
CHAPTER 6 

Invariant Decision Problems 

This rather lengthy chapter provides an introduction to invariant decision 
problems. After describing the basic ingredients in a decision problem, invariance 
is introduced and used to define an invariant decision problem. A main result in 
this chapter shows how to construct a best invariant rule when the group action 
is transitive on the parameter space and when the dominating measure is 
decomposable [That is, the integral J defined by the measure satisfies Equation 
(5.14) in Theorem 5.5.] Applications of this result to the construction of best 
invariant estimators are given. 

Finally, invariant testing problems are discussed. Wijsman's theorem (de­
scribed in Section 5.3) is used to derive an invariant test with some optimum 
properties. 

6.1. Decision problems and invariance. In this section the basic objects 
of a decision problem are first reviewed and then invariance is introduced into 
the problem. Here are the ingredients of a decision problem: 

(i) A sample space (X, B1). 

(ii) A parameter space (E>, B2 ). 

(iii) An action space (A, B3). 

(iv) A statistical model { P9j8 E E>} which consists of a family of probability 
measures defined on the sample space. 

(v) A loss function L defined on A X E> to [0, oo) and assumed to be jointly 
measurable. 

To describe the decision rules, let MiA) denote the set of all probability 
measures on the action space. 

DEFINITION 6.1. A decision rule 8 is a function defined on X with values in 
M 1(A) such that 8 is a Markov kernel (as in Example 2.19). 
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The value of a decision rule 8 at x is denoted by 8( ·[x) and because 8 is 
assumed to be a Markov kernel, the map 

x ~ 8(B[x) 

is Borel measurable for each fixed set B E B3. In some of the literature 8 is 
called a randomized decision rule since 8( ·[x) is a probability measure on the 
action space for each x E X [for example, see Berger (1985)]. The decision rule 8 
is called nonrandomized if for each x, 8( ·[x) puts probability 1 at a single point, 
say a(x), in A. It is easy to show that when 8 is a nonrandomized rule, then the 
corresponding induced function x ~ a( x) is measurable on (X, B1) to (A, B3 ). 

Conversely given a measurable function x ~ a(x), the corresponding 8 which 
puts probability 1 at a(x) for x E X is a decision rule. 

Given a decision rule 8, 

(6.1) R(8,0) = jjL(a,0)8(da[x)P0(dx) 

is the risk of 8 at 0. The function 0 ~ R( 8, 0) is called the risk function of 8. 
The risk function is used to compare decision rules with the goal being to find 
decision rules with "small" risk functions. 

To introduce invariance into the decision problem, let G be a topological 
group which acts on the left of the three spaces X, 8 and A. The word "space" 
here is being used as described in Section 1.1. The three group actions are not 
distinguished notationally, but the group action under eonsideration will be 
clear. For example, gx means the action of G on X evaluated at (g, x), while gO 
means the action of G on 8 evaluated at (g, 0) and similarly for the action of G 
on A. It is emphasized that it is the group action which changes from space to 
space and not the group which changes. In other words, the group G remains 
fixed in our discussion and G acts in perhaps different ways on the different 
spaces. This is the reason for not adopting the more common notation used to 
describe invariant decision problems [for example, see Berger (1985), Chapter 6]. 
Given the ingredients of the decision problem listed above, here is the definition 
of a G-invariant decision problem when G acts on X, e and A. 

DEFINITION 6.2. The decision problem above is G-invariant if: 

(i) The model {P0 [0 E 8} is invariant, that is, 

gPo = Pgo for g E G' 0 E e. 
(ii) The loss function L is invariant, that is 

L(ga, gO) = L( a, 0) forgE G, 0 E e, a EA. 

Now we tum to the invariance of decision rules. As in Example 2.9, the group 
G acts on B3 X X. Given a decision rule 8 and g E G, the decision rule g8 is 
defined by 

for B E B3 and x E X. 
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DEFINITION 6.3. A decision rule 5 is invariant if g5 = 5 for all g E G. 

When a decision rule S is nonrandomized, say 5 corresponds to a measurable 
function x ~ a 0(x ), it is easy to show that 8 is invariant iff the function a0 is 
equivariant, that is, iff a0 satisfies 

a0(gx) = ga0(x) 

for all g E G and x E X. This fact is used below without mention. 
The primary focus of this chapter is to describe some techniques for finding 

"good" invariant decision rules. To this end we first describe some transforma­
tion formulas which are used later in the chapter. 

THEOREM 6.1. When the rrwdel {P0 10 E 8} is G-invariant, the formula 

(6.2) jf(gx)P0(dx) = jf(x)Pg8(dx) 

holds for any function f which is integrable. For any decision ruleS, the formula 

(6.3) 

holds for any function k for which the integrals are well defined. 

