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The Lasso, correlated design, and
improved oracle inequalities”

Sara van de Geer and Johannes Lederer
ETH Zirich

Abstract: We study high-dimensional linear models and the ¢;-penalized
least squares estimator, also known as the Lasso estimator. In literature, ora-
cle inequalities have been derived under restricted eigenvalue or compatibility
conditions. In this paper, we complement this with entropy conditions which
allow one to improve the dual norm bound, and demonstrate how this leads to
new oracle inequalities. The new oracle inequalities show that a smaller choice
for the tuning parameter and a trade-off between £1-norms and small compat-
ibility constants are possible. This implies, in particular for correlated design,
improved bounds for the prediction error of the Lasso estimator as compared
to the methods based on restricted eigenvalue or compatibility conditions only.

1. Introduction

We derive oracle inequalities for the Lasso estimator for various designs. Results in
literature are generally based on restricted eigenvalue or compatibility conditions
(see Section 3 for definitions). We refer to [2, 46, 8, 10, 12]. See also [3] and the
references therein. In a sense, compatibility or restricted eigenvalue conditions and
the so-called dual norm bound we describe below belong together. In contrast, if
compatibility constants or restricted eigenvalues are very small, the design may
have high correlations, and then the dual norm bound is too rough. In this paper,
we discuss an approach that joins both situations. The work is a follow-up of [11].
It combines results of the latter with the parallel developments in the area based
on the dual norm bound.

We consider an input space X and p feature mappings ¢; : X = R, j=1,...,p.
We let (z1,...,7,)T € X™ be a given input vector, and Y := (Y1,...,Y,)T € R?
be an output vector, and consider the linear model

p
j=1

with € € R™ a noise vector, and 8° € R? a vector of unknown coefficients. Here,
with some abuse of notation, t; denotes the vector v; = (¢;(z1),...,¥;(z,))T.
The design matrix is X := (¢1,...,%,) and the Gram matrix is

3= XTX/n.
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Throughout, we assume that >, %2' (x;) < n for all j.
We write a linear function with coefficients 5 as fz := Z?Zl ViBj, B € RP. The
Lasso estimator is

(11) B = argmin{[Y - falg/n+ Il )

where A > 0 is a tuning parameter. We denote the estimator of the regression
function fO := fgo by f:= f5-

Oracle results using compatibility or restricted eigenvalue conditions are based
on the dual norm bound

T T
sup |e” fz|/n = max |e ¢;|/n.
s €l = €7

Let us define .
1 £al% = f5(ai)/n = BTSB.
i=1

The point we make in this paper is that the dual norm bound does not take into
account possible small values for ||f5 — fgo||». Our results are based on bounds for

sup " fal/n
181.<1, lIfalln<R

as function of R > 0. We then apply these to 5 — 8° (or 5° here replaced by a
sparse approximation). We use an improvement of the dual norm bound, and show
in Theorem 4.1 the consequences. The main observation here is that with highly
correlated design, one can generally take the tuning parameter A\ of much smaller
order than the usual y/logp/n. Moreover, small compatibility constants may be
traded off against the ¢1-norm of the coefficients of an oracle.

2. Organization of the paper

In Section 3, we present our notation, and the definitions of compatibility con-
stants and restricted eigenvalues. Section 4 contains the main result, based on a
pre-assumed improvement of the dual norm bound. In Section 5, we present a result
from empirical process theory, which shows that the improvement of the dual norm
bound used in Section 4 holds under entropy conditions on F := {fg: |51 = 1}.
In Section 6, we first give a geometrical interpretation of the compatibility constant
and discuss the relation with eigenvalues. The next question to address is then
how to read off the entropy conditions directly from the design. We show that a
Gram matrix with strongly decreasing eigenvalues leads to a small entropy of F.
Alternatively, we derive an entropy bound for F based on the covering number of
the design {¢,}, a result much in the spirit of [7]. We moreover link these cover-
ing numbers with the correlation structure of the design. Section 7 concludes and
Section 8 contains proofs.

3. Notation and definitions
3.1. The compatibility constant

Let S C {1,...,p} be an index set with cardinality s. We define for all 8 € RP,
BS,j :BJI{]GS}, jzla"'apa BSC ::/8_55'
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Below, we present for constants L > 0 the compatibility constant ¢(L,.S) intro-
duced in [10].

Definition. The compatibility constant is

¢*(L,S) == min{s| fas — fasclln : 1Bsli =1, |Bsells < L}.

