mix­
ture model, having two components is not synonymous with having two modes. 
For more details on the exact conditions under which the two-component nor­
mal mixture is bimodal, see Robertson and Fryar (1969). 

Thus ifwe were to examine a histogram of data that were unimodal, we 
could not discard the possible presence of two or more normal components 
mixed together. However, by considering ratios of densities, we can greatly 
increase the sensitivity of plots. Suppose that 

gz(x) = 1Tn(x; qJl, o-2 ) + 1Tn(x; cf>z, u 2 ) 

is a two··component normal mixture density, with 

mean E[X] = E[<l>] and variance Var(X) = u 2 + Var[<l>]. 

Let g1(x) = n(x; E[X], Var(X)) be the unicomponent normal density with the 
same mean and variance as the two-component mixture. Lindsay and Roeder 
(1992b) show that the ratio g2(x)jg1(x) is always bimodal. Moreover, as x 
goes from --oo to +oo, the centered ratio 

gz(x) -- g1(x) 
·-··-·--g~(~):-

will have the sign sequence ( --, ·+-, · ·, -1-, ··· ), reflecting four crossing points of 
the density functions g1 and gz. 

The remarkable feature of this result is that the bimodality and sign 
changes occur even if the component densities. are arbitrarily close together, 
and no matter the magnitude of 1r. 

We will not give a complete proof of this result here nor a detailed look at 
how one can use this for a diagnostic in the normal problem. For the latter, see 
Roeder (1994). The complete proof relies on results in totally positive kernels 
and some properties of moment·· matched distributions. The interested reader 
will find that the technical material later in this chapter provides much of the 
background needed for understanding the proof 
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2.1.3. Overdispersion and sign changes. It is very common to find that the 
component densities used in a mixture model come from an exponential family. 
This is fortunate because there is much that can be said about the structural 
features of such exponential family mixtures. We have already noted that in 
the normal family we can be very precise about the relationship between the 
densities of the two-component and one-component models that have the same 
mean and variance. We will now develop similar results for the one parameter 
exponential family. 

We suppose that the component densities have the form 

(2.2) f(x;cp) = exp(c/Jx- l((cp)) 

with respect to some supporting measure dF0 (x) on R 1• The supporting mea­
sure contains all parts of the density not depending on cp and can be chosen 
to be one of the members of the family. 

For the reader unfamiliar with these representations, we give an example 
of a statistical model that can be put into this canonical form. For example, in 
the binomial distribution with sample size parameter n and success parameter 
p, which we denote Bin(n,p), we can let dFo(x) be the binomial distribution 
with p = 0.5. To write the density in the canonical form, cp is the log odds 
parameter ln[p/(1- p)] and 

K(cp) = nln(l·- p) ··- nln(2). 

Shaked (1980) established a number of important properties of exponential 
family mixtures. For a given latent distribution Q, suppose that f(x; c/Jo) is 
the unicomponent model that has the same mean for X as does the mixture 
distribution; that is, E[X; ¢ 0 ] = E[X; Q]. Define the ratio function by 

(2.3) R(x) = f(x; Q). 
f(x; c/Jo) 

The key results are: 

• R(x) is a convex function of x. 
• R ( x) - 1 has the sign sequence ( +, --, +) as x traverses the real axis. 

We will prove these results in the next subsection. 
These properties show that the mixture density has heavier tails than the 

mean-matched unicomponent model. Shaked used the convexity result to show 
a type of stochastic ordering between the multi component distribution and the 
corresponding unicomponent distribution: 

the distribution F Q is a dilation of F <Po. 

Here we say that a distribution G is a dilation of distribution F if J x dF(x) = 
J x dG(x) and if, for every convex function c(x), 

I c(x) dG(x) ;::: I c(x) dF(x). 
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Notice that Shaked's dilation result implies directly the overdispersion result 

Var(X; Q) ~ Var(X; c/Jo). 

[Exercise.] 
We note further that G is a dilation of F if and only if they have the same 

mean and there exists a family of distributions K(ylx), with f y dK(ylx) = x, 
such that G(y) = f K(ylx) dF(x). In our case, this means that there exists 
K(ylx) such that · 

FQ(Y) = j K(ylx) dF cf>o(x). 

Thus in the mixture case we can think of the mixture variable Y as being 
generated in two steps: first generate X = x from the corresponding unicom­
ponent model, then dilate it by generating Y from a kernel distribution with 
mean x. This, curiously, reverses the original representation, putting the uni­
component distribution in the role of the latent distribution and K in the role 
of the component density family. 

As an illustration of how these dispersion properties show up in data, we 
consider the data set in Table 2.1, which identifies the number of male children 
in 6115 sibships of size 12, collected in Saxony, Germany [Geissler (1889)]. 

Given a parenting ~ouple, we might model their children as being born 
with independent sex determination, like a sequence of Bernoulli trials with 
some constant probability p of having a male child. If so, the number of male 
children X in a family with 12 children would be distributed as a Bin( 12, p) 
random variable. In this context it is natural to ask if the probability of a 
male birth p is a latent variable, varying from family to family, or is constant 
across families. If p does vary, then we could associate with each couple a 

'l'ABLE 2.1 
Number of male children in sibships of size 12 

#Males Obs. Count Obs. vs. Fit Bin. Fit 

0 3 > 0.9 
1 24 > 12.1 
2 104 > 71.8 
3 286 > 258.5 
4 670 > 628.1 
5 1033 < 1085.2 
6 1343 < 1367.3 
7 1112 < 1265.6 
8 829 < 854.3 
9 478 > 410.0 

10 181 > 132.8 
11 45 > 26.1 
1.2 'I > 2.3 

Total 6115 6115.0 
---~=----..... --=-~-... .................... ., ... 
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latent parameter Pi representing their propensity to have male children. The 
result is that the data would be from a mixture of binomials. 

Table 2.1 also shows the expected values of those counts, assuming that they 
arose from sampling from a unicomponent binomial distribution Bin( 12, p ), 
where p was estimated from the sample to be 0.51. It is clear that the obser'ved 
distribution has heavier tails than would be expected from the unicomponent 
binomial model and, moreover, that the difference observed -expected has the 
sign change behavior ( +,-,+)predicted under the above results for a mixture 
model. 

2.1.4. Log convexity of ratios. Establishing the first part of Shaked's re­
sults regarding the convexity of R(x) is simple and instructive. Indeed, we 
can just as easily show a stronger result, that 

(2.4) ln(R(x)) is a convex function of x. 

(Why is this stronger?) We learn this by examining the structure more closely. 
We can write 

(2.5) 

R(x) = f exp(cf>x --~ ~{j:.)) dQ(pl 
exp( cf>ox ·-· K( 4>)) 

= J exp((<l> -· cf>o)x) df(<l>). 

Here the positive measure f is defined by 

df(cf>) = exp(K(c/>) -·· K((/>o)) · dQ(cf>). 

