
CHAPTER 9 

Finite de Finetti Style 
Theorems for Linear Models 

The implications of invariance assumptions for linear models are investigated 
here via a finite de Finetti style theorem. Before discussing linear models, we 
describe a general method for approximating projected measures. Of course, the 
origins of the method are in the four examples described in Chapter 8. All of the 
material in this chapter is from Diaconis, Eaton and Lauritzen (1987). 

9.1. Approximating extendable probabilities. Consider a measurable 
space (X 2 , B2 ) which is acted on by a compact group G. Let 9 be the set of all 
G-invariant probability measures defined on B2 . The symbol U denotes a random 
element of G which has the uniform distribution on G. For each x E X 2, let 

Hx=!R(Ux). 

It was pointed out in Chapter 4 that each P E 9 has the representation 

(9.1) 

In other words, every element of the convex set 9 can be represented as an 
average of the H/s. It is clear that for any x E X 2 , 

kHgx = Hx fork, g E G, 

because 

::t>(U) =2(k- 1Ug) for k,gE G. 

Now, let Qx be an "approximation" to Hx. In applications, Qx is often taken to 
be a normal distribution whose mean and covariance match those of Hx. Further, 
in all the applications that I know Qx satisfies 

kQgx = Qx for k,g E G, 

just as Hx does. 
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Next consider a second measurable space (X1, B1) and a measurable map 

7T: x2 ~ Xr. 

Think of a map 7T as a projection (as it was in Chapter 8). Then, let 

.9'21 = { 7TPiP E .9'} 

be the set of projected invariant measures on (X1, B 1 ). Because of (9.1), 

(9.2) 

so that all the elements in the convex set .9'21 are averages of the 7Tll/s. The 
elements of .9'21 are just those probabilities P1 on (X1, B 1) which have G 
invariant extensions to (X2 , B2 ), extensions in the sense that there is a P E .9' 
such that 1rP = P1• 

The following result, which captures the essence of the argument used 
throughout Chapter 8, provides an upper bound on the variation distance 
between (i) an element 1rP of .9'21 and (ii) the closest approximation to 1rP based 
on averages of the 7TQ:x:'s. 

THEOREM 9.1. Given P E .o/J, 

(9.3) 

where the in£ ranges over all probabilities on X2 • 

PROOF. From (9.2), 

i~f 117TP- f 7TQ:x:JL( dx) II = i~f II f 7Tl!:x;P( dx) - f 7TQ:x:JL( dx) II 

::s:I/J7TllxP(dx)- j7TQ:x:P(dx)ll :S: j117THx- 7TQxJJP(dx) 

D 
X 

The upper bound D in (9.3) should be quite good (as a universal bound) 
because Hx E .9' for each x E X2. Thus, if 1rQ:x: is a reasonable approximation to 
1rllx, then D should provide a reasonable bound in (9.3). Here is the example of 
Section 8.2 reworked in the above notation. 

EXAMPLE 9.1. Take x2 = Rn and let G = on. Then, for X ERn, 

llx = !l'(Ux ), 

where U is uniform on On. Since 

Ux = llxJJU(~), 
JJxJJ 



9.1. APPROXIMATING EXTENDABLE PROBABILITIES 

Hx is the uniform distribution on 

{yjy ERn, JJyJJ = JjxJJ} · 

An easy calculation shows that 

EUx = 0 
and 

For this example, take 

Qx = N(O, n- 11Jxll 2ln), 
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which is the normal distribution on Rn with the same mean and covariance 
matrix as Hx. 

Now, let X1 = Rk with k < n and consider 

7T = (Ik 0) : k X n 

as the projection from Rn to Rk. Given an On-invariant probability P on Rn, its 
projection on Rk is 1rP. According to Theorem 9.1, the variation distance 
between 1rP and the closest average of the 7TQx's is bounded above by 

D = supJJ7rHx- 7TQxii· 
X 

But 

7rHx = £'( 1rUx) = £'(jjxjjV), 

where V is the vector in Rk which is the first k coordinates of a random vector 
in Rn which is uniform on the n sphere. Also, 

because 

Thus, 

1rQx = N(o, n- 1llxll 2lk) 

D =sup ll£'(11xiJV)- N(O, n-- 1llxll 2lk) II 
X 

= II£'(V)- N(o, n- 1lk) II 

=ll£'(ynV)- N(O, lk)ll· 

Therefore the calculation of D in this example reduces to finding the variation 
distance between the N(O, lk) distribution and £'(ynV). An upper bound on 
this distance was given in Proposition 7.6 (with p replaced by k). This completes 
the example. 0 