PROOF. Verify the formulas for the indicator functions of sets and then 
extend in the usual way. D 

Throughout the remainder of this section and in the next section, it is 
assumed that we have a given invariant decision problem with the ingredients 
specified above. Here is a basic risk function identify for such problems. 

THEOREM 6.2. For any decision rule 8, 

(6.4) R(g8, gO) = R( 5, 0) 

for all g E G and 0 E e. 

PROOF. We use (6.2) and (6.3) and calculate as 

R(gS,O) = jjL(a,O)(gS)(dalx)P8(dx) 

= jjL(ga,0)8(dalg-Ix)P8(dx) 

An important consequence of (6.4) is: 
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THEOREM 6.3. If 13 is an invariant decision rule, then 

(6.5) R( 13, gO) = R( 13, 8) 

for all g E G and() E e. 

PROOF. When 13 is invariant, gS = 13 so (6.4) yields (6.5). D 

Equation (6.5) says that the risk function of an invariant decision rule 13 is an 
invariant function of 8. In particular, when the action of G is transitive on e 
and 13 is invariant, 

R(S, 8) = R(S, 80 ), o E e, 
for any fixed Oo E e. In other words, when G is transitive on e, invariant 
decision rules have constant risk functions. In this situation, we expect a best 
invariant decision rule to exist because we can fix 80 and then try to minimize 
R( 13, 00 ) over the class of all invariant decision rules. More precisely, 130 is called a 
best invariant decision rule if 

R( 130 , 80 ) s R( 13, 00 ) 

for all invariant rules 13. Of course, the choice of ()0 is irrelevant because G is 
assumed to act transitively on e. 

In the next section we describe one method of finding a best invariant decision 
rule when G is transitive on e. The method is originally due to Stein (unpub­
lished) but the treatment here is rather different than I've seen in the literature. 
A related work is Zidek (1969). 

6.2. Best invariant rules in the transitive case. Consider an invariant 
decision problem as described in the previous section. It is assumed throughout 
this section that G acts transitively on e. Hence all invariant decision rules have 
constant risk functions. Also assume that the Radon measure p, on (X, B1) 

dominates each P0 in the statistical model {P0 j0 E e}. The dominating measure 
p, is assumed to be relatively invariant with multiplier Ll- 1 ( Ll is the right hand 
modulus of G) as in Theorem 5.5. The densities 

dP0 
p(xjO) = dp, (x) 

are, as usual, assumed to satisfy 

(6.6) p(xjO) = p(gxjg8)L1- 1(g) 

for all x, () and g. 
The main assumption of this section, is that G acts properly on X (Definition 

5.1). Therefore, the representation of J (the integral defined by p,) described in 
Theorem 5.5 holds. This representation involves the function T defined on K (X) 
to K(X/G) by 

(6.7) T(f)(7r(x)) = jf(gx)vr(dg), 
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where vr is right Haar measure on G and w is the natural projection from X to 
XjG. Then Theorem 5.5 shows that 

(6.8) J(f) = J1(T(f )) 

for some integral J1 on K(X/G). Of course (6.8) holds for all f which are 
p-in tegrable. 

We now apply (6.7) and (6.8) to the expression for the risk function of an 
invariant decision rule 8. Fix 8, fix 0 E e and set 

fo(x) = t L(a, 0)8(dalx )p(xiO) 

so that fo is nonnegative and 

(6.9) R(8,0) = ft0(x)p(dx) = J(fo). 

From (6.8), we have 

(6.10) R(8, 0) = J 1(T(f0 )), 

where 

(6.11) 
=fat L(a, 0)8(dalgx)p(gxl0)vr(dg). 

THEOREM 6.4. The function T( f0 ) in (6.11) satisfies the equation 

(6.12) T(f0 )(w(x)) = 1J L(a,g0)8(dalx)p(xlg0)vr(dg). 
a A 

PROOF. Using (6.3) and (6.6) in (6.11) yields 

(6.13) T(f0 )(w(x)) =fat L(ga, 0)8(dalx)p(xlg- 10)D.(g)vr(dg). 

The invariance of L, the identity v1 = D.vr, together with the fact that 

Pz(dg- 1) = vr(dg) 

applied to (6.13) show that 

T(f0 )(w(x)) = 1 jL(a,g- 10)8(dalx)p(xlg- 10)v1(dg) 
GA 

= fGtL(a,g0)8(dalx)p(xlgO)vr(dg). 