This demonstrates that R(x) has the mathematical structure of a Laplace 
transform, that is, it is a scalar multiple of a moment generating function. 
Since this means its logarithm is a scalar translation of a cumulant generating 
function, this implies that ln(R(x)) is a convex function of x. 

(Technical note: In an exponential structure model, such as the binomial, 
it is possible that there exist distributions that correspond to infinite values 
of th(l( natural parameter ¢. Thus, when the binomial success parameter p 
is 0, the natural parameter ¢ is -oo. Including these points in the analysis 
would involve technical difficulties that we would rather avoid here, so we will 
assume Q assumes no mass at infinity, although it is not usually necessary 
to do so.) 

Indeed, we gain further insight by differentiating twice, to find that 

:t ln(R(t)) = E[(<l) -- ¢o)IX == tj, 

d2 
dt2 ln(R(t)) = Var(<.PIX "'"' t). 

[Exercise.] That is, differentiation of the log ratio function generates the cumu­
lants of the posterior distribution of the latent variable, given the observation. 
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Now the convexity of ln(R(x)) implies the convexity of the centered ratio 
function 

R(x)- 1 = _[(x; Q)- f(x; c/>o) 
· f(x;cf>o) ' 

so we have only to prove the sign change result, which can be done by showing 
that the difference f(x; Q)- f(x; cf>o) has the sign pattern ( +, -, + ). That is, 
the convexity of the function R shows that there can be at most two crossings 
of zero, so what remains is to show that there are exactly two. Although this 
can be done directly, we instead take a diversion into much stronger results 
relating moments and sign changes. The reader may wish to skim the following 
section on first passage. 

2.1.5. Moments and sign changes. The following striking result relates 
moments and the sign crossing properties of density functions. 

PROPOSI'riON 1. Suppose f and g are two density functions on R with sup­
porting measure dJ.L(x) and possessing the same first M moments E(Xk), 
k = 1, ... , M. Then the difference between the densities, 

L\(x) := f(x)- g(x), 

has at least M + 1 sign changes, unless the distributions are identical. 

PROOF. Suppose not and that there are K, with K:::; M, nodes t1, ... , tK 
such that Ll(x) has a constant sign between nodes, with signs alternating on 
adjacent internodal intervals. We can construct a polynomial 

p(x) = ±(x ··- t1) · · · (x- tK) 

of degree K that has the same sign between nodes as does Ll(x). Hence p(x). 
Ll(x) ~ 0. However, if we integrate this function, the equality of the first K 
moments implies we get zero. The conclusion is that p(x)Ll(x) = 0, almost 
everywhere dJ.L. This shows that Ll(x) is zero (J.L a.e.) between the nodes. This 
indicates that f and g can yield different probability measures only if they 
have a discrete component that differs only on the nodes. However, we can then 
apply the following lemma, which shows that two discrete densities having a 
common support set of K points, with their first K moments matching, must 
be identical. o 

In addition to its use in the above proof, the following result is very impor­
tant in the theory of the method of moments in mixture distributions [Lindsay 
(1989a)1. It will be useful in this chapter to have a special notation for the con­
struction of a vector consisting of the powers of a basic variable, so we define 
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LEMMA 2. Suppose that F and G are two distributions with support on 
some fixed set of K + 1 (or fewer) points {to, t1, ... , tK }. Further, suppose that 
they match in their first K moments, 

j x"f dF(x) = J x·l· dG(x). 

Then F = G and the masses at the support points are given by the matrix 
equation (2.6) below. 

PROOF. For any given set of moments Jx'f dF(x) on a known support set 
{t0 , ... , tK }, the corresponding masses 'lT are determined by the matrix equa­
tion 

(2.6) '~] ( ;: ) . 
tK 7T[( 
K 

Thus if the square matrix in the equation is invertible, we have a unique solu­
tion. However, this is the well known Vandermonde matrix, with determinant 
known to be TibJ(ti- tJ)- o 

Finally, we can turn the result concerning density functions into a result 
regarding distribution functions by using integration by parts. 

PROPOSITION 3. If two distribution functions F and G have their first K 
moments in common, then either they are equal or the difference F -· G has at 
least K sign changes. 

The proof is an exercise. See Lindsay and Roeder (1992b) for more details. 
If we now return to the problem ofthe sign change behavior of R(x), we see 

that since we have two densities with the same first moment, they must cross 
two times and the sign pattern must be ( +, --·, + ). We can additionally say 
that the distribution functions cross exactly once, with sign sequence ( +, -- ) . 

. ' 

2.1.6. Dispersion models. Lindsay (1986) investigated in some detail the 
construction of parametric mixture models that had exponential family struc­
ture. We briefly survey these and related results. 

One of the important uses of a mixture model is as a means of allowing 
for overdispersion. As a strategy for dealing with overdispersion, . one might 
consider constructing an exponential family model that contains the model of 
interest, but contains an additional parameter to account for overdispersion. 
As such, consider the two parameter exponential families with densities, with 
respect to dFo(x), of the form 

f(x; a, [3) = exp(ax + flt(x) ... K(a, {3)), 



STRUCTURAL FEATURES 35 

for some function t(x). Note that f3 = 0 generates the original model. We then 
ask, which functions t(x) will cause this model to be overdispersed relative to 
the original model? 

The preceding results indicate that if f(x; a, {3) is to be a mixture model in 
the sense that there is some Q depending on a and f3 with f(x; Q) = f(x; a, {3), 
then the log ratio function must be convex, from which it follows that t( x) must 
be convex. [Lindsay (1986) gives necessary and sufficient conditions on t(x).] 

Gelfand and Dalal (1990) took this idea one step further and showed that if 
t(x) is convex, even if the resulting density is not a mixture density, it still is an 
overdispersed density relative to the unicomponent model, in the strong sense 
of dilation. One example of an overdispersion model that is not necessarily a 
mixture model is Efron's double exponential family [Efron (1986)]. 

However, the more usual method for the construction of a two parameter 
overdispersed family is to use the conjugate distribution, a subject we will 
introduce in the next chapter. 

2.2. Diagnostics for exponential families. We now turn to using the 
above insights for diagnostic purposes. We ask the question, for a given set of 
data, does the mixture model fit and, if so, do we need to use more than one 
component? We use the information that the ratio function is convex and also 
log convex. For more details on this section, see Lindsay and Roeder (1992a). 

2.2.1. Empirical ratio plots. In a discrete sample space, with observed pro­
portions p(t), it is natural to attempt to estimate the ratio function R(t) [see 
(2.3)] by its empirical counterpart: 

p(t) 
liA:J(t) ·-··---.L ·-

{( t; ;p). 
Here ;p is the maximum likelihood estimator of cP in the unicomponent model. 
Such an estimation clearly relies on the sample size being sufficiently large 
that p(t) is a good estimator of the true density. If the unicomponent model is 
correct, then the empirical ratio converges to 1 for every t. If the alternative 
of a mixture model is correct, then the empirical ratio will converge to the 
convex ratio function R(t). 