For normalized v; (i.e., ||[¢;]l, = 1 for all j), one can view 1 — ¢?(1,5)/2 as
an ¢1-version of the canonical correlation between the linear space spanned by the
variables in S on the one hand, and the linear space of the variables in S¢ on the
other hand. Instead of all linear combinations with normalized fs-norm, we now
consider all linear combinations with normalized ¢;-norm of the coefficients. For a
geometric interpretation, we refer to Section 6.

The compatibility constant is closely related to (and never smaller than) the
restricted eigenvalue as defined in [2], which is
I f5s — foselln
185113

(L, ) = min{ el < L||551}.

See also [8], and see [13] for a discussion of the relation between restricted eigen-
values and compatibility.

3.2. Projections

As the “true” B° is perhaps only approximately sparse, we will consider a sparse
approximation. The projection of f0 := fgo on the space spanned by the variables
in S is
fg :=arg min ||f — f°|,.
f:fﬁs
The coefficients of fg are denoted by b°, ie., fg = f,s. Note that fg only has
non-zero coefficients inside S, that is, (b°)g = b”.

4. Main result

We let 7, be the set

41€T fal/n }
T = {sup_ia <o,
s sl 18l = °

Here, 0 < o <1 and A\g > 0 are fixed constants.
Note that on 7,

sup [ f5l/n < MR /4,
18l1:=1, Ifslln<R

i.e., we have a refinement of the dual norm bound described in Section 1.
Note that for fixed Ay and for a < &, it holds that 7, C 7T5. This is because by
the triangle inequality

1 fslln _‘

> ;B
J

<D lbslalBsl < 118111
no
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We want to choose « preferably small, yet keep the probability of the set 7, large.
For a = 1, one has

_ T, .
7o = { max 41|/ < o ).

by the dual norm bound. Thus, e.g. when € ~ N(0, 1), the probability IP(77) of
T1 is large when Ay < y/logp/n. We detail in Section 5 how one can lowerbound
IP(7,) for a proper value of o depending on the design {¢;}. When the errors are
sub-Gaussian, the value for Ao will be of order /logp/n, as in the case a = 1, or
Ao < /logn/n or even A\g < 1/4/n (see Section 5).

The choice of the tuning parameter A\ depends on Ag. The following technical
lemma will be used:

Lemma 4.1. Let 0 < a <1 and let a, b and \g be positive numbers. Then for all
A >0,

Here, when a =1,

2 , A < Ao,
M) ()T D
o - A E ; — N0,

0, A > Ao

In the proof of the main result, Theorem 4.1, we invoke Lemma 4.1 to handle the
“noise part” €’ fz with 8 = 3 — 8° (or actually with 3° replaced here by a sparse
approximation). On 7Ty, it holds that

A
A€ fol/n < SFsl + MBI+ (;1) ,

uniformly in 3 € RP. In the right hand side of this inequality, the first term || f5|2 /2
can be incorporated in the risk and the second term A||8||; will be overruled by the
penalty. Finally, the third term (\p/ )\O‘)ﬁ/ 2 governs the choice of the tuning
parameter .

We now come to the main result. We formulate it for an arbitrary index set S
partitioned in sets S; and Ss in an arbitrary way. We will elaborate on the choice
of S in Remarks 4.2 and 4.6. Corollaries 4.1 and 4.2 take for a given S some special
choices for the tuning parameter A and for the partition of S into S; and Ss.

Recall that fg is the projection of f° = fz and b¥ are the coefficients of fg.

Theorem 4.1. Consider for some A > 0 the Lasso estimator B defined in (1.1).
Let S be an arbitrary index set, partitioned into two sets Sy and Ss, i.e. S = S1US,
S1 NSy =0. Let s, be the cardinality of S1. Let T, be the set

T
T = {sup 7| A fsl/n < )\0}.
B

DBRER
Then on Tg,
R - 56725 28
" IIf—fOHi+AII6beII1SW;ﬁ*AII(bS)&”l
4.1

7/ X .
— Tfs — .
ri(5e) " s e
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Remark 4.1. We did not attempt to optimize the constants we provided in The-
orem 4.1.