Thus (6.12) holds. o 

Here is the description of how to find a best invariant decision rule. Define H 
on A X X by 

(6.14) 

Because G is transitive on 8, the function H does not depend on 8 E 8. 
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THEOREM 6.5. Assume a measurable function a0 , defined on X with values 
in A, exists which satisfies 

(i) H(a,x) ::::H(a0(x),x) foralla,x, 
(6.15) 

(ii) a0(gx) =ga0(x) forallg,x. 

Then a0 defines a best invariant decision rule S0 [that is, S0( ·ix) puts probability 
1 at a0(x) and S0 is invariant by (ii)]. 

PROOF. Fix an invariant decision rule s and fix 8 E e. Because G is 
transitive on e, it suffices to show that 

R ( S0 , 8) ~ R ( S, 8). 

By definition of a0 and S0 , first observe that for any decision rule S, 

J0 L L( a, g8)S( daix )p(xig8 )v7 ( dg) 

(6.16) ::::: jL(a0(x),g8)p(xig8)vr(dg) 

= £L L(a, g8)So( daix )p(xig8)vr( dg). 

Now, apply the integral J 1 to the first and last expressions in (6.16) and use 
(6.10) and (6.11) to yield R(S0 , 8) ~ R(S, 8). This completes the proof. D 

The argument above provides a constructive method for finding a best 
invariant decision rule (under the stated assumptions). Namely, for each x E X, 
we minimize (over a) the function 

(6.17) H(a,x) = jL(a,g8)p(xig8)vr(dg) 

to get the minimizer a 0(x) (assuming it exists). It is an easy exercise to show that 

H(ha, hx) = H(a, x) for hE G 

and for all a and x. Thus the discussion of the orbit-by-orbit method given after 
Theorem 3.2 is valid. Under the regularity conditions of Theorem 3.2 applied to 
H, the resulting minimizer a0 will satisfy (6.15)(ii). For simplicity of exposition, 
this invariance condition is simply assumed in the statement of Theorem 6.5. 

There is a Bayesian interpretation of Theorem 6.5 which provides a partial 
answer to the question raised in the discussion after Theorem 3.2. Fix 80 in 8 
and define the function T on G to 8 by 

r(g) = g8o. 

The map T is onto because G is transitive. Now define the "induced" measure~ 
on measurable subsets of 8 by 

g{B) = vr( T- 1(B)), 



6.2. BEST INVARIANT RULES IN THE TRANSITIVE CASE 87 

or equivalently 

jt(O)HdO) = jt(gOo)vr(dg), 

for f E K(EJ). When ~ is a well defined Radon measure [it may not be in some 
examples when ~(B) = + oo for some compact B], then an easy calculation 
shows that ~ is relatively invariant with multiplier 11- 1• Assuming ~ is well 
defined, the definition of ~ shows that 

(6.18) H(a, x) = jL(a, O)p(x!O)HdO). 

But (6.18) is proportional to the posterior loss for taking action a when the prior 
(possibly improper) is ~. Thus, a0 can be interpreted as a formal Bayes rule for 
the prior distribution ~. Note that ~ is a proper prior iff G is compact. 

In some examples, the "natural" dominating measure for the probability 
measures of the model is not relatively invariant with multiplier .6-\ but is 
relatively invariant with some other multiplier. This situation was discussed 
earlier in the context of Theorem 5.6. To discuss this in the present context, 
assume that p. 0 is the doniinating measure and p. 0 is relatively invariant with 
multiplier Xo· From (5.16), the new dominating measure 

1 
p.(dx) = q,(x) p. 0(dx) 

is relatively invariant with multiplier .6 - 1. Here, cp is a strictly positive function 
on X which satisfies 

q,(gx) = x0(g).6(g)q,(x) forx EX, g E G. 

The existence of such a cp was discussed in Chapter 5. Relative to this new 
dominating measure p., the densities become 

(6.19) p(xjO) = p(xjO)cp(x), 

where p(xjO) is the density of P0 with respect to p. 0• Theorem 6.5 applied to 
p(xjO) shows that a best invariant rule is formed by minimizing 

H(a, x) = jL(a, gO)p(xjgO)vr(dg). 

Using (6.19), we have 

ii(a,x) = cp(x)H(a,x), 
where 

(6.20) H(a,x) = jL(a,gO)p(xjO)vAdg). 

Because cp is strictly positive, minimizing ii is the same as minimizing H. The 
point is that as long as the dominating measure is relatively invariant with 
respect to some multiplier [and the densities satisfy (3.1) for that multiplier], 
then a best invariant rule is found by minimizing (6.20) for each x EX. 
Examples of this are given in the next section. 
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6.3. Examples of best equivariant estimators. Three examples in which 
best equivariant estimators are derived are presented here. The first concerns 
normal data with a known coefficient of variation. In this example the best 
equivariant estimator under normalized quadratic loss is different than the 
maximum likelihood estimator. The last two examples deal with the estimation 
of a covariance matrix based on data from a normal distribution. This case is 
quite interesting because the problem is invariant under two different groups and 
the resulting estimators are different for the loss functions considered. 