This suggests plotting (t,R(t) --·1) or (t,ln(R(t))) and examining the plot 
for convexity. If the plot is clearly nonconvex, then the mixture model cannot 
possibly fit well. If the plot is nearly linear, then the unicomponent model is 
likely to fit well and strict convexity is diagnostic for mixture structure. We 
note that convexity is a very particular prediction for the shape of the plot, 
and it is something easy to identify visually. Such an empirical ratio plot is 
given for the data of Table 2.1 in Figure 2.1. 

2.2.2. Gradient function plots. A second diagnostic method for looking for 
mixture structure is to consider the gradient function DQ(cP) introduced in 
Chapter 1. One advantage to this approach is that it enables us to create 
plots similar to the empirical ratio plot even when the data are not discrete. 
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FIG. 2.1. The ratio and gradient plots for the sibship data. 

We evaluate the gradient at Q = A;p, the best fitting one-component model, 
calling 

the unicomponent gradient function. We know from the NPMLE theorem that 
this gradient function is diagnostic for whether or not the degenerate distri­
bution 11¢ is the maximum likelihood estimator of the latent distribution Q. 
In fact, if 

then the one-component model fits better, in the sense of higher likelihood, 
than any mixture model with any other number of components. On the other 
hand, if the gradient inequality is violated, we know we can increase the 
likelihood by adding components. This suggests that examination of D1 ( c/J) 
may be a useful diagnostic for the presence of a mixture alternative to a 
unicomponent model. 

It is somewhat surprising that we can be precise about the predicted shape 
of the graph of the unicomponent gradient under the mixture model. The 
reason for this is most clear in the discrete case, where we can draw a close 
relationship between the unicomponent gradient D1 and the empirical ratio 
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function R(t): 

D1(¢) = L:n(t)(f(t;~) -1) 
t f(t;c/J) 

(2.7) 
= n I'f(t;c/J)( p(t; -1) 

'-' f(t;c/J) 

= n 'L._f(t;c/J) · [R(t) -1]. 

That is, the unicomponent gradient function can be represented as a kernel­
smoothed version of [R(t) - 1], where the smoothing kernel is f(t; c/J ). This 
suggests that since the empirical ratio function is asymptotically convex under 
the mixture model, then perhaps the gradient function could be as well. 

To make this statement completely correct, we have to find the correct 
reparameterization of c/J in which to plot the gradient. In order to make the 
result more general, we drop the multinomial assumption and consider the 
asymptotic limit of the unicomponent gradient function when the mixture 
model is correct. Check that if Q is the latent distribution and 4> --* some ¢0 , 

depending on Q, that 

n---lD1(¢) ->- D*(c/J) := j :(~;::/(x; Q)dFo(x) -1 

"" J R(x)f(x; c/J) dFo(x)- 1. 

Recalling that the ratio function R(x) is a convex function of x, we then ask: 
When will a convex function R(x), smoothed by a kernel f(x; c/J), yield a convex 
function D*(c/J)? When f(x; ¢) is an exponential family, it will happen when 
the parameter c/J is the mean value parameter of the exponential family. That 
is, if we replace c/J with JL( c/J) = E[ X; ¢], then 

a plot of (JL, J)*(JL)) is convex. 

The proof of this is relatively simple, but requires high powered results from 
total positivity: see Lindsay and Roeder (1992a) for details, including the cal­
culation of statistical error bounds for the plots. 

The gradient plot for the sibship data can be found in Figure 2.1, together 
with error bounds (calculated pointwise). Notice that it appears very much to 
be a smoothed version of the residual plot. 

Further justification for examining the residual plot can be given by consid­
ering the normalized gradient function, where we divide the gradient function 
by its asymptotic standard error under the unicomponent model. In Chapter 
4 we will show that the likelihood ratio test statistic for one component versus 
two components is asymptotically equivalent to the square of the maximum 
of the normalized gradient function, so that, in terms of the gradient plot, the 
likelihood ratio test is equivalent to rejecting the unicomponent model if the 
gradient crosses the upper confidence line. Methods for adjusting the critical 
value for simultaneous inference are given in Chapter 4. 



38 MIXTURE MODELS: THEORY, GEOMETRY AND APPLICATIONS 

TABLE 2.2 
Number of male children in sibs hips of size 8 

#Males Obs. Count Obs. vs. Fit Bin. Fit 

0 215 > 165.22 
1 1,485 > 1,401.69 
2 5,331 > 5,202.65 
3 10,649 < 11,034.65 
4 14,959 > 14,627.60 
5 11,929 < 12,409.87 
6 6,678 > 6,580.24 
7 2,092 > 1,993.78 
8 342 > 264.30 

Total n = 53,680 53,680.00 

2.2.3. Comparing gradient and ratio plots. The residual plot requires a 
larger data set because it has no smoothing feature, but as a consequence it 
reveals more structure. One striking example of this occurs when we turn to 
the sibship data for families of size 8, presented in Table 2.2. 

This table is based on a much larger sample than Table 2.1, and it shows 
a striking lack of fit of the mixture model in that there is too much deviation 
from convexity, relative to the standard· error bounds, as can be seen from the 
ratio residual plot in Figure 2.2. 

These data were examined by Fisher (1925), who said: 

The observed series differs from expectation markedly in 
two respects: one is the excess of unequally divided families; 
the other is the irregularity of the central values, showing 
an apparent bias in favor of even values. No biological rea­
son is suggested for the latter discrepancy, which therefore 
detracts from the value of the data. 

We note that the gradient plot (Figure 2.2) captures the overdispersion, but 
smooths out the fine structure. Such a large data set with interesting fine 
detail is probably fairly unusual, so it might be anticipated that the gradient, 
with its smoothness, is more generally the appropriate tool. In addition, it is 
a natural by-product of the non parametric approach. 

Extensions of these diagnostic ideas into the domain of generalized linear 
models has been carried out by Lambert and Roeder (1995). 

2.3. Geometry of multinomial mixtures. We have already introduced, 
in Chapter 1, an important subclass of the mixture model where the com­
ponent densities are treated as known. We now start giving a more detailed 
picture of the mixture model by examining the geometric structure in these, 
the simplest of mixture models. This will lead to a better understanding of 
several statistical issues, such as the identifiability of the latent distribution 
and how mixture models with different numbers of components are related. 
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FIG. 2.2. The ratio and gradient plots for the second sibship data. 
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2.3.1. Known component densities. The setting is the multinomial density, 
with sample space {0, 1, ... , T}. We start with a fixed set of known component 
densities, say {! ( t), ... ,f m ( t), and consider mixtures of the form f ( t; Q) = 
L: 7TJfJ(t). We start by turning each component density function into a vector, 
by setting 

fJ := ( fJ~O)) ' 

fJ(T) 

calling this the density vector for component j. Note that the entries of the 
vector are nonnegative and sum to 1. 