Remark 4.2. Given a value of the tuning parameter A\, we can now define the
estimation error using the variables in S as

2
5(5) 8\ S1

4
SlCS,II}Szrlzs\Sl ¢2(6751) + 3 H( )52”1

The oracle set S, is then the set which trades off estimation error and approximation
error, i.e, the set S, that minimizes

£(S) + llfs — fO117-

Note that S, depends on A, say Sx = Si(\). The best value for the tuning parameter
A* is then obtained by minimizing

L/ 2\ "7
es.00 + 5 (52) " + e = 12,

Remark 4.3. In practice, the tuning parameter A can be chosen by cross-validation.
As this method tries to mimic minimization of the prediction error, it can be con-
jectured that one then arrives at rates at least a good as the ones we discuss here
choosing values of A depending on the design, the (unknown) error distribution,
and the unknown sparsity. This is however not rigorously proven.

Remark 4.4. We have restricted ourselves to improvements of the dual norm
bound of the form given by sets 7,. The situation can be generalized by considering

sets of the form .
{ Ale’ fgl/n

sup

A
P (T AT }

where G is a given increasing convex function with G(0) = 0.

Remark 4.5. One may ask to what extent inequality (4.1) is an oracle inequality.
If we take « = 1, S = S = Sy, with Sy = {j : [3? # 0} being the true active
set, one sees that with A\g < A < y/logp/n, and up to the compatibility constant
#(6,S50) and a log p term, the Lasso prediction error is upper-bounded by a term
of the same order of magnitude as the prediction error of the oracle which uses the
least squares projection of Y on the space spanned by the variables with indices in
Sp. Taking Sz = S = {1,...,p} and assuming ||3°|; < 1 (say), entropy conditions
(as considered in Section 5) on the function class F := {5 : ||| < 1} and a proper
value of A can be shown to lead to a bound for the prediction error of the same
order of magnitude as the minimax lower bound over F (for Gaussian errors, say).

Corollary 4.1.
(a) If we take So = 0, we have S; = S, and s; = |S| =: s. This is a good choice
when the compatibility constants are large for all subsets of S. With the choice

265 11—«
)\QXA%(—¢(’ )> :
S
we get on Ty,

17 = 1+ M5 =01 = 0 (3 (g gy )+ s~ £°12)-



308 S. van de Geer and J. Lederer

Recall that the dual norm bound has o = 1. With Ay < \/logp/n we then arrive
at the “usual” oracle inequality as provided by, among others, [2, 4-6, 8, 10, 12].
When the design is highly correlated, then the compatibility constant may be very
small. In some cases, it is possible to consider a < 1 so that the effect is however
tempered by the power o in the bound.

(b) More generally, let

S1

11—«
A2 < A?)(L(&Sl)) :
Then on Ta,

1F = £OI1% + AllB = 0

o 2(6,5)\ 7
=0t ) o EEEL) T 0%+ hes - 102 ).

Corollary 4.2.

(a) With the choice S; = (), the result does not involve the compatibility con-
stant. This may be desirable when the design is highly correlated. The result then
corresponds to what is sometimes called “slow rates”, although we will see that when
a < 1, the rates can still be much faster than 1/\/n. When o = 1, we must take

A > Ao (due to the term ()\O/AO‘)&), When o < 1, we choose
_2 _l-a
A= AT T
We get on Ta,
1f = SO1% + M8 =651 = OO I + liEs — £OII%).-
(b) More generally, let
THa (S . || TTa
A= A7) Ml 7
Then on Ta,
1f = fOU% + B =651
_4
)\6+a S1

= O( 2(1—a) 19
10S)s, )l O

_2 2a
+%”MWH2F”+&—fW$-

Remark 4.6. Note that by taking S; smaller, the value of s;/¢?(6,5;) will not
increase, but on the other hand, the value of ||(b%)s,]||; will become larger. Thus,
the best rate will emerge if we trade off these two effects. Indeed, suppose that for

some S
S1

$*(S1)

2 2
Ag"* = [[(0%)s [l

Then on 7, for

g NG
A= ——— = AT |(b e
0(&@50) 6%,
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we have

17 = 221+ 305 -1 = 08 saetsg ) +lts - 1)
= oI5 s — £012).

In particular for the case o < 1, it is however not clear when such a trade-off is
possible. It may well be that for any S, s1/¢%(6,51) either heavily dominates or is
heavily dominated by the ¢;-part ||(b%)s, ]|

5. Improving the dual norm bound

In this section, we provide probability bounds for the set 7, introduced in Sec-
tion 4. The results follow from empirical process theory, see e.g. and [14] and [15].
Theorem 5.1 is taken from [3].