Here are a few remarks concerning the above example which are also valid in 
other examples. First, Qx is a terrible approximation to Hx; they are in fact 
mutually singular. However, 7TQx is a good approximation to 1rHx. This is what 
matters in applications. Second, both Qx and Hx are invariant functions of x so 
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that the averages 

can be written as averages over a maximal invariant under the group action on 
X 2 . In Example 9.1, a maximal invariant is x ~ 11x11 and the above averages are 
obviously just averages over llxll· Further, 

X ~ ii'lTHx - ?TQ.xll 

is also an invariant function of x. This often makes the calculation of D (or 
bounding D above) an achievable task. In Example 9.1, the sup was in fact 
calculated explicitly by observing that for all x =F 0, 

ii?THx - ?TQ.xll = ii'lTHXo - 'lTQXoil, 

where x 0 is a fixed nonzero vector. 
The method described above is from Diaconis, Eaton and Lauritzen (1987) 

where it is applied to a variety of univariate and multivariate examples. In the 
examples discussed thus far, it is clear that the "appropriate" Qx 's come from an 
associated "infinite" theorem. This is not at all clear in the description of the 
above method, but in every example that I know, there is some "infinite" 
theorem lurking in the background. 

9.2. The general univariate linear model. The goal of this section is to 
discover the implications of extendability and invariance in the context of linear 
models. In a finite dimensional inner product space (V, ( ·, · )) consider an obser­
vation vector Y whose mean vector p, lies in a known linear subspace M ~ V and 
whose covariance is a 2J where I is the identity linear transformation on V. When 
Y is N(p,, a 2J), it is clear that 

(9.4) £'(Y) = £'(gY) 

for all orthogonal transformations g such that 

gx = x for all x E M. 

The group of all such orthogonal transformations is denoted by O(M). Rather 
than assume Y has a normal distribution, it is only assumed that (9.4) holds, 
namely, that the distribution of Y is O(M)-invariant. 

Now, let (V1, ( ·, • ) 1) be another finite dimensional inner product space and 
assume that '17: v ~ vl is a linear transformation which satisfies 

'lT'lT' = Jl, 

where 11 is the identity on V1• This 'lT is an example of what we have been calling 
a "projection." With Y1 = 'lT Y, the mean vector of Y1 is p, 1 = 'lTJL which is an 
element of M1 = ?T(M). Obviously M1 is a linear subspace of V1• 

Given that P = £'(Y) satisfies 

(9.5) gP = P, g e O(M), 

the problem we discuss here is: What can we say about £'(Y1) = ?TP? The 
example discussed in Section 8.4 is a special case of this problem. In essence, the 
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result below provides a bound on the variation distance between wP and a 
mixture of the distributions { N(p.1, a 211); p.1 E M1, a 2 ~ 0}. 

The approach to this problem is that described in the previous section. To this 
end, let U have a uniform distribution on O(M) and for each x E V, write 
x = x 1 + x 2 with x 1 EM and x 2 EM J. (M J. is the orthogonal complement of 
M). Then 

Hx = .IE(Ux) = .IE(x1 + Ux2) 

since U E O(M). It can be shown [see Diaconis, Eaton and Lauritzen (1987)] 
that 

and 

Cov(Ux) = ~C, 
n-m 

where n is the dimension of V, m is the dimension of M and C is the orthogonal 
projection onto M J.. Therefore 

(9.6) 

EwUx = wx1, 

llx2ll 2 
Cov( wUx) = --wCw'. 

n-m 
To apply Theorem 9.1, pick Qx to be the N(x1, llx2ll 2(n- m)- 112) distribution 
on V. Then 

wQx = N( wxt, llx211 2(n- m)- 111 ) 

is a normal distribution on V. Therefore 

D = supllwllx- wQxll 
X 

= supiiiE(wx1 + wUx 2 )- N(wx1 , llx2ll 2(n- m)- 111 )11 
X 

(9.7) 

= supii.IE(wu~)- N(o,(n- m)- 111)11 
x llx2ll 

=IIIE(wUx0)- N(o,(n- m)- 111)11, 

where x 0 is any fixed vector of length 1 in M J. • 

LEMMA 9.1. Let k be the dimension of V1 and set 

(9.8) A 0 = wCw'. 

For k ::::;; n - m - 4, 

(9.9) IIIE(wUx0)- N(O,(n- m)- 1Ao)ll::::;; 2n _ ~ ~: _ 3 · 

PROOF. See Diaconis, Eaton and Lauritzen (1987), Proposition A.l. D 
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We now assume k s n- m- 4 and A 0 in (9.8) has rank k. 