EXAMPLE 6.1. Consider X1, ••. , Xn which are iid N(O, 02 ) with 0 > 0. Thus 
the random vector X with coordinates X1, ••. , Xn has the distribution 

2(X) = N( Oe, 02In), 
where e is the vector of l's in Rn. With e = A = (0, oo) and 

(a- 0)2 

L(a,O)= 02 , 

the ingredients of the decision problem are specified. Take G to be the multi­
plicative group (0, oo) so G acts on e and A in the obvious way. Clearly G is 
transitive on e. Further G acts on sample vectors x E Rn by coordinatewise 
multiplication. That the decision problem is invariant is easily checked. 

The group G does not act properly on Rn, but G does act properly on the 
modified sample space X= Rn- {0}. Thus the results of the previous section 
show that a best equivariant estimator is found by minimizing 

H( a) = 1oo L( a, gO) f(xJgO) dg, 
0 g 

where f( ·10) is the density of the data X with respect to Lebesgue measure on X. 
Of course dgjg is a right Haar measure on G. Since H(a) does not depend on 
the choice of 0, we take 0 = 1 for convenience. Thus, for each x, the function 

100 dg 
H(a) = L(a, g)f(xJg)-

o g 

needs to be minimized. With 

o- 1/(xJO) 
q(OJx) = fooo0- 1/(xiO)dO. 

q( ·ix) can be viewed as a posterior density of 0 given x obtained from the 
improper prior dO jO. Clearly, minimizing H is equivalent to minimizing 

[ (a-0)2
1 l = E 02 X= X • 
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The minimum is easily shown to be 

E[8- 1jX = x] 
ao(x) = E[8-2!X = x]' 

89 

which satisfies the equivariance condition (6.15)(ii). The best equivariant estima­
tor a 0 is not known in closed form, but can be computed numerically. See Kariya 
(1984) for some further discussion. 

For comparative purposes, the maximum likelihood estimator of () is 

-x+ [Cx)2+4x2r/2 
8(x) = 2 

where 
1 n 

x2 =- :Exf. 
n 1 

Obviously 8 is equivariant, but it is not too hard to show that 8 * a 0 • This 
completes the first example. D 

EXAMPLE 6.2. Consider iid p-dimensional random vectors Xl, ... ' xn which 
have a multivariate normal distribution Np(O, ~).The problem considered here is 
the estimation of the p X p covariance matrix ~ which is assumed to be 
nonsingular, but otherwise unknown. Further, it is assumed that n 2 p so that 
the sufficient statistic 

n 

S= LXiX/ 
i=l 

is positive definite with probability 1. Without loss of generality, estimators of ~ 
are functions of S. Thus the sample space X, the parameter space 8 and the 
action space A are taken to be the set of p X p positive definite matrices. 
Obviously S has a Wishart distribution W(~, p, n) and the maximum likelihood 
estimator of 2:: is 

~ = n- 1s. 
The group Gl P acts on X, 8 and A in the obvious way: 

S ~ gSg', 

~ ~ g~g', 

a~ gag', 

for g E Gl p· The model for S is invariant under this group action. 
Now, consider a loss function L which is invariant, that is, L satisfies 

(6.21) L(gag', g~g') = L( a,~) 

for all g, a and ~. A standard invariance argument shows that L satisfies (6.21) 
iff L can be written as a function of the eigenvalues of a1:- \ say l\. 1 2: · · · 2: 
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A P > 0. Two interesting examples are 

L 1(a, ~) = tr~- 1(a- ~)~- 1(a- ~) = tr(~- 112a~- 112 - IP) 2 

(6.22) p 

= L (Ai- 1)2 
i=l 

and 

(6.23) p 

= L (A i - log A i - 1). 
i= 1 

The loss function L 1 was used by Selliah (1964) in his Stanford thesis [also see 
Olkin and Selliah (1977)]. Stein (1956) introduced L 2 in his study of covariance 
estimation [also see James and Stein (1960)]. 