Definition Let F be a class of real-valued functions on X. Endow F with norm
I - |ln- Let 6 > 0 be some radius. A §-packing set is a set of functions in F that are
each at least § apart. A §-covering set is a set of functions {¢1,...,dn}, such that

sup min | f =yl < 6.
erk

7
The §-covering number N (6, F, || -||») of F is the minimum size of a d-covering set.
The entropy of F is H(-, F, || - |n) =log N(-, F, || - |ln)-

It is easy to see that N(J,F,|| - |l») can be bounded by the size of a maximal

d-packing set.
We assume the errors are sub-Gaussian, that is, for some positive constants K
and oy,

(5.1) Kz(]EeXp[eg/KQ} —1) <o?, i=1,...,n.

The following theorem is Corollary 14.6 in [3]. It is in the spirit of a weighted
concentration inequality, and uses the notation x4 := max{x,0}.

Theorem 5.1. Assume (5.1). Let F be a class of functions with ||f|l, <1 for all
f € F, and with, for some 0 < a < 1 and some constant A,

A 2a
log(1+2N (5, F, || - [|ln)) < (E) , 0<6<1.
Define
A%eq
B := — | -1
|t |
and

Ko :=3x2°\/K2+ 3.
It holds that

" fl/vn Aa||f|na) r]
E exp [ﬁgg{( ko 20e-1)., <1+2/B.
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Corollary 5.1. Assume the conditions of Theorem 5.1. Chebyshev’s inequality
shows that for all t > 0,

P(3 feF: [ f/V/n=>KoA%|fll *(2'7 = 1)~ + Kol| fllnt)
< exp[—t?](1 +2/B).

Corollary 5.2. Consider now linear functions fg := Z _,Y;Bi, B € RP, where
[Vlln < 1. Then | falln < ||B|l1. Hence, {f3/||B]1: 5 € RP} is a class offunctzons

with || - ||n-norm bounded by 1. Suppose now

2a
log(1 + 2N (8, {fs : |ﬁ||1=1},||~|n>)<(§)  o<s<l.

Under the sub-Gaussianity condition (5.1), we then have for all t > 0 and for

AKy [ A®
AO—W(WH)’

the lower bound
P(75) > 1 — exp[—*](1 +2/B).

6. Compatibility, eigenvalues, entropy and correlations
6.1. Geomelric interpretation of the compatibility constant

We first look at the minimal /;-eigenvalue
A1 (S) = min{sBESBs : [|Bs]ly = 1}

as introduced in [3]. Note that Apin1(S)/+/s is the minimal distance between any
point fg, with ||Bs|l1 = 1 and the point {0}. We tacitly assume that the {¢;};cs are
linearly independent. The set {fg, : ||Bs|l1 = 1} is then an ¢;-version of a sphere:
it is the boundary of the convex hull of {¢;};es U{—%;};cs in s-dimensional space
with {0} in its “center”. It is a parallelogram when s = 2 (see Figure 1) and then
a rectangle when the 1, j € S, have equal length.

Let Es be the Gram matrix of the variables in S and A2

2 in(S) be the minimal
(£o-)eigenvalue of the matrix Vgt

A2 (S) == min{BEEBs : [|Bsll2 = 1}
Then
A?nln 1(S) > Arzmn(s) > Ar2mn I(S)/S’
1
Yo
0
A

FIG 1. Left panel: the set A ={fgg : ||Bsl|l1 = 1}. Right panel: £1- and £2-eigenvalues.
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Fi1c 2. The compatibility constant.

One can construct examples where A2, (S) is as small as 3/(s — 2) (s > 2) and
A2 1 (S) is at least 1/2 (see [13]), that is, they can differ by the maximal amount
s in order of magnitude. See also Figure 1 which is to be understood as represent-
ing a case s > 2. Thus, minimal ¢;-eigenvalues can be much larger than minimal
(£2-)eigenvalues. The normalized compatibility constant ¢(L,.S)/+/s is the minimal
distance between the sets A := {fa, : ||Bs|i = 1} and B := {fgs. : ||Bs|l1 < L},
that is,
(L, 5) =min{|la —b||,: a € A, be B}.
7

See Figure 2 for an impression of the situation. Observe that A is the boundary of
the convex hull of {+%;};jes U{—%,},cs, and B is the convex hull of {+1,},cgc U
{—%;}jese including its interior, blown up with a factor L (typically, the {1;};cge
form a linearly dependent system in R™). Furthermore, since {0} € B

¢(La S) S Amin,l(S)~

This shows that when ¢;-eigenvalues are small, the compatibility constant is neces-
sarily also small. Small /2-eigenvalues may have less of this effect.