THEOREM 9.2. The variation distance between 'TTP and the closest mixture of 
the normal distributions N(p.1, a 2l 1) with p. 1 E M1 and a 2 :2: 0 is bounded above 
by 

(9.10) 

PROOF. It suffices to show that D in (9.7) is bounded above by /3n(A 0 ). But 

D =112('11'Ux0 )- N(O,(n- m)- 1IJII 
sii2('11'Ux0)- N(O,(n- m)- 1A 0 )11 

+IIN(o,(n- m)- 1A 0 )- N(o,(n- mf- 1! 1)11· 
Thefirstofthetwosummandsisboundedaboveby2(k + 3)/(n- m- k- 3)- 1 

according to Lemma 9.1. Because A 0 has all its eigenvalues in (0, 1], it follows 
easily that 

IIN{O,(n- m)- 1A 0 )- N(o,(n- m)- 1! 1 )11 
=II N(O, A0 ) - N(O, l 1) II s 2[ (det A 0 ) -l/2 - 1]. 

This completes the proof. D 

When /3n(A0 ) is small, Theorem 9.2 implies that 'TTP is close to a distribution 
generated by first selecting (p.1, a 2 ) according to some distribution and then 
selecting Y1 from a N(p.1, a 2l 1) distribution. In other words, the smallness of 
/3n( A 0 ) implies that Y1 looks like it was drawn from a normal distribution. Thus 
the original invariance assumptions on Y have very strong implications for 
2(Y1). These issues are discussed more fully in the next section where the 
standard univariate regression model is treated. 

9.3. The regression model. In Rn consider the usual regression model 

(9.11) Y = X/3 + e, 

where X is a known n X q matrix of rank q, /3 is a q X 1 vector of unknown 
parameters and e is the error vector. Thus the regression subspace 

M = {Jl/Jl = X/3, /3 E Rq} 

is of dimension q. It is assumed that 

(9.12) ..P(Y) = ..P(gY) 

for all g E O(M). This is equivalent to the assumption that 

..P(e) =..P(ge) 

for all g E O(M). 
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In this example, the "projection" 7T is taken to be 

7T = ( Ik 0): k X n, 

where Ik is the k X k identity and k > q. Partition Y as 

with Y1 = 7T Y. Also partition X as 

where X1 is k X q so X2 is (n- k) X q. Finally partition e as 

with e1 = 1re in Rk. Then the projected regression model is 

(9.13) 1rY = Y1 = X 1/3 + e1• 
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The statistical interpretation of this model description is the following. We do an 
experiment in which model (9.13) is assumed for Y1• But we imagine that a larger 
experiment could have been performed and the invariance assumption (9.12) for 
the model (9.11) is assumed to hold. Then, the implications of this model 
assumption [namely (9.11) and (9.12)] are of concern. This is what Theorem 9.2 
yields. 

We now turn to the evaluation of /3n(A 0 ) in (9.10) for the above regression 
model. First, the orthogonal projection onto the orthogonal complement of M is 

C =In- X(X'X)- 1X' 

so that 

A 0 = 1rC1r' = Ik- X1(X'X)- 1X{. 

Since the dimension of M is q in this example, 

k + 3 [ -1/2 ] /3n(A 0 ) = 2 k + (det A0 ) - 1 . 
n-q- -3 

Now, fix k and q, and let n --+ oo. In order to obtain an "infinite" theorem [i.e., 
f3n(A 0 ) --+ 0 as n --+ oo] for this example, X: n X q must satisfy 

(9.14) lim det(Ik- X1(X'X)- 1X{) = 1. 
n-> oo 

Recall that k and q are fixed so we are thinking of X1 : k X q as a fixed matrix, 
namely, the design matrix of the experiment actually performed. With X1 fixed, 
a necessary and sufficient condition for (9.14) to hold is that 

(9.15) lim (X'X)- 1 = 0. 
n-> oo 

Equation (9.15) means that each element of the q X q matrix (X' X) --l converges 
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to 0 as n -+ oo. The statistical interpretation of (9.15) is that the parameter 
vector f3 is consistently estimated (by least squares) since the covariance matrix 
of the least squares estimator of f3 is a 2(X'Xt 1• This assumes that Y and hence 
e has a covariance matrix which is a 2In when (9.11) holds. 

The point of the above discussion is that the conditions for the existence of an 
"infinite" theorem have a direct statistical interpretation in terms of the estima­
tion of /3. For a further discussion of the relationship between "infinite" theo­
rems and statistical interpretations, see Lauritzen (1988). 