Next, we need a definition. Let v1, ... , Vm be vectors in (T + 1)-dimensional 
Euclidean space R7'+l. If 7T 1 , ... , 1rm is a set of nonnegative weights summing 
to 1, then the linear combination 

7Tl'Vl -I-···+ 7TmVm 

is called a convex combination ofvr, ... , Vm· 

The fundamental result that gives power to a geometric analysis of the 
mixture model is extremely simple: mixture density vectors are convex combi­
nations of the component density vectors. 
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For example, for three components with latent masses 1r1, 7r2, 7Tg, the mix­
ture density 

has the vector representation 

fQ = 1r1f1 + 11·?.f2 ·I· 7Tsfs. 

Moreover, if we define the matrix F = [f1, f 2, fs], then the above relationship 
can be expressed as a matrix equation: 

Thus we have a linear model, with constraints, in the parameters 7T J for the 
mixture multinomial probabilities fQ. 

In such a model, with known components, the mixture is identifiable if we 
can determine the values of 7T given the values ofF and fQ. Although such a 
question can be addressed directly through the theory of matrices, we believe 
it is more insightful to use convex geometry. 

2.3.2. Basic convex geometry. A convex set C is a set of vectors that con­
tain every finite convex combination of its elements. Pictorially, a convex set 
contains all the lines connecting any two points of the set. Given a set of 
vectors V, the convex hull of V, denoted conv(V), is the smallest convex set 
containing V. 

Of particular interest to us is the case when the vectors are multinomial 
density vectors. That is, the vectors v have nonnegative entries, with entries 
summing to 1. Such vectors live in the probability simplex 

pT = {p: p'l = 1, p :::: 0}, 

a convex set with dimension T in RT+l. (The set's dimension is reduced by 1 
due to the linear constraint on the coordinates, :L p J = 1.) The probability sim­
plex can be represented as the convex hull of (eo, ... , eT), where e J is defined 
to be that (T + 1)-vector with a one in position j and zeros elsewhere. That 
is, the eJ are the usual basis vectors for Euclidean space. [Exercise: Sketch 
P 1 and P 2.] 

We examine P 2, a two-dimensional surface in R3 . In Figure 2.3 we show 
this surface, rotated about so that it lies in the plane of the page. In addition, 
we show the location of the basis vectors e1 and a set of three multinomial 
component density vectors f1, f2, fs. From the above discussion, it is clear that 
the set of mixture density vectors 

is the convex hull of the set {fl. f2, f3}. The hatched set in the figure represents 
the possible mixture density vectors allowed under this model. 
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FIG. 2.3. 7'he two-dimensional probability simplex. 

2.~.3. Identifiability of weight parameters. We return to the question of 
identifiability. In essence, the weight parameters are identifiable if we can 
solve uniquely for them from the distribution of the observables, in our case 
from the density f(t; Q) or the vector fQ. In a general linear problem, we can 
solve uniquely for the parameters 'lT in :L 1T JfJ = fQ if and only if the vectors 
f1, ... , fm are linearly independent. If we add the mixture model requirement 
that L 1T J = 1, then the uniqueness of the solution is guaranteed under the 
weaker condition of affine independence. However, this concept need not con­
cern us here, because when all the vectors fJ involved are in the probability 
simplex, the affine independence of the vectors is equivalent to their linear 
independence. 

The reader should consider the geometric consequences of this. For exam­
ple, in Figure 2.3 the vectors are linearly independent. A set of three density 
vectors that were not linearly independent would lie on a line, as in Figure 2.4. 
(Remember that one dimension is missing from the plot and the origin is not 
pictured.) 

One simple conclusion from such an identifiability analysis is that the 
weight parameters 1T cannot be identifiable for all mixtures fQ if the num­
ber of components m is greater than the number of multinomial categories 
T + 1. That is, 

(2.8) m > T f· 1 : ...: > weights not identifiable. 

In Figure 2.5 the reader should visualize why mixtures of four density 
vectors give nonidentifiable weights. 

We note, however, that even if the weights 1T cannot all be identified, 
there may be identifiable linear combinations of scientific interest. See Roeder, 
Devlin and Lindsay (1989). Also, as we shall see, it is possible to have unique 
estimates of these parameters even when identifiability fails. 
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FIG. 2.4. A mixture set with nonidentifiable weights. 

2.3.4. Caratheodory's theorem. One result from convex geometry that will 
be extremely useful to us is a classic theorem about the representation of 
elements of the convex hull of V c RK in terms of convex combinations of 
the elements of the generating set V. Caratheodory's theorem says that if 
u E conv(V), then there exists at least one representation of u as a convex 
combination of K + 1 or fewer elements of V, say 

for some VI. ... , VK+l in V. 
Since the density vectors involved lie in aT-dimensional subspace, it follows 

that there exist representations of a multinomial mixture model vector fQ in 
terms of the convex combination of some set ofT+ 1 or fewer components fi, 

e2 

FIG. 2.5. A second mixture set with nonidentifiable weights. 
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whether or not the mixture is identifiable. As an exercise in visualization, the 
reader should consider the geometric truth of this theorem for models in P 2, 

where it says that every point in a convex hull can be represented by three or 
fewer elements of its generating set. 

2.4. Exponential family geometry. We now consider the question of 
identifiability in the one parameter exponential family model (2.2). For a 
multinomial exponential family, the range of the random variable X will typ­
ically be a subset of the integers of the form {0, 1, 2, ... ; T}, with T possibly 
infinite. If this occurs, we will say we are in the lattice case and we will have 
special results when such structures exist. 

The previous section gave us some preliminary insights into this problem, 
and we already know that if the range of X is finite, then there is no hope 
of solving uniquely for Q if it has too many support points. However, there is 
certainly information about the latent distribution, and the goal of this section 
is to identify just what structures are estimable. 

2.4.1. Identifiable functions. A functional h( Q) will be called identifiable 
in the nonparametric sense if whenever Q1 and Q2 are latent distributions that 
generate the same mixture distribution for X, then h( Q1) = h( Q2). Thus the 
value of h( Q) can be determined uniquely from the observable distribution 
of X. 

In the case when X has a lattice distribution, we return to the represen­
tation of the ratio function as a moment generating function (2.5). We can 
conclude that, for t = 0, ... , 1', the ratio function R(t) is the tth moment of 
exp(<l>) under the measure r. It follows that the first T moments of exp(<l>) 
under r can be determined from the distribution of the observable X and so 
are identifiable functions of the latent distribution Q. Moreover, they are a 
full set in the sense that any other identifiable functional must be a function 
of them. [Exercise.] · 

This result is perhaps not satisfying in itself because the identifiable func­
tions do not have a natural statistical interpretation. In some special cases, 
the identifiable functions have a direct interpretation in terms of the measure 
Q as well. For example, we have the following proposition: 

PROPOSITION 4. If X is a mixture of Bin(T, 4>) distributions," with latent 
distribution Q on cf>, then the first T moments of <I> under the distribution Q 
are identifiable from the mixed density and all other identifiable functions are 
functions of these moments. 