6.2. Figenvalues and entropy

We now let

¥ =EQVET
be the spectral decomposition of the Gram matrix 3, F being the matrix of eigen-
vectors, (ETE = EET = I) and Q% = diag(w?,- - ,w?) the matrix of

(£2-)eigenvalues. We assume they are in decreasing order: wf > --- > w?.

Lemma 6.1. Suppose that for some strictly decreasing function V
Wiy < V2()), J=1...p

Then for all § > 0,

H26,{f5: 1B =151 ) < [V70)] 1og(§).

Here, [x] denotes the upper integral part of © > 0.

Example 6.1. Suppose that for some positive constants m and C
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Then by Lemma 6.1,

c\" . (3
Heb (fs: 100 =101 < (5 ) " 1ox(5)
For § > 1/n (say) we therefore have

m

HOAfp s 180 =100 < (%) toston),

When m > 1/2, one can use a minor generalization of Corollary 5.2, where the

entropy bound is only required for values of § > 1/n. One then takes

o= =, A= (C3logn)*,

T om’
where Cy, is a constant depending on m and C. Then the value of \y defined there
becomes
4Kq [ Cpi/log(n)
Ao = - +t
vno\ 2=zm —1
which is for fired m and Ky, and a fized (large) t, of order \/logn/n.

6.3. Entropy based on coverings of {¢;}
We can consider F := {f3 : |||l = 1} as a subset of

conv({£;}),

where {£1;} := {¢;} U {—1;}, and conv({£1;}) is its convex hull. In fact, if the
{%;} form a linearly dependent system in R™, F is exactly equal to conv({%,}).

We give a bound for the entropy of F by balancing the u-covering number of
{+;} and the squared radius u?. The result is as in [9], with only new element its
extension to general covering numbers (i.e., not only polynomial ones). Lemma 6.2
and its proof can be found in [3].

Lemma 6.2. Let

N(u) = N, {0} - ), u>0.

We have

H(6, S5 18I =131 ln)
< i (00 + 2 (2 o).

The paper [7] gives a bound for the entropy of a convex hull for the case where
the u-covering number of the extreme points is a polynomial in 1/u. This result can
also be found in [9]. There is a redundant log-term in these entropy bounds, see [1]
and [15], but removing this log-term may result in very large constants, depending
on the dimension W as given in Example 6.2 (see [3] for some explicit constants).
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Example 6.2. In this example, we assume the u-covering numbers of {1;} are
bounded by a polynomial in w. That is, we suppose that for some positive constants
W and C,

NGy (851 - ) < (i)w .0,

The constant W can be thought of as the dimension of {1;}. By Lemma 6.2, we
can choose W

CTorwe
where Cy is a constant depending on W and C. We get, as in Example 6.1,

4Ky <C’W\/10g(n) )
Ao = 2 +t).
Vno\ 2@w 1

This result is useful for W small.

A= (Cy log(n))2=,

A refined analysis of the relation between compatibility constants, covering num-
bers and entropy is still to be carried out. We confine ourselves here to the following,
rather trivial, observation (without proof).

Lemma 6.3. Consider normalized design: ||¢;l|, = 1V j. Let {¢;,,...,%;y} be
a mazimal u-packing set of {1;}. Then for any S D {j1,...,in}, S # {1,...,p},
and any L > 1,

$*(L,S) < su®.

One may argue that as u-packing sets are approximations of the original design
{%;} with fewer covariables, they are good candidates for the sparsity set S used
in Theorem 4.1. Lemma 6.3 however shows that such sparsity sets will have very
small compatibility constants.

6.4. Decorrelation numbers

Decorrelation numbers are closely related to packing numbers. First, define the
inner product ~ ~
p(9,9) == &' ¢/n.

Note that X, = p(¢;,%r) and that in the case of standardized design (i.e.
Yo wi(x;) = 0 and ||¢;]l, = 1V j), the inner product p(;,¢x) is for j # k
the (empirical) correlation between 1; and y.

Definition For p > 0, the p-decorrelation number M (p) is the largest value of
M such that there exists {¢1,...,om} C {£;} with |p(¢j, dr)| < p for all j # k.

Hence, if the p-decorrelation number is small, then there are many large corre-
lations, i.e., then the design is highly correlated.