Because GlP acts transitively on e, a best equivariant (nonrandomized) 
estimator should exist. Rather than use the results of Section 6.2, it is a bit 
easier for this particular example to proceed as follows. An estimator r(S) is 
equivariant iff 

(6.24) r(gSg') = gr(S)g' 

for all sand g E Glp" Picking g = s- 112, (6.24) implies that 

(6.25) r(S) = S112-r(J)S112 • 

But, for any y E OP, (6.24) implies 

(6.26) r(J) = r( yly') = yr(J)y', 

which implies that the matrix r(J) must be a multiple of the identity matrix, say 
r( I) = al. Combining this with (6.25) shows that an estimator is equivariant iff 

(6.27) r(S) = aS 

for some real a. Thus, to find a best equivariant estimator, the constant a is 
selected to minimize the risk at some (any) fixed point in e. For L 1, a is to be 
selected to minimize the risk 

R 1(aS, I)= E1 tr(aS- 1)2 

= a2E 1 trS 2 - 2aE1 trS + p. 

The minimizer is 

E1 trS np 1 
a = = --~-------------

1 E1 trS2 (n2 - 2n)p + n(p- I) n + 2 + (p- 1)/p · 

Using L 2 , a similar calculation shows that the minimizing a is 

1 
a2 = -. 

n 

Hence for L 2 , the maximum likelihood estimator is a best equivariant estimator. 
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Because the group of p X p lower triangular matrices with positive diagonal 
elements G:j. is a subgroup of GlP, the above estimation problem (with loss 
functions L 1 or L 2 ) is also invariant under a;. Since G:j. acts transitively on e, 
a best equivariant estimator should exist for this problem. In this case an 
estimator T(S) is equivariant iff 

(6.28) T(gSg') = gT(S)g', g E G:j., 

for each S E X. Standard arguments show that (6.28) holds iff 

(6.29) T(S) = TAT', 

where T is the unique element in a; such that S = TT' and A is a fixed 
symmetric matrix. Thus finding a best equivariant (under G:j.) estimator involves 
finding A to minimize the risk at a fixed point in e. This of course depends on 
the loss function. 

For loss function L 1, A is chosen to minimize 

R1 = E1 tr(TAT'- 1)2 • 

The mm1m1zmg A is a diagonal matrix, but the nnmm1zer is not known 
explicitly. For the equations determining the minimizer see Selliah (1964) and 
Olkin and Selliah (1977). 

When the loss function is L 2 , A is chosen to minimize 

R 2 = E 1 [ tr TAT' - log det( TAT') - p] 
= E 1 trT'TA -logdet(A) + c0 , 

where c0 is a constant. Thus, it suffices to minimize 
p 

R2 = trE(T'T)A- logdet(A) = L diiaii- logdet(A), 
i=l 

where aii• ... , aPP are the diagonal elements of A and 

dii = n + p - 2i + 1, i = 1, ... , p. 

The minimum is achieved at 

Ao=D-1, 

where D is diagonal with diagonal elements dn, ... , dPP' Therefore the best 
equivariant estimator in this case is 

T2(S) = TD- 1T' 

as was established by Stein [see James and Stein (1960)]. It also follows from 
results in Kiefer (1957) that this estimator T2 is minimax [because the group G:j. 
is solvable; see Bondar and Milnes (1981) for a survey], but the maximum 
likelihood estimator ± is not minimax when L 2 is the loss function. For some 
related results, see Eaton and Olkin (1987). This completes Example 6.2. D 

It should be noted that the results established in Section 6.2 were not used to 
find the best equivariant estimators in Example 6.2. Rather, the procedure was 



92 INVARIANT DECISION PROBLEMS 

to first characterize the functional form of the equivariant estimators and then 
minimize the risk (at a fixed point in 8) over the class of equivariant estimators. 
This was feasible because the functional form was rather simple for the two cases 
considered. In the next example, which also concerns covariance estimation, this 
procedure seems not to be feasible because the class of equivariant estimators is 
rather large. For this reason, the method described in Section 6.2 is used in the 
following example. 

EXAMPLE 6.3. As in Example 6.2, assume that data S which is W(~, p, n) 
with n ;::: p, is available. Partition ~ as 

~12) 
~22 ' 

where ~11 is q X q and ~22 is r X r, so p = q + r. Consider "extra" data 
X1, ••• , Xm which consists of iid random vectors in Rq such that each Xi has a 
N(O, ~11 ) distribution. The problem is to estimate ~ using S and the data 
X1, ••• , Xm. Note that (S, V) is a sufficient statistic where 

m 

To describe the in variance of this problem, let G be the subgroup of Gl P 

whose elements g have the form 

g = (gll 
g21 

with g 11 E Glq and g 22 E Glr. The model is easily shown to be invariant under 
the group actions 

(S, V) ~ (gSg', g 11Vg{1 ), 

~ ~ g~g'. 

This invariance together with the orbit-by-orbit method described in Theorem 
3.2 can be used to derive the maximum likelihood estimator for ~. The details 
are not given here [see Eaton (1970) for one derivation of ~]. 