PROOF. We prove this for the case T = 2; the extension to arbitrary Tis 
an exercise. We start with the matrix identity 



44 MIXTURE MODELS: THEORY, GEOMETRY AND APPLICATIONS 

We write this in the symbolic form f¢ = A$·1·, where f¢ is the density vector 
for a binomial model with parameter cp· and «!>'I' is the power vector introduced 
earlier. If we integrate both sides of this equation with respect to dQ(cp), we 
find that the left side becomes the mixture density vector fQ and the right 
side is a linear function of the moments of <I>, which we write as A· E(<I>'1'). 

Since the matrix A is clearly invertible, we can solve for the moments of Q, 
given the mixed density, via the equation E ( <I)t) = A -lfQ. o 

See Lindsay, Clogg and Grego (1991) for another example, the Rasch model, 
where there is a natural set of identifiable mixture parameters in the form 
of posterior expectations E[gi(<l>)iX = x] that therefore allow fully identified 
nonparametric empirical Bayes estimation. 

However, one cannot consistently estimate the latent distribution function 
Q ( t) at any .value of t without further external information, such as knowing 
that the distribution function lies in some parametric class. In particular, 
the nonparametric approach of Chapter 1 cannot consistently estimate the 
distribution function. 

Just the same, features of Q that are not identifiable are usually partially 
identified. For example, in the binomial model, knowing the first T moments 
of Q does limit the set of allowable distributions, the more so the larger T is. 
In fact, Tchebysheff developed an optimal system of upper and lower bounds 
for the distribution function evaluated at a point, given a set of its moments 
[Uspensky (1937)]. For any given functional being estimated, it is at least 
theoretically possible to construct upper and lower bounds that would give 
the degree of determination of that function. 

This point is relevant statistically because it is therefore possible to con­
struct informative confidence intervals for nonidentifiable functions of Q. Al­
though such bounds will not shrink to zero in width asymptqtically, but rather 
to the limits of knowledge of that function, for any fixed sample size the width 
due to randomness could greatly exceed that due to indeterminacy. Lindsay, 
Clogg and Grego (1991) consider nonparametric bounds in the Rasch model 
for some nonidentifiable empirical Bayes functionals of interest. 

2.4.2. Identifiability of weights, m fixed. We leave the nonparametric set­
ting and consider a situation where the number of components is assumed 
to be known, say m. The relevant question here is: If we restrict attention to 
latent distributions Q that have m or fewer points, will the latent distribution 
be identifiable, in that there will be exactly one possible latent distribution in 
this class that generates any one X distribution? Again, we restrict attention 
to discrete one parameter exponential families. 

This subsection deals with the simplest case in which the support points 
t1, ... , tm of Q are known and fixed, so that our concern is with the identifi­
ability of the weight parameters. We have already developed the appropriate 
basic theory for this case because this is exactly the situation of Section 2.3.1. 
We consider first the binomial model, for which we have the following propo-­
sition: 
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PROPOSITION 5. The parameters 1r1 , ... , 7Tm in the mixture 

1r1 Bin(T, 81) + · · · + 7Tm Bin(T, Om) 

45 

are identifiable provided that m ::;: T + 1. [Note from (2.8) that this is the 
maximal number of identifiable components for this binomial family.] 

PROOF. We need to establish the linear independence of the vectors 
fJ := for It therefore suffices to consider m = T + 1. In the notation of the 
proof of the last proposition, we have for an appropriate nonsingular matrix 
A, 

det[f1. ... , f'f'.n] =: det{A[O{", ... , 0~+1 ]} 

= detA · det[of, ... , 6~+1 ]. 

It follows that it suffices to show that det[ 6{, ... , ot1 ] =j:. 0. However, this is 
again the well known Vandermonde determinant, equaling Di>J(ei- OJ). o 

We next consider how this result might be extended to other one parameter 
exponential families. The key to the identifiability in the binomial family is 
the nonsingularity of the matrix of probability vectors [fl. ... ,fr+l], which we 
might believe quite difficult to deal with for an arbitrary exponential family. 
However, there is a quite amazing theory that relates the nonsingularity of 
such matrices to the maximal number of zeros of certain polynomial equations. 
The interested reader should dig into the difficult but impressive works of 
Karlin and Studden (1966) and Karlin (1968). We give a brief outline of the 
fundamental ideas here. 

A system of functions r0 ( cf>), ... , r T ( cf>) of the real variable cf> is called a 
Chebyshev system if every polynomial 'L]=o w JT J( cf> ), whose coefficients w J are 
not all zero, has at most T zeros in cf>. The most familiar example of such a 
system is the 1, c/>, ... , (p1', where we can apply the fundamental theorem of 
algebra to bound the number of real zeros by T. 

Suppose we have a family of multinomial densities f(t; cf>) and we define 
TJ (c/>) := f(j;cf>). Further, suppose these TJ constitute a Chebyshev system. 
We may conclude that 

m :::: T + 1 =} weights identifiable, 

any fixed set of m component densities, using the following argument: 
Suppose not. Then there exists a vector w such that 

[ fri>P ... , f¢1'+1 ]w = 0. 

However, these equations can be written out row-by-row to show that the cf>J 
are T + 1 solutions to I: w J1'J( cf>) = 0, a contradiction to the Chebyshev system 
property. 

Although it is not insightful to our present task to prove this result, it is 
known that every finite discrete exponential family generates a Chebyshev 
system. There are other useful models that form Chebyshev systems. One 
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FIG. 2.6. The binomial unicomponent density curve. 

such extension is a continuous exponential family that has been discretized 
into bins, as done when performing a chi-squared goodness-of-fit test. See 
Lindsay and Roeder (1993) for more examples and details on these results. 

In Figure 2.6 we show the implications of the above proposition for the 
binomial model when T = 2. We construct such a plot as follows. If we 
plot for each value of () the vector for the binomial density function fo = 
(02,20(1- 0),(1- 0)2)', then we trace out a curve in P 2 that we call the 
unicomponent density curve and denote by 

C = {fo: () E [0, 1]}. 

[Exercise: Find the points in the figure corresponding to () = 0, 1 and 0.5.] 
The curve C corresponds to all the possible density vectors obtainable un­

der the unicomponent binomial model. As we have already learned, the set 
of all probability densities obtainable as mixtures of binomials is the convex 
hull of C, denoted M = conv(C). If we consider any fixed set of three bino­
mial densities, we can see pictorially that they cannot fall on a single line, 
so that the mixture set determined by any three distinct () gives identifiable 
parameters 1T. 