It is clear that when [|1;||, = [|¢% |l = 1, it holds that

5 — veln =201 — p(hy, ¥))-

In other words, high correlations correspond to covariables that are near to each
other. This can be translated into covering number as shown in Lemma 6.4. Its
proof is straightforward and omitted.

Lemma 6.4. Consider normalized design: ||¢;]l, =1V j. For all 0 <u <1,

N(V2u, {05} || - ln) < M(1 —u?).
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7. Conclusion

We have combined results for the prediction error of the Lasso with both compat-
ibility conditions and entropy conditions. Small entropies of {fg : ||8]l1 = 1} cor-
respond to highly correlated design and possibly to small compatibility constants.
Our analysis shows that small entropies allow for a smaller choice of the tuning
parameter and possibly for a compensation of small compatibility constants. This
means that the Lasso enjoys good prediction error properties, even in the case where
the design is highly correlated.

8. Proofs

Proof of Lemma 4.1. We use that for positive v and v and for p > 1, q > 1,
1/p+1/q = 1, the conjugate inequality
uv < uP/p+vi/q
holds. Taking p = 2/(1 — ) and replacing u by u!~% gives
1—_04 9 l+a 2

u” + Ve,

-« <
u VS B) 5

With p = (1 + «)/(2a), and replacing u by uTre | we get
20 2a l—a 1ta
U+ vi-e,
1+a 1+

Thus,

§7+Ab+ (ig) &. -
Proof of Theorem 4.1. Since
1Y = fI3/n+ MBl < 1Y —fs]l5/n + A6,
we have the Basic Inequality
Lf = fOU% + MBI < 2¢"(f = ts)/n + A6 11+ [IEs = f°1]7-

Hence, on 7,

Lf = fOU% + MBI < Aol f = Eslln 18 = 65115 /2 + AIb%|h + liEs — £
Apply Lemma 4.1 to find

1f = fO1% + MBI 2

1 )\ 1—a
< g0 = fal 4 gAB =8+ 1 (50) T AT+l - S
2

Ao\ T 3
< ghF = PR B -0+ (50) T N+ s -
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Thus, we get on T,

Ao

17~ 12 42380 < M6 2007 + 5 (2) 7 st - g2,

Defining S5 := S¢, we rewrite this to
1F = £O15 + 2X1Bs,0s5 1
< AlBs, = (0%)s, [l + AllBs, — (b5)52\|1 + AllBss [l + 2X11(6%)s, [l — 271 Bs, [

A
) 3l — )2

+ 2 6)ss 3 (22

_2
~ A —a
< 3A[1Bs, — (0%)s, 1l + AllBs,uss [l + 3A(%) s, 11 + 5 ()\2>
+3[|ts — £O113-

Moving the term Al| BSQUS3 |l1 to the left hand side, and applying a triangle inequal-
ity, we obtain

1f = S5 + M Bsauss — (0%)s. I

)\ —a
AE) +3lts = /117 -

=11

< 3\|Bs, — (5%)s, |1 + AN (5% | + - (

=1

Case i. If I > II, we arrive at
I1£ = fOUI2 + AlIBsauss — (0%)s, 11 < 6X[|Bs, — (6°)s, -

We first add add a term \||3s, — (bs)g1 l1 to the left and right hand side and then
apply the compatibility condition to B — b5, to get

e s 7A\ﬁ

o 7 56)\281
< —f = o2 + =lfs = foll? + ———r—.
Here we used the decoupling device
22y < bx? +y? /b Vao,yeR, b>0.
So then 622
56A“s
02 + 2X[|8 — 051 < s + T|Ifs — fO)2.

Case ii. If I < I, we get
IF = £ + M Bsaus, — (0%)s, [l < 211,
and hence
P N 7
If = o2+ A8 =% < 5

28 g Ao 0
= 205l + (A) T -
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Proof of Lemma 6.1. Let ||8]l1 = 1. Then ||B|]2 < 1, and hence ||[ET || < 1. For
N > V~1(6) it holds that wy 1 < § and hence

p p
Y WHETE <wi Y (BTHF <8
j=N+1 J=N+1

We now note that ||3||; = 1 implies || 3], < 1 and hence

N
> WHETB) <1
j=1

Lemma 14.27 in [3] states that a ball with radius 1 in N-dimensional Euclidean
space can be covered by (3/8)" balls with radius § (see also Problem 2.1.6 in

(15]). O
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