Because the group G~ of p X p lower triangular matrices with positive 
diagonal elements is a subgroup of G, the model for the data is G~ invariant. 
Also, G~ acts transitively one so a best equivariant estimator should exist. In 
the remainder of this example we focus on finding a best equivariant (under G;) 
estimator when the loss function is L2 given in Example 6.2. First, we character­
ize the equivariant estimators, that is, those estimators 'T which satisfy 

(6.30) 'T(gSg', g11Vg{1 ) = gT(S, V)g' 

forgE G~ and for sample points (S, V) for which Sis positive definite and Vis 
nonnegative definite. Let T be the unique element in G~ satisfying S = TT'. 
Picking g = T- 1 in (6.30) shows that 'T satisfying (6.30) must satisfy 

T(TT', V) = TT(l, T1J: 1V(Ti! 1)')T' = TT0 (T1J: 1V(Ti/)')T', 
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where T0 maps q X q nonnegative definite matrices into p X p positive definite 
matrices (since T is assumed to take values in 8). Conversely, if T is given by 

( 6.31) T( TT', V) = TT0 ( T1-i 1V( T111 )') T', 

then it is easy to show that T satisfies (6.30). Hence, all equivariant estimators 
have the form (6.31) where r0 is "arbitrary." Thus, to find a best equivariant 
estimator, we must minimize the risk over all T0 's: 

R2 = E1L2 [ TTo( T1! 1V( T111 )')T, I]. 
A straightforward approach to this problem, such as that used in Example 6.2, 
seems very difficult to carry out. For this reason, the method described in 
Section 6.2 is used. 

To show that the method of Section 6.2 is applicable, first note that the 
sample space X X (Rq)m is acted on by a; via 

(S,xl> ... ,xm) ~ (gSg',g11x1, ... ,g11xm), 

where sEX (as in Example 6.2), each xi is in Rq and g E a;. Lebesgue 
measure on X X (Rq)m is relatively invariant under the group action and the 
action is proper. Thus a best equivariant estimator is found by minimizing [from 
(6.20)] 

(6.32) 

where ()0 is a fixed point in 8, z EX X (Rq)m is a sample point and vr is a 
right-invariant measure on a;. For convenience, pick 80 = IP E e. Substituting 
the explicit form of the density p in (6.32), the function which needs to be 
minimized is 

(6.33) 
( ) f ( )'( )-1 jn/2

1 
~-m/2 H a = L 2 a, gg' gg' S gng{1 

Xexp( -ttr(gg')- 18- ttr(g11g{1)- 1V]vr(dg). 

The orbit-by-orbit method shows it is sufficient to minimize (6.33) when S = IP. 
Setting S = IP and making the change of variable g ~ g-I, the function we 
want to minimize is 

H 1( a) = J L 2( a, gg')lg'gln12 ig{1g111m/2 exp[-! tr g'g- t tr g{1g11V] v1( dg ), 

where v1 is a left-invariant measure on a;.. The details of this minimization are 
given in Eaton (1970) and are not described further here. The best equivariant 
estimator obtained from this minimization is as follows. First write the data 
(S, V) as 

S= TT', u = r- 1v(r- 1)' 
11 11 ' 

where T E a;.. Further, write 

(6.34) Iq + U= WW', 
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where W is the unique q X q lower triangular matrix with positive diagonals 
satisfying (6.34). The best equivariant estimator (for loss function L 2 ) can be 
written 

r(S) = Tr0(U)T', 

where 

ro(U) = [ [(w-l)'nw-10+ (p- q )Irl 0 l 
El 

and D: q X q and E: r X rare fixed diagonal matrices with diagonal elements 

d ii = m + n + q - 2 i + 1, i = 1, ... , q, 

and 

eii = n + p - 2q- 2i + 1, i = 1, ... , r. 

This estimator is minimax because of results in Kiefer (1957). D 

6.4. Invariant testing examples. Here we consider an invariant testing 
problem where the representation theorem, Theorem 5.9, is applicable. On a 
space X which is acted on properly by a locally compact group G, assume that a 
Radon measure J.L is relatively invariant with multiplier X· A family of densities 
with respect to J.L, say {p( ·10)10 E 8}, is given. Further, the group G acts on 8 
and the basic invariance condition 

p(xiO) = p(gxlgO)x(g) for x, 0, g 

is assumed to hold. Thus the probability model on X determined by the family of 
densities is invariant. 

Let 8 0 and 8 1 be G invariant subsets of 8 and consider testing 

Ho: 0 E E>o versus Hl: 0 Eel. 

This testing problem is, according to the discussion given in Section 3.2, invari­
ant. In what follows, attention is restricted to invariant test functions cp. Thus, if 
r(X) is a maximal invariant, an invariant test function cp can be written as 

cp(X) = 1/;( r(X)). 

Now, we add the final assumption that G acts transitively on both 8 0 and 8 1• 

Under this assumption (plus those above), a most powerful level a invariant test 
is given below. To describe this test, first observe that the power function of any 
invariant test, say 

{39(0) = E9cp(X), 

is an invariant function of 8. Because G is transitive on 8 0 and 8 1, this power 
function takes on only two values, namely, 

i = 0, 1. 

Thus, a0 is the level of cp and a 1 is the power of cp. But, for fixed a0 , the 
Neyman-Pearson lemma tells us that the most powerful test rejects for large 
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where qi is the density of 'T(X) when X has density p(·IB), BE ei fori= 0,1. 
Of course, qi does not depend on B E Eli because G is transitive on ei. Note that 
densities always exist in the present situation because T(X) has only two 
possibl~ distributions-one under H 0 and one under H1. However, Theorem 5.9 
tells us how to compute the ratio r(t). In the notation of this section, fix Bi E Eli, 
i = 0, 1. Then according to (5.20) [using the maximal invariant '1T(x)], 

(6.35) 
r('1T(x)) = fp(gx!B1)x(g)v1(dg) 

fp(gx!Bo)x(g)vldg)' 

where x is the multiplier specified in the model and v1 is a left-invariant measure 
on G. Naturally the denominator is assumed to be positive. Also, the expression 
(6.35) does not depend on the choices of 80 and 81 because of the transitivity 
assumption. The above discussion implies that the most powerful level a­

invariant test rejects for large values of r('1T(X)) given in (6.35). 
Before turning to some examples, it is useful to contrast the hypothesis 

testing problem considered here with the estimation problem of the last section. 
It was assumed that G acted transitively in the estimation problem, and this 
assumption implied that equivariant estimators had constant risk. Thus the risk 
of decision rule in the estimation problem is a single number, because there is 
only one orbit in the parameter space. In the testing problem above, the 
parameter space is 8 0 u 8 1 and there are two orbits (assuming 8 0 *- 8 1). Thus, 
the risk function of an invariant test is determined by two numbers. In this 
situation, the Neyman-Pearson lemma tells us what the good invariant decision 
rules are. 

EXAMPLE 6.4. This example concerns Hotelling's T 2 test for certain types 
of nonnormal data and comes from Kariya (1981). Consider a random matrix 
X: n X p which has a density with respect to Lebesgue measure, on np dimen­
sional space given by 

(6.36) 

Here xis n X p, e is the vector of 1's in Rn, JL is an unknown vector in RP, 2: is 
a p X p positive definite matrix, tr denotes the trace and f is some nonnegative 
function defined on [0, oo) which satisfies 

Jt [trx'x] dx = 1. 

The parameter B stands for the pair (JL, 2:). In the case that 

f(z) = (y'2;fnp exp[ -tz], 

then of course the rows of X are iid Np(!L, ~). 

z E [0, oo], 
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Here is the classical hypothesis testing problem which Hotelling's T 2 test 
solves for normal data: 

H0: Jl = 0 versus H 1 : Jl =I= 0. 

The matrix ~ is unrestricted under both H 0 and H 1• With a rotation of 
coordinates and some relabelling, we can (and do) replace the vector e in (6.36) 
with the vector 

,, ~ [: E R". 

This relabelling results in some notational simplification. It is assumed that 
n ~ p + 1 and matrices x: n X p are partitioned as 

x=(:~), 
where x 1 is 1 X p and x 2 is (n- 1) X p. The sample space for this problem is 
taken to be the set of x 's such that x 2: (n - 1) X p has rank p. 

To describe a group under which this problem is invariant, let G be the 
product group G0 X Gl P where G0 is the subgroup of On whose elements have 
the form 

g=(~ ~). 
Given (g, a) E G0 X GlP, the group action on X is 

x --" gxa' 

and the group action on the parameter () = (Jl, 2:) is 

(Jl, ~)--" (aJl, a~a'). 
Note that Lebesgue measure is relatively invariant with multiplier 

x(g, a) =idet(a)jn. 

Routine calculations show that a maximal invariant function on X is 

T 2 = X1(X~X2 )- 1X{, 
where 

Further, a maximal invariant function on the parameter space is 

8 = Jl'~-lfl· 

Now, fix 81 > 0 and consider 

eo= { (Jl, ~)18 = 0} 
and 
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The group G acts transitively on 8 0 and 8 1 and G acts properly on X. Thus, a 
best invariant level a test for testing the null hypothesis 

Ho: () E E>o versus ii: () E el 
is found by calculating r in (6.35). Clearly the original null hypothesis is 
equivalent to () E H0 , but the original alternative is H1 : 5 > 0. Our first goal is 
to find a best invariant test for H0 versus il1. To this end, take 80 E E> to be 

8o = (o, Ip) 

and 81 to be 

where 

1 

t.-_ 0 R <; E P. 

0 

A left-invariant measure on G is 

da 
vz(dh) = v(dg) ldet(a)IP' 

where v is the invariant probability measure on 0 0 and da is Lebesgue measure 
on GlP. Substituting these and (6.36) into (6.35), and changing variables shows 
that 

(6.37) 

where both of the integrals are over GlP, a 11 is the (1, 1) element of a and 

1'2 
v = -------:--:::-

(1 + 1'2)1/2. 

Obviously v is an increasing function of T 2 and v is also a maximal invariant 
statistic since it is a one-to-one function of T 2• 

PROPOSITION 6.1. Assume f is a convex function on [0, oo ). Then the best 
invariant level a test of H 0 versus il1 rejects for large values of T 2• Further, the 
null distribution of T 2 is that when 

f ( z) = ( y'2; f np exp [ - t z ]. 

PROOF. Because Lebesgue measure on GlP is invariant under the transfor­
mation a ~ -a, it follows that 

r( v) = r(- v), v 2 0, 

where r is given in (6.37). The convexity of f implies that for t ~ /3 ~ 1 and 
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v 2 0, we have 

r((2/3- 1)v) = r(f3v + (1- 13)( -v)) 

~ f3r(v) + (1- f3)r( -v) = r(v). 

Hence r( v) is nondecreasing in v so rejecting for large values of r is equivalent to 
rejecting for large values of v, which is, in turn, equivalent to rejecting for large 
values of T 2• The first part of the proposition is proved. 

That the null distribution of T 2 does not depend on the particular f in (6.36) 
is a consequence of the null robustness results described in Section 4.3. 0 

An immediate consequence of Proposition 6.1 is that the test which rejects for 
large values of T 2 is a best invariant test (of its level) for testing H0 versus H1• 

This follows because the best invariant test of H0 versus il1 did not depend on 
the particular alternative il1. Thus, as long as f is convex, Hotelling's T 2 test as 
a best invariant test of H0 versus H1 and the null distribution of T 2 is known 
for each f. This completes our discussion of Example 6.4. o 

EXAMPLE 6.5. Here we briefly discuss a relatively smooth example where a 
best invariant test exists (Wijsman's theorem applies) and this test is different 
from the likelihood ratio test. This example is essentially due to Stein and was 
originally constructed to show that the Hunt--Stein theorem is not valid for the 
group GlP, p 2 2. See Lehmann [(1959), Problem 10, page 344] for a related 
result. 

Consider two independent Wishart matrices S1 with 

.Sf(S1) = W(};, p, n) 

and s2 with 

It is assumed n 2 p ~ 2, }; is an unknown p X p positive definite matrix and 
the real constant c is positive. The problem is to test 

H0 : c = 1 versus H1 : c = 2 

so }; is a nuisance parameter. In our previous notation, 

E>o = { ( c, }; ) I c = 1} 

and 

el = {(c, };)lc = 2}. 

It is easily verified that this problem is invariant under GlP acting on Si by 

si ----+ gSig', g E Glp 

and on}; by 

}; ----+ g};g', 

Clearly GlP is transitive on 8 0 and 8 1• The other conditions necessary to apply 
the argument at the beginning of this section are easily checked. Fix a level a in 
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(0, 1). The ratio in (6.35) defines a best level a GlP-invariant test, say <f>o· Note 
that the likelihood ratio test is GlP-invariant so can be no better than <f>o· 

Now, G:j. is a subgroup of GlP and so the testing problem above is also 
invariant under G~. Also G~ acts transitively on 8 0 and 8 1• Again the condi­
tions necessary to apply the argument at the beginning of this section can be 
verified. Thus again the ratio in (6.35) computed using G:j. defines a best 
G:j.-invariant test, say </>1• The test </> 1 is at least as good as <Po because <Po is 
G:j.-invariant. In fact </> 1 is a better test than <Po and hence </>1 dominates the 
likelihood ratio test. 

The point of this example is that there is a bit "too much" in variance in the 
problem above. Fully invariant procedures such as the likelihood ratio test can 
be improved upon by simply requiring less invariance. This completes Exam­
ple 6.5. D 

Finally we mention the book by Kariya and Sinha (1988) which contains 
material on null and nonnull robustness as well as further applications of 
Wijsman's theorem. 