2.4.3. Full identifiability of m components. We now raise the level of dif­
ficulty by considering the more statistically important question: If we allow 
the location of the support points g of Q to be unknown, but restrict their 
number to be no more than m, when will both sets of parameters 1T and g 
be identifiable? This difficult question has a very simple and elegant solution 
in the case of the one parameter exponential family. To motivate the answer, 
we return to Figure 2.6. Geometrically, we can consider three distinct cases, 
depending on where the true mixture density vector fQ is located. 

• Suppose that m = 1. Notice that in this case the density vector fQ must be 
an element of C. This class of densities must be identifiable since they are 
just the (identifiable) binomial densities. Hence m = 1 implies identifiability. 
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• Suppose fQ E int(M), the interior of M (relative to the simplex). Note that 
one c~ draw infinitely many lines that pass through fQ and connect two 
points on C. The intersection points correspond to two parameter values, 
say c/J1 and c/J2, and we can correspondingly write 

for some 'TT for every such pair. We can draw two conclusions: first, that 
every interior density has a representation with m = 2, but second, that no 
such two-component mixture can be identifiable. 

• If m = 2 and fQ E bdry(M), the boundary of M, then fQ must lie on the 
bottom line of the triangle, where it is clear that it can be represented by 
a convex combination of the component density vectors corresponding to 
the two extreme values of 0, namely, 0 and 1. Moreover, this is a unique 
representation with two points. 

Thus we have a situation in which m = 1 implies identifiability, but only 
some two-component mixtures are identified. If we change our method of 
counting support points somewhat, however, we can report a very simple rule 
for identifiability of the latent distribution. 

Thus we define index( Q) to be the number of support points in the latent 
distribution Q, with the special rule that the support points at the left and 
right extremes of the parameter space be counted as 1/2 a support point. 
Thus, for example, in the above binomial example, a mixture ofBin(2,0) and 
Bin(2, 0.5) corresponds to a latent distribution with index 1.5, and the iden­
tifiable mixtures on the bottom edge of the triangle have index 1. 

With this said, we can summarize the binomial example by saying that the 
distribution Q can be determined from fQ if and only if index( Q) ::: 1. This 
result can be generalized, but we first develop some important tools in the 
following subsection. 

2.4.4. Hyperplanes and convex sets. A useful tool for working with convex 
sets is the idea of the support hyperplane. For every vector oflength 1, say w, 
in Rd, and every constant c, there exists a hyperplane H = H(w,c), defined 
to be the set 

H = {v E: Rd: v'w = c}. 

It is a (d- 1)-dimensionallinear surface. We can think of it as a translation 
of the linear subspace consisting of all vectors orthogonal to w, namely, 

H(w, c)= cw + (w).L. 

[Exercise.] 
In R2 , a hyperplane is just a line in the plane. In R 3 it is a two-dimensional 

planar surface. Each hyperplane can be associated with a lower half space 
{v E Rd: v'w::: c} and an upper half space {v E Rd: v'w ~ c}. 
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A support hyperplane to a convex set B is a hyperplane that bounds the set 
on some side. More formally, for each direction vector w, let 

c*(w) = sup{w'lb: bE B}. 

Verify that for every c < c* the convex setH must have a nonempty intersection 
with the upper half space ofH(w, c). For every c > c*, the convex set B must 
have an empty intersection with the upper half space, and so it is contained 
in the lower half space .. In this case, H(w, c*(w)) is a support hyperplane. 

If the convex set B is closed, then it is clear that the support hyperplane 
H intersects B along a boundary and that the intersection consists of those 
points b E B satisfying w'b = c*, whereas w'b < c* for all other b E B. Thus 
the closed convex set lies completely in one of the half spaces generated by 
the hyperplane, with some of its boundary points in the hyperplane. (Indeed, 
a closed convex set can be represented as the intersection of the lower half 
spaces of its support hyperplanes.) 

As an aside, we note that if B is a convex set, then B* = { v: v · h :::; 1 for 
all bE B} is a dual convex set to B. Note that ifb* E B*, then the set B is in 
the lower half space { u: u · b* :::; 1}. It follows that if B is closed, then B* is 
closed and its boundary points correspond to the support hyperplanes of the 
set B. · 

When we are working with a convex set B in the probability simplex, the 
entire set lies within the hyperplane H(l, 1). Thus this hyperplane is a support 
hyperplane, but not a very interesting one as far as describing the set B. If 
w =I= 1, then a hyperplane H(w, c) will intersect H(l, 1) in a linear manifold of 
dimension d- 2, and there will be multiple hyperplanes H( w, c) that generate 
the same manifold within the simplex. 

In particular, if p is in pT and lies in the hyperplane :L w J p J = c determined 
by H(w, c), then, since :L Pi = 1, it also lies in the hyperplane :L(w1-c)pJ = 0, 
which is created by the hyperplane H(w -- cl, 0). 

The fact that in the probability simplex, and therefore in the mixture prob­
lem, one can reduce attention to hyperplanes with c = 0, and therefore contain­
ing the origin, turns out to be quite important in reducing the dimensionality 
of the mixture problem. 

2.4.5. Identifiability of weights and supports. We now use the tools of sup­
port hyperplanes to turn questions about the structure of the boundary of 
a mixture set into questions about polynomials and so solve identifiability 
questions. 

PROPOSITION 6. If f(x; ¢) is a discrete exponential family density (more 
generally a Chebyshev system density) with T + 1 points of support, then the 
class of identifiable mixtures is those in the boundary of M, which is exactly 
those elements satisfying 

index( Q) :S T /2. 
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PROOI<. For the proof here we simply use the binomial model, because the 
results can then be derived using well known results regarding polynomials. 
We start by showing that boundary points have the specified bound on their 
index. Suppose point f is in the boundary of the mixture density set M and 
so lies in a support hyperplane H defined by 

w'm :::: 0 for all m E M, 

with w'f = 0. It follows that f can be represented as a mixture of the binomial 
vectors fo that lie in that same hyperplane, hence satisfying w'fo = 0; other­
wise, one could use the mixture representation to show w'f < 0. However, the 
function 

g(8) := w'fo 

is a polynomial in 8 of degree T, so it has at most T roots. Moreover, since we 
are in a support hyperplane, with w'fo :::; 0 for all 8, these roots must corre­
spond to local maxima of g. Hence any root in the open interval (0, 1) must 
be a root of even multiplicity to the polynomial. Since each root corresponds 
exactly to a potential support point, this means that if we count each sup­
port point in (0, 1) with weight 2 and mass points at the extremal values of 0 
and 1 with weight 1, then the total cannot exceed T. We can now apply the 
definition of index to argue that the maximal index of the latent distribution 
corresponding to f is T /2. Moreover, since the roots correspond to all of the 
possible support points, the preceding proposition shows that this latent dis­
tribution is unique and so is identifiable. To show that every mixture of index 
no more than T /2 is in the boundary, we can construct a polynomial with the 
roots corresponding to the support points and show that this polynomial im­
plies the existence of a bounding hyperplane. On the other hand, iff is in the 
interior 0f M, then we can again argue that we can draw many lines through 
it connecting two boundary points, each of which corresponds to a different 
mixture representation, and so nonidentifiability holds. o 

As an exercise, the reader should consider how the proof might extend from 
the binomial to the case of the Chebyshev system. 

More precise descriptions of elements of the interior of M are available, 
including the existence of exactly two representations off in terms of mixtures 
of index (T-i-1)/2. IfT is even, then there is one representation involving each 
of the two extreme parameter values [check this pictorially for Bin(2, 8) ]. 
If T is odd, then there is one representation in terms of (T + 1)/2 interior 
components and one involving (T - 1)/2 interior components and the two 
extreme components. From a statistical point of view, the latter representation 
has one more component than the former. 

Fortunately, there is a simple rule of thumb that describes the identifiability 
of the parameters in a finite mixture model. If you specify a mixture model 
with m interior components and if the total number of free parameters 2m - 1 
is less than or equal to the number of free parameters in the multinomial, 
here T, then in fact the parameters are identifiable. 
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1 

FIG. 2.7. The unicomponent density curve for the Bin(3, O) model. 

The following example illustrates the geometric structures corresponding 
to this index result. We consider the Bin(3, 6) model, with sample space 
{0, 1, 2, 3}. The probability simplex P 3 can be represented as a tetrahedron, 
shown in Figure 2.7. 

The curve C = {f11 } starts at (1, 0, 0, 0), where () = 0, and moves sinuously 
around to (0, 0, 0, 1), where () = 1. The mixture set M has two smooth two­
dimensional boundary surfaces, corresponding to the two different types of 
mixtures of index 1.5. One boundary corresponds to latent distributions with 
two support points, one of which is () = 0; the other is two point mixtures with 
one mass point at 6 = 1. The one component curve C corresponds to one seam 
along these two surfaces; the other seam is along one edge of the tetrahedron 
and is formed by mixtures of index 1 that are mixtures with support at 6 = 0 
and 1. These boundary mixtures are identifiable, whereas no interior points 
have identifiable latent distributions. 

In Figure 2.8 we show a cross section through the set M, where we cut 
through the tetrahedron in the plane of all density vectors p on {0, 1, 2, 3} 
with mean 1.5; that is, L: p(x) · x = 1.5. The two edges of the set M are the 
boundaries corresponding to the mixtures with index 1.5. 

2.4.6. Related problems. When one leaves the i.i.d. case and considers 
other independent but not identically distributed structures, the analysis can 
be considerably more difficult and the results less simple. See, for example, 
Follman and Lambert (1991). Another complication arises in the i.i.d. case if 
one has nonlatent parameters in the model, so that one must address joint 
identifiability. Lindsay, Clogg and Grego (1991) managed to solve one such 
joint identifiability question in the Rasch model. 

We conclude by noting that there are many interesting relationships be­
tween binomial mixture models and other natural distributions generated by 
sequences of binary variables. We point out two such cases. 

Consider the distribution Bin( I, Pt) *Bin( I, P2), the convolution of two 
Bernoulli trials with success probabilities p 1 and p 2 , respectively. This is a 
distribution on { 0, 1, 2} and so has density vector in P 2. When p 1 = p 2 := p, 
the distribution is Bin(2, p ). As an exercise, show that the set consisting of all 
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Bernoulli convolutions with p 1 =1= P2 is exactly the complement of the set of 
Bin(2, p) mixtures. 

We can think of the variation of the value of p between the Bernoulli trials 
as being a distinct and nonoverlapping form of distributional assumption to 
the type of variation which occurs in the mixture model. There are a number 
of interesting papers on the structure of the space of Bernoulli convolutions, 
for example, Hoeffding (1956), but most pertinent for data analysis is that 
these models contrast with the mixtures in that the resulting convolution 
distributions are lighter tailed than the binomial distributions. For example, 
it can be shown that the binomial distribution is a dilation of any convolution 
distribution with the same mean. 

Another interesting relationship arises from de Finetti's theorem. If we 
have an infinite sequence of exchangeable binary variates, say X 1. X 2, ... , 

then this theorem indicates that the sequence has a distribution that can be 
represented as a mixture, over latent variable p, of sequences of Bernoulli tri­
als with success probability p. Diaconis (1977) investigated the implications of 
this result for finite sequences of exchangeable binary variates. These results 
indicate that if a finite sequence of binary variates is exchangeable, then the 
sum either has the distribution of a mixture of binomials or very nearly so, 
where Diaconis makes the "nearly so" statement precise. 

2.5. Moment representations. We have now found out a great deal 
about the structure of the exponential family mixture, but a fundamental 
question remains: Given a density vector p E pT, is it possible to determine 
in a straightforward way whether p is in our mixture model? That is, whether 
or not p E M. One simple test is already available to us from (2.4). That is, 
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we can check to see if 

ln( p(t) -···) is convex. 
f(t; <Po) 

If it is not, then p cannot be a set of mixture probabilities. Indeed, this kind 
of plot is very similar to ratio plots earlier in this chapter. 

However, we can greatly sharpen this result in the special case when the 
density is exponential family on the lattice { 0, 1, 2, ... , T}. Recall that in this 
circumstance, the ratios 

R(t) = f(t; Q)/f(t; <Po)= j exp((<P ···· (Po)t) df(<Jl) 

are values of the moment generating function of some positive measure r. 
When the values oft are on the lattice, this implies that 

R(O), R(l.), ... , R(T) 

are the moments of the nonnegative measure corresponding to the distribution 
of exp(<P- <Po). The argument can be used in reverse to show that pis a set 
of mixture probabilities if and only if 

p(O) p(T) 
r<o; <Po)····· Trr;¢~-5 

are the moments of some measm·e on (0, oo). [For simplicity, we are here 
assuming the parameter space is ( -oo, +oo).·l 

Thus our question is equivalent to the following: When is a sequence of 
T + 1 numbers, say m 0 , ... , mr, equal to the sequence of moments J xk dv(x) 
for some positive measure v with full mass on ( 0, oo )? 

The answer can be specified most easily through the use of moment matri­
ces. We form a sequence of moment matrices M P as follows. If p is even, say 
p = 2k, then 

mo m1 m2 
m1 m2 m3 

M2k := m2 ms m1 

mk mk+l 

If p is odd, say 2k + 1, then 

ml m2 ms 
m2 ms m4 

M2k+l := ms m4 m5 

mk+l m2k+l 

There are many results known about the nature of these matrices and their 
relationship to the number of mass points in a positive measure, with the 
special case of mo = 1 being that of a probability measure. For our purposes 
we note the following: 
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• If both M 2k and M 2k-·1 are positive definite, then mo, m 1, ... , m 2k are the 
moments for some nonnegative measure dy(c/J) on [0, oo). (In fact, there 
exist infinitely many measures with these moments.) 

a If mo, m1, ... , m2p, ... are the moments of a measure with exactly K sup­
port points, then the sequence of matrices M o, M 1, M 2 , ... , M P• . ..• has the 
property that they are positive definite for p ~ 2K- 2 and are nonnegative 
definite with rank K, thereafter. 

These results enable us to test if a set of points is a moment sequence. In 
particular, if we are testing if a sequence of ratios R(t) is in the interior of 
the mixture space, then the fact that they lie in a region of nonidentifiable 
distributions means that the highest order moment matrices that can be con­
structed from the sequence must be strictly positive definite. To show that a 
sequence of ratios is in the boundary of the mixture space corresponding to 
some K point mixture, it suffices to show that the matrices are nonnegative 
definite, with rank K. (Note that the entire moment sequence is determined 
uniquely after maximal rank is reached, using the fact that the determinant 
of a rank deficient matrix is zero.) 

This approach to testing for the presence of mixture structure was discussed 
in Lindsay, Clogg and Grego (1991). 

2.6. Certain nested mixture models. Many times we will wish to apply 
the theory of mixtures to models that have auxiliary (nonlatent) parameters 
() and so fall into the class of semiparametric mixture models. An important 
statistical question, about which we know relatively little in general, is the 
nature of the identifiability of the auxiliary parameters in the presence of the 
latent distribution. However, there are certain important cases, including the 
following normal example, in which it is indisputable that a fundamental loss 
of identifiability occurs and that we must be aware of the consequences of this 
loss. In particular, when it occurs, it may be impossible to sensibly estimate 
the parameters in the presence of the nonidentifiability. 

As a first example, we consider the normal mixture problem. We assume 
that the component densities are N(J.L, 0"2 ) and that there is an unknown 
latent distribution Q on the mean parameter J.L, together with an unknown 
variance parameter 0"2 that is common to all the component densities. We 
write this model as N( Q, 0"2 ). 

We first prove that if J.L has a latent distribution that is N(a, r 2 ), then the 
marginal distribution of X is N(a, o·2 + r 2 ). Notice that in this convolution 
model, X =dist <I>+ Z, where <I> and Z are independent normal variables with 
means a and 0 and variances r2 and cr2 , respectively, so this claim is just a 
standard result about the convolution of two normals, provable using moment 
generating functions: 

E(exp(tX)) '= E (exp(t(<l> t- Z))) = E(exp(t<l>))E(exp(tZ)) 

( 
7 2t2 0"2t2) 

:~= exp at ·I· + --2 . 
2 
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It follows that any mixture N ( Q, u 2 ) can also be represented as a normal 
mixture by N( Q*, u 2 - 8), where Q* is the convolution of Q and N(O, 8). Thus 
the class of mixture distributions, as u varies, are nested, 

{N( Q, u 2 + r 2): Q E p.m.} C {N( Q; u 2): Q E p.m.} 

and the joint parameters ( Q, u) are not identifiable. 
We do note that if we restrict attention to finite discrete latent distributions 

Q, then the pair ( Q, u) is identifiable. This can be shown by the fact that if 
Q has p points of support, then the pair can be recovered from the first 2 p 
moments of X using the methods of Lindsay (1989b). 

One might ask what happens to the nonparametric maximum likelihood 
approach to estimating ( Q, u). It is easily seen that there exists a non para­
metric MLE for Q, say Qu, for each fixed value of u, because the likelihood for 
a sample is then bounded. However, the profile likelihood function L ( Q u, u) 
is clearly decreasing in u by the above nesting property, since increasing the 
value of u shrinks the class of eligible models that can be maximized over. 
In fact, as u gets small, the solution Q u converges weakly to the empirical 
distribution for the data, and the profile likelihood becomes infinite. See, for 
example; Hathaway (1985). 

Although this means that the likelihood method fails in this example, we 
do note that this is related to the fact that the class of normal mixtures is very 
flexible, providing smooth approximations to many other distributions. Roeder 
(1990) exploited this feature to generate a method of density estimation based 
on using estimators of the form N ( Q, u 2 ), with parameter selection based on 
a goodness-of-fit criterion. 

There are other two parameter exponential families that have a nested 
mixing structure. Jewell (1982) showed that the Weibull mixture families had 
such a structure, with the shape parameter playing the role of u. As an illus­
tration of his approach, we show how the technique is readily extended to the 
gamma family. 

Consider the two parameter gamma density 
A a 

f(x; a, A)= f(a) xa-le-Ax .JP[x > 0]. 

We ask if for any given a and Ao, and any 8, with a- 8 > 0, there exists a 
latent distribution Q such that 

(2.9) J f(x; a, A) dQ(A) = f(x; a- 8, Ao). 

We can write this equation symbolically as 

Gam( a, Q) =Gam( a- 8, Ao). 

This equation can be rearranged so that we seek a solution Q to 

J A a exp( -Ax) dQ(A) = x -a exp( --A0 x)c, 

where c is a finite constant. 
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First we ask if we should expect a solution. Recall that a necessary condition 
for a density p(x) to be a mixture of a one parameter exponential family 
exp(cpx- K(cp)) is that ln(p(x)/f(x;c{J)) is convex. Note that convexity holds 
in this example because -8ln(x) is convex in x. To go further, it is natural to 
exploit certain results on Laplace transforms, such as found in Feller [(1971, 
Vol. II, pages 439-441)]. A function f(x) is said to be completely monotone on 
[0, oo) if its derivatives have the alternating sign property ( -l)n r<nl(x) 2: 0. 
It is known that the function f is completely monotone if and only if it is the 
Laplace transform of a measure IL on [0, oo); that is, f(x) = J e-Ax dJL(A). 

It is easy to see that the function x-8 e-xAo is the product of two completely 
monotone functions and as such, it must be completely monotone. Let f..l. be its 
generating measure. We then have, if we set dQ(A) = cA -a dJ.~.(A), a formal 
solution to our problem. The one remaining point to check is that the measure 
so generated is finite, in the sense that J A -a df..I.(A) < oo. This can be checked 
as follows: Since 

J xa-l exp( -Ax) df..I.(A) = xa-l-li exp( -Aox), 

we integrate both sides over x in [O,oo). The left-hand side is proportional 
to J A-a df..I.(A) and the right-hand side has a finite integral provided that 
a- 8 > 0, which we have assumed. 

Now that (2.9) is established, it follows that the gamma mixture models are 
also nested: 

PROPOSITION 7. {Gam( a+ 8, Q)} C {Gam( a, Q)}. 

[Exercise: As a more direct proof, show that the latent distribution Q with 
density proportional to (A·- Ao)8 ra Jil"[A > Ao] dA does the job in (2.9).] 

2.7. Concluding remark. This chapter has given an introduction to 
some of the key ideas regarding the mathematical structures of mixture 
models. For much more on these properties, see the papers referenced in the 
text. For more general information on the identifiability question, in addition 
to the standard books on mixture models, there is the recent book by Prakasa 
Rao (1992), that has a chapter devoted to the identifiability of mixtures. 
